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Variable-speed-of-light cosmology and second law of thermodynamics
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We examine whether cosmologies with a varying speed of lgBiL) are compatible with the second law
of thermodynamics. We find that the VSL cosmology with a varying fundamental constant is severely con-
strained by the second law of thermodynamics, whereas the bimetric cosmological models are less constrained.
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I. INTRODUCTION II. VSL COSMOLOGY WITH VARYING FUNDAMENTAL
CONSTANT

Variable-speed-of-lightvVSL) cosmological models were First, we consider the original VSL cosmolo§¥,2], in
proposed1,2] as an alternative to inflatigr8—5] for solving which the fundamental constantof nature is assumed to
initial value problems in the standard big bang model. It isvary just with time during the early period of cosmic evolu-
assumed in the VSL models that the speed of light initiallytion, and thereby the Lorentz symmetry is explicitly broken.
took a larger value and then decreased to the present déﬂ} such VSL theor|es,_|t is postulated that there exists a pre-
value during an early period of cosmic evolution. VSL mod- férred Lorentz frame in which the laws of physics simplify
els have attracted some attention, not only because varioy¥th the action taking a standard form with the constant
cosmological problems that are solved by the inflationar)feplacecj by aﬂ_elth”), the principle of minimal coupling
models but also because the cosmological constant probIePr?mely’ the action in the preferred frame takes the form
can be solved1,2,6—13 by VSL models. Furthermore, the
recent study of quasar absorption line spectra in comparison S:f d*x
with laboratory spectra shows that the fine structure constant

a=e?/(4mhic) varies over cosmological time scalgh6— where L, controls the dynamics af and £ is the action for
18], indicating that the speed of light may indeed vary with o fie|ds in the universe. It is required thdt should be
time. Also, it has been showa9-24 that brane world mod- gy picitly independent of the other fields, including the met-
els, which have been in vogue recently, manifest Lorentzic so that the principle of minimal coupling continues to
violation, which is a necessary requirement for the VSLnhold for the equations of motion.
models.(Note that the recent worl7] studies the experi- The general metric ansatz for a four-dimensional homo-
mental limits which are permitted for the graviton’s speed ingeneous and isotropic universe is given by the following
brane world scenarios. Robertson-Walker metric:

It is the purpose of this paper to examine the compatibility o
of the VSL models with the second law of thermodynamics. 9, dxtdx’=—c?dt*+a?y; dx'dx, (3]
(Previous related work can be found in REZ8].) Recently,
there has been active interest in the holographic principle i
cosmology, after the initial work by Fischler and Susskind@"d 7ij

4

C
\/—_g( oG (R-20)+L

tL|, (D)

I){vith a time-varyingc. Here,a(t) is the cosmic scale factor
(x¥) is given by

(FS [29]. The cosmological holographic bound originally K -2

formulated by FS had the problem of being violated by the yijdxdx'=| 1+ Zﬁmnxmx” gijdx'dx

closed Friedmann-Robertson-Walk&RW) universe. Later

works attempted to circumvent this problem through various dr?

modifications. In particular, it was proposed in R¢f20,31] T 1-kr? +r2dQ3, ()]

that the FS holographic bound has to be replaced by the

generalized second law of thermodynamics. The generalizegherek= —1,0,1, respectively, for the open, flat, and closed
second law states that the total entropyof the universe yniverses.

should not decrease with time during cosmological evolu- With the assumption of the principle of minimal coupling,
tion: dS=0. In order to be compatible with the holographic the Einstein equations with the metric anséxlead to the
principle, VSL cosmological models therefore have to obeyrFriedmann equations:

the generalized second law of thermodynamics. In Sec. I,

we consider the original VSL model, where the speed of light (é 2 877G c? kc?

c in the action is just assumed to vary with time. In Sec. I, 2l T3 + gf\— g, (4)

a
we consider the bimetric cosmology of Clayton and Moffat.

