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A first principles derivation is given of the neutrino damping rate in real-time thermal field theory. Starting
from the discontinuity of the neutrino self-energy at the two loop level, the damping rate can be expressed as
integrals over phase space of amplitudes squared, weighted with statistical factors that account for the possi-
bility of particle absorption or emission from the medium. Specific results for a background composed of
neutrinos, leptons, protons, and neutrons are given. Additionally, for the real part of the dispersion relation we
discuss the relation between the results obtained from the thermal field theory and those obtained by the
thermal average of the forward scattering amplitude.
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[. INTRODUCTION corrections arise from the momentum-dependent terms of the
boson propagator in the self-energy diagrams.

A neutrino propagating in matter no longer respects the The imaginary part of the index of refraction for neutrinos
vacuum energy momentum relation. The modification of thepropagating in aC P-symmetric plasma composed of elec-
neutrino dispersion relation is caused by their coherent inteftrons, neutrinos, and their antiparticles has been considered
action with the particles in the background and can be acin Refs.[6,9,10. These calculations have been based upon
counted for in terms of an index of refractiph] or an ef-  the computation of the neutrino reaction rates, assuming
fective potential(2]. The topic of neutrino propagation in massless background fermions. In our opinion the relation of
matter became of prime relevance after Wolfens8irstud- e neytrino damping rate to the self-energy discontinuities
ied the neutrino refractive index in matter, and later whenyeqerves further consideration. Additionally this work ad-

Mlkheygv—$m|rn0}/[4] recognized the resonant neutrino fla- dresses the effects of the nucleons’ background contributions
vor oscillations triggered by matter effects. The M|kheyev—?fmd the fermion mass correction

Smirnov effect has become the most popular explanation o A systematic method to compute the damping rate from

the solar neutrino defic[5]. he i ) ¢ of th If. be f lated i

In general, the neutrino dispersion relation is a comple% € Imaginary part ot the sel-energy can be lormulated in

, N , , terms of the Cuttosky thermal rules. Welddri] and Kobes
function = w(«). According to the thermal field theory f[12] proved that the imaginary part of the self-energy can be
(TF:I_) m.atter contributions to the real and |mag|nary parts o organized in a form that includes the square of amplitudes of
(«) arise from the temperature and density-dependent paghe yarious processes obtained from the cuts of the self-
of the neutrino self-energy. To leading order g*(M{,) the  energy and weighted with the appropriate statistical factors.
real part of the dispersion relation is proportional to theThe examples discussed in those papers are always at the one
particle-antiparticle asymmetry in the background. If thejgop level. As it shall be discussed, the calculation of the
asymmetry is small or zero the imaginary partefx) and  neutrino damping rate requires one to consider the self-
corrections of ordeg? My, to the real part may be important energy at the two loop level, the interpretation in terms of the
because they do not depend on the differences between teguare of amplitudes of the allowed processes will be proved
number of particles and antiparticles. This may be the case itb remain valid. The approximations required to recover the
the early Universe, when the medium was probably nearlyesults obtained from the optical theorem will be clearly
CP symmetric. stated.

Special attention has been given to the calculations of the |n this work we use the method of real-time thermal field
o(g?/ MCV) corrections to the real part of the neutrino disper-theory to carry out a careful calculation of the imaginary part
sion relationg6—8]. Within the framework of the TFT these of the neutrino dispersion relation in a medium composed of

electrons, protons, neutrons, neutrinos, and their antipar-
ticles. As already mentioned the contributions to the imagi-

*Email address: tututi@zeus.ccu.umich.mx nary part of the neutrino self-energy vanishes at the one loop
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The paper is organized as follows. In the next section we In this case, the Dirac equation for the spindrof the
briefly review those ingredients of the TFT formalism that neutrino mode in the medium is
are required to accomplish our calculations. In Sec. Il we
rederive the real part of the dispersion relation of a massless (k=2)U=0, 2.7

neutrino that propagates in a thermal background. We provgich has nontrivial solutions only for those valuessofind
that utilizing the methods of the finite-temperature field . g,ch thatv2=0. with V —(1—a)k,—bu,. Then, the
' M H e ’

theory (at theg® ordey, the neutrino effective potential re- gispersion relationsw, of the neutrino and antineutrino
duces to the thermal average of the neutrino forward scattefngdes are obtained as the solutions of
ing amplitude. The calculation of the imaginary part of the
dispersion relation is presented in Sec. IV. The neutrino f(w,,x)=0 (2.9
damping rate is extracted from the discontinuity of self-
energy at the two loop level; it is expressed in terms of2"
integrals over phase space of amplitudes squared, weighted —
with statistical factors that account for the possibility of par- f(w,e,x)=0, 2.9
ticle absorption or emission from the medium. Specific re-ynere
sults for a background composed of neutrinos, leptons, pro-
tons, and neutrons are given. The last section contains a flw,k)=(1—a)(w—k)—Db,
summary of our main results.
f(w,k)=(1—a)(w+k)—b. (2.10

