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Cluster percolation and chiral phase transition
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The meron cluster algorithm solves the sign problem in a class of interacting fermion lattice models with a
chiral phase transition. Within this framework, we study the geometrical features of the clusters built by the
algorithm that suggest the occurrence of a generalized percolating phase transition at the chiral critical tem-
perature in close analogy with Fortuin-Kasteleyn percolation in spin models.
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A fundamental difficulty in the Monte Carlo study of fer- hand, we must take into account at least the global configu-
mion lattice models is the sign problem due to the fluctuatingation signs because they are the only record of the fact that
sign of the statistical weight of fermion configuratiofld.  the model is fermionic and allow us to tell it from its
Recently, the meron cluster algorithiMCA) [2,3] has been bosonized counterpart free of sign problems. In addition,
proposed as an effective solution to the sign problem in &part from the sign problem, the rules to build clusters in
class of interacting models. In particular, here, we focus on #CA are not precisely the same as for Fortuin-Kasteleyn

+G

2+ 1 dimensional model with a second order phase transiC'USterS and the existence of a transition is nontrivial.

tion associated with the dynamical breaking of a discrete The model we study describes relativistic staggered fer-

chiral symmetry[4]. mions, hopping on a2 1 dimensional lattice with.? spatial
Like all cluster algorithms for lattice models, MCA de- sites, described if4]. The Hamiltonian is

fines clusters of sites used as effective nonlocal degrees of

freedom to update configurations without critical slowing _ o

down. For a given observable, the sign problem is cured by H_g izl,z{ 7xi(CxCxsi T H.C)

restricting the Monte Carlo sampling to specific topological

sectors that give contributions not canceling in pairs due to 1 1

the fermion sign. The relevant topological charge is the so- M— E) M1 E) ] 2)

called meron number that we shall define later. The rules that

assure convergence to the correct Boltzmann e_qUi"b”UtherenX:clcx is the occupation number at sike 7, ; are

distribution determine a well defined cluster dynamics. Frompe kawamoto-Smit phaseg, ;=1, 7,,=(—1), and the

the stu_dy of lattice spin _model_s we know that t_h|s art_|f|C|aI operators c,c” obey standard anticommutation relations

d_ynam|cs can be surp_nsmgly rich; in fact, experience in tha{é?x.CyFO, {CXaC;}:éx,y- In the following we shall con-

field 's.uggests the_ existence O.f a purely geometrical pha der the cas&=1 and adopt periodic boundary conditions.

tranS|t|on concerning the glgonthm clusters and underlying The partition function Te~#" can be computed by Trot-

the phys_lcal thermal transitiofb—7]. o . ter splitting that maps the quantum model to a statistical
The simplest example of SUCh. a scenario Is the 2D IS'”% stem on a 2 1 dimensional lattice with.2X T sites. The

model where clusters can be defined in a natural way as .Sett‘gmporal lattice spacing is=48/T. The limite—0 must be

of nearest neighboring aligned spins and admit a phySIC%alken at fixedB with T—oo. In practice, we shall present

Stesul i he fi |Te= 40 wh
tion temperature these clusters percol@g but since the esults obtained at the fixed vallie=40 wheref can cover

- D . the transition point with reasonably small[4].
critical exponents do not coincide with the t_h_ermal ors Each configuration is specified by the occupation numbers
a complete equivalence of the two transitions cannot be

; . . ; . n={n,} and carries a sigir(n)= =1, source of the sign-
claimed. In three dimensions, the comparison is even worse : ' ; .
roblem. To update a configuration, sites are clustered ac-

and also the two critical temperatures are slightly different> > S : ; )
[10]. To find a geometrical transition occurring at the '[hermalCordlng to definite rules depending ¢ and discussed in

critical point with the same critical exponents, generalizeddetall |r_1_[3]. Each cluster is then independently f!lpped: with
clusters must be defineflll], like the Fortuin-Kasteleyn probability 1/2. we apply the global trar?sformatmr,g,t—&
bond clusters and their extensidis6]. The equivalence be- Ny to all of its sites. Clusters whose flip change(@) are

tween the thermal phase transition and a suitable percolati\%et:_r;]idCrﬂi?;?nshase transition can be analvzed by studvin
process can then be extended to models with continuous r P y y ying

tational or gauge invariand@]. ?ﬁe_a_symptotic vqlume dependencg of the sus_ceptil:;ﬂity
Similar investigations lack for fermionic models with sign Defining the chiral condensate in the configuration

problems because cluster algorithms have not been availabl:e{nxvt} as

until the MCA. Here, for the first time, we aim to identify a

geometrical transition in MCA dynamics and look for critical Z(n)= i D (_1)x1+x2< Mo — E) )

phenomena defined in terms of cluster shapes. On the other 451 e
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the chiral susceptibilityy is given by b T
oL=8 o2 s| oL=8 A<1
oL=10 NG oL=10

1 {[Z(n)?]o(n)) 3 oL=12 P N sL=12 0’
X=—— 3 aL=14 aL=14 &
BL (a(n)) oL <L=16 15l aL=16

