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Convergence and stability in numerical relativity

Gioel Calabrese, Jorge Pullin, Olivier Sarbach, and Manuel Tiglio
Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-400

~Received 2 May 2002; published 20 August 2002!

It is often the case in numerical relativity that schemes that are known to be convergent for well posed
systems are used in evolutions of weakly hyperbolic formulations of Einstein’s equations. Here we explicitly
show that with several of the discretizations that have been used throughout the years, this procedure leads to
nonconvergent schemes. That is, arbitrarily small initial errors are amplified without bound when resolution is
increased, independently of the amount of numerical dissipation introduced. The lack of convergence intro-
duced by this instability can be particularly subtle, in the sense that it can be missed by several convergence
tests, especially in (311)-dimensional codes. We propose tests and methods to analyze convergence that may
help detect these situations.
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Convergence is a central element of any numerical sim
lation. It refers to the property that if one refines the simu
tion by adding more points to the grid, numerical erro
should diminish. In the limit of zero spacing, they should
to zero and one should get the exact solution. Having a c
vergent code is a key element for numerical simulations
have predictive power: although one will always be limit
in practice to a finite number of points in the grid, one c
extrapolate the results for more and more refined simulat
and have a very good approximation to the true~continuum!
results. Codes that do not converge produce answers
even if they remain finite~at least for a while!, have little
predictive power: there generically is no way to know if t
solutions found approximate the desired continuum solut

In this paper we want to emphasize that discretizat
schemes that yield a convergent code for strongly hyperb
~SH! systems of equations do not necessarily do so
weakly hyperbolic~WH! or completely ill-posed~CIP! sys-
tems. The relevance of this observation is that several for
lations of the Einstein evolution equations commonly used
numerical relativity, including, for example, the Arnowit
Deser-Misner~ADM ! @1# and Baumgarte-Shapiro-Shibat
Nakamura~BSSN! @2# formulations with fixed lapse and
shift, are not SH.

We concretely prove that a simple system of linear W
equations with constant coefficients, when discretized w
either the iterated Crank-Nicholson~ICN! with fixed number
of iterations or second order Runge-Kutta~2RK! methods,
leads to unconditionally unstable codes, even if numer
dissipation is explicitly added. This simple system of equ
tions is related to the equations one encounters in the
formulations of general relativity. It therefore strongly su
gests that these formulations should produce a code th
not convergent. The lack of convergence is of a particula
pernicious nature, since in the WH case it might grow slow
than the ‘‘usual’’ von Neumann numerical instability. It
such that if one tests the code with stationary solutions~for
instance simulating a single black hole! and performs con-
vergence tests, one could easily be confused into belie
one has a convergent code.
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Consider a linear system ofm partial differential equa-
tions in m variables of the form

] tv5A]xv, ~1!

whereA is a constantm3m matrix andv5(v1 , . . . ,vm)T.
The system is SH ifA has real eigenvalues and is diagon
izable, WH if it has real eigenvalues but is not diagonal
able, and CIP if it has complex eigenvalues.

The iterated Crank-Nicholson~ICN! method is an explicit
approximation to the~implicit! Crank-Nicholson method firs
proposed by Choptuik. In this proposal the number of ite
tions is not fixed but, instead, might depend on the spa
gridpoint and time step@9#. A different notion of ICN is toa
priori fix the number of iterations@3#. Teukolsky@3# showed
that for the advective equation,] tv5]xv ~which is SH!, such
a scheme was stable if one used 2,3,6,7,10,11, . . . , iterations
~one iteration corresponds to the 2RK method!. This paper
seeks to extend this proof to more general systems of e
tions, including explicit artificial viscosity.

A difference scheme is said to be stable with respect t
given norm if there exist positive constantsDx0 andDt0 and
f (t) such that iuni< f (t)iu0i , for 0,Dx<Dx0 , 0,Dt
<Dt0, and t5nDt where un is the numerical solution a
time t and u0 the initial data. That is, the growth of th
solution is bounded by some function of timef (t) that is
independent of the initial data and resolution. Some schemes
are only conditionally stable. This means that a relations
betweenDt and Dx is needed for stability. Through Lax’s
theorem, numerical stability in this sense is equivalent
convergence, provided the scheme is consistent.

