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Numerical solutions to the nonlinear sigma model, a wave map fram Minkowski space tcs®, are
computed in three spatial dimensions using adaptive mesh refinement. For initial data with compact support the
model is known to have two regimes: one in which regular initial data forms a singularity and another in which
the energy is dispersed to infinity. The transition between these regimes has been shown in spherical symmetry
to demonstrate threshold behavior similar to that between black hole formation and dispersal in gravitating
theories. Here, | generalize the result by removing the assumption of spherical symmetry. The evolutions
suggest that the spherically symmetric critical solution remains an intermediate attractor separating the two end
states.
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Nonlinear sigma models have attracted the attention botlwork of Abrahams and Evans in axisymmei8], it makes
of physicists and mathematicians. For physicists, the modelsense to look ahead to a simple model in three spatial dimen-
represent the possibility of describing particles with a fieldsions.
theory, while mathematicians study singularity formation in ~ To obtain the resolution required for evolving self-similar
geometrically motived nonlinear models. Recently, a nonlin-solutions, Choptuik developed a computational infrastructure
ear sigma modeINLSM) has attracted the attention of rela- in one spatial dimension which dynamically and locally adds
tivists because it demonstrates behavior similar to black hol8umerical resolution where needed using adaptive mesh re-
critical phenomena discovered by ChoptiK. finement(AMR). With this infrastructure, fine subgrids are
Studying the gravitational collapse of a spherically Sym_added and subtracted to the computational domain providing
metric scalar field, he found that initial data with large en-resolution only where and when needed. Because the com-
ergy formed a black hole while that for small initial energy putational cost scales as a power law in the spatial dimension
dispersed its energy to infinity. By tuning the initial energy, (i-. doubling the resolution of a-dimensional evolution
he approached the so-called critical regime which separatégduires a factor 2+ more work, it is expected that AMR

these two end states. In this regime, solutions approach ill be absolutely crucial in higher dimensions for well-
unique, universal solution which demonstrates self-résolved evolutions of interest, in particular black hole criti-

similarity. cal phenomena or black hole collisions.

The model studied here serves as a useful toy model for Constructing such a gravitating model with AMR is an
such threshold behavior because it also possesses two stapf@bitious project. Instead | report on the construction of a
end states: dispersal and singularity formation. These endD AMR code of the nonlinear sigma model, which genu-
states serve as analogues for the gravitating case in whidRely requires AMR and holds physical interest.
initial data can either disperse or form a black hole. Similar The NLSM modelThe nonlinear sigma model studied
to Choptuik’s gravitating model, spherically symmetric stud-here represents a mapping from the base space-ot 3
ies of this model have found a universal, self-similar criticalMinkowski to a target space &. In spherical symmetry, it
solution[2,3]. The utility of the nonlinear sigma model arises iS common to choose the hedgehog ansatz for the map re-
from its relative simplicity compared to any of a variety of ducing the dynamics to that of a single spherically symmetric
gravitating models. Perhaps the study of such nonlinear, fldield x(r,t). Here a simple generalization of this ansatz is
systems will guide the way to further insight in the gravitat- chosen

ing models.
While questions about the nature of black hole critical sinx(x,y,z,t)sindsine
behavior remain, many unexplored “experiments” have yet ) )
to be conducted. While many matter models have been stud- a_| SMx(x.y.zt)sing cose 1
ied (for a review sed4]), generally these studies have been siny(x,y,z,t)cos# '

restricted to spherical symmetry. The only work to model
fully nonlinear collapse in less symmetry is that of Abrahams
and Evang5] who studied vacuum gravitational collapse in
axisymmetry. One reason for the scarcity of multi- where 6 and ¢ are the usual spatial angles. The dynamics
dimensional evolutions of the critical regime is the extremereduce to the scalar fielg(x,y,z,t) which satisfies the equa-
resolution demanded by approach to scale invariance. Pertuion of motion
bation methods are a complementary approach with recent

work [6,7] suggesting that spherical critical solutions in the

scalar field and perfect fluid cases extend to the nonspherical

regime. While work is underway to duplicate and extend the

cosy(X,Y,z,t)