An improved estimator ofy free of sign problems can be | o . 20 N

built by writing Z(n) as a sum over clusted(n)=>:Z¢ 6‘@009“’ BM,L™ if BML S

and taking its average ove'2 possible flips, wheré\c is Py L U () SRRV Y- | -

. . ~ -6 -12 -8 -4 0 4 8 20 -16 -12 -8 4 0 4 8

the number of the clusters. Thep,gets contributions from 20

sectors with meron numbé&t=0,2: WE e -  oLos '

- N - d
12F sL=10 ° 1 sl oL=10 o8]
2 o[ °L=12 » 1" oL=12
1 ; Zc5N,o+2|chZc2|5N,2> g Lo & ] sL=14
X=—— @ & l o ]
L2 (On,0 ' i ]
A 4r B*M, L% 105} &éwﬁ 4
4 —
where, forN=2, C,,C, are the two merons. 2 ™ 1 <2 B"E(maxiCy L™
From numerical simulations, apart from rather small scal- 5 5255 =% 0« 3 % s 12 5 = 0 4+ 8
ing violations, y obeys the Finite Size ScalingS9 law y Lo

=L"f,[L(B— Bin)] with the exponenty="7/4, characteristic
of the 2D Ising universality clasgl2]. Numerical simula-
t'?r?s S{Zﬁ?ﬂfféﬁg‘tﬁ:tsgl’a; Pn=2.43(1)[4] (the subscript L?, and the fact that the ratid®,(y)—1 asy grows, simply

To detect a possible purely geometrical transition, weM€ans that this_ contr_ibution i; more anq more dominant. We
study quantities) that depend only on the cluster shape andoriefly summarize th|§ behavior by saying thqt the clusters
not on their internal occupation numbers. Since cluster flip&r€ Percolating Following [13], further information on the
do not change and meron flips change the sign efn), critical ensemble can be obtained by studying the cluster

the improved estimator o is distribution:

FIG. 1. FSS analysis df1,, and Eq(maxC|).

(Q(ma(n))  (Q(Nn)dn o _ ns= Eo[ number of cluster€ withVol(C)=s].  (7)
G (v 0 ©

that is the average restricted to the zero meron sector.

The simplest set of geometrical quantities that we can s
study are the momentsl ,=Eq(=¢|C|") of the normalized Ng= L"f(—) (8
cluster size|C|=Vol(C)/T where VoI(C) is the number of L
sites inC. We perform simulations to compute numerically o
{M}n=234 and alsoEq(maxC|). We work on lattices with S well satisfied fors/L">1.

L=8, 10, 12, 14, and 16 in the range £B<3.0 and
present about 1:810° measures per point. Figure 1 shows
the numerical data supporting as a first result the remarkable

In Fig. 4 we show that the simple law

4.0

validity of the empirical scaling relations: 357 ]
ﬁnlen:anfn(Y)v n=2, 307
©) 25 |

BY2Eq(maxCl)=L"h(y) -
in terms of the scaling variablg=L(B8— 8.). This scaling =207
behavior defines an order parameter of the geometrical phas e 15 |
transition. The results for the expongniand the criticalB,
arep=1.71(5) andB.=2.425). Within errors,p is consis- 10|
tent with the exact 2D Ising exact valye=7/4. We also find
B:= Bin With an accuracy that can be appreciated by looking 0.5 +
at Fig. 2. I
. _ n _ . . . L ) L L . L
TT,? ratios R,=M;7M," for n=34 and R. %010 08 06 04 <02 00 02 04 06 08 10
=M;3“TEg(maxC|) are shown in Fig. 3. The plots strongly B-p
indicate thafR,, are independent o at fixedy in agreement ¢
with Eq. (6). FIG. 2. Data crossing foM, with differentL. By virtue of the
It can be checked that, #i=p3., M, receives the main scaling law Eq(6), at 8= . the quantity8M,L ~2” is independent
contribution from a small set of large clusters growing like on L.

037502-2



BRIEF REPORTS PHYSICAL REVIEW D56, 037502 (2002

1.6 —————— 1.6
15 ¢ oL=8 1 oL=8
oL=10 14 + oL=10
1.4 - oL=12 1 a oL=12
< aL=14 a AL=14
13} A aL=16 ] aL=16
o 1.2 2
1.2 <1E 1 8
<O
L1y OOEQ 1 10+ B@\:\WOA¢
ol Ry EEERDD 0 A9 R, — —_— 4
0.9 N 038 N
20 -15 -10 -5 0 5 10 =20 -15 -10 -5 0 5 10
2.0 ————— L(B-B,)
oL=8
18F = alo10
8 oL=12
1.6 % aL=14
5 aL =16
14 ¢ °°s% 1
e T T 2T 2T-4
1.2 r R O%Qm 1
00 oaq . . .
FIG. 5. Two elementary clusters with equal dimensibriirst

