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Variable-speed-of-light cosmology and second law of thermodynamics

Donam Youm*
ICTP, Strada Costiera 11, 34014 Trieste, Italy

~Received 25 March 2002; published 12 August 2002!

We examine whether cosmologies with a varying speed of light~VSL! are compatible with the second law
of thermodynamics. We find that the VSL cosmology with a varying fundamental constant is severely con-
strained by the second law of thermodynamics, whereas the bimetric cosmological models are less constrained.

DOI: 10.1103/PhysRevD.66.043506 PACS number~s!: 98.80.2k, 05.70.2a, 95.30.Tg
i
lly
d

d
io
ar
le

e
is
ta

ith

nt
SL

in

lit
cs

e
nd
ly
th

u

th
iz

lu
ic
e
.
gh
III
at

u-
n.
re-

fy
t

t-
to

o-
ng

r

ed

g,
I. INTRODUCTION

Variable-speed-of-light~VSL! cosmological models were
proposed@1,2# as an alternative to inflation@3–5# for solving
initial value problems in the standard big bang model. It
assumed in the VSL models that the speed of light initia
took a larger value and then decreased to the present
value during an early period of cosmic evolution. VSL mo
els have attracted some attention, not only because var
cosmological problems that are solved by the inflation
models but also because the cosmological constant prob
can be solved@1,2,6–15# by VSL models. Furthermore, th
recent study of quasar absorption line spectra in compar
with laboratory spectra shows that the fine structure cons
a5e2/(4p\c) varies over cosmological time scales@16–
18#, indicating that the speed of light may indeed vary w
time. Also, it has been shown@19–26# that brane world mod-
els, which have been in vogue recently, manifest Lore
violation, which is a necessary requirement for the V
models.~Note that the recent work@27# studies the experi-
mental limits which are permitted for the graviton’s speed
brane world scenarios.!

It is the purpose of this paper to examine the compatibi
of the VSL models with the second law of thermodynami
~Previous related work can be found in Ref.@28#.! Recently,
there has been active interest in the holographic principl
cosmology, after the initial work by Fischler and Susski
~FS! @29#. The cosmological holographic bound original
formulated by FS had the problem of being violated by
closed Friedmann-Robertson-Walker~FRW! universe. Later
works attempted to circumvent this problem through vario
modifications. In particular, it was proposed in Refs.@30,31#
that the FS holographic bound has to be replaced by
generalized second law of thermodynamics. The general
second law states that the total entropyS of the universe
should not decrease with time during cosmological evo
tion: dS>0. In order to be compatible with the holograph
principle, VSL cosmological models therefore have to ob
the generalized second law of thermodynamics. In Sec
we consider the original VSL model, where the speed of li
c in the action is just assumed to vary with time. In Sec.
we consider the bimetric cosmology of Clayton and Moff
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II. VSL COSMOLOGY WITH VARYING FUNDAMENTAL
CONSTANT

First, we consider the original VSL cosmology@1,2#, in
which the fundamental constantc of nature is assumed to
vary just with time during the early period of cosmic evol
tion, and thereby the Lorentz symmetry is explicitly broke
In such VSL theories, it is postulated that there exists a p
ferred Lorentz frame in which the laws of physics simpli
with the action taking a standard form with the constanc
replaced by a fieldc(xm), the principle of minimal coupling;
namely, the action in the preferred frame takes the form

S5E d4xFA2gH c4

16pG
~R22L!1LJ 1LcG , ~1!

whereLc controls the dynamics ofc andL is the action for
the fields in the universe. It is required thatLc should be
explicitly independent of the other fields, including the me
ric, so that the principle of minimal coupling continues
hold for the equations of motion.

The general metric ansatz for a four-dimensional hom
geneous and isotropic universe is given by the followi
Robertson-Walker metric:

gmndxmdxn52c2dt21a2g i j dxidxj , ~2!

with a time-varyingc. Here,a(t) is the cosmic scale facto
andg i j (x

k) is given by

g i j dxidxj5S 11
k

4
dmnx

mxnD 22

d i j dxidxj

5
dr2

12kr2 1r 2dV2
2 , ~3!

wherek521,0,1, respectively, for the open, flat, and clos
universes.

With the assumption of the principle of minimal couplin
the Einstein equations with the metric ansatz~2! lead to the
Friedmann equations:

S ȧ

a
D 2

5
8pG

3
r1

c2

3
L2

kc2

a2
, ~4!

