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String models of glueballs and the spectrum of SU„N… gauge theories in 2¿1 dimensions
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The spectrum of glueballs in 211 dimensions is calculated within an extended class of Isgur-Paton flux tube
models and compared to lattice calculations of the low-lying SU(N>2) glueball mass spectrum. Our modifi-
cations of the model include a string curvature term and a new way of dealing with the short-distance cutoff.
We find that the generic model is remarkably successful at reproducing the positive charge conjugation,C5

1, sector of the spectrum. The only large~and robust! discrepancy involves the 021 state, raising the inter-
esting possibility that the lattice spin identification is mistaken and that this state is in fact 421. Additionally,
the Isgur-Paton model does not incorporate any mechanism for splittingC52 from C51 ~in contrast with
the case in 311 dimensions!, while the ‘‘observed’’ spectrum does show a substantial splitting. We explore
several modifications of the model in an attempt to incorporate this physics in a natural way. At the qualitative
level we find that this constrains our choice to the picture in which theC56 splitting is driven by mixing with
new states built on closed loops of adjoint flux. However, a detailed numerical comparison suggests that a
model incorporating an additional direct mixing between loops of opposite orientation is likely to work better,
and that, in any case, a nonzero curvature term will be required. We also point out that a characteristic of any
string model of glueballs is that the SU(N→`) mass spectrum will consist of multiple towers of states that are
scaled up copies of each other. To test this will require a lattice mass spectrum that extends to somewhat larger
masses than currently available.

DOI: 10.1103/PhysRevD.66.036006 PACS number~s!: 11.15.Kc, 12.38.Gc, 12.39.Mk
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I. INTRODUCTION

While it is now possible to calculate the spectrum of co
tinuum non-Abelian gauge theories with some precision,
ing standard lattice Monte Carlo techniques@1–3#, we know
little about the structure of these glueballs. This is to
contrasted with states containing quarks where, at leas
the low-lying spectrum, the quark model provides a rema
ably successful semi-quantitative model framework for u
derstanding the structure of mesons and baryons~apart from
the interesting cases of scalar mesons and pseudos
flavor-singlet mesons!.

The glueballs of the SU~3! non-Abelian gauge theory in
311 dimensions are particularly important because the p
ence of such extra nonquarkonium states in the spectrum
QCD ~and in the experimental spectrum! would provide a
direct reflection of the gauge fields in the theory. Understa
ing just how they do so~mixing, decays etc.! would be made
easier if we understood something about their structure.
fortunately, beyond providing some information about glu
ball sizes, lattice Monte Carlo calculations have as yet gi
us little insight into their structure. Such calculations invol
connected correlators of several operators and while they
simple in principle it is, in practice, much harder to achie
sufficient statistical accuracy than in the corresponding m
calculations.

An alternative way to learn about the structure of glu
balls is through a reliable model—just as the quark mo
provides us with useful information on the structure of t
low-lying mesons and baryons. To establish whether a g
ball model is ‘‘reliable’’ one can compare the spectrum
predicts to the known spectrum~as calculated from the lat
tice!. This is the approach we follow here. There are t
obvious models that one might try: constituent gluon mod
0556-2821/2002/66~3!/036006~12!/$20.00 66 0360
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such as gluon potential@4# and bag models@5#, or flux tube
~string! models@6#. In this paper we shall confine ourselve
to a study of the latter.

Models try to isolate the essential physics and neg
everything else; thus they necessarily involve approxim
tions. So one does not expect precise agreement with
known spectrum. If we are only looking for sem
quantitative or even qualitative agreement, it is important
test the model in as many relevant contexts as possible.
fact we can usefully use here is that string models~and in-
deed bag models! can be equally motivated in any gaug
theory that has linear confinement and hence string-like
tubes. This suggests that it would be useful to test this mo
not only in 311 dimensions@7# but also in 211 dimensions
where non-Abelian gauge theories appear to be linearly c
fining and detailed mass spectra are available@3,8#. This is
what we shall do in this paper.@We remark that recent im
provements in the lattice calculation of theD5311 SU~3!
spectrum@2# warrant a complete update of the study in@7#.#

In the next section we briefly review the Isgur-Paton fl
tube model for glueballs@6# and describe the qualitative fea
tures of the mass spectrum that it predicts for SU(N) gauge
theories inD5211. We compare this spectrum with th
‘‘true’’ spectrum as calculated on the lattice@3#, which, for
the reader’s convenience, we summarize in Table I borrow
from @3#. We point out where the main discrepancies a
difficulties lie and we point out some compelling generaliz
tions of the model. In the subsequent section we addre
major such difficulty: how to incorporate an acceptableC
56 splitting into the model. We finish with a summary o
our results. Finally we remark that a summary of some of
preliminary results has appeared elsewhere@9#, and a much
more detailed exposition appears in@10#.
©2002 The American Physical Society06-1
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TABLE I. Glueball masses in units of the string tension, in the continuum limit@3#. The SU(̀ ) values are
obtained by extrapolating the SU(N<5) values with anO(1/N2) correction.

mG /As
State SU~2! SU~3! SU~4! SU~5! SU(`)

011 4.718~43! 4.329~41! 4.236~50! 4.184~55! 4.065~55!

011* 6.83~10! 6.52~9! 6.38~13! 6.20~13! 6.18~13!

011** 8.15~15! 8.23~17! 8.05~22! 7.85~22! 7.99~22!