1.0 — . : . .
20 -15 -10 -5 0 5 10 merge into a single cluster then break apart in two clusters with

] " ) very different dimension.
FIG. 3. RatiosR, andR,.. M;" is well approximated by the

contribution of the largest cluster beyond the critical point. clusters are set in the temporal direction. In physical terms

the fermions hop from the initial positions to neighboring

The critical cluster distributiomg decreases not faster ones with small probability. Sites simply tend to clustet

than algebraically witts until s=40 L” where the final large ; : . . . .
cluster tail is reached anu, falls down quickly. straight vertical lines withl sites. AsB— B, the vertical

. ; _— clusters start merging and breaking and form complicated
If one takes into account that the leading contribution to ith | di ion in the cl ive distrib
M) actually comes from the region wheséL?>1 structures with large dispersion in the cluster size distribu-
obsne?\ii?] thaM, = S..s™n. and using Eq(8) we obtain aL tion. This process can be seen in Fig. 5: two vertical clusters
9 noesv s, 9t with VoI(C)=T undergo a two step process allowed by the
dependence consistent with EG).

There are many small clusters and one can check that thCeI.USter ruleg2]. In the end, they give rise to a large cluster

. 2 . with Vol(C)=2T—4 and a small one with four sites. After
normalized number of clustey2Eo(Nc)/L~ depends mildly many processes of this kind we find a few large clusters
on L for a wide range of3 andL.

It is interesting to analvze what haopens to the t iCaIsurrounded by a gas of smaller clusters. In Fig. 6 we show a
, 9 yz PP yp typical largest cluster obtained At=2.5 on the x40 lat-
cluster configurations wheg is gradually increased toward

o ; . tice.
the critical point. At smallg, almost all bonds that build the Geometrical quantities that can measure this dispersion

2

10 T

oL=8§
oL=10
102 b ocL=12
al=14
aL=16

0 10°
s L

FIG. 4. FSS plot ohg. The curves are obtained after averaging
over blocks of ten subsequent sizes. In the region Witk<s
<40 L”, ng decreases roughly algebraically; beyond kineeat s
=40 L’ the distribution falls down quickly. The critical region is FIG. 6. Atypical largest link configuration for the?8 40 lattice
dominated by the clusters at the right edge of the plot. atB=p..
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effect are the cumulan{s,} -, of the cluster size distribu- 120 - -
tion defined as 110 oL=8§
100 OL=10 4
A" AT 1 90 | oL=12
Z mGn:EO‘IOQ(Z FN_Z |C|”)]- 9 s | AL=14 <
n=1 N: n=0 > N¢c C o aL =16 P A
. I | A
In our study we do not consider the cumul&, whose 60 | 4 , °
behavior is determined by the contributions from small clus- 50 th N
ters, withs<L”. 40 | 44“.0 *
The next cumulant is the variance 30 | A:O’ "
20 | M .
1 1 2 i ......
_ 2 10 |
Go=Eo| ;- 2 ICP-— (X [cl] |- (10 .
Nc “c NZ\“C 0
14 16 1.8 20 22 24 26 28 30 32
Our data support a FSS law of the form P
FIG. 7. Comparison betweeny (empty symbols and

BG,=L""gu(y), (11)  0.15(B8G,) ™ (full symbols.

with p’=1.51(4), which is compatible with Z—2. This  pological sectors. In particular, E6L2) could be relevant in
exponent can be explained by taking into account that, analane construction of a purely geometrical definition yf A
gously to the momerttl,, the contributions from small clus- - £ss study of the higher cumular@ andG, shows similar
ters are negligible and that, within erroiS¢|C|*~L“" and  scaling laws, but with exponents that are not in simple rela-
Ne~L* tion with y and should in principle be matched to the anoma-
As we remarked above, whef—0, the clusters are |oys dimensions of higher operators in the 2D Ising univer-
simple vertical lines an@,—0 like xy does. This fact sug- sality class.
gests that it could be interesting to study a possible relation- Tg conclude, we have examined the critical behavior of
ship between these quantities at differghvalues. We re-  the clusters that arise in the application of the Meron algo-
mark that, in principleG, and x have different topological = rithm to a fermion model in 21 dimensions. We have
origins: x is calculated on a zero and two merons sectorfound simple FSS laws that we have explained in terms of a
while G, only on a zero-meron sector. Nevertheless, we finthercolative process occurring at the chiral critical tempera-

that the following empirical relation: ture. Our data support the resujts-y, p'=2y—2, as well
YLy (y—1)] as the empirical relation Eq412) that shows a close correla-
x=0.191)-(BGy) """ (12 tion between physical and geometrical quantities.
holds for a wide range of parametets, 8) as shown in Fig. We acknowledge S. Chandrasekharan, K. Holland, and

7. In practice, in the region that we have explored, the ratidJ.J. Wiese for useful discussions about the meron cluster
x!(BG,) "8 is consistent, within errors, with a constant. This algorithm and its applications. Financial support from INFN,
result signals an unexpected correlation between different tdS-RM42 is also acknowledged.
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