a 4nG p| c?
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p+3C7 +§A, (5)
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where the overdot denotes the derivative with respedt to v ¢ cc 3kce |\ c2y
From the Friedmann equations, we obtain the following gen- —[—(pc2+ p)|=|2p=— A+ 5| —
eralized conservation equation: de|T ¢ 4nG 4nGa’) T
pla 3kcc cc +2 de T (13
: pC——v"—.
Z= — AL d 2
P3Pt 2] 3T 4G’ AnG © v

We now study the thermodynamics of the VSL cosmoI-Equatlon(lz) along with Eq.(13) yields

ogy. We assume that the universe satisfies the first law of . c? 3kc? \ ccald
thermodynamics. When applied to the comoving volume el- s=|2p— A+ > (14)
ement of unit coordinate volume and physical volume 4nG 4nGa’) T

— a3 ] H
=a’, the first law of thermodynamics takes the form This equation could also have been obtained directly from

Eqgs.(6) and (7).

Sincec<0 for the VSL cosmology with varying funda-
where s=s(v,T) is the entropy density of the universe at mental constant, the terms in the parentheses of (E4).
temperatureT within the volumev, and p=p(T) and p have to be nonpositive in order to be compatible with the
=p(T) are the mass density and the pressure of matter in thgecond law of thermodynamickS=0:
universe. In this paper, we assume thas a function ofa, 2 3K

3 C
+ <
47Ga?

Tds=d(pc?v)+pdv, (7)

just as in Ref. [8]. Since v=a°, we have c'(a) 2p—
=3a’dc/dv=3v?°dc/dv, where the prime denotes the de- AmG
rivative with respect t@a. Then Eq.(7) can be rewritten as

A

0. (15

When the cosmological constant is nonpositive0), this
dc condition can never be satisfied by the flat(0) and the
Tds= szdp+(pC2+ p+2pcu d—)dv closed k=1) universes. Although it can be satisfied by the
v open universe K=—1), the condition is very restrictive
) about the possible type of matter in the universe and the time
pC?+p+ §pCC'vl’3>dv- (8)  variation of c. On the other hand, when the cosmological
constant is positive X>0) and is large enough, the restric-
tion becomes less severe. We now examine the explicit con-
ditions under which the constraifit5) can be satisfied. As-
2 suming thatc varies gradually asc(t)=cya" and the
pc2+ p+§pcc’vl’3), (9)  equation of state is of the form=(y—1)pc?, by solving
Eq. (6) one obtains

=c%vdp+

So the partial derivatives of(v,T) are given by

Js(v,T) 1

v T

as(v,T) c?v dp

_Cvdp B 3kcina?™ b Ancga®"
aT T dT°

(10 _B _
P= 5 T 2KG(By+2n—2) 47G(3y+2n)"

(16)

From the integrability conditiow?s/(dvdT)=as/(dTdv),

) whereB is a positive constant. So the constrgit) reduces
we obtain

to

d 1 2
°h_Z pC?+p+ 3PcC

/13 2B 3(3y+4n—2)kcd  (3y+4n)ciA
dT T

2320 | 4nG(3y+2n-2)a’  AnG(3y+2n)’

(17)

First of all, we see from this that for the flat univerde (

=0) the constraint is always violated for some values.of

[When 3y+2n=0, the last term on the right-hand side

(RHS) of Eq. (16) behaves witta as~a 3?Ina and there-

) fore the RHS of Eq(17) behaves witra as~Ina.] In order

(12) for Eq. (17) to be satisfied for any values af the LHS has
to have a maximum value and its value must not be greater
than the RHS. From this condition, we obtain the following

from which we see that the usual Euler relation (v/T)  constraint on the constantsand y:

X (pc?+ p) does not hold for VSL theories with varying fun-

damental constant.