Working in Fourier space and writing explicitly the solu
tion at time t in terms of the amplification matrixQ, ûn

5Qnû0 yields a necessary condition for stability: the vo
Neumann condition~VNC!. It states that for the cases con
sidered in this paper, the spectral radiusr(Q) of Q ~the
maximum eigenvalue in norm! is not greater than one. If this
condition is not satisfied, a numerical instability that grow
like exp(nm), with m.0 a constant, is present. A well know
example of this instability is the forward in time, centered
space scheme for the advective equation. It is someti
©2002 The American Physical Society01-1
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thought that the VNC is not only necessary but also suffici
for stability. This often leads to~wrongly! concluding that a
discretization for a WH system is stable based on a disc
analysis for the advection or wave equation. The VNC
sufficient only ifQ can be diagonalized by a similarity tran
formation whose norm, and that of its inverse, has an up
bound that is independent of resolution@4#. An observation
that will be important for the stability analysis below is tha
for the cases we are discussing,Q is diagonalizable if and
only if A is. Therefore, in the WH case the VNC will not b
sufficient for stability.

On the other hand, if the system is SHA is diagonalizable
~with real eigenvalues! and so isQ. Working in the diagonal
basis we then have an uncoupled system ofm equations for
the m grid functions. Repeating Teukolsky’s analysis for t
ICN scheme, this system is stable ifr(A)l<2 (l5Dt/Dx
is the Courant factor! and the number of iterations isp
52,3,6,7,10,11, . . . , if no explicit dissipation is added. In
evolutions of SH equations, the addition of dissipation m
help stabilize schemes that are otherwise unstable. For
ample, the VNC for the 2RK case with third order dissip
tion is

„r~A!l…4<8ls̃<1, ~2!

where s̃ is the dissipation parameter. SinceQ is diagonal,
this condition is necessary and sufficient for stability.

Below we will explicitly prove that for CIP or WH case
the ICN and 2RK methods are unstable, independently of
amount of dissipation, number of iterations and Courant f
tor. Although our results are only proven for a system
linear equations with constant coefficients, they are sign
cant in several ways for numerical relativity. First of all,
one considers situations that are small perturbations
Minkowski spacetime, then a system of equations ident
to the one we considerdoesappear in the linearized Einstei
equations written in first order form in space and time if t
system of evolution equations used is WH or CIP. Since
away from binary black holes the spacetime is approxima
flat, this situation does arise in realistic simulations. Co
non-linearities change our conclusions? It is possible,
unlikely. Usually when instabilities are established for line
systems the addition of non-linear terms only makes in
bilities worse@4#.

The type of lack of convergence differs in the CIP a
WH case. In the CIP case the VNC is easily violated, co
crash very fast and non-convergence is easy to spot. In
WH case the VNC may be satisfied and crashes may o
very late~if they occur at all!. If one performs routine con
vergence analyses in the region before the crash one m
appear to see convergence, especially if the initial data h
few ~and low! frequency components, unless one increa
the resolution enough or runs for a long enough time.

We now show that these different types of lack of conv
gence do appear in numerical relativity simulations, even
very simple 1D ones with periodic boundary conditions. W
have performed non-linear evolutions of a plane gauge w
spacetime~that is, the spacetime is flat, though in a tim
dependent slicing!,
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ds25eA sin(t1x)~2dt21dx2!1dy21dz2. ~3!

Figure 1 shows results of an evolution using 2RK w
s51/2, 0,21/2 in the Einstein-Christoffel~EC! system@5#
of evolution equations. The latter is a symmetric-hyperbo
reformulation of Einstein’s evolution equations that includ
a parameters that densitizes the lapse. In the EC formul
tion, s51/2, but by tuning this parameter we can make t
system WH (s50) or CIP (s521/2). The whole 30 equa
tions of the EC system are evolved, but all quantities
assumed to depend only ont andxP@2p,p#. The Courant