ä

a
52

4pG

3 S r13
p

c2D1
c2

3
L, ~5!
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where the overdot denotes the derivative with respect tt.
From the Friedmann equations, we obtain the following g
eralized conservation equation:

ṙ13S r1
p

c2D ȧ

a
5

3kcċ

4pGa2 2
cċ

4pG
L. ~6!

We now study the thermodynamics of the VSL cosm
ogy. We assume that the universe satisfies the first law
thermodynamics. When applied to the comoving volume
ement of unit coordinate volume and physical volumev
5a3, the first law of thermodynamics takes the form

Tds5d~rc2v !1pdv, ~7!

where s5s(v,T) is the entropy density of the universe
temperatureT within the volumev, and r5r(T) and p
5p(T) are the mass density and the pressure of matter in
universe. In this paper, we assume thatc is a function ofa,
just as in Ref. @8#. Since v5a3, we have c8(a)
53a2dc/dv53v2/3dc/dv, where the prime denotes the d
rivative with respect toa. Then Eq.~7! can be rewritten as

Tds5c2vdr1S rc21p12rcv
dc

dv Ddv

5c2vdr1S rc21p1
2

3
rcc8v1/3Ddv. ~8!

So the partial derivatives ofs(v,T) are given by

]s~v,T!

]v
5

1

T S rc21p1
2

3
rcc8v1/3D , ~9!

]s~v,T!

]T
5

c2v
T

dr

dT
. ~10!

From the integrability condition]2s/(]v]T)5]2s/(]T]v),
we obtain

dp

dT
5

1

T S rc21p1
2

3
rcc8v1/3D

5
1

T

d

dv
@~rc21p!v#. ~11!

Making use of this equation, we can put Eq.~7! into the
following form:

ds5dFv
T

~rc21p!G2
2v2

T2
rc

dc

dv
dT, ~12!

from which we see that the usual Euler relations5(v/T)
3(rc21p) does not hold for VSL theories with varying fun
damental constant.

To obtain the time derivative ofs, we express the conse
vation equation~6! in the following form, making use of Eq
~11!:
04350
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dt Fv
T

~rc21p!G5S 2r
ċ

c
2

cċ

4pG
L1

3kcċ

4pGa2D c2v
T

12rc
dc

dv
v2

Ṫ

T2
. ~13!

Equation~12! along with Eq.~13! yields1

ṡ5S 2r2
c2

4pG
L1

3kc2

4pGa2D cċa3

T
. ~14!

This equation could also have been obtained directly fr
Eqs.~6! and ~7!.

Since ċ,0 for the VSL cosmology with varying funda
mental constant, the terms in the parentheses of Eq.~14!
have to be nonpositive in order to be compatible with t
second law of thermodynamicsdS>0:

2r2
c2

4pG
L1

3kc2

4pGa2 <0. ~15!

When the cosmological constant is nonpositive (L<0), this
condition can never be satisfied by the flat (k50) and the
closed (k51) universes. Although it can be satisfied by t
open universe (k521), the condition is very restrictive
about the possible type of matter in the universe and the t
variation of c. On the other hand, when the cosmologic
constant is positive (L.0) and is large enough, the restric
tion becomes less severe. We now examine the explicit c
ditions under which the constraint~15! can be satisfied. As-
suming that c varies gradually asc(t)5c0an and the
equation of state is of the formp5(g21)rc2, by solving
Eq. ~6! one obtains

r5
B

a3g
1

3kc0
2na2(n21)

4kG~3g12n22!
2

Lnc0
2a2n

4pG~3g12n!
, ~16!

whereB is a positive constant. So the constraint~15! reduces
to

2B

a3g12n
1

3~3g14n22!kc0
2

4pG~3g12n22!a2 <
~3g14n!c0

2L

4pG~3g12n!
.

~17!

First of all, we see from this that for the flat universek
50) the constraint is always violated for some values ofa.
@When 3g12n50, the last term on the right-hand sid
~RHS! of Eq. ~16! behaves witha as;a23g ln a and there-
fore the RHS of Eq.~17! behaves witha as; ln a.# In order
for Eq. ~17! to be satisfied for any values ofa, the LHS has
to have a maximum value and its value must not be gre
than the RHS. From this condition, we obtain the followin
constraint on the constantsn andg:

1The previous related work@28# does not take into account th

effects onṡ of the modification of the usual Euler relation due to t
time-varyingc and the nonzero cosmological constantL.
6-2
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VARIABLE-SPEED-OF-LIGHT COSMOLOGY AND . . . PHYSICAL REVIEW D66, 043506 ~2002!
k~3g14n22!.0, ~3g12n!~3g12n22!,0, ~18!

along with the following lower limit on the cosmologica
constant:

L>
3~3g14n22!k

3g14n

3F2
3~3g14n22!kc0

2

4p~3g12n!~3g12n22!GBG2/(3g12n22)

.