To obtain the time derivative of we express the conser- The previous related work8] does not take into account the
vation equatior(6) in the following form, making use of Eq. effects ons of the modification of the usual Euler relation due to the
(112): time-varyingc and the nonzero cosmological constant

1d
Zfa[(PC +pv]. (13)

Making use of this equation, we can put E@) into the
following form:

ds=d| = (pc2+
s=d F(pc+p)

2v CdT
T2 PCE O
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k(3y+4n—2)>0, (3y+2n)(3y+2n—2)<0, (18  The gravity metric for the universe has the form

along with the following lower limit on the cosmological 9,,0xdx"= — c?dt*+a’y;;dxdx, (23
constant: ) ) ,
with constant speed of the gravitag,,,~ ¢ andy;; given by
3(3y+4n—2)k Eq. (3). Due to the requirement of homogeneity and isotropy
>3y+—4n of the universe, the biscalar fiel# is independent of the
spatial coordinateg'. According to Eq(20), the matter met-
3(3y+4n—2)kc? 2(3y+2n-2) ric is therefore given by

X —
47(3y+2n)(3y+2n—2)GB - . o
m(3yram(3y ) 19 9, dxdx’= — (c2+ BB d 2+ aly; dxidx,  (24)

19

where the overdot stands for the derivative with respett to

One can always choose the integration consiairt such a i ma 2 .
way that the bound19) is compatible with the observed 59’ the speed of the photop,=cv1+Bo®/c _c\ﬁvanes

value of A. However, the constraintl8) severely restricts With t, taking a larger value thagy,,=c while ®#0.

the allowed value ofy. For the closed univers&& 1), Eq. In obtaining the energy-momentum tensor for the purpose
(18) implies y<2/3 and therefore the radiation-dominated ©f deriving the Einstein’s equations, one has to keep in mind
universe (y=4/3) and the matter-dominated universe ( that the matter fields and the biscalar are coupled to different
=1) are not allowed. As for the open universe<(— 1), Eq.  metrics. Since,,, is the physical metric for the matter fields,
(18) leads to the less severe constrajnt —2/3, which al- the energy-momentum tensor for the matter fields is defined

lows they=4/3,1 cases. in terms of@,“,:
Ill. SCALAR-TENSOR BIMETRIC COSMOLOGY . 2 8(N—9Lma)
Tur= -
In this section, we consider the bimetric VSL model, pro- N 69,
posed by Clayton and Moffafl0]. The bimetric models
achieve a time-variable speed of light in a diffeomorphism =(pc3+p)UH0”+pg~, (25)

invariant manner and without explicitly breaking the Lorentz

symmetry by introducing bimetric structure i_nto spacetime.Where;, andﬁ are the mass density and the pressure of the
(It was recently found in Ref[32] that the fine-structure matter fields and)* is the four-velocity of a matter perfect

constanta=e?/(4mhc) in bimetric models is constant in . . A .
{Juid normalized ag, , U*U"= —1. Since the nonzero com-

spacetime although the speed of light varies with time, due t ) . . .
the compensating time variation of the electric charges ponent of the four-velocity vector in the comoving coordi-

usually assumed in bimetric models that graviton and théates isU'=1/c,,, the nonzero components of the energy-
biscalar (or the bivector propagate on the geometry de- momentum tensor for the matter fields are

scribed by the “gravity metric,” whereas all the matter fields
(including photong propagate on the geometry described by

the “matter metric.” In the case of a scalar-tensor bimetric T'=p, T :g i (26)

model, the gravity metrig,, and the matter metrig uy are

related by the biscalar field as On the other hand, since the biscalar field is coupled to the
A gravity metricg,,,, its energy-momentum tensor is defined
9,v=9,,— B3, 3, P, (200  interms ofg,,:

where the dimensionless constdhis assumed to be posi- 2 8(V-9Ls)

v

tive. Since these two metrics are nonconformally related, a T4 \/_—
photon and a graviton propagate at different speeds. The ac- 9
tion for the scalar-tensor bimetric model has the form

6gMV

1
. =9"'9"70, PP~ 59", P ®—V(P)g"”

c
s=f d“x\/—g[le G(R—ZA)+£q,
i =(pC®+ Pa) UHU"+ Pag™”, 27)
+f d*x V= 9L mat (21)  where the four-velocityJ# for the biscalar is normalized as

9,,U*U"=1, so its nonzero component 8'=1/c. The

whereL,,..is the Lagrangian density for matter fields and them?ess density and the pressure of the biscalar field are there-