. sin 2y
X:X,xx+)(,yy+)(,zz_ I’—Z, (2
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TABLE |. List of various initial data families. For familie@—-  going pulse. The angular momentum of the pulse about the
(c) both the fieldy(x,y,z,0) and its time derivative(x,y,z,0) are  axis is proportional to the paramet€y, as well as to &,
shown in terms of various parameters. The te@sG,, and G, — 6y)2_
represent unique Gaussian pulses as defined in@qln family Numerical methodrNpPL [10] is used to develop and de-
(b), the parameters; andv, are the respective velocities of the two pug a stable and convergent unigrid code which solves Eq.
pulses, generally chosen to have a grazing collision. (2) using finite differences and an iterative Crank-Nicholson
: technique. TherRNPL generated update procedure is called
Description x(x,y,2,0) x(x.y,z,0) from the AMR code to evolve any given fine grid. The AMR
implementation follows that of Berger and Oligelrd] with
(@ Ellipsoid G ,jfﬂlz(ny,xG ,)  some simplifications:
"G DG, (1) Instead of estimating truncation error, | use the energy
(b) Two pulses G+ G, ”1a_><1+”2a_><2 density as a criterion of refinement. In particular, normaliz-
() Toroid Ae Z/9e(ex+ey?)?s 0 ing the energy density by the grid resolution 1, the re-

finement criterion ish?p>¢, where € is a user-specified
threshold. This simplification is less general than truncation
where commas indicate partial differentiation with respect toerror but provides an easily computable and smooth function
subscripted coordinates, an overdot deno#ést, and r from which to estimate resolution requirements.

= X?+y?+ 7. The equation of motiof2) implies the regu- (2) Fine grids are completely contained within their par-
larity condition x(0,0,0t) =0 which is enforced by the evo- ents. Grids do not overlap or abut other grids at the same
lution procedure. This ansatz requires that the origin idevel. This restriction reduces the maximum obtainable effi-
singled out as a special point. More elegant generalizationei€ncy but provides for considerable simplification.

may be considered in the future. (3) Fine grids are created strictly aligned with parent grids
The energy density of the map is given by with no rotation. The transformations necessary to relax this
would be especially onerous in the gravitating case.
1 ., 5 ) ) sirfy (4) The ratio of refinement between parent and child grids
P=5L00) (X0 F (xy) "+ (x)7TH 2 (3)  is constrained to be an even integer.

The angular momentum densities are given 8l
M~Y= f d3x(TO#x" = TOxH), (4)

so that thez component of the angular momentum, for ex-
ample, is

‘]z:f d3XMxy:f d3x ).((yX,x_XX,y)- (5

While the map allows for the possibility of a texture charge
associated with the third homotopy group, only initial data
with zero charge is considered here. The model requires ini
tial datay(x,y,z,0) andj((x,y,z,O) be specified at the initial
time.

Various types of initial data have been implemented and
are described in Table I. Some of these families are define¢
in terms of a generalized Gaussian pulse defined by

1
IX|

T=—3.7 T=—5.4
111 | 111 | 111 | |
-8 -6 —4 -2
G(x,y,z)=Ae (R (6) In r

FIG. 1. Approach of near-critical evolution to self-similarity.
The numerical evolution is show(eircles for spherically symmet-
~ ric initial data at times near the collapse time. The initial data is a
r= Vel X—Xo)*+ €, (y—Yo)*+(2—25)°. (7)) member of family(a) in Table I with e,= e, =1 and2,=0. The
. data represents &¥0,y=0,z=0) cut with every point shown.
Such a pulse depends on parameters: ampliydghell ra-  1he excitedn=1 self-similar solution is showfsolid line) with
diusR, pulse widths, pulse centerx;,yc,z;), and skewing  =in|T*—T| whereT* is the time of collapséso that collapse oc-
factorse, and e, . For €,# 1+ €, such a pulse has elliptic curs atr— —=). The collapse time of tha=1 solution is chosen
cross section. Familya) represents a single pulse for which se that the two solutions coincide for the first frame only. That they
the parameter takes the value§—1,0,+ 1} for an approxi- coincide for the other frames indicates the approach to the self-
mately out-going, time-symmetric, or approximately in- similar solution.