Il. BASIC FORMALISM )
In general, the solution®, are complex; as usual we

The relevant quantity is the self-enerdy which embod-  write
ies the effects of the background on a neutrino that propa-
gates through it. According to the real-time formalism of the w,=w,—iY/2, (211
TFT[13-15, the real and imaginary parts &f are given by

the formulas where bothw,=Rew, and y= -2 Imw, are real functions

of k. A consistent interpretation in terms of the dispersion
relation for a mode propagating through a medium is pos-
sible only if the imaginary part of, is small compared to
its real part. In this case the mode can be visualized as a
Ims = PP 2.2 particle(or antiparticle with an energyw, and a dampingy.
2i[ py(k-u)—0(—k-u)]’ ' Under such assumptions, each one of H@s8 and (2.9
yields two distinct solutions, one with positive energy and
where 2 ,, (a,b=1,2) are the complex elements of the the other with negative energy, whose physical interpretation
2X 2 self-energy matrix to be computed utilizing the Feyn-has been discussed in detail in Rf6]. Here we will con-
man rules of the theony is the step function and centrate on the solution of E42.8) having a positive real
part, which corresponds to the neutrino mode with energy
(K- u)=[0(k-u)ne(x) + 0(—k-wng(—x )], (2.3 w, , but similar considerations and results apply to the other

ReEZReﬁll, (21)

solutions.
where the thermal distribution is given by It is convenient to make the decompositicas a, +ia;
andb=b,+ib;. Then, using Eq92.10 and(2.11), expand-
1 ing in powers ofy, and retaining only terms that are at most
Ni(X) = g (2.4 lineariny, a;, andb;, from Eq.(2.8) we obtain
with x,= B(k-u— (). Here, is the inverse of the tempera- fr(wr,6)=0 (212
ture and s is the chemical potential associated with the gnd
fermionf. We have introduced the velocity four-vector of the
backgroundu®. In its own rest frameu*=(1,0) and the y | filw,x) )
components of the neutrino momentit are k= (w, x). 2 | of, ' (213
In the presence of a medium the chiral nature of the neu- Jo
trino interactions implies that the self-energy of a massless @z
(left-handed neutrino is of the forn]16] with
2 (k)=(ak+bu)L, (2.5 fi=(1-a,)(w—k)—b,,
(2.19

whereL=(1-y5)/2 anda,b are complex functions of the

scalars fi=—aj(w—x)—b;.

Only approximate analytical solutions of E@2.12 are
w=k-u, k=Jw’—k°. (2.6)  known [16]. At the one-loop level bothb,(w,,x) and
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a,(w, ,k) are of ordergle\ZN. Therefore to this order the f zZ w
energy of a massless neutrino is 7 ;21 ,i1
erK+br(wr1K)|wr:K' (215) 1/1 l/l Vl Vl l/l Vl ! Vl
@ ®) ©

On the other hand, as we will show, the imaginary park of
vanishes toO(g?) and to this order there are no contribu-
tions to Imw, . For the perturbative solution of Eq2.13
aroundw, = k, we have

FIG. 1. One-loop diagrams for the self-energy of a neutrino in a
thermal background of charged leptons, nucleons, and neutrinos. In
(a), f stands for any fermion in the background.(tn, the charged
leptonl is of the same flavor as the neutrino.

In Ref. [8] the real part of the neutrino self-energy was
calculated in a general gauge up to terms of ogféM\‘}v. It
was shown that although the self-energy depends on the
with b;(w, ,x) of O(g“/Mﬁ,). gauge parameter, the dispersion relation is independent of it.

The matter effects on the neutrino oscillations are conveTaking this result into account, for simplicity we will work in
niently incorporated by means of the effective potential the unitary gauge. Furthermore, for physical situations where
This can be introduced by subtracting thecuun) kinetic ~ the temperature is much lower than the masses of the gauge
energy from the real part of the neutrino dispersion relatiorbosons, the propagators for thé and Z can be taken the

N[ R

E_bi(wry’(”wr:m (216)

[8]: same as in the vacuum, namely,
V=0, k=by(w; )|y - «- (2.17) wp_ L o KK
As = mzrie |9 Tz ) @3

In the literature it is also customary to use a refraction index,

which is defined by with B=W,Z.
We shall assume that neutrinos are massless, so at the

P one-loop level the only contributions & arise from the
n(k)=—. (2.18 diagrams depicted in Fig. 1.