Lagrangian density 4, for the biscalar is given by
1 12
7, pq;:E?—V. (28

1 1 d?
[Z(D:—Eg”VaMQDﬂV(D—V(QJ). (22) po= §?+V
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Taking the variation of the actiof with respect to the T4 = (pgra \pSrav + Pyt UFU "+ Py,
metric, we obtain the Einstein equations
871G Tgh": (pphcr2>h+ pph)o#o '+ pphéﬂyy (38
MY 4 KV — mv - '
g Ag c? ™ 29 where the four-velocities are normalized gg,U*U"=—1

and @MVU“OE —1. From Egs.(37) and (38), we see that
where G,, is the Einstein tensor fog,, and the energy- the mass densities and the pressures in the two different defi-

momentum tensof,,, has the form nitions are related as
v —a c c
A ph ph
TH=TR +TH" 9 . (30 Pgrav= = Pph»  Pgrav™ Pph- (39
Cgrav Cgrav

V-9
The factor ofcy,,/Cpn, multiplying the matter field mass
density and pressure in E@4), arose due to the fact that the

1 matter field mass density and pressure, which are defined

—v'). (31  with respect to the matter metric, have to be transformed to

a “gravity metric” quantities, since the Friedmann equations

are defined with respect to the gravity metfio. the Einstein

equationg29), the total energy-momentum tensbt” is de-

The nonzero components @#” are

~C -
’Z’tt=pq,+p?ph, T =

Cc
~Cph
Po pC

The Einstein equations lead to the Friedmann equations

228G 2 K2 fined with respect to the gravity metric, i.e7""
E) :Lp+ C_A_ i, (32) =(2/y—g)éL/sg,, where the Lagrangian densityis the
a 3 3 a? sum of the matter field Lagrangian density,,~= \/—éﬁmat

and the biscalar field Lagrangian dendity=+—9~Lg .]

a 477G p 2 We now study the thermodynamics of the bimetric VSL
a3 P+3? +§A' 33 cosmology. Since we are considering the frame associated
with a gravity metric of the forn§23), the physical quantities
where in the thermodynamic laws should be “gravity metric” quan-

tities. The first law of thermodynamics, applied to the co-
~Cph ~Cph moving volume element of unit coordinate volume and
p=patp =, P=PotpP_. (34 physical volumev =a®, therefore takes the form

_ 2
From these Friedmann equations, we obtain the following Tds=d(pc®v)+pdv, (40

conservation equation: wherep andp are given by Eq(34). Note that the square of

: the speed of gravitorg,,~c multiplies p to yield the en-

n b E:o (35) ergy density, because we are considering the frame associ-
P72 a ated with the gravity metric. From Eq§35) and (40), we

obtain ds/dt=0, namely, the total entrop$=sfdx*y/—y
The factors oftp/Cyra=Cpn/C in EQ. (34) can be under-  of the universe remains constant during the cosmic evolu-

stood from the fact that the definition of the energy-tion. Therefore, unlike the VSL cosmology with varying fun-
momentum tensor depends on the choice of metric. Genettamental constant considered in the previous section, the
ally, the following two energy-momentum tensors, associate@econd law of thermodynamickS=0 is always obeyed re-
with the same Lagrangian densltybut defined with respect gardless of the value &
to the two different metricg,,, andg wv We comment on the thermodynamics associated with the
matter fields only. Since it is assumed that the matter field

, 2 oL , 2 6L action is constructed out (@;‘W, the equations of motion of
TgravE f K TfnLhE ‘\/—_A —5A ) (36) the matter fields imply the conservation law for the matter
g v =g %Yuv field energy-momentum tensfi2]

p+3

are related to each other as @ﬁ,u;:o’ (41)
v _ —é wv_ Sph where@ﬂ is the covariant derivative defined with respect to
Tgrav_ Tp _C Tph . (37) ~ & Tu_ .
-g grav gu»- Thet componentV, T=0 of the conservation equa-

tion, whereT#=T#¢g,,, takes the following form:
Here, the subscripts “grav” and “ph” signify that the quan-