FIG. 1. L2 norm of the errors for the metric in the SH, WH an
CIP cases.
1-2
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factor is set to 1/2, the dissipation parameter tos̃50.02, and
the evolution is followed for 1000 crossing times. In the S
case the code is convergent for all resolutions tested, se@6#
for a detailed discussion. On the other hand, in the same c
with s521/2 a lack of convergence becomes apparent
mediately~before one crossing time!, the errors become big
ger and the code crashes earlier as resolution is increase
the WH case the code is also not convergent but the effe
less noticeable, since with the chosen values of dissipa
and Courant factor the VNC, Eq.~2!, is satisfied. If one
performed only a few runs, with, say 120 and 240 gridpoi
as is typical in 3D convergence studies, one would have
wait for around 150 crossing times in order for the lack
convergence in this WH example to become obvious. To
these numbers in context, suppose one had a similar situa
in a 3D black hole evolution. Suppose the singularity is e
cised, with the inner boundary atr 5M and the outer bound
ary at 20M . In this case 120 and 240 gridpoints correspo
to grid spacings of, approximately,M /5 andM /10, respec-
tively. If one had to evolve up to 150 crossing times in ord
to notice the lack of convergence, which would correspo
to t'3000M , which is more than what present 3D evol
tions typically last. One could therefore be misled to thi
that the code is convergent. Repeating the same runs wit
initial data with more frequencies~say, a non-stationary
black hole! would make the instability manifest in a short
time scale. By making a spatial Fourier decomposition~Fig.
2! of the numerical solution, we have found that in the W
and CIP cases there are always non-zero frequency m
growing exponentially from the very beginning, thoug
sometimes starting at truncation error. By performing su
decomposition one can detect that the code is not conver
much before this becomes obvious in the overall errors.

We have done simulations with different spectral distrib
tions on the initial data, different number of iterations in t
ICN method, different Courant factors, and different valu
of dissipation. The time and resolution at which the nume

FIG. 2. The lack of convergence in the particular WH case c
sidered is triggered by non-zero frequency modes that are
pressed in the initial data, but grow exponentially. Notice that a
the lack of convergence becomes obvious~at t52000 for this reso-
lution! no further exponential growth takes place and the code d
not crash, in the example we are considering.
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cal instability becomes obvious depends on all these fact
but lack of convergence is always present in the CIP and W
cases, while the SH runs do converge. Too much dissipa
violates the VNC, resulting in a more severe instability, a
this is immediately seen in numerical experiments, see@6#
for details.

We have also found similar results performing simulatio
with the same initial data but with Kidder-Schee
Teukolsky’s many parameter family of formulations of Ei
stein’s equations@7#, leaving all parameters fixed and chan
ing only one of them at a time, achieving different levels
hyperbolicity. In particular, we have found a lack of conve
gence in the ADM equations as well~which is a subsytem of
this family!.

The results presented in this paper do not represent a
cial feature of the ICN method but instead, only reflect t
fact that the definition of numerical stability is just a discre
version of well posedness. Therefore, difference schemes
proximating ill-posed problems can be expected to be n
convergent. In the absence of boundaries this is the case
CIP or, generically, WH formulations. If there are boun
aries, strong hyperbolicity is not enough and extra care ha
be taken in order to guarantee well posedness; wrong bo
ary conditions not only lead to inconsistencies but also
numerical instabilities~see, e.g.,@8#!.

Although it is not possible to prove in a definitive wa
that a code is convergent only by numerical experiments,
previous examples suggest some of the pathologies that
should look for. Namely, Fourier modes that are not conv
gent but are very small for a while, since they are initia
suppressed. Also, notice from the WH simulations abo
shown that a code does not need to crash nor exhibit vio
growth in order not to converge. The main lesson learn
from this paper is that one should exercise significant car
numerical simulations before empirically concluding that t
simulation is convergent, especially if the formulation
Einstein’s equations used is not SH or its level of hyperb
licity is unknown.

Proof of non-convergence for CIP and WH cases. A usual
way of discretizing the right-hand side of Eq.~1! is using
centered differences plus third order explicit dissipation.
this one means solving] tv5Cv/Dt, with C5Ald0/2
2I s̃ld 4, where I is the identity matrix, d0vk5vk11
2vk21, and d 4vk5vk1224vk1116vk24vk211vk22.
This is equivalent to discretizing] tv5A]xv2I s̃(Dx)3]x

4v
using centered differences~using first order dissipation in ou
proof, i.e., discretizing] tv5A]xv1s̃Dx]x

2v, gives similar
results!.