@k For a neutrinoy; (I=e,u,7) that propagates through a
medium with a momenturk, we split the different contribu-

In the approximation we are working on, and utilizing Eqs'tions tob' according to the processes in Fig. 1 as follows:

(2.1)—(2.17), it follows that its real and imaginary parts are
related to the effective potential and the damping rate by

by = b4+ b+ by, (3.4
Ren(x)=1— — corresponding to the tadpol&;exchange, andV-exchange
K= K’ contributions. In this case, the background dependent parts
(2.19  of each term in the right-hand side of the previous equation
can be worked out as
Y
Imn(k)=-—,
2k

1 d*p
_ _ _ btac= ZTr{er,a}Ag’B(O)E fW
with V and y given by Eqs(2.17) and(2.16), respectively. f m

XTr{(p+mp T 8(p?—mf) ne(p-u),
Ill. EFFECTIVE POTENTIAL

According to Eq.(2.17), for a perturbative solution of the bl— }f d*p Tr{XTZ_pTZ )
dispersion relation around the vacuum vatue= «, the ef- 20 4) (2m)® na B2 mp

fective potential is given by the real part of the coefficient of op 5

i in the neutrino self-energy. This is only true in the lowest XAz (k=p)o(p%) 7, (p-u), (3.5
order, in generalV will also receive contributions from, .

From Eq.(2.5), it is easy to see that 10 d*
by=— Zf ﬁw (XY (p+m)T )}

1
br(a),K):ZTI'{X Rex} (3.1 X AZP(k—p)d(p2—m?) 7 (p-u).

In by the charged lepton in the internal line has the same
flavor as that ofy;, while in the tadpole contributiob,,q,
1 the summation is over all the fermion species present in the
X=5 (wk—K20). 3.2 therm_al background. In the previous expressions the vertices
K are given by

with
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FIG. 2. Tree-level diagrams for, f— v, forward scatteringf

represents the background fermions. These diagrams are obtained
when the corresponding self-energy diagrdfig. 1] are cut along

the internal fermion line.

rW=ii (1—ys)
o 2\/570’ Ys)s

(3.6)
z . 9

fa:'m7a(xf+Yf75)-

With the vectorX; and axial couplingsy, given for the
charged leptons by

1
X,=—=+2sirf Oy,

2
(3.7)
Y, = L.
1= 2
for the neutrinos by
j— J— 1 .
X, ==Y, = > (3.9
and for the nucleons by
1 .
Xp=5-2 Sirf Oy,
(3.9
1
Yo=Xp=—Yp=— 5

According to Eq.(2.17 b'r has to be evaluated at=«; in

PHYSICAL REVIEW D66, 043001 (2002

where M | is the tree-level invariant amplitude for the for-
ward scatteringy, f— v, f. The corresponding Feynman dia-
grams are shown in Fig. 2. Notice that these diagrams are
obtained from the self-energy diagrams in Fig. 1 if we cut
along the internal fermion line. Brackets in the previous ex-
pression represent the thermal average given by

4

p
(Zw)sfs(pz—m?w'fm(p). (3.11

Mh-3 |

The previous result shows that utilizing the methods of
finite-temperature field theorfat theg? ordep, the neutrino
effective potential reduces to the thermal average of the neu-
trino forward scattering amplitude. In fact, it is interesting to
combine Eqs(2.17), (2.19, and(3.10 to write the real part

of the index of refraction as

(3.12

that generalizes the zero temperature regdlf] n=1
+27 M/ «?, by simply adding the thermal average of for-
ward scattering amplitude, a result that proves that back-
ground does not spoil the coherent condition of the forward
scattering processes.

In the rest of this section we derive the effective potential
for a neutrino propagating in a thermal background com-
posed of electrons, protons, neutrons, neutrinos, and their
respective antiparticles. As previously mentioned, the Feyn-
man diagrams in Fig. 2 are obtained by cutting the self-
energy diagrams of Fig. 1 along the internal fermion line.
Diagram (a) is obtained from the tadpole self-energy, the
result is the same for any neutrino flavor, and one has to sum
over all the fermiond present in the background. Diagrams
(b) and(c) correspond to cutting the-andW-exchange self-
energy diagrams, consequently the background fermion nec-
essarily has the same flavor as the test neutrino. In this way,
M can be written as

this case the quantitgX in Eqg. (3.2) reduces to the energy
projector for a massless particle in the vacukmand may be
replaced by its usual expression in terms of the free spinors.
In general for the external lines the spinors to be used are the
solutions of the Dirac equation in the mediym8]. How- )
ever, within the approximation we are using, they can beVith &1=46,, =1, 6;=0 for f#I, and &, =0 for f#,.
approximated by the vacuum solutions. For the internal ferHere
mionic lines we substitutgy+ m; by its corresponding en-

ergy projector. It is now straightforward to show that any of
theb' in Eq. (3.5 can be written in the form

M= Mot Mydy, + My, (313

M :_EU (k,s"TFu, (k,s)AZE0)ur(p,s)
a 41 LA z AL

fa
1

S (M) (3.10

| _
bH (@, k)| = XT{au(p,s),
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TABLE |. Effective potential for a neutrino propagating through a medium. Fhe& —) sign refers to
neutrinos(antineutrinos

Neutrino Background particle Vet
VelV,u,vvr p GF .
+—(1—-4sirf g)(N,—Np)
Ve, Vy Vs n \/E Ge
F—=(Ny—Np)
ve e 6 2
iT(l+4sir120W)(Ne—Ng)
2
2J§Gme§N1 N1 4NE NAE
WeE—eJreE—g—m—g(e(eHJ?))