tity under consideration is defined with respect to the gravity . ) f’ a c .
and matter metrics, respectively. The mass densities and the pt3|pt+—|z= —2p-2, (42
pressures in the two different definitions are defined by Con/ & Cph
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From this equation we see that matter fields are created whilgajue thanc while & # 0. Note that = 1/(1—B®?2/c?) when

the speed of the photon decreases with time to the presefHe overdot stands for the derivative with respect-to
day valuec. In the frame associated with the matter metric, | obtaining the Friedmann equations in the new frame,

the first law of thermOdynamiCS takes the form we do not just app|y the Change of time Coordinaté) in
- . the Friedmann equationi82) and(33) in the old frame, un-
Tdspar=d(pCpp) +pdo, (43)  like the previous work on bimetric VSL cosmology. The rea-

) ) ) ) son is that the definitions for the mass density and the pres-
wheres,, is the entropy density associated with the mattersyre depend on the choice of time coordinate. We consider

fields. From Eqs(42) and(43), we see thas,,=0, namely,  the Einstein equation@9) with G, now being the Einstein
that the entropy for the matter fields remains constant despit&nsor for the gravity metric given by E¢48). The energy-

the fact that the matter fields are created whgp<0. This ~ momentum tensdf,,,, is still given by Eq.(30) but now with
apparent paradox can be understood from the fact that in the

matter metric frame the past light cone contracts and thereby Trr=(pc?+p)Ur07+pg?, (49
less information is collected by the observer. Next, we con-
sider the frame associated with the gravity metric. In this T$V:(P<I>Cgrav+ Po)UAUY+ pegh?, (50)

frame, the mass density and the pressure of the matter fields

are transformed tpcp/c andpc,y/c, and the square of the where the nonzero components of the four-velocitiesGire
speed of the gravitorr should be multiplied by the mass —1/c andU'=1/cy,,. Note that the mass densities and the
density to obtain the energy density. So the first law of therpressures in Eq949) and (50) are different from those in

modynamics takes the form Egs.(25) and(27), although they are denoted with the same
c notation. In the comoving frame for the matter metric, the
TdSnat:d(;)CCphv)+ ?phpdv. (44) Friedmann equations therefore take the forms
1) 2 2 2
C kc
From Egs.(42) and(44), we have al _ 87er+ Sy —— L (51)
a 3 3 a2
2
. Con—C°.a .Cpyy|CChrd
_ ph @ _~phl*=*p . .
Smat (3 CZCSh pa pCph> T “9 a  Cgyray a_ 4wG " p CSrav
a coma 3 P32 T3 M
So, in the gravity frame, the entropy for the matter fields g grav (52)
varies with time whilec,,,# 0. This time variation of the
entropy of the matter fields is due to the exchange of entropwhere
with the biscalar sector, since we have seen that the total
entropy densitys remains constant in the gravity metric . C . C
frame. p=potp—, P=PotP_. (53
grav grav

In the above, we considered the equations in the comov-

ing frame for the gravity metrig,,,. Since all the matter Nqte that although we are now considering the comoving
fields in the universe are coupled to the matter meffi¢, it frame for the matter metric, the total energy momentum ten-
would be more natural to consider the comoving frame forsor 7+ is still defined with respect to the gravity metric. It is
the matter metric in studying the expansion of the universejust that the time coordinate in the gravity metric is the
By defining the cosmic time for the matter metric in the comoving frame time coordinate for the matter metric. So

following way: the mass density and pressure of the matter fields still have
) s the factor ofc/cgy,, in Eg. (53). From these Friedmann equa-
dr*=(1+B®d“/c”)dt, (46)  tions, we obtain the following conservation equation:
we can bring the matter metric into the following standard pla 3 ¢ a\? ¢ c
comoving frame form for the Robertson-Walker metric: p+3| p+t —| —=—= gra"(_ _ Jgravrorav
CSrav a 47G Cypy\ @ A47G
9,,dx*dx’= —c?d 7+ a?(7) y;dX dx. (47) _
3 kCgra\pgrav (54)

