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Convergence and stability in numerical relativity
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It is often the case in numerical relativity that schemes that are known to be convergent for well posed
systems are used in evolutions of weakly hyperbolic formulations of Einstein’s equations. Here we explicitly
show that with several of the discretizations that have been used throughout the years, this procedure leads to
nonconvergent schemes. That is, arbitrarily small initial errors are amplified without bound when resolution is
increased, independently of the amount of numerical dissipation introduced. The lack of convergence intro-
duced by this instability can be particularly subtle, in the sense that it can be missed by several convergence
tests, especially in (8 1)-dimensional codes. We propose tests and methods to analyze convergence that may
help detect these situations.
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Convergence is a central element of any numerical simu- Consider a linear system ah partial differential equa-
lation. It refers to the property that if one refines the simula-tions inm variables of the form
tion by adding more points to the grid, numerical errors
should diminish. In the limit of zero spacing, they should go Iv =Adyv, @
to zero and one should get the exact solution. Having a CONthereA is a constantnx m matrix andy =

vergent co_de_z s a key element for num_erical simulat?or_]s Grhe system is SH iA has real eigenvalues and is diagonal-
have predictive power: although one will always be limited izable, WH if it has real eigenvalues but is not diagonaliz-

in practice to a finite number of points in the_ grid,_one Cangple, and CIP if it has complex eigenvalues.
extrapolate the results for more and more refined _S|mulat|ons The iterated Crank-NicholsofiCN) method is an explicit
and have a very good approximation to the tfoentinuum  approximation to théimplicit) Crank-Nicholson method first
results. Codes that do not converge produce answers thfﬁroposed by Choptuik. In this proposal the number of itera-
even if they remain finiteat least for a whilg have little  tions is not fixed but, instead, might depend on the spatial
predictive power: there generically is no way to know if the gridpoint and time stef9]. A different notion of ICN is toa
solutions found approximate the desired continuum solutionpriori fix the number of iterationg3]. Teukolsky[3] showed

In this paper we want to emphasize that discretizatiorthat for the advective equatiofy = d,v (which is SH, such
schemes that yield a convergent code for strongly hyperbolie scheme was stable if one used 2,3,6,7,10,11, iterations
(SH) systems of equations do not necessarily do so fofone iteration corresponds to the 2RK methothis paper
weakly hyperbolic(WH) or completely ill-posedCIP) sys-  seeks to extend this proof to more general systems of equa-
tems. The relevance of this observation is that several formuions, including explicit artificial viscosity.
lations of the Einstein evolution equations commonly used in A difference scheme is said to be stable with respect to a
numerical relativity, including, for example, the Arnowitt- given norm if there exist positive constamts, andAt, and
Deser-Misner(ADM) [1] and Baumgarte-Shapiro-Shibata- f(t) such that|[u”|<f(t)[u°], for 0<Ax=Axo, O<At
Nakamura(BSSN [2] formulations with fixed lapse and <Aty, andt=nAt whereu" is the numerical solution at
shift, are not SH. time t and u® the initial data. That is, the growth of the

We concretely prove that a simple system of linear wHSolution is bounded by some function of tini€t) that is
equations with constant coefficients, when discretized wit{ndependent of the initial data and resolutiddome schemes

either the iterated Crank-NicholsdlCN) with fixed number are only conditional[y stable. This means that a relationship
of iterations or second order Runge-Kut@RK) methods, betweenAt and Ax is needed for stability. Through Lax’s

leads to unconditionally unstable codes, even if numericag:)en?/r:rgénlzmg:gcjgséaggzggetmhf issir:)sneSilsieﬁ?uwalent to
dissipation is explicitly added. This simple system of equa- Working in Fourier space and writing explicitly the solu-

tions is related to the equations one encounters in the WH ] ] e o
formulations of general relativity. It therefore strongly sug- fion at timet in terms of the amplification matrix, u"
gests that these formulations should produce a code that isQ"u® yields a necessary condition for stability: the von
not convergent. The lack of convergence is of a particularlyNeumann conditiorfVNC). It states that for the cases con-
pernicious nature, since in the WH case it might grow slowessidered in this paper, the spectral radp@) of Q (the
than the “usual” von Neumann numerical instability. It is maximum eigenvalue in nornis not greater than one. If this
such that if one tests the code with stationary solutidos  condition is not satisfied, a numerical instability that grows
instance simulating a single black hplend performs con- like exphw), with >0 a constant, is present. A well known
vergence tests, one could easily be confused into believingxample of this instability is the forward in time, centered in
one has a convergent code. space scheme for the advective equation. It is sometimes