The ICN method withp iterations for the partial differen-
tial equation~1! can be written as

vk
n115S 112(

j 51

p11
Cj

2 j D vk
n , ~4!

wherevk
n5(v1 k

n , . . . ,vmk
n )T. The indexn corresponds to the

time step andk to the spatial mesh point. Since we are co
sidering an initial value problem on all ofR, 2`,k,1`

-
p-
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~our proof can be easily modified for periodic boundary co
ditions, and the results are the same!.

In order to analyze stability we work in the basis in whi
A takes its canonical form. That is, one multiplies both sid
of Eq. ~4! by T, whereTAT215J has the canonical Jorda
form, and analyzes the equation

uk
n115S 112(

j 51

p11
L j

2 j D uk
n , ~5!

where L5TCT215Jld0/22I s̃ld 4. Any conclusions re-
garding stability will hold as well for the original variablev.
Working in Fourier space,uk5*2p

p exp(ikj)û(j)dj, Q51

12( j 51
p11L̂ j /2j and L̂5Jl i sin(j)216I s̃l sin4(j/2).

If the system is CIP,J has at least one complex eige

value c, say J115c. In this case, L̂115cl i sin(j)
216s̃l sin4(j/2), and the eigenvalueQ11 has norm 1
2lIm(c)j1O(j2). Therefore, the VNC is violated for suf
ficiently smallj with the appropriate sign and the scheme
unconditionally unstable, as expected.

If the system is WH thenJ has at least one Jordan bloc
and so doesQ. In this basis all the Jordan blocks are u
coupled and we can consider one at a time. We assume
is one block of dimension 232 ~the proof actually holds for
higher dimensionality as well!. The canonical form for such
a block, the resulting amplification matrix, and itsnth power
are

J5S c 1

0 cD , Q5S a b

0 aD ,

Qn5S an an21nb

0 an D .

Suppose the VNCuau<1 is satisfied~this rules out thep
50 case!, we will show that the scheme is still unstabl
Consider as initial data a small perturbation of the form

u0
05~0,2pe!T, uk

05~0,0!T otherwise ~6!

with e arbitrary small. In Fourier space we haveû0(j)
5e(0, 1)T for all j. The solution at timet5nDt is, then,
ûn5e(an21nb, an)T. We will show that its norm grows
without bound when the number of gridpoints is increas
~while keeping the time and Courant factor fixed!. We first
notice that (n2[2n22),
04150
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iuni2

iu0i2
5E

2p

p

~n2uaun2ubu21uau2n!
dj

2p

>n2E
2p

p

uaun2ubu2
dj

2p
. ~7!

Expressionsuau2 and ubu2 are analytic functions ofj with
Taylor expansionubu25l2@j21O(j4)# and uau2512@2s̃l
1d(cl)4#j41O(j6), with d521 for p51, d51 for p
52, andd50 otherwise. From these expansions one can
that, for allp, there are positive constantsa andr such that

ua~j!u2>12aj4>0, ub~j!u2>r2j2>0 ~8!

for small enoughj, sayuju<e1. For n.1 and small enough
j, sayuju<e2,

ua~j!u2n>12naj4>0, ~9!

where the last inequality holds foruju<(na)21/4, provided
that n is large enough so that (na)21/4<min(e1,e2). Using
bounds~8!,~9! and the VNC in inequality~7! gives

iuni2

iu0i2
>n2E

2(na)21/4

(na)21/4

~12naj4!r2j2
dj

2p
5

4

21p

r2

a3/4
n5/4

which diverges forn→`. This shows that in the WH cas
the ICN and 2RK schemes are unstable, independent of
amount of dissipation. In fact, by examiningua(j5p)u, one
can see that a necessary condition for the VNC~for any
number of iterations! is 0<s̃l<1/8. Adding too much dis-
sipation violates the VNC and the instability becomes wor

Perturbations like that of Eq.~6! are to be expected in a
numerical simulation due to truncation or roundoff erro
For high enough resolution, such a perturbation will be a
plified without bound, spoiling any convergence. One e
pects that in the non-constant coefficient or in the non-lin
case the rate of growth of the instability with number
gridpoints will be even faster~see the example in page 21
of @4#!, as in Fig. 2.
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