In this new frame, the gravity metri@3) takes the form 47G a2

9,,0x4dX"= —(c?~Bd?)dr*+a%(7) y;dX'dx, (48) We now study the compatibility of the bimetric VSL cos-

o _~mology with the second law of thermodynamics. Although
where the overdot from now on stands for the derivative withye gre now considering the comoving frame for the matter

respect tor. So, in this new frame, a photon travels with & petric, we first study thermodynamics in the frame of the
constant speedy,=c and a graviton travels with a time-  grayity metric, since the conservation equati@d) is ex-
variable speedcy.,,= Vc2—Bd2=c/ /I, taking smaller pressed in the gravity metric frame. The first law of thermo-
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dynamics, applied to the comoving volume element of unit We discuss the thermodynamics associated with matter
coordinate volume and physical volume=a®, takes the fields only. As before, the equations of motion for the matter
form fields imply the conservation la4l) for the matter field
energy-momentum tensor. Since the speed of a photon takes
Tds=d(pcjap)+pdu. (59 a constant value,,= c in the comoving frame for the matter
From Eqs.(54) and (55, we obtain emqeutggbrfhélt(e(;otr;ng?g\fmnt of the matter field conservation

Ts= 4Pa3Cgra\ﬂ.:graV: (56) R R b a
pt3 pt— —=0. (60)
cc/a

where we made use of E(1) to simplify the RHS. So the
total entropy S=sfdx3J/—vy increases with time while
Cyrav= c/\/l— increases to the present day value. The second/nlike the case of the comoving frame for the gravity metric,
law of thermodynamics is therefore always satisfied for anythe matter fields are observed to be conserved. Equéiidn
value ofk. Next, we consider the second law of thermody-along with the first law of thermodynamics for the matter
namics in the frame of the matter metric. The mass densitfields

and the pressure in the matter metric frame are given by

PCqrav/ C @NdPCyra,/C, and the energy density is obtained by Tdspa=d(pc?v)+ pdv (61)
multiplying the mass density bg?. So, the first law of ther- )
modynamics takes the form yields s,,;= 0. So the time variation of the entropy density

in the matter metric frame, as expressed in E8), is all
Cgrav d 57) due to the time variation of the entropy density of the bisca-
C pav. lar field, and there is no entropy exchange between matter
and the biscalar field sectors.

Tds=d(pCCqaw) +

This along with Eq.(54) leads to

2 2 IV. CONCLUSIONS

i . 3
: Cgav—C™ @ Cgyrav| CCyra
523( g g g

~—22 PZtp T (58)

Czcgrav a ey We studied the compatibility of the VSL cosmological

models with the second law of thermodynamics. We find that
So the terms in the parentheses of this equation have to tgenerally the VSL model with varying fundamental constant
non-negative in order for the condition for the second law ofis severely constrained by the second law of thermodynam-
thermodynamics to be satisfied. Making use of the expliciics. For the model with the speed of light gradually varying
expressions foCy,y, p, andp, one can put the condition in as a power law of the cosmic scale factor, only an open
the form universe with positive cosmological constant is allowed to
_ contain the cosmic perfect fluid satisfying a reasonable equa-
[ R a tion of state such as one including dust and radiation. On the
@ 5 ?‘D _V+P\/|— a other hand, the bimetric cosmological models are less con-
strained by the second law of thermodynamics. In the co-
moving frame associated with the gravity metric, there is no
constraint on the model by the second law of thermodynam-
ics. In the comoving frame associated with the matter metric,
Making use of the equation of motion for the biscalar field provided the biscalar potential satisfies a certain condition,
@, it can be shown that regardless of the valuekahis  regardless of the value &f the second law of thermodynam-
condition can be satisfied by a perfect fluid obeying theics can be satisfied by a perfect fluid satisfying the equation

equation of stat@=(y— 1)pc? with y<2, provided the bi- of statep=(y—1)pc? with y<2, which includes dust and

+dd <0. (59)

11. -
E EZ(D2+V+ pCZ\/l_

scalar potential satisfies V(®)>0. radiation.
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