~19!

One can always choose the integration constantB in such a
way that the bound~19! is compatible with the observe
value of L. However, the constraint~18! severely restricts
the allowed value ofg. For the closed universe (k51), Eq.
~18! implies g,2/3 and therefore the radiation-dominat
universe (g54/3) and the matter-dominated universeg
51) are not allowed. As for the open universe (k521), Eq.
~18! leads to the less severe constraintg.22/3, which al-
lows theg54/3,1 cases.

III. SCALAR-TENSOR BIMETRIC COSMOLOGY

In this section, we consider the bimetric VSL model, pr
posed by Clayton and Moffat@10#. The bimetric models
achieve a time-variable speed of light in a diffeomorphi
invariant manner and without explicitly breaking the Loren
symmetry by introducing bimetric structure into spacetim
~It was recently found in Ref.@32# that the fine-structure
constanta5e2/(4p\c) in bimetric models is constant in
spacetime although the speed of light varies with time, du
the compensating time variation of the electric charge.! It is
usually assumed in bimetric models that graviton and
biscalar ~or the bivector! propagate on the geometry d
scribed by the ‘‘gravity metric,’’ whereas all the matter field
~including photons! propagate on the geometry described
the ‘‘matter metric.’’ In the case of a scalar-tensor bimet
model, the gravity metricgmn and the matter metricĝmn are
related by the biscalar fieldF as

ĝmn5gmn2B]mF]nF, ~20!

where the dimensionless constantB is assumed to be pos
tive. Since these two metrics are nonconformally related
photon and a graviton propagate at different speeds. The
tion for the scalar-tensor bimetric model has the form

S5E d4xA2gF c4

16pG
~R22L!1LFG

1E d4xA2ĝLmat, ~21!

whereLmat is the Lagrangian density for matter fields and t
Lagrangian densityLF for the biscalar is given by

LF52
1

2
gmn]mF]nF2V~F!. ~22!
04350
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The gravity metric for the universe has the form

gmndxmdxn52c2dt21a2g i j dxidxj , ~23!

with constant speed of the gravitoncgrav5c andg i j given by
Eq. ~3!. Due to the requirement of homogeneity and isotro
of the universe, the biscalar fieldF is independent of the
spatial coordinatesxi . According to Eq.~20!, the matter met-
ric is therefore given by

ĝmndxmdxn52~c21BḞ2!dt21a2g i j dxidxj , ~24!

where the overdot stands for the derivative with respect tt.

So, the speed of the photoncph5cA11BḞ2/c2[cAI varies
with t, taking a larger value thancgrav5c while Ḟ5” 0.

In obtaining the energy-momentum tensor for the purp
of deriving the Einstein’s equations, one has to keep in m
that the matter fields and the biscalar are coupled to diffe
metrics. Sinceĝmn is the physical metric for the matter fields
the energy-momentum tensor for the matter fields is defi
in terms ofĝmn :

T̂mn[
2

A2ĝ

d~A2ĝLmat!

dĝmn

5~ r̂cph
2 1 p̂!ÛmÛn1 p̂ĝmn, ~25!

wherer̂ and p̂ are the mass density and the pressure of
matter fields andÛm is the four-velocity of a matter perfec
fluid normalized asĝmnÛmÛn521. Since the nonzero com
ponent of the four-velocity vector in the comoving coord
nates isÛt51/cph, the nonzero components of the energ
momentum tensor for the matter fields are

T̂tt5 r̂, T̂i j 5
p̂

a2
g i j . ~26!