Ve Ve 4G 8V2Grw
F—=(N, =N )= ————[N, (E, )+ N, (E, )]
\/E e e 3MZ e e e e

v, v, e Ge
iT(—l+4 sirfé)(Ne—No)
2
Vi Vs Ve 2Gg
=—=(N, =N)
\/E e e

1 . _ Once the previous results are substituted in(BdLl), the
Mp= ZUyl(k,S')Ffan(D'S)Agﬂ(k— p)us(p,s) different contributions td/ can be expressed in terms of the
following integrals:

xI'fgu(k,s’), (3.19
d*p
= J Wpﬂg(pZ_mz) 7i(p-u)=Au*,
Me= g1, (K8 TUr(p.S) AT (k= p)ug(p.5) (3.17)
eruv(k,S,). d4p
B f (271_)3 p“pvé(p2_m2)m(p.u):Bu,uu,,_i_CgW.

Since we are interested in contributions Yoof order
g%/My, we expand the gauge propagator in powekigf> up ~ The scalar quantitied, B, andC are easily evaluated in the

to the second order rest frame of the medium; the results are
1
gaﬁ - gaﬁ q2 A= —=(N:;—N ,
qz——MEN_M_é 1+M—§. (3.195 2( f 1)
Using this expansion and neglecting quantities of order 1) L)1 1\
méZ/M3, we find B=5| ™ \g /Nt £ N
My=~22GXk-p,
ATENEREEP —<<Ef>Nf+<EﬁNal, (318
2(p~k)2}
Mp=2Gg| k- p————|, 3.1
bfp[pMi (3.16 a1y 1)
) 6™ \E 7 E_f_ f
2(p-k)
M= \/EGF[k'p_M—Z
W —4((Ex)Nt+(EnN7) |-

whereq=p—k andGg/\2=g?/8M3 is the Fermi coupling
constant, and the factok§ are given in Eqs(3.7), (3.8), and  In these equationd; (Ny) represents the density of fermions
(3.9 for leptons, neutrinos, and nucleons, respectively. (antifermiong in the background
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d® 1
Nf?zgff ps - , (3.19
~ (2m)% PEFa 41

and(Ejfﬁ (j=1,—1) denotes the statistical averagedesf
and 1E;

o [P
N; 7~ (2m)° T eBEFu 41

Here,E¢=/p?+m; andg; is the number of spin degrees of =
freedom @,=1 for chiral neutrinos ang;=2 for the elec- © Z @
tron and nucleons Collecting these results it is straightfor-

ward to write down the effective potential for a neutrino of a FIG. 3. Two-loop contributions to the self-energy of a neutrino
given flavor P in a thermal background of charged leptons, nucleons, and neutri-

I . : . nos
The contributions to the effective potential for the various
neutrino flavors and background particles are listed in Table,qm 4 matter, such as the core of the Sun. However, in a
|. They agree with the results given in the literatP6e-8l. ¢ p_symmetric medium the leading contributions to the real
part vanish. Thus the first nonvanishing contributions are of
IV. IMAGINARY PART orderGg/M3,; under these circumstancescan become of
the same order.

(El= (3.20

The discontinuity of the self-energy is related to the ; ) )
damping ratey that determines the imaginary part of the To obtain the neutrino damping rate we have to gvaluate
dispersion relatiofisee Eq(2.11)], additionally the damping 12 @nd then use Eq$2.2), (2.5), and(2.16. As explained
rate can be interpreted as the rate at which the single-particfs'ther ahead the one loop contributions3g, cancel. The
distribution function approaches the equilibrium fofad]. ~ diagrams that contribute &, at the two loop level are
The former interpretation follows if one considers a particledepicted in Fig. 3; there are also diagrams similar to those in

distribution that is slightly out of equilibrium, hence one has(¢) With the W and Z lines interchanged. According to the
Feynman rules on the real time formulation of the TFT, the

of contributions of diagramé&) and (b) can be written as

—=—fI+(1+of)l, 4.2

o C 300~ [ ooty S @IsT
—i =— | =—=7 ==l {i r

wherel", andT . are the absorption and creation rates of the v (2m)? (2m® 112122

given particle, respectively. The parameterdistinguishes ar Br .

