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Singularity threshold of the nonlinear sigma model using 3D adaptive mesh refinement

Steven L. Liebling
Theoretical and Computational Studies Group, Southampton College, Long Island University, Southampton, New York 119
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Numerical solutions to the nonlinear sigma model, a wave map from 311 Minkowski space toS3, are
computed in three spatial dimensions using adaptive mesh refinement. For initial data with compact support the
model is known to have two regimes: one in which regular initial data forms a singularity and another in which
the energy is dispersed to infinity. The transition between these regimes has been shown in spherical symmetry
to demonstrate threshold behavior similar to that between black hole formation and dispersal in gravitating
theories. Here, I generalize the result by removing the assumption of spherical symmetry. The evolutions
suggest that the spherically symmetric critical solution remains an intermediate attractor separating the two end
states.
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Nonlinear sigma models have attracted the attention b
of physicists and mathematicians. For physicists, the mo
represent the possibility of describing particles with a fie
theory, while mathematicians study singularity formation
geometrically motived nonlinear models. Recently, a non
ear sigma model~NLSM! has attracted the attention of rel
tivists because it demonstrates behavior similar to black h
critical phenomena discovered by Choptuik@1#.

Studying the gravitational collapse of a spherically sy
metric scalar field, he found that initial data with large e
ergy formed a black hole while that for small initial energ
dispersed its energy to infinity. By tuning the initial energ
he approached the so-called critical regime which separ
these two end states. In this regime, solutions approac
unique, universal solution which demonstrates se
similarity.

The model studied here serves as a useful toy mode
such threshold behavior because it also possesses two s
end states: dispersal and singularity formation. These
states serve as analogues for the gravitating case in w
initial data can either disperse or form a black hole. Sim
to Choptuik’s gravitating model, spherically symmetric stu
ies of this model have found a universal, self-similar critic
solution@2,3#. The utility of the nonlinear sigma model arise
from its relative simplicity compared to any of a variety
gravitating models. Perhaps the study of such nonlinear,
systems will guide the way to further insight in the gravita
ing models.

While questions about the nature of black hole critic
behavior remain, many unexplored ‘‘experiments’’ have y
to be conducted. While many matter models have been s
ied ~for a review see@4#!, generally these studies have be
restricted to spherical symmetry. The only work to mod
fully nonlinear collapse in less symmetry is that of Abraha
and Evans@5# who studied vacuum gravitational collapse
axisymmetry. One reason for the scarcity of mul
dimensional evolutions of the critical regime is the extre
resolution demanded by approach to scale invariance. Pe
bation methods are a complementary approach with re
work @6,7# suggesting that spherical critical solutions in t
scalar field and perfect fluid cases extend to the nonsphe
regime. While work is underway to duplicate and extend
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work of Abrahams and Evans in axisymmetry@8#, it makes
sense to look ahead to a simple model in three spatial dim
sions.

To obtain the resolution required for evolving self-simil
solutions, Choptuik developed a computational infrastruct
in one spatial dimension which dynamically and locally ad
numerical resolution where needed using adaptive mesh
finement~AMR!. With this infrastructure, fine subgrids ar
added and subtracted to the computational domain provid
resolution only where and when needed. Because the c
putational cost scales as a power law in the spatial dimen
~i.e. doubling the resolution of ad-dimensional evolution
requires a factor 2d11 more work!, it is expected that AMR
will be absolutely crucial in higher dimensions for wel
resolved evolutions of interest, in particular black hole cr
cal phenomena or black hole collisions.

Constructing such a gravitating model with AMR is a
ambitious project. Instead I report on the construction o
3D AMR code of the nonlinear sigma model, which gen
inely requires AMR and holds physical interest.

The NLSM model. The nonlinear sigma model studie
here represents a mapping from the base space of 311
Minkowski to a target space ofS3. In spherical symmetry, it
is common to choose the hedgehog ansatz for the map
ducing the dynamics to that of a single spherically symme
field x(r ,t). Here a simple generalization of this ansatz
chosen

fa5S sinx~x,y,z,t !sinu sinw

sinx~x,y,z,t !sinu cosw

sinx~x,y,z,t !cosu

cosx~x,y,z,t !