On the other hand, since the biscalar field is coupled to
gravity metricgmn , its energy-momentum tensor is define
in terms ofgmn :

TF
mn[

2

A2g

d~A2gLF!

dgmn

5gmagnb]aF]bF2
1

2
gmn]aF]aF2V~F!gmn

5~rFc21pF!UmUn1pFgmn, ~27!

where the four-velocityUm for the biscalar is normalized a
gmnUmUn51, so its nonzero component isUt51/c. The
mass density and the pressure of the biscalar field are th
fore

rF5S 1

2

Ḟ2

c2
1VD 1

c2 , pF5
1

2

Ḟ2

c2
2V. ~28!
6-3
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DONAM YOUM PHYSICAL REVIEW D 66, 043506 ~2002!
Taking the variation of the actionS with respect to the
metric, we obtain the Einstein equations

G mn1Lgmn5
8pG

c4
T mn, ~29!

where Gmn is the Einstein tensor forgmn and the energy-
momentum tensorTmn has the form

T mn5TF
mn1T̂mn

A2ĝ

A2g
. ~30!

The nonzero components ofT mn are

T tt5rF1 r̂
cph

c
, T i j 5S pF1 p̂

cph

c D 1

a2 g i j . ~31!

The Einstein equations lead to the Friedmann equations

S ȧ

a
D 2

5
8pG

3
r1

c2

3
L2

kc2

a2
, ~32!

ä

a
52

4pG

3 S r13
p

c2D1
c2

3
L, ~33!

where

r[rF1 r̂
cph

c
, p[pF1 p̂

cph

c
. ~34!

From these Friedmann equations, we obtain the follow
conservation equation:

ṙ13S r1
p

c2D ȧ

a
50. ~35!

The factors ofcph/cgrav5cph/c in Eq. ~34! can be under-
stood from the fact that the definition of the energ
momentum tensor depends on the choice of metric. Ge
ally, the following two energy-momentum tensors, associa
with the same Lagrangian densityL but defined with respec
to the two different metricsgmn and ĝmn :

Tgrav
mn [

2

A2g

dL

dgmn

, Tph
mn[

2

A2ĝ

dL

dĝmn

, ~36!

are related to each other as

Tgrav
mn 5

A2ĝ

A2g
Tph

mn5
cph

cgrav
Tph

mn . ~37!

Here, the subscripts ‘‘grav’’ and ‘‘ph’’ signify that the quan
tity under consideration is defined with respect to the grav
and matter metrics, respectively. The mass densities and
pressures in the two different definitions are defined by
04350
g
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Tgrav
mn 5~rgravcgrav

2 1pgrav!U
mUn1pgravg

mn,

Tph
mn5~rphcph

2 1pph!Û
mÛn1pphĝ

mn, ~38!

where the four-velocities are normalized asgmnUmUn521
and ĝmnÛmÛn521. From Eqs.~37! and ~38!, we see that
the mass densities and the pressures in the two different
nitions are related as

rgrav5
cph

cgrav
rph, pgrav5

cph

cgrav
pph. ~39!

The factor ofcgrav/cph, multiplying the matter field mass
density and pressure in Eq.~34!, arose due to the fact that th
matter field mass density and pressure, which are defi
with respect to the matter metric, have to be transformed
‘‘gravity metric’’ quantities, since the Friedmann equatio
are defined with respect to the gravity metric.@In the Einstein
equations~29!, the total energy-momentum tensorT mn is de-
fined with respect to the gravity metric, i.e.,T mn

[(2/A2g)dL/dgmn where the Lagrangian densityL is the

sum of the matter field Lagrangian densityLmat5A2ĝLmat

and the biscalar field Lagrangian densityLF5A2gLF .#
We now study the thermodynamics of the bimetric VS

cosmology. Since we are considering the frame associ
with a gravity metric of the form~23!, the physical quantities
in the thermodynamic laws should be ‘‘gravity metric’’ qua
tities. The first law of thermodynamics, applied to the c
moving volume element of unit coordinate volume a
physical volumev5a3, therefore takes the form

Tds5d~rc2v !1pdv, ~40!

wherer andp are given by Eq.~34!. Note that the square o
the speed of gravitoncgrav5c multiplies r to yield the en-
ergy density, because we are considering the frame ass
ated with the gravity metric. From Eqs.~35! and ~40!, we
obtain ds/dt50, namely, the total entropyS5s*dx3A2g
of the universe remains constant during the cosmic evo
tion. Therefore, unlike the VSL cosmology with varying fun
damental constant considered in the previous section,
second law of thermodynamicsdS>0 is always obeyed re
gardless of the value ofk.