bosons ¢=1) and fermions ¢=—1). The previous equa- X{I{[iS1Ap) IT3[1S2(p+a—kK) I}

tion has for general solution Xi[Aﬁa(k—Q)]ni[Aﬁg(k—Q)]zz- (4.5

c Similarly, for diagramgc) and(d) we have

r
f(w,t)= ———+C(w,)ela T, (4.2)
I',—ol'; dq  df
i = —= " i B
whereC(w,) is an arbitrary function that does not depend on '212(k)_f (2m)* (277)4F’1‘[|812(q)]1“2
time. Creation and absorption rates are related by the Kubo- _ _
Martin-SchwingerKMS) relation X[1So1(q+p—K) I {[iS1Ap) ],

F.(0)= e T'y(). 3 XA (k= )]wi[Ajsk=p)]z2. (4.6

In the above expressions,B=W,Z and I'5=—T17, with
I'{ representing any of the vertdX) or I'%, given in the
previous section. Th&;, and S,; components of the propa-
fw, )= O +C(wy)e 2N, (4.4  9ator matrix of the fermion are given B3]

Consequently Eq4.2) can be written as

S1Ap)=2mi 8(p?—m*)[ 7(p)— O(—p-W)I(p+m),
where y=(I'y—0oT')/2 is defined as the damping rate. (4.7)
Thereforey can be interpreted as the inverse time scale it g, (p)=2i8(p2—m?)[ 7;(p)— 6(p-u)](p+m).
takes for a thermal distribution to reach equilibrium. The
sign of the damping rate must necessarily be positive for In principle, the internal vertices should be added over the
stable systems. Additionally, the form of the dispersion relathermal indices €=1,2). However, since temperature is
tion implies for a normal mode to propagate thats small  small as compared to the gauge boson masses, the matrices
compared taw, . For neutrinos this condition is satisfied in a of the W and Z bosons’ propagators are diagonal with
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[AL5(K) 1= —[A%4(K) 15,= A% 5, whereA”; is the vacuum  with X defined in Eq(3.2).

propagator given in E¢3.3). This explains the cancellation Taking into account the previous results it is demonstrated

of the g2 contribution to the neutrino damping rate. The oneafter a lengthy calculation that the neutrino damping rate can

loop contribution to3 4, is given by diagrams similar to be expressed in the form

those in Fig. 1 withiS;, andi[Aﬁﬁ(k)]12 replacing the in-

ternal fermionic and bosonic lines; however, the bosonic

propagator is diagonal, hen&g, cancel at this order. e(k-u)
According to Eq.(2.16 vy is directly proportional to 7=—i2.— CWWircZZ— Y DABl (4.9

bi(w,«), that is given by Ne AB=Z,W

1
bi(w,x)= ZTr{X ImX}, (4.8 whereC* is obtained from Eq(4.5):

AA_l d4q d4p d4Q f I v a B H A H A

C _Z (277)4 (277_)4 (2,”_)41Tr{xrl(q+ml)FZ}Tr{Fl(p+mZ)FZ(Q+mS)}I[Ap,a(k_q)]llI[Ayﬂ(k_q)]ZZ}
X (2m)* 6™ [Q—(q+p—k)18(g®~m7) 8(p?—m5) 8(Q°—m3)[ 7e(dy) — 6(—q- U) [ 7e(Py) — 6(—p-u)]
X[7:(Q,) — 6(Q-u)], (4.10

andD”® is obtained from Eq(4.6):

10 d* d* d*
0% [ gtz s Gy TN (@4 M@+ )8 e T ENAR, (= ) L[ A%H(K—P)

X (2m)* 8 Q— (g+p—k)18(g®—md) 8(p?—m3) 5(Q%—m3)[ 7(a,) — 6(— - u) ][ 7e(py) — 6(—p-u)]
X[ 7:(Q,) — 8(Q-u)]. (4.1

For later convenience an extra integration over the momen- For definitiveness let us consider diagrdb in Fig. 3

tum Q has been introduced. In what follows we shall see thatind also that the fermion in the internal loop is a protén (
the neutrino damping rate can be expressed in terms of am=P). When the diagram is cut as shown in the figure, we
plitudes squared and weighted with the statistical factors thasbtain a series of physical processes for the neutrinaand
account for the various physical processes. To derive thesg, and protonsP,; and P,. Of these particles one of the
results we notice first that fermion propagators in Egsb) neutrinos ¢*) is considered a test particle, all others are
and(4.6) are either type 12 or 21. According to Eg.7) the  thermalized. According to the notation in E@.6), the mo-
propagatofS,,(p) contains a delta functioA(p?—m?) anda mentum and chemical potentials are assigned as
factor (p+m). Thg delta function put the fermlon on t_helr. (vit k), (21 dip,)), (P1i Qup)), and Pa: p,up,).
mass shell mass, in other words self-energy diagrams in Figujith momentum and charge conservation conserved depend-
3 are cut along all the internal fermion lines. Whereas theng on the process, e.g., fogPy— v,P»:

second factor is concerned, insertion of the fermion projec-

tors
k+Q=qg+p, (4.13

|b+m=25 u(p.s)u(p.s), Mot Hp, = oy T Bp-

(4.12
o The processes obtained from the mentioned cut rules include
p—m=>, v(p,s)v(p.s), the two neutrinos and the two protons distributed into the
s initial and final states in all possible ways. Hence in general

we expect to obtain 16 different processes; this is explicitly
allow us to rewrite the resulting expressions in terms of amdisplayed in Eq(4.16. The resulting expression comes out
plitudes for the physical processes arising from the cuts. Thaith the appropriated thermal distribution; for this we have
bosonic lines are not cut because they do not include thermad rewrite the thermal contributions that appear in &q10
distributions forT<M. utilizing the following identities:
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7t(X) — O(=k-u)=F e(k-u)ne(+xy), X=pK-u—p, ), Xq=B(Q-U—p,,),
(4.15
Ne(x) =€ *ne(=x) =e [1—ng(x],
Xp=B(p-u=up,), Xq=B(Q-U—up).

an(xk)nf(xq)nf(xp)

Taking into account these considerations and performing an
= (XN (X)Ne(Xp) + €7 1=y, J P J

integration over the timelike components of the momentum

X[1—n¢(Xg) IN(Xp), (4.14)  integration, it is possible to cast the contributiomtarising
a P from the proton loop in diagrantb) of Fig. 3 into the fol-
where lowing form:
|
1 d3q dp d3Q
P__— 4 «4) P 2
Y ZKJ 2Eq(27T)3 2Ep(27T)3 2EQ(27T)3(277) 6 (k+Q q p)|M(PVHPV)|

X{[1=n,(EQ) L1~ Np(Ep) Inp(Eq) +n,(Eq)np(Ep)[ 1= np(Eg) I} + 6 (k+Q+q—p)|[ M(Prv—P)[?
XN EqINp(EQ)[ 1~ Np(Ep) 1+ [ 1= (Eq) 1~ Np(Eq)Inp(Ep)}+ 6“(k+Q+p—q)| M(PPrev)[?
X{[1=n,(Eq) N Ep)Np(Eq) +n,(Eq) 1= Np(Ep) [ 1~ Np(Eq) 1} + 6“(k+Q+ p+0)| M(PPrv—0)|?

XN EgINB(Ep)np(Eq) + [ 1= N(Eq) ][ 1~ na(Ep) [ 1~ np(Eg) I} + 6“)(k—Q—q—p)| M(v—PPy)|?
1 _ _
X{[1=n,(Eq)I[1—np(Ep)I[1—Np(Eq)]+ N, (Eq)np(Ep)np(Eq)} + 6™ (k+q—Q— ID)El/Vl(VW—ﬂ:‘P)l2

X (Eq)[ 1= np(Ep) ][ 1= np(Eq) ]+ [ 1~ ny(Eq) INp(Ep)np(EQ)}+ 6“(k+ p—Q—q) | M(Pv—Pw)|?
XA 1=, (E) INB(Ep)[ 1 - np(Eq) ]+ n,(EQ)[ 1~ NB(Ep) ING(EQ)} + 8 (k+p+ = Q)| M(PrvesP)|?

X {M(Eq)Np(Ep)[ 1= Na(Eq) ]+ [1- N Eq) [ 1~ np(Ep) Ina(EqQ)} |. (416

Regardless of its length the interpretation of this equation i$Ve recall[see the discussion below Ed.4)] that for fermi-
quite simple. The first two terms are interpreted as the abens the contributions tes of decay and absorption add to-
sorption and emission of a neutrino via the dispersidh  gether. Hence the statistical factors appearing in the previous
—vP with statistical weight (+n,)(1—-np)n, and equation can be simplified. For example, the absorption
n,np(1—np), respectively. As expectedra factor appears v*P—vP and decaywyP— v* P, wherev* is the test par-

for each background fermions in the initial state, whereadgicle, add according to

fermions in the final state contribute with a Pauli blocking

term 1—n; . As already discussed for femions the absorption

and emission decay rates must be adddd. The scattering [1-n,(Eq)I[1-np(Ep) Inp(Eg)
amplitude for both processes are the same because they are a P
related by CPT inversion. Similarly the third and fourth +n,(Eq)np(Ep)[1-np(Eq)]

contributions represent neutrino annihilation and crea-
i i - . Al ; =Nnp(Ep)[1-np(Eq)]

tion via the Pvv—P and P—Pvv, respectively; they in-

clude, as expected, the statistical factorms(1—np) and +n,(Eg)[Np(Ep) —Np(Eg)]. 4.1
np(1—n;)(1—np). The same reasoning applies to the re-

maining terms.