(g, ... om"
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thought that the VNC is not only necessary but also sufficient
for stability. This often leads téwrongly) concluding that a
discretization for a WH system is stable based on a discrete
analysis for the advection or wave equation. The VNC is
sufficient only ifQ can be diagonalized by a similarity trans-
formation whose norm, and that of its inverse, has an uppe!
bound that is independent of resolutipd]. An observation
that will be important for the stability analysis below is that,
for the cases we are discussin@,is diagonalizable if and
only if Ais. Therefore, in the WH case the VNC will not be
sufficient for stability.

On the other hand, if the system is $Hs diagonalizable
(with real eigenvalugsand so isQ. Working in the diagonal
basis we then have an uncoupled systermafquations for
the m grid functions. Repeating Teukolsky’s analysis for the
ICN scheme, this system is stablepifA)A<2 (A=At/AX
is the Courant factgrand the number of iterations ig
=2,3,6,7,10,11. . ., if no explicit dissipation is added. In
evolutions of SH equations, the addition of dissipation may
help stabilize schemes that are otherwise unstable. For ex—
ample, the VNC for the 2RK case with third order dissipa-
tion is

gXX - gXX exact

(a)

| 9x ™ O exac

(p(AN)*<8No=1, )
where o is the dissipation parameter. Sin€eis diagonal,
this condition is necessary and sufficient for stability.

Below we will explicitly prove that for CIP or WH cases
the ICN and 2RK methods are unstable, independently of theib
amount of dissipation, number of iterations and Courant fac-
tor. Although our results are only proven for a system of
linear equations with constant coefficients, they are signifi-
cant in several ways for numerical relativity. First of all, if
one considers situations that are small perturbations ofi

10°F

10

-3

107 E

SH case

time

L
10000

10*

WH case

10°F

,_‘
1)
=

107

-
.-
.-

-
o

)

120 gp
240 gp
-—- 480 gp

100

time

1000 10000

CIP case

Minkowski spacetime, then a system of equations identical
to the one we considetoesappear in the linearized Einstein ¢
equations written in first order form in space and time if the ©

system of evolution equations used is WH or CIP. Since fargi’z

XX exal

+=- 120 gp I

away from binary black holes the spacetime is approximately
flat, this situation does arise in realistic simulations. Could
non-linearities change our conclusions? It is possible, but
unlikely. Usually when instabilities are established for linear
systems the addition of non-linear terms only makes insta-
bilities worse[4].

The type of lack of convergence differs in the CIP and
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WH case. In the CIP case the VNC is easily violated, codes FIG- 1. L, norm of the errors for the metric in the SH, WH and
crash very fast and non-convergence is easy to spot. In tHelP cases.

WH case the VNC may be satisfied and crashes may occur
very late(if they occur at all. If one performs routine con-

vergence analyses in the region before the crash one might
appear to see convergence, especially if the initial data have Figure 1 shows results of an evolution using 2RK with

few (and low frequency components, unless one increases=1/2, 0,—1/2 in the Einstein-ChristoffelEC) system([5]

the resolution enough or runs for a long enough time.

ds?=eA SNt (—dt?+ dx?) + dy?+d 2.

(€©)

of evolution equations. The latter is a symmetric-hyperbolic

We now show that these different types of lack of conver-reformulation of Einstein’s evolution equations that includes
gence do appear in numerical relativity simulations, even ira parameter that densitizes the lapse. In the EC formula-
very simple 1D ones with periodic boundary conditions. Wetion, o=1/2, but by tuning this parameter we can make the
have performed non-linear evolutions of a plane gauge waveystem WH ¢=0) or CIP (= —1/2). The whole 30 equa-
spacetime(that is, the spacetime is flat, though in a time-tions of the EC system are evolved, but all quantities are

dependent slicing
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assumed to depend only orndx e[ — a,7]. The Courant
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L ' L cal instability becomes obvious depends on all these factors,
0’ WHease i = but lack of convergence is always present in the CIP and WH
| B "':; | cases, while the SH runs dq converge. Too m_uch d!;sipation
o /\\/’ i violates the VNC, resulting in a more severe instability, and
S 1o VAt T~ . this is immediately seen in numerical experiments, [&e
2 # A~ \’\’\\,’V\/‘ for details.
é 074 . ‘ A ] We have also found similar results performing simulations
§ I / N with the same initial data but with Kidder-Scheel-
£ o4 ; = ©=0 Teukolsky’s many parameter family of formulations of Ein-
O 107 / - ‘(g:g . stein’s equation§7], leaving all parameters fixed and chang-
N ing only one of them at a time, achieving different levels of
10—~ ] hyperbolicity. In particular, we have found a lack of conver-
e A D NI SR R B gence in the ADM equations as wélthich is a subsytem of

10
0 1000 2000 3000 4000 5000 6000 H H
time this family).

