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Cluster percolation and chiral phase transition
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The meron cluster algorithm solves the sign problem in a class of interacting fermion lattice models with a
chiral phase transition. Within this framework, we study the geometrical features of the clusters built by the
algorithm that suggest the occurrence of a generalized percolating phase transition at the chiral critical tem-
perature in close analogy with Fortuin-Kasteleyn percolation in spin models.
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A fundamental difficulty in the Monte Carlo study of fe
mion lattice models is the sign problem due to the fluctuat
sign of the statistical weight of fermion configurations@1#.
Recently, the meron cluster algorithm~MCA! @2,3# has been
proposed as an effective solution to the sign problem i
class of interacting models. In particular, here, we focus o
211 dimensional model with a second order phase tra
tion associated with the dynamical breaking of a discr
chiral symmetry@4#.

Like all cluster algorithms for lattice models, MCA de
fines clusters of sites used as effective nonlocal degree
freedom to update configurations without critical slowi
down. For a given observable, the sign problem is cured
restricting the Monte Carlo sampling to specific topologic
sectors that give contributions not canceling in pairs due
the fermion sign. The relevant topological charge is the
called meron number that we shall define later. The rules
assure convergence to the correct Boltzmann equilibr
distribution determine a well defined cluster dynamics. Fr
the study of lattice spin models we know that this artific
dynamics can be surprisingly rich; in fact, experience in t
field suggests the existence of a purely geometrical ph
transition concerning the algorithm clusters and underly
the physical thermal transition@5–7#.

The simplest example of such a scenario is the 2D Is
model where clusters can be defined in a natural way as
of nearest neighboring aligned spins and admit a phys
interpretation as real ordered domains. At the thermal tra
tion temperature these clusters percolate@8#, but since the
critical exponents do not coincide with the thermal ones@9#,
a complete equivalence of the two transitions cannot
claimed. In three dimensions, the comparison is even wo
and also the two critical temperatures are slightly differ
@10#. To find a geometrical transition occurring at the therm
critical point with the same critical exponents, generaliz
clusters must be defined@11#, like the Fortuin-Kasteleyn
bond clusters and their extensions@5,6#. The equivalence be
tween the thermal phase transition and a suitable percola
process can then be extended to models with continuous
tational or gauge invariance@7#.

Similar investigations lack for fermionic models with sig
problems because cluster algorithms have not been avai
until the MCA. Here, for the first time, we aim to identify
geometrical transition in MCA dynamics and look for critic
phenomena defined in terms of cluster shapes. On the o
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hand, we must take into account at least the global confi
ration signs because they are the only record of the fact
the model is fermionic and allow us to tell it from it
bosonized counterpart free of sign problems. In additi
apart from the sign problem, the rules to build clusters
MCA are not precisely the same as for Fortuin-Kastele
clusters and the existence of a transition is nontrivial.

The model we study describes relativistic staggered
mions, hopping on a 211 dimensional lattice withL2 spatial
sites, described in@4#. The Hamiltonian is

H5(
x

(
i 51,2

H hx,i~cx
†cx1 ı̂1H.c.!

1GS nx2
1

2D S nx1 ı̂2
1

2D J , ~1!

wherenx5cx
†cx is the occupation number at sitex, hx,i are

the Kawamoto-Smit phaseshx,151, hx,25(21)x1, and the
operators c,c† obey standard anticommutation relatio
$cx ,cy%50, $cx ,cy

†%5dx,y . In the following we shall con-
sider the caseG51 and adopt periodic boundary condition

The partition function Tre2bH can be computed by Trot
ter splitting that maps the quantum model to a statisti
system on a 211 dimensional lattice withL23T sites. The
temporal lattice spacing is«54b/T. The limit «→0 must be
taken at fixedb with T→`. In practice, we shall presen
results obtained at the fixed valueT540 whereb can cover
the transition point with reasonably small« @4#.

Each configuration is specified by the occupation numb
n5$nx,t% and carries a signs(n)561, source of the sign-
problem. To update a configuration, sites are clustered
cording to definite rules depending onb and discussed in
detail in @3#. Each cluster is then independently flipped: wi
probability 1/2 we apply the global transformationnx,t→1
2nx,t to all of its sites. Clusters whose flip changess(n) are
defined merons.

The chiral phase transition can be analyzed by study
the asymptotic volume dependence of the susceptibilityx.
Defining the chiral condensate in the configurationn
5$nx,t% as

Z~n!5
«

4 (
x,t

~21!x11x2S nx,t2
1

2D , ~2!
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the chiral susceptibilityx is given by

x5
1

bL2

^@Z~n!2#s~n!&

^s~n!&
. ~3!