Taking into account thé-function constrains some of the However, we can drop out the last term in the right-hand side
quoted processes are not allowed. In what follows we focusf the equation because its contribution vanishes when sub-
on conditions with temperatures;~T<M,, where, for ex-  stituted into Eq.(4.16).
ample, the composition of the primeval plasma is dominated With all these results we finally find that the neutrino
by (anti-) neutrinos,(anti-) electrons, nucleons, and photons. damping rate can be expressed as
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1 d3p d3q d®Q Thus y reads
2) (2m)%2E, (2m)32E, (2m)°2E,
X | M(ve—rve)|?6%(k+p—gq—Q)

:+(2’7T)4
Y== 2w

d3
’y:izf afJA(ZTp)3<dO'f>nf(Ep)+"', (42@

. wherea;=1/2 for f=e,n,p anda;=1/4 for f=» and
X[1—=ne(Egq) Ine(Ep) +all the possible processgs

oy (27 j d%q d*Q
(4.18 (000 = 5 02E o) (2m)72E, (2m)°2Eq
X|M[?8%(k+p—g—Q)[1-n{(Eg)]
where the+ (—) sign stands for test neutringantineutri- (4.20)

nos. For all possible processes we mean all the kinemati-
cally allowed processes obtained by cutting all the fermionids the cross section thermally averaged by the Pauli blocking
internal lines of Feynman diagrams shown in Fig. 3. Theterm [1—n¢(Eq)]. In Eq. (4.18 the ellipsis represents the
corresponding processes and their cross sections are listeéher possible process; in each case the corresponding statis-
below in Eq.(4.22. tical factors in Eqs(4.18 and(4.19 and the dispersion am-
The damping rate can be written in terms of the thermaPlitude are replaced by the pertinent factors. We recall that
average of the cross section. For the dispersiba vf, the ~ according to Eq(2.19 y is directly related to the imaginary
differential cross section is given by part of Fhe index (_)f refraction. Hence E@..20 can be iden-
tified with the optical theorem.
In what follows we shall apply the previously obtained
results to explicitly evaluate the neutrino damping rate in a
background composed of neutrinos, electrons, protons, and

d‘ff:\/wlz—wza)|M(Vf_>Vf)|2(27T)452 neutrons. We suppose that the Pauli blocking term can be
neglected, in addition, we consider temperatureg=T
d3q d®Q <My, hence in the thermal averages we can assume that
X(k+p—q—Q)(2W)32Eq (2m)%2Eq’ g?><M3,. First let us consider the cross section for the rel-

evant processes. It is common to quote the cross sections,
(4.19 assuming ultrarelativistic neutrinos and neglecting the fer-
mion masses. However, for conditions as those of the early
universe, temperature and consequently the average neutrino
whereV is the relative velocity between the neutrino andenergy can be comparable to the nucleon masses, and some-
the background fermion; as we are considering massless netimes to the lepton masses. Hence, keeping fermion masses,

trinos we simply havé/,,=1. the various neutrino cross sections can be calculated as
|
2 4 6 8
e 2 2 Me 2 Me 2 Me 2_¢
o(vee—vee)=165"+126+3— (406 +305+6)?+(125 +86+1) 2 — (165 +26)?+46 = (4.22
2 2 4 2 6 8
-~ — 2 2 € 2 € 2 € 2_¢€
o(v, .e—v, . )=166"—126+3—(266°—156+3) S +(126°—846+1) 2 —(86°—396) 3 +48 &
2 4 6 8
T e o) 2 2 Me 2 e 2 Me 2 Me
o(vee—ve)=165"+45+1—(405+ 105+ 1)?+(125 —45) 2 —(166°+ 105+ 1)?+(25+ 1) &
2 ;1 6 mg

~ — — mg 3m me
o(v,,e—v,  e)=165"-45+1—(405°— 165+ 1)?+(1252—45) —32——(1652—125+ 1)?+(—25+ 1)25—4,

o(vivievv)=12,

?T( Vi;i‘_’ Vi;i):&
a(viijvivj)ZG,

o(vivjoviv)=2,
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TABLE II. CoefficientsA; andB; appearing in Eq4.24) for various processes between neutrinos and the

quoted background particles. Hefe=sir? 6.

Neutrino Background fermiof A¢ B
Ve e 166°+125+3 —(405%+ 305+ 6)
Vo e 166°—126+3 —(526%>—306+6)
Ve e 166%+46+1 —(406°+ 105+ 1)
Vir e 168°—46+1 —(405%—166+1)
4 Vi 12 0
v i, i #j 6 0
4 Vi 8 0
Vi v, i#] 2 0
Vi n 3 -6
Vi n 2 -2
Vi p 168°—126+1 —(406°—305+6)
Vi P 168°—46+1 —(405%—106+1)
Vol €€ annihilation process WB+86+2 -6
ViV €8 annihilation process 1B-86+2 -1