D , ~1!

whereu and w are the usual spatial angles. The dynam
reduce to the scalar fieldx(x,y,z,t) which satisfies the equa
tion of motion

ẍ5x ,xx1x ,yy1x ,zz2
sin 2x

r 2
, ~2!
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where commas indicate partial differentiation with respec
subscripted coordinates, an overdot denotes]/]t, and r
[Ax21y21z2. The equation of motion~2! implies the regu-
larity conditionx(0,0,0,t)50 which is enforced by the evo
lution procedure. This ansatz requires that the origin
singled out as a special point. More elegant generalizat
may be considered in the future.

The energy density of the map is given by

r5
1

2
@~ ẋ !21~x ,x!

21~x ,y!21~x ,z!
2#1

sin2x

r 2
. ~3!

The angular momentum densities are given by@9#

Mmn5E d3x~T0mxn2T0nxm!, ~4!

so that thez component of the angular momentum, for e
ample, is

Jz5E d3xMxy5E d3x ẋ~yx ,x2xx ,y!. ~5!

While the map allows for the possibility of a texture char
associated with the third homotopy group, only initial da
with zero charge is considered here. The model requires
tial datax(x,y,z,0) andẋ(x,y,z,0) be specified at the initia
time.

Various types of initial data have been implemented a
are described in Table I. Some of these families are defi
in terms of a generalized Gaussian pulse defined by

G~x,y,z!5Ae2( r̃ 2R)2/d2
, ~6!

where r̃ is a generalized radial coordinate

r̃ 5Aex~x2xc!
21ey~y2yc!

21~z2zc!
2. ~7!

Such a pulse depends on parameters: amplitudeA, shell ra-
dius R, pulse widthd, pulse center (xc ,yc ,zc), and skewing
factorsex and ey . For exÞ1Þey such a pulse has elliptic
cross section. Family~a! represents a single pulse for whic
the parametern takes the values$21,0,11% for an approxi-
mately out-going, time-symmetric, or approximately i

TABLE I. List of various initial data families. For families~a!–

~c! both the fieldx(x,y,z,0) and its time derivativeẋ(x,y,z,0) are
shown in terms of various parameters. The termsG, G1, and G2

represent unique Gaussian pulses as defined in Eq.~6!. In family
~b!, the parametersv1 andv2 are the respective velocities of the tw
pulses, generally chosen to have a grazing collision.

Description x(x,y,z,0) ẋ(x,y,z,0)

~a! Ellipsoid G n
]G

] r̃
1Vz(yG,x2xG,y)

~b! Two pulses G11G2 v1

]G1

]x
1v2

]G2

]x
~c! Toroid Ae2z2/d2

e2(exx21eyy2)2/d2
0
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going pulse. The angular momentum of the pulse about thz
axis is proportional to the parameterVz as well as to (ex
2ey)

2.
Numerical method. RNPL @10# is used to develop and de

bug a stable and convergent unigrid code which solves
~2! using finite differences and an iterative Crank-Nichols
technique. TheRNPL generated update procedure is call
from the AMR code to evolve any given fine grid. The AM
implementation follows that of Berger and Oliger@11# with
some simplifications:

~1! Instead of estimating truncation error, I use the ene
density as a criterion of refinement. In particular, normal
ing the energy densityr by the grid resolution 1/h, the re-
finement criterion ish2r.e, where e is a user-specified
threshold. This simplification is less general than truncat
error but provides an easily computable and smooth func
from which to estimate resolution requirements.

~2! Fine grids are completely contained within their pa
ents. Grids do not overlap or abut other grids at the sa
level. This restriction reduces the maximum obtainable e
ciency but provides for considerable simplification.

~3! Fine grids are created strictly aligned with parent gr
with no rotation. The transformations necessary to relax
would be especially onerous in the gravitating case.

~4! The ratio of refinement between parent and child gr
is constrained to be an even integer.