An improved estimator ofx free of sign problems can b
built by writing Z(n) as a sum over clustersZ(n)5(CZC
and taking its average over 2NC possible flips, whereNC is
the number of the clusters. Then,x gets contributions from
sectors with meron numberN50,2:

x5
1

bL2

K (
C

ZC
2 dN,012uZC1

ZC2
udN,2L

^dN,0&
, ~4!

where, forN52, C1 ,C2 are the two merons.
From numerical simulations, apart from rather small sc

ing violations,x obeys the Finite Size Scaling~FSS! law x
5Lg f x@L(b2b th)# with the exponentg57/4, characteristic
of the 2D Ising universality class@12#. Numerical simula-
tions locate the chiralb at b th52.43(1) @4# ~the subscript
‘‘ th’’ stands for ‘‘thermal’’ !.

To detect a possible purely geometrical transition,
study quantitiesQ that depend only on the cluster shape a
not on their internal occupation numbers. Since cluster fl
do not changeQ and meron flips change the sign ofs(n),
the improved estimator ofQ is

^Q~n!s~n!&

^s~n!&
5

^Q~n!dN,0&

^dN,0&
[E0~Q!, ~5!

that is the average restricted to the zero meron sector.
The simplest set of geometrical quantities that we c

study are the momentsMn5E0((CuCun) of the normalized
cluster sizeuCu5Vol(C)/T where Vol(C) is the number of
sites inC. We perform simulations to compute numerica
$Mn%n52,3,4 and alsoE0(maxuCu). We work on lattices with
L58, 10, 12, 14, and 16 in the range 1.5,b,3.0 and
present about 1.53105 measures per point. Figure 1 show
the numerical data supporting as a first result the remark
validity of the empirical scaling relations:

bn/2Mn5Lnr f n~y!, n>2,
~6!

b1/2E0~maxuCu!5Lrh~y!

in terms of the scaling variabley5L(b2bc). This scaling
behavior defines an order parameter of the geometrical p
transition. The results for the exponentr and the criticalbc
arer51.71(5) andbc52.42(5). Within errors,r is consis-
tent with the exact 2D Ising exact valueg57/4. We also find
bc.b th with an accuracy that can be appreciated by look
at Fig. 2.

The ratios Rn5M2
1/2/Mn

1/n for n53,4 and R`

5M2
1/2/E0(maxuCu) are shown in Fig. 3. The plots strong

indicate thatRn are independent onL at fixedy in agreement
with Eq. ~6!.

It can be checked that, atb5bc , Mn receives the main
contribution from a small set of large clusters growing li
03750
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Lr, and the fact that the ratiosRn(y)→1 asy grows, simply
means that this contribution is more and more dominant.
briefly summarize this behavior by saying that the clust
are percolating. Following @13#, further information on the
critical ensemble can be obtained by studying the clus
distribution:

ns5E0@number of clustersC withVol~C!5s#. ~7!

In Fig. 4 we show that the simple law

ns5L2r f S s

LrD ~8!

is well satisfied fors/Lr@1.

FIG. 1. FSS analysis ofMn andE0(maxuCu).

FIG. 2. Data crossing forM2 with different L. By virtue of the
scaling law Eq.~6!, atb5bc the quantitybM2L22r is independent
on L.
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The critical cluster distributionns decreases not faste
than algebraically withs until s.40 Lr where the final large
cluster tail is reached andns falls down quickly.

If one takes into account that the leading contribution
$Mn%n>2 actually comes from the region wheres/Lr@1,
observing thatMn5(ss

nns and using Eq.~8! we obtain aL
dependence consistent with Eq.~6!.

There are many small clusters and one can check tha
normalized number of clustersbE0(NC)/L2 depends mildly
on L for a wide range ofb andL.

It is interesting to analyze what happens to the typi
cluster configurations whenb is gradually increased towar
the critical point. At smallb, almost all bonds that build the

FIG. 3. RatiosRn and R` . Mn
1/n is well approximated by the

contribution of the largest cluster beyond the critical point.

FIG. 4. FSS plot ofns . The curves are obtained after averagi
over blocks of ten subsequent sizes. In the region withLr,s
,40 Lr, ns decreases roughly algebraically; beyond thekneeat s
.40 Lr the distribution falls down quickly. The critical region i
dominated by the clusters at the right edge of the plot.
03750
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clusters are set in the temporal direction. In physical ter
the fermions hop from the initial positions to neighborin
ones with small probability. Sites simply tend to cluster inL2

straight vertical lines withT sites. Asb→bc , the vertical
clusters start merging and breaking and form complica
structures with large dispersion in the cluster size distri
tion. This process can be seen in Fig. 5: two vertical clus
with Vol(C)5T undergo a two step process allowed by t
cluster rules@2#. In the end, they give rise to a large clust
with Vol(C)52T24 and a small one with four sites. Afte
many processes of this kind we find a few large clust
surrounded by a gas of smaller clusters. In Fig. 6 we sho
typical largest cluster obtained atb52.5 on the 82340 lat-
tice.

Geometrical quantities that can measure this dispers

FIG. 5. Two elementary clusters with equal dimensionT first
merge into a single cluster then break apart in two clusters w
very different dimension.