We comment on the thermodynamics associated with
matter fields only. Since it is assumed that the matter fi
action is constructed out ofĝmn , the equations of motion o
the matter fields imply the conservation law for the mat
field energy-momentum tensor@12#

¹̂mT̂mn50, ~41!

where¹̂m is the covariant derivative defined with respect
ĝmn . The t component¹̂mT̂t

m50 of the conservation equa

tion, whereT̂n
m[T̂mrĝrn , takes the following form:

ṙ̂13S r̂1
p̂

cph
2 D ȧ

a
522r̂

ċph

cph
. ~42!
6-4
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From this equation we see that matter fields are created w
the speed of the photon decreases with time to the pre
day valuec. In the frame associated with the matter metr
the first law of thermodynamics takes the form

Tdsmat5d~ r̂cph
2 v !1 p̂dv, ~43!

wheresmat is the entropy density associated with the mat
fields. From Eqs.~42! and~43!, we see thatṡmat50, namely,
that the entropy for the matter fields remains constant des
the fact that the matter fields are created whenċph,0. This
apparent paradox can be understood from the fact that in
matter metric frame the past light cone contracts and ther
less information is collected by the observer. Next, we c
sider the frame associated with the gravity metric. In t
frame, the mass density and the pressure of the matter fi
are transformed tor̂cph/c and p̂cph/c, and the square of the
speed of the gravitonc should be multiplied by the mas
density to obtain the energy density. So the first law of th
modynamics takes the form

Tdsmat5d~ r̂ccphv !1
cph

c
pdv. ~44!

From Eqs.~42! and ~44!, we have

ṡmat5S 3
cph

2 2c2

c2cph
2 p̂

ȧ

a
2 r̂

ċph

cph
D ccpha

3

T
. ~45!

So, in the gravity frame, the entropy for the matter fie
varies with time whileċmat5” 0. This time variation of the
entropy of the matter fields is due to the exchange of entr
with the biscalar sector, since we have seen that the t
entropy densitys remains constant in the gravity metr
frame.

In the above, we considered the equations in the com
ing frame for the gravity metricgmn . Since all the matter
fields in the universe are coupled to the matter metricĝmn , it
would be more natural to consider the comoving frame
the matter metric in studying the expansion of the univer
By defining the cosmic timet for the matter metric in the
following way:

dt2[~11BḞ2/c2!dt2, ~46!

we can bring the matter metric into the following standa
comoving frame form for the Robertson-Walker metric:

ĝmndxmdxn52c2dt21a2~t!g i j dxidxj . ~47!

In this new frame, the gravity metric~23! takes the form

gmndxmdxn52~c22BḞ2!dt21a2~t!g i j dxidxj , ~48!

where the overdot from now on stands for the derivative w
respect tot. So, in this new frame, a photon travels with
constant speedcph5c and a graviton travels with a time

variable speedcgrav5Ac22BḞ25c/AI , taking smaller
04350
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value thanc while Ḟ5” 0. Note thatI 51/(12BḞ2/c2) when
the overdot stands for the derivative with respect tot.

In obtaining the Friedmann equations in the new fram
we do not just apply the change of time coordinate~46! in
the Friedmann equations~32! and ~33! in the old frame, un-
like the previous work on bimetric VSL cosmology. The re
son is that the definitions for the mass density and the p
sure depend on the choice of time coordinate. We cons
the Einstein equations~29! with Gmn now being the Einstein
tensor for the gravity metric given by Eq.~48!. The energy-
momentum tensorTmn is still given by Eq.~30! but now with

T̂mn5~ r̂c21 p̂!ÛmÛn1 p̂ĝmn, ~49!

TF
mn5~rFcgrav

2 1pF!UmUn1pFgmn, ~50!

where the nonzero components of the four-velocities areÛt

51/c andUt51/cgrav. Note that the mass densities and t
pressures in Eqs.~49! and ~50! are different from those in
Eqs.~25! and~27!, although they are denoted with the sam
notation. In the comoving frame for the matter metric, t
Friedmann equations therefore take the forms

S ȧ

a
D 2

5
8pG

3
r1

cgrav
2

3
L2

kcgrav
2

a2
, ~51!

ä

a
2

ċgrav

cgrav

ȧ

a
52

4pG

3 S r13
p

cgrav
2 D 1

cgrav
2

3
L,

~52!

where

r[rF1 r̂
c

cgrav
, p[pF1 p̂

c

cgrav
. ~53!