. . The results presented in this paper do not represent a spe-
~ FIG. 2. The lack of convergence in the particular WH case con<ia| feature of the ICN method but instead, only reflect the
sidered is triggered by non-zero frequency modes that are Sugact that the definition of numerical stability is just a discrete
pressed in the initial data, but grow exponentially. Notice that after,arsion of well posedness. Therefore, difference schemes ap-
thg lack of convergence bepomes obvidaist = 2000 for this reso- roximating ill-posed problems can be expected to be non-
lution) no further exponential growth takes place and the code doegqnyergent. In the absence of boundaries this is the case for
not crash, in the example we are considering. CIP or, generically, WH formulations. If there are bound-
aries, strong hyperbolicity is not enough and extra care has to

factor is set to 1/2, the dissipation parameteste0.02, and  be taken in order to guarantee well posedness; wrong bound-
the evolution is followed for 1000 crossing times. In the SHary conditions not only lead to inconsistencies but also to
case the code is convergent for all resolutions tested,Gjee Numerical instabilitiessee, e.g.[8]).
for a detailed discussion. On the other hand, in the same code Although it is not possible to prove in a definitive way
with ¢=—1/2 a lack of convergence becomes apparent imthat a code is convergent only by numerical experiments, the
mediately(before one crossing timethe errors become big- Previous examples suggest some of the pathologies that one
ger and the code crashes earlier as resolution is increased. $fould look for. Namely, Fourier modes that are not conver-
the WH case the code is also not convergent but the effect i@ent but are very small for a while, since they are initially
less noticeable, since with the chosen values of dissipatioBuppressed. Also, notice from the WH simulations above
and Courant factor the VNC, Eq?2), is satisfied. If one shown that a code does not need to crash nor exhibit violent
performed only a few runs, with, say 120 and 240 gridpointsgrowth in order not to converge. The main lesson learned
as is typical in 3D convergence studies, one would have térom this paper is that one should exercise significant care in
wait for around 150 crossing times in order for the lack ofnumerical simulations before empirically concluding that the
convergence in this WH example to become obvious. To pugimulation is convergent, especially if the formulation of
these numbers in context, suppose one had a similar situatidiinstein’s equations used is not SH or its level of hyperbo-
in a 3D black hole evolution. Suppose the singularity is ex-iCity is unknown.
cised, with the inner boundary et M and the outer bound- ~ Proof of non-convergence for CIP and WH casgsisual
ary at 20M. In this case 120 and 240 gridpoints correspondvay of discretizing the right-hand side of E€L) is using
to grid spacings of, approximately/5 andM/10, respec- ce_ntered differences pl_us third order exp_I|C|t dissipation. By
tively. If one had to evolve up to 150 crossing times in orderthiS one means solvingiw =Cuv/At, with C=AN5o/2
to notice the lack of convergence, which would correspond-1oA 34, where | is the identity matrix, Sov=v: 1
to t~300QM, which is more than what present 3D evolu- —vg-;, and 8% =2~ 4V 1T 6V —dU_ U o
tions typically last. One could therefore be misled to thinkThis is equivalent to discretizingtvaaxv—I}(Ax)3&;‘v
that tlht; code ishconverg]f:nt- Repeast;ng the same runs with asing centered differencéssing first order dissipation in our
initial data with more frequenciegsay, a non-stationary ; ; - _ ~ 2 ; o
black holgé would make the instability manifest in a shorter Fégﬁ{{s)f'e" discretizingiv =Adx + eAxdw, gives similar
time scale. By ma"'”g a.spat|al Fourler decompqsmag. The ICN method withp iterations for the partial differen-
2) of the numerical solution, we have found that in the WH tial equation(1) can be written as
and CIP cases there are always non-zero frequency modes
growing exponentially from the very beginning, though
sometimes starting at truncation error. By performing such nil
decomposition one can detect that the code is not convergent Uk =
much before this becomes obvious in the overall errors.