wherer is a generalized radial coordinate
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FIG. 3. Detail of the peak region from the final frame of Fig. 2.
Only the finest four grids are showevery point is shownalong
with the coarsest grid in order to compare the resolution achieved
with respect to the coarse grid. The finest grid has a resolution a
factor of 2 finer than the coarse grid.

where the work for a unigrid evolution at the coarsest reso-
lution is unity. In comparison, to achieve uniform resolution

equal to that of the finest sub-grid would require work equal
to (2°)3*2, a factor 26 more work than that with AMR.

Results As discussed ii2], solutions generically evolve
to one of two stable end states. For large initial data, the
energy density collapses toward the origin suggesting the
formation of a singularity. As in the strictly spherical case,
the usual caveat applies that we only have indications, not
proof, that a singularity is forming. For small initial data, the
energy density implodes through the origin and then dis-
perses to infinity. Removing the restriction to spherical sym-
metry has not revealed any additional stable end states.

The aim is to investigate the region of solution space
separating these two end states. In the jargon of nonlinear
dynamics, we look at the so-calledtical surfaceoccurring
between the twdasins of attractionTo do so, one chooses
a l-parameter family of initial data with the property that
data with small parameter disperses while large parameter
initial data forms a singularity. By tuning the free parameter
according to the resulting end state of the evolution, the criti-

FIG. 2. Snapshots of slightly sub-critical evolution. The field cal surface is approached.
x(t,x,y,z=0) is shown at four times for a family of initial data The previous results in spherical symmetry indicated that
with angular momentum about theaxis. For clarity, only every all initial data of compact support, when tuned, approached
other point in thex andy directions is showrtevery fourth point  the same universal, self-similar solutif®]. This critical so-

At the final time, all ten grids are shown with a refinement factor Of|ution happens to be one of a fam”y of solutions found by

2. Grt_aater detail of this Ia_st frame is shown ip Fig. 3. The initial Aminneborg and Bergstrom by assuming self-similarity and

data is a member of familya) from Table | with parameteré solving the resulting ordinary differential equatié®DE)

~1.3359,R=8, 6=3, X;=Yc=2=0, =0.5,&,=1, v=0,and 1191 A'jinear perturbation analysis revealed the 1 solu-

$;=0.4. The dimensionless ratio of the angular momentum to tgjo 15 have the requisite single unstable mode necessary to

energy squared i/E7=0.0025. be a proper critical solutiofa so-calledntermediate attrac-
tor).

The first two of these restrictions appear especially suited This solution is shown in coordinates adapted to its self-
for the case of central collapse studied here, and the intentiogimilarity in Fig. 1. Given a self-similar solution which takes
is to relax them for more general problems. the form f(r,t)=f(r/|T* —T|), one can recast it ag(Inr