T

~ 6m2 3m;

o(vin—wrn)=3— +—,
S S

= 2mZ  2md

n n = — - =,
G(uneym=2- = =

2 4 6 8

i, n)— 2 __ _ 2 _ % 2_ ﬂ_ 2 _ % 2 _ ﬂ
o(vipyp) = (166"~ 126+1) — (406"~ 305+6) - + (366~ 245+ 1) 7~ (165°—60) 5 +(45°~20) 7,

2
~ A P 2_ _ 2 % 2_ mp_ 2 mD 2 mp
a(vip—vp)=(1656°—45+1)— (406°— 105+ 1) S + (366 125)? (165 105+1)§§+(45 26)

2
me

1/
S ) 2[16&32+85+ 2+

IT(Ve:eHez):(l—

2

where o=0/0o with oq=(G2/12m)s, i=e,u,7, s=(k
+p)? is the Mandelstam variable, ané sir? 6,~0.229.

1\ 4m?
86%+46— = s |

1/
_ m
,Hee):(l— Se) 2[1654—85+2+(1652

4 6 8

st

e

2

8o+ 2
2

Zmﬂ

(4.22. This leads us to consider thermal averages that con-
tain integrals of the following type

These results reduce, in the zero fermion limit, to those

found in Enqvist, Kainulainen, and Thoms¢@] and Lan-
gacker and Lij10].
Once the cross sections are inserted in (R0 the ther-

mal averages should be evaluated according to the con-

d’p 22
f (ZT)s(k'P)(k-U)ﬂ(k‘UW(IO —m)n¢(p).
(4.23

straints of the problem. If we consider temperatures well . _ .
below the nucleon mass, then the proton and neutron contri- These integrals are easily evaluated in terms of the ther-
butions will be suppressed by the Boltzmann factor, and theimal average of the fermion density and energy, utilizing Egs.

contribution neglected. On the other hand i# m; the com-
plete average of the cross sections in 422 should be

(3.17—(3.20. The results can be collected in a general for-
mula that gives the contributions to the neutrino damping

considered. In what follows we consider the situation inrate arising from various background particlés first order

which m;<T and we retain terms of ordem%/s in Eq.

in mg):
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G2 a: N V. CONCLUSIONS
= o WA(E )+ mA(A+By)}
Yo~ 120 ~ g, fAEf LT D)y

In this paper we have systematically derived the neutrino
(4.24) damping rate in real-time thermal field theory. Starting from
the discontinuity of the neutrino self-energy at the two loop

wherew IS the.neutrmo energy, the summationfirs taken level, we prove that the damping rate can be expressed as
over fermions in the background, and the corresponding fac-

. . 1 ! _“"integrals over phase space of total cross sections, weighted
tors A; and B; are summarized in Table Il. In this equation _ . - -
. . . ) . with statistical factors that account for the possibility of par-
N; represents the density of fermions and antifermions in th

medium [Eg. (3.19] and the statistical averages Bf is %clg aﬁsorkpnonl or emlssmg Iromb;ch_e rtr;]edlurnc. . .
defined in Eq(3.20. utkosky rules are used to obtain the self-energy imagi-

The next step is to quote some explicit results. Consider §27Y Part at zero temperature. Weldri] and Kobes and
CP-symmetric plasma composed of the three types of neu>eMenoff12] (see alsg19)) have studied the corresponding
trinos ve, v,, andv,, electrons, and their corresponding Cutkosky rules at f|n|_te tempe_rature. In these references it is
antiparticles. Considering, as a test particle, the contribu- Shown that for certain specific examples at one loop order
tion to the neutrino damping rate arising from the back-the discontinuity of the self-energy can be expressed in terms
ground neutrinos is given by of amplitudes squared and weighted with the statistical fac-
tors that account for the various physical processes. Here we
prove that these results stand valid for the neutrino damping
rate at the two loop order.

The complete results that account for all possible pro-
wherew is the neutrino energy. Whereas the contribution ofcesses that contribute tp appear in Eq(4.16). Depending
the electron and positron background to thedamping rate  on the physical conditions some of these processes are for-
yields bidden. Specific results for conditions such as those of the

) early universe, where the primeval plasma is composed of
E(%) 0 GE} 4.26 (anti-)neutrinos, (anti-electrons, and nucleons, were ob-
w

GZ
y= 8.17T—§wT4, (4.25

G2 m
'y=0.397T—§w T4p(—e)

T T T tained. For those conditions the fermion masses are not al-
_ _ ways negligible; consequently we report a general formula
where the functiong and e are defined by [Eq. (4.24] that includes mass correction to first order in

) m?Z/(s); however, further improvements are easily obtained

B °°d X utilizing the values for the cross sections in E4.22). Our
pl&)= o &% N results, summarized in Eq4.24 and Table II, should be
e +1 useful for the study of neutrino processes in the early uni-

(4.27  verse, as well as in some astrophysical scenarios.

1 o x3
e(§)=—f dx———.
0 2 2
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