Note that although we are now considering the comov
frame for the matter metric, the total energy momentum t
sorT mn is still defined with respect to the gravity metric. It
just that the time coordinatet in the gravity metric is the
comoving frame time coordinate for the matter metric.
the mass density and pressure of the matter fields still h
the factor ofc/cgrav in Eq. ~53!. From these Friedmann equa
tions, we obtain the following conservation equation:

ṙ13S r1
p

cgrav
2 D ȧ

a
5

3

4pG

ċgrav

cgrav
S ȧ

a
D 2

2
cgravċgrav

4pG
L

1
3

4pG

kcgravċgrav

a2
. ~54!

We now study the compatibility of the bimetric VSL cos
mology with the second law of thermodynamics. Althou
we are now considering the comoving frame for the ma
metric, we first study thermodynamics in the frame of t
gravity metric, since the conservation equation~54! is ex-
pressed in the gravity metric frame. The first law of therm
6-5
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DONAM YOUM PHYSICAL REVIEW D 66, 043506 ~2002!
dynamics, applied to the comoving volume element of u
coordinate volume and physical volumev5a3, takes the
form

Tds5d~rcgrav
2 v !1pdv. ~55!

From Eqs.~54! and ~55!, we obtain

Tṡ54ra3cgravċgrav, ~56!

where we made use of Eq.~51! to simplify the RHS. So the
total entropy S5s*dx3A2g increases with time while
cgrav5c/AI increases to the present day value. The sec
law of thermodynamics is therefore always satisfied for a
value of k. Next, we consider the second law of thermod
namics in the frame of the matter metric. The mass den
and the pressure in the matter metric frame are given
rcgrav/c andpcgrav/c, and the energy density is obtained b
multiplying the mass density byc2. So, the first law of ther-
modynamics takes the form

Tds5d~rccgravv !1
cgrav

c
pdv. ~57!

This along with Eq.~54! leads to

ṡ53S cgrav
2 2c2

c2cgrav
2 p

ȧ

a
1r

ċgrav

cgrav
D ccgrava

3

T
. ~58!

So the terms in the parentheses of this equation have t
non-negative in order for the condition for the second law
thermodynamics to be satisfied. Making use of the expl
expressions forcgrav, r, andp, one can put the condition in
the form

Ḟ2F1

2

I

c2Ḟ22V1 p̂AI G ȧ

a

1ḞF̈F1

2

I

c2Ḟ21V1 r̂c2AI G<0. ~59!

Making use of the equation of motion for the biscalar fie
F, it can be shown that regardless of the value ofk this
condition can be satisfied by a perfect fluid obeying
equation of statep̂5(g21)r̂c2 with g<2, provided the bi-
scalar potential satisfies]tV(F).0.
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We discuss the thermodynamics associated with ma
fields only. As before, the equations of motion for the mat
fields imply the conservation law~41! for the matter field
energy-momentum tensor. Since the speed of a photon t
a constant valuecph5c in the comoving frame for the matte
metric, the t component of the matter field conservatio
equation takes the form

ṙ̂13S r̂1
p̂

c2D ȧ

a
50. ~60!

Unlike the case of the comoving frame for the gravity metr
the matter fields are observed to be conserved. Equation~60!
along with the first law of thermodynamics for the matt
fields

Tdsmat5d~ r̂c2v !1 p̂dv ~61!

yields ṡmat50. So the time variation of the entropy densitys
in the matter metric frame, as expressed in Eq.~58!, is all
due to the time variation of the entropy density of the bis
lar field, and there is no entropy exchange between ma
and the biscalar field sectors.

IV. CONCLUSIONS

We studied the compatibility of the VSL cosmologic
models with the second law of thermodynamics. We find t
generally the VSL model with varying fundamental consta
is severely constrained by the second law of thermodyn
ics. For the model with the speed of light gradually varyi
as a power law of the cosmic scale factor, only an op
universe with positive cosmological constant is allowed
contain the cosmic perfect fluid satisfying a reasonable eq
tion of state such as one including dust and radiation. On
other hand, the bimetric cosmological models are less c
strained by the second law of thermodynamics. In the
moving frame associated with the gravity metric, there is
constraint on the model by the second law of thermodyna
ics. In the comoving frame associated with the matter met
provided the biscalar potential satisfies a certain conditi
regardless of the value ofk, the second law of thermodynam
ics can be satisfied by a perfect fluid satisfying the equa
of statep̂5(g21)r̂c2 with g<2, which includes dust and
radiation.
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