The usefulness of AMR depends obviously on whether it—In|T* —T]). This form makes apparent that the solution ex-
produces correct solutions and whether it allows for highecutes linear motion in log space and log time, where one is
resolution with only proportional work. Starting with the uni- free to set the collapse tim&*. Thus, in Fig. 1 the self-
grid code, convergence and energy conservation were comsimilar solution travels leftward retaining its shape.
firmed. The AMR results were then checked against high Along with then=1 solution is shown a cut along the
resolution unigrid results. Perhaps a stronger test is that thiaxis of a near-critical evolution from spherically symmetric
code finds the same results for spherically symmetric initiainitial data. Such an evolution would be expected to agree
data as that ifi2] (as demonstrated in Fig).]JAs an example with previous results in spherical symmetry, as it appears to
of the benefit of AMR consider Fig. 2. A rough estimate of do in the plot. The collapse time of the=1 solution was
the computational work for the entire evolution & & units  chosen so that the two solutions agree in the first frame. The
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FIG. 5. Demonstration of approach to a spherically symmetric
solution at criticality. Initially asymmetric initial data is tuned and
slightly sub-critical solutions are shown above for different fami-
lies. Hereo is a measure of the asymmetry €0 corresponds to
spherical symmetgywhich partially defines familya) in Table | via
ex=1+0 and ¢,=1-0. For each value ofr, three slices are
shown: &>0,0,0) (circles, (0y>0,0) (triangles, and (0,0z>0)
(crosseg Their general agreement near the origin demonstrates ap-
t=2.25 proach to spherical symmetry. Also shoWime) is then=1 self-
similar solution(with collapse time adjusted to match the solujion

whether some different critical solution appears. If the
=1 solution has nonsymmetric unstable modes not present
in spherical symmetry, then a change in critical solution
would be expected. However, all such nonsymmetric varia-
tions of the types of initial data in Table | have failed to find
a different critical solution.

An example from initial data with angular momentum is

FIG. 4. Snapshots of a slightly sub-critical collision of two graz- : ) . i
ing pulses. The field(t,x,y,z=0) is shown in thec—y plane a shown in Fig. 2. The pulse evolves in a nontrivial manner

t
four times for two pulses with linear momentum inx directions. ~ €ventually dispersing much of its energy toward the edges of
At late times, the region near the origithe fine grids in the center the grid. However, near the origin, a spherically symmetric
of the final two frameksrapidly approaches spherical symmetry and waveform emerges which propagates toward the origin. In
self-similarity. The initial data consists of familj) from Table |  this case, the waveform has negative amplittttie model is
with parameters A;=A,=115 R;=R,=0, &§,=6,=0.5, invariant with respect to the transformatigr—— x). Fur-
(Xe1:Ye11Ze1) = (—Xe2, —Ye2.262) = (1.4,0.7,0), ea=€,,=1, €,;  ther detail of this waveform is shown in Fig. 3. The upward
=¢€,,=1, andv,;=—v,=1. The dimensionless ratio of the angular sweep at the origin corresponds to the regularity constraint
momentum to the energy squaredli€2=0.0008. mentioned previously tha(0,0,0t) =0.

Another example of initial data with angular momentum
n=1 solution is then completely determined at other timess shown in Fig. 4. Two pulses are sent towards one another
by translation in Irr. and, for sufficiently large initial amplitude, singularity for-

It was also observed if2] that whenever the range @f  mation occurs. Four frames of a near critical evolution show
exceededr at a given time, a singularity would eventually the region near the origin approaching the spherically sym-
form in its future. However, evolutions of nonspherically metric, self-similar solution.
symmetric families do not obey such a condition, having A more systematic exploration away from spherical sym-
exceededr while remaining nonsingular. One still finds so- metry is shown in Fig. 5. Herer parametrizes the asymme-
lutions which dispersesubcritical) separated from those try of the initial data, and near-critical solutions are shown
which form a singularity(supercritica). for four different values ofr. Furthermore, for each case the

For such nonsymmetric initial data, the question isregion near the origirthe region which approaches self-
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similarity) is shown along the three different axes. Theirissue. Further work will likely be directed toward¥) using

agreement suggests that this region approaches spheri¢chk AMR infrastructure with a gravitating modé2) relaxing

symmetry. the noted simplifications in the clustering, a8} distribut-
There remains, however, the possibility that some othemng the grids using MPI along the lines pf3].

spherically symmetric self-similar solution becomes the criti-

cal solution away from spherical symmetry. Though there is

no e\_/idence of any transitiqn,. the various exc;itgd self-.sir_‘nilar ACKNOWLEDGMENTS
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