FIG. 6. A typical largest link configuration for the 82340 lattice
at b5bc .
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effect are the cumulants$Gn%n>1 of the cluster size distribu
tion defined as

(
n>1

ln

n!
Gn5E0H logS (

n>0

ln

n!

1

NC
(
C

uCunD J . ~9!

In our study we do not consider the cumulantG1, whose
behavior is determined by the contributions from small cl
ters, withs!Lr.

The next cumulant is the variance

G25E0S 1

NC
(
C

uCu22
1

NC
2 S (

C
uCu D 2D . ~10!

Our data support a FSS law of the form

bG25Lr8g2~y!, ~11!

with r851.51(4), which is compatible with 2g22. This
exponent can be explained by taking into account that, an
gously to the momentM2, the contributions from small clus
ters are negligible and that, within errors,(CuCu2;L2g and
NC;L2.

As we remarked above, whenb→0, the clusters are
simple vertical lines andG2→0 like x does. This fact sug-
gests that it could be interesting to study a possible relat
ship between these quantities at differentb values. We re-
mark that, in principle,G2 andx have different topologica
origins: x is calculated on a zero and two merons sec
while G2 only on a zero-meron sector. Nevertheless, we fi
that the following empirical relation:

x.0.15~1!•~bG2!1/2@g/(g21)# ~12!

holds for a wide range of parameters (L,b) as shown in Fig.
7. In practice, in the region that we have explored, the ra
x/(bG2)7/6 is consistent, within errors, with a constant. Th
result signals an unexpected correlation between differen
t.

uc
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pological sectors. In particular, Eq.~12! could be relevant in
the construction of a purely geometrical definition ofx. A
FSS study of the higher cumulantsG3 andG4 shows similar
scaling laws, but with exponents that are not in simple re
tion with g and should in principle be matched to the anom
lous dimensions of higher operators in the 2D Ising univ
sality class.

To conclude, we have examined the critical behavior
the clusters that arise in the application of the Meron al
rithm to a fermion model in 211 dimensions. We have
found simple FSS laws that we have explained in terms o
percolative process occurring at the chiral critical tempe
ture. Our data support the resultsr.g, r8.2g22, as well
as the empirical relation Eq.~12! that shows a close correla
tion between physical and geometrical quantities.

We acknowledge S. Chandrasekharan, K. Holland,
U.J. Wiese for useful discussions about the meron clu
algorithm and its applications. Financial support from INF
IS-RM42 is also acknowledged.

FIG. 7. Comparison betweenx ~empty symbols! and
0.15•(bG2)7/6 ~full symbols!.
tz,
s.

n.

A.
@1# W. von der Linden, Phys. Rep.220, 53 ~1992!.
@2# S. Chandrasekharan and J. Osborn, Springer Proc. Phys.86, 28

~2000!; S. Chandrasekharan and J.C. Osborn, Phys. Let
496, 122 ~2000!; S. Chandrasekharan, Chin. J. Phys.~Taipei!
38, 696~2000!; Nucl. Phys. B~Proc. Suppl.! 83, 774~2000!; S.
Chandrasekharan and U.J. Wiese, Phys. Rev. Lett.83, 3116
~1999!; S. Chandrasekharan, Nucl. Phys. B~Proc. Suppl.! 106,
1025 ~2002!.

@3# S. Chandrasekharan, J. Cox, K. Holland, and U.J. Wiese, N
Phys.B576, 481 ~2000!.

@4# J. Cox and K. Holland, Nucl. Phys.B583, 331 ~2000!.
@5# P.W. Kasteleyn and C.M. Fortuin, J. Phys. Soc. Jpn.~Suppl.!

26, 11 ~1969!; C.M. Fortuin and P.W. Kasteleyn, Physica~Am-
sterdam! 57, 536 ~1972!; C.M. Fortuin, ibid. 58, 393 ~1972!;
59, 545 ~1972!.
B

l.

@6# R.G. Edwards and A.D. Sokal, Phys. Rev. D38, 2009~1988!.
@7# S. Fortunato and H. Satz, Nucl. Phys. B~Proc. Suppl.! 106,

890 ~2002!; S. Fortunato, F. Karsch, P. Petreczky, and H. Sa
ibid. 94, 398 ~2001!; S. Fortunato and H. Satz, Nucl. Phy
B598, 601 ~2001!; P. Blanchardet al., J. Phys. A33, 8603
~2000!.

@8# A. Coniglio, C.R. Nappi, F. Peruggi, and L. Russo, Commu
Math. Phys.51, 315 ~1976!.

@9# M.F. Sykes and D.S. Gaunt, J. Phys. A9, 2131~1976!.
@10# H. Müller-Krumbhaar, Phys. Lett.48A, 459 ~1974!.
@11# A. Coniglio and W. Klein, J. Phys. A13, 2775~1980!.
@12# The first numerical evidence of this result is J.B. Kogut, M.

Stephanov, and C.G. Strouthos, Phys. Rev. D58, 096001
~1998!.

@13# D. Stauffer, Phys. Rep.54, 1 ~1979!.
2-4