We have done simulations with different spectral distribu-
tions on the initial data, different number of iterations in thewherevy= (v}, ... vm) ' The indexn corresponds to the
ICN method, different Courant factors, and different valuestime step and to the spatial mesh point. Since we are con-
of dissipation. The time and resolution at which the numeri-sidering an initial value problem on all ¢f, —co<k<+o0

p+1 Cj
1+2j§1 E)vﬂ, 4
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(our proof can be easily modified for periodic boundary con-
ditions, and the results are the same

In order to analyze stability we work in the basis in which
A takes its canonical form. That is, one multiplies both sides
of Eq. (4) by T, whereTAT '=J has the canonical Jordan
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Expressiongal? and|b|? are analytic functions of with
Taylor expansiorb|?=\7[ &2+ 0(£%)] and|al?=1—[20A\
+d(cN\)*E4+0(£8), with d=—1 for p=1, d=1 for p
=2, andd=0 otherwise. From these expansions one can see

that, for allp, there are positive constanisand p such that
Working in Fourier spaceu,=[" _ exp(k&u(¢)dé, Q=1

A > ()
+23P 11720 andL=J\i sin@©— 16l o\ sin(£2).

If the system is CIPJ has at least one complex eigen- for Sm?"| enouglt, say|¢|<ey. Forn>1 and small enough
g! Say g séz*

UE+1:

©)

where L=TCT *=JA5y/2— 10N 6. Any conclusions re-
garding stability will hold as well for the original variable

|a(§)?=1-ag*=0, |b(§)|*=p?¢?=0

value ¢, say J;;=c. In this case, Lyj;=c\isin()

—160\ sin‘(&2), and the eigenvalugQ;; has norm 1 9)

—\Im(c) &+ O(&?). Therefore, the VNC is violated for suf-

ficiently small¢ with the appropriate sign and the scheme iswhere the last inequality holds f¢g|<(na) 4 provided

unconditionally unstable, as expected. that n is large enough so thang) ~Y*<min(e;,&,). Using
If the system is WH thed has at least one Jordan block bounds(8),(9) and the VNC in inequality7) gives

and so doeg®. In this basis all the Jordan blocks are un-

coupled and we can consider one at a time. We assume thereu"[[* [ (na)~ 14 4 2

is one block of dimension 2 2 (the proof actually holds for W>n f(na)m(l—naf )pE

higher dimensionality as wellThe canonical form for such

a block, the resulting amplification matrix, and itth power

are
J_ ’ Q_ 0 a ’

Py

an
Suppose the VNGa|<1 is satisfied(this rules out thep
=0 casg, we will show that the scheme is still unstable.
Consider as initial data a small perturbation of the form

(6)

la(¢)2"=1-nat*=0,

E_ 4 p_2n5/4

27 21w o304

which diverges fom— . This shows that in the WH case
the ICN and 2RK schemes are unstable, independent of the
amount of dissipation. In fact, by examinih@(é= )|, one

can see that a necessary condition for the VN@ any

number of iterationsis 0<oA<1/8. Adding too much dis-
sipation violates the VNC and the instability becomes worse.

Perturbations like that of EJ6) are to be expected in a
numerical simulation due to truncation or roundoff errors.
For high enough resolution, such a perturbation will be am-
plified without bound, spoiling any convergence. One ex-
pects that in the non-constant coefficient or in the non-linear
case the rate of growth of the instability with number of
gridpoints will be even fastefsee the example in page 216
of [4]), as in Fig. 2.
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ud=(0,2me)T, ul=(0,0" otherwise
with e arbitrary small. In Fourier space we hawd(¢) We wish to thank D. Arnold, M. Choptuik, P. Laguna, L.
=¢€(0,1)" for all £&. The solution at timet=nAt is, then,  Lehner, M. Miller, R. Price, O. Reula, and S. Teukolsky for
u"=e(a" nb,a")T. We will show that its norm grows comments. This work was supported in part by NSF grant
without bound when the number of gridpoints is increased®HY9800973, the Horace Hearne Jr. Institute for Theoretical
(while keeping the time and Courant factor fixelVe first ~ Physics, the Swiss National Science Foundation, and Funda-
notice that 6,=2n—-2), cion Antorchas.
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