FIG. 1. Approach of near-critical evolution to self-similarity
The numerical evolution is shown~circles! for spherically symmet-
ric initial data at times near the collapse time. The initial data i
member of family~a! in Table I with ex5ey51 andVz50. The
data represents a (x.0, y50, z50) cut with every point shown.
The excitedn51 self-similar solution is shown~solid line! with t
[ lnuT*2Tu whereT* is the time of collapse~so that collapse oc-
curs att→2`). The collapse time of then51 solution is chosen
so that the two solutions coincide for the first frame only. That th
coincide for the other frames indicates the approach to the s
similar solution.
3-2
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The first two of these restrictions appear especially su
for the case of central collapse studied here, and the inten
is to relax them for more general problems.

The usefulness of AMR depends obviously on whethe
produces correct solutions and whether it allows for h
resolution with only proportional work. Starting with the un
grid code, convergence and energy conservation were
firmed. The AMR results were then checked against h
resolution unigrid results. Perhaps a stronger test is that
code finds the same results for spherically symmetric ini
data as that in@2# ~as demonstrated in Fig. 1!. As an example
of the benefit of AMR consider Fig. 2. A rough estimate
the computational work for the entire evolution is 28, in units

FIG. 2. Snapshots of slightly sub-critical evolution. The fie
x(t,x,y,z50) is shown at four times for a family of initial dat
with angular momentum about thez axis. For clarity, only every
other point in thex andy directions is shown~every fourth point!.
At the final time, all ten grids are shown with a refinement factor
2. Greater detail of this last frame is shown in Fig. 3. The init
data is a member of family~a! from Table I with parametersA
'1.3359,R58, d53, xc5yc5zc50, ex50.5, ey51, n50, and
Vz50.4. The dimensionless ratio of the angular momentum to
energy squared isJ/E250.0025.
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where the work for a unigrid evolution at the coarsest re
lution is unity. In comparison, to achieve uniform resolutio
equal to that of the finest sub-grid would require work eq
to (29)311, a factor 226 more work than that with AMR.

Results. As discussed in@2#, solutions generically evolve
to one of two stable end states. For large initial data,
energy density collapses toward the origin suggesting
formation of a singularity. As in the strictly spherical cas
the usual caveat applies that we only have indications,
proof, that a singularity is forming. For small initial data, th
energy density implodes through the origin and then d
perses to infinity. Removing the restriction to spherical sy
metry has not revealed any additional stable end states.

The aim is to investigate the region of solution spa
separating these two end states. In the jargon of nonlin
dynamics, we look at the so-calledcritical surfaceoccurring
between the twobasins of attraction. To do so, one choose
a 1-parameter family of initial data with the property th
data with small parameter disperses while large param
initial data forms a singularity. By tuning the free parame
according to the resulting end state of the evolution, the c
cal surface is approached.

The previous results in spherical symmetry indicated t
all initial data of compact support, when tuned, approach
the same universal, self-similar solution@2#. This critical so-
lution happens to be one of a family of solutions found
Aminneborg and Bergstrom by assuming self-similarity a
solving the resulting ordinary differential equation~ODE!
@12#. A linear perturbation analysis revealed then51 solu-
tion to have the requisite single unstable mode necessa
be a proper critical solution~a so-calledintermediate attrac-
tor!.

This solution is shown in coordinates adapted to its s
similarity in Fig. 1. Given a self-similar solution which take
the form f (r ,t)5 f (r /uT* 2Tu), one can recast it asg(ln r
2lnuT*2Tu). This form makes apparent that the solution e
ecutes linear motion in log space and log time, where on
free to set the collapse timeT* . Thus, in Fig. 1 the self-
similar solution travels leftward retaining its shape.

Along with then51 solution is shown a cut along thex
axis of a near-critical evolution from spherically symmetr
initial data. Such an evolution would be expected to ag
with previous results in spherical symmetry, as it appears
do in the plot. The collapse time of then51 solution was
chosen so that the two solutions agree in the first frame.

f
l

e

FIG. 3. Detail of the peak region from the final frame of Fig.
Only the finest four grids are shown~every point is shown! along
with the coarsest grid in order to compare the resolution achie
with respect to the coarse grid. The finest grid has a resolutio
factor of 29 finer than the coarse grid.
3-3
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n51 solution is then completely determined at other tim
by translation in lnr.

It was also observed in@2# that whenever the range ofx
exceededp at a given time, a singularity would eventual
form in its future. However, evolutions of nonspherica
symmetric families do not obey such a condition, havi
exceededp while remaining nonsingular. One still finds so
lutions which disperse~subcritical! separated from thos
which form a singularity~supercritical!.

For such nonsymmetric initial data, the question

FIG. 4. Snapshots of a slightly sub-critical collision of two gra
ing pulses. The fieldx(t,x,y,z50) is shown in thex2y plane at
four times for two pulses with linear momentum in6x directions.
At late times, the region near the origin~the fine grids in the cente
of the final two frames! rapidly approaches spherical symmetry a
self-similarity. The initial data consists of family~b! from Table I
with parameters A15A2511.5, R15R250, d15d250.5,
(xc1 ,yc1 ,zc1)5(2xc2 ,2yc2 ,zc2)5(1.4,0.7,0), ex15ex251, ey1

5ey251, andv152v251. The dimensionless ratio of the angul
momentum to the energy squared isJ/E250.0008.
04170
s

whether some different critical solution appears. If then
51 solution has nonsymmetric unstable modes not pre
in spherical symmetry, then a change in critical soluti
would be expected. However, all such nonsymmetric va
tions of the types of initial data in Table I have failed to fin
a different critical solution.

An example from initial data with angular momentum
shown in Fig. 2. The pulse evolves in a nontrivial mann
eventually dispersing much of its energy toward the edge
the grid. However, near the origin, a spherically symmet
waveform emerges which propagates toward the origin
this case, the waveform has negative amplitude~the model is
invariant with respect to the transformationx→2x). Fur-
ther detail of this waveform is shown in Fig. 3. The upwa
sweep at the origin corresponds to the regularity constr
mentioned previously thatx(0,0,0,t)50.

Another example of initial data with angular momentu
is shown in Fig. 4. Two pulses are sent towards one ano
and, for sufficiently large initial amplitude, singularity for
mation occurs. Four frames of a near critical evolution sh
the region near the origin approaching the spherically sy
metric, self-similar solution.

A more systematic exploration away from spherical sy
metry is shown in Fig. 5. Here,s parametrizes the asymme
try of the initial data, and near-critical solutions are show
for four different values ofs. Furthermore, for each case th
region near the origin~the region which approaches sel

FIG. 5. Demonstration of approach to a spherically symme
solution at criticality. Initially asymmetric initial data is tuned an
slightly sub-critical solutions are shown above for different fam
lies. Heres is a measure of the asymmetry (s50 corresponds to
spherical symmetry! which partially defines family~a! in Table I via
ex511s and ey512s. For each value ofs, three slices are
shown: (x.0,0,0) ~circles!, (0,y.0,0) ~triangles!, and (0,0,z.0)
~crosses!. Their general agreement near the origin demonstrates
proach to spherical symmetry. Also shown~line! is the n51 self-
similar solution~with collapse time adjusted to match the solution!.
3-4
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similarity! is shown along the three different axes. Th
agreement suggests that this region approaches sphe
symmetry.

There remains, however, the possibility that some ot
spherically symmetric self-similar solution becomes the cr
cal solution away from spherical symmetry. Though there
no evidence of any transition, the various excited self-sim
solutions of@12# are very similar near the origin consistin
of a peak followed by oscillations aboutx5p/2. To distin-
guish among them, a perturbation analysis allowing for n
symmetric modes would be appropriate, with the critical
lution being the one with a single unstable mode.

The evidence therefore suggests that then51 self-similar
solution remains the intermediate attractor away from sph
cal symmetry, but a perturbation analysis should settle
th

e-
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issue. Further work will likely be directed towards~1! using
the AMR infrastructure with a gravitating model,~2! relaxing
the noted simplifications in the clustering, and~3! distribut-
ing the grids using MPI along the lines of@13#.
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