022 6.48~9! 6.271~95! 6.03~18! 5.91~25!

022* 8.15~16! 7.86~20! 7.87~25! 7.63~37!

022** 9.81~26! 9.21~30! 9.51~41! 8.96~65!

021 9.95~32! 9.30~25! 9.31~28! 9.19~29! 9.02~30!

012 10.52~28! 10.35~50! 9.43~75! 9.47~116!
211 7.82~14! 7.13~12! 7.15~13! 7.19~20! 6.88~16!

211* 8.51~20! 8.59~18!

221 7.86~14! 7.36~11! 6.86~18! 7.18~16! 6.89~21!

221* 8.80~20! 8.75~28! 8.67~24! 8.62~38!

222 8.75~17! 8.22~32! 8.24~21! 7.89~35!

222* 10.31~27! 9.91~41! 9.79~45! 9.46~66!

212 8.38~21! 8.33~25! 8.02~40! 8.04~50!

212* 10.51~30! 10.64~60! 9.97~55! 9.97~91!

111 10.42~34! 10.22~24! 9.91~36! 10.26~50! 9.98~25!

121 11.13~42! 10.19~27! 10.85~55! 10.28~34! 10.06~40!

122 9.86~23! 9.50~35! 9.65~40! 9.36~60!

112 10.41~36! 9.70~45! 9.93~44! 9.43~75!
ar
x
ro
s
n
a
b
av

iz

a

re
la
th

o

le.
en-
rgy.
nor-
a
nd,
lled

as
al-

its

e-
be
ct
c-

is is

ly
g

II. THE ISGUR-PATON FLUX TUBE MODEL OF
GLUEBALLS

Consider a quark and an antiquark sufficiently far ap
In a linearly confining theory, they will be joined by a flu
tube which contributes an energy that is approximately p
portional to its length. One can attempt to use such state
the basis for a flux tube model of quarkonia. The correspo
ing model for glueballs would be based on a loop of fund
mental color flux that closes on itself. This color singlet o
ject contains no quarks. If we neglect its thickness, we h
a closed string of flux, and the glueball mass spectrum
obtained by finding the energy eigenstates of the quant
string. This is the starting point for the Isgur-Paton model@6#
and our consequent extensions.

We start with a closed string of color flux in the form of
circle of radiusr with bare string tensionsb , and hence a
bare energy

Eb52psbr. ~1!

Fluctuations about this circle are decomposed into disc
phonons of definite helicity. These phonons carry angu
momentum, and so there must be a term proportional to
total phonon numberM, given by

Ephonons[
M

r
5

1

r (
m52

m~nm
11nm

2! ~2!

added to the total energy of the state. Note that the ab
sums begin with them52 mode. Them51 mode is ex-
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cluded in the model@6# because infinitesimalm51 fluctua-
tions are the same as infinitesimal translations of the circ

As usual when one quantizes over modes of all frequ
cies there is a divergent contribution to the vacuum ene
Part of this divergent piece can be absorbed into the re
malized string tension,s5sb1c/2p. The rest appears as
string Casimir energy. It is universal for bosonic strings a
in the case where the strings end on static quarks, is ca
the Lüscher term@11#. In the present case the string h
periodic rather than fixed boundary conditions, just as in c
culations involving Polyakov loops@12#, but the coefficient
differs due to the exclusion of them51 mode. Putting all
this together we can write the energy of the string plus
modes as

Es52prs2
13

12r
1

1

r (
m52

m~nm
11nm

2!. ~3!

However, we know that what we have is not really a on
dimensional string but rather a flux tube whose width will
;1/As. For the low-lying states of interest to us we expe
r;1/As and so one might expect the simple harmonic flu
tuations of the flux tube to be somehow suppressed. Th
incorporated within the Isgur-Paton model@6# by multiplying
the contribution of the phonons to the energy~including that
of the vacuum! by a heuristic suppression factor that rapid
approaches unity asr increases. This leads to a final strin
energy

Es
M~r!52prs1

M1g

r
F~r! ~4!
6-2
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STRING MODELS OF GLUEBALLS AND THE SPECTRUM . . . PHYSICAL REVIEW D66, 036006 ~2002!
whereg5213/12, M is defined in Eq.~2! andF(r) is the
factor that suppresses the string excitations at smallr. In the
original model this was chosen to beF(r)512e2 f r, where
f is a parameter which we would expect to beO(As). This
form is reasonable but somewhat arbitrary; one might a
for example, why the string energy, 2prs, is not modified at
small r as well.

To quantize the string, we must take into account its m
tion in the radial direction as well. In the Isgur-Paton mod
one identifies the conjugate momentum for the string a
writes a Schro¨dinger equation in the radial coordinater:

H 29

16ps

d2

dj2 1Es
M~j2/3!J c~j!5Ec~j! ~5!

wherej5r3/2 turns out to be the natural variable to use he
This formalism assumes that the phonon modes are ‘‘fa
compared to the collective radial modes and that they
therefore be treated as providing an effective potential
these latter modes. Clearly such an ‘‘adiabatic’’ assumpt
is at best approximate: the model has only one scale,As, and
so there is no reason for the phonon fluctuations to bemuch
faster than the collective radial fluctuations for the low-lyi
part of the spectrum that will interest us.~Indeed if one cal-
culates@7# the low-lying spectrum one finds that the ener
splitting associated with an increment in the phonon num
is of the same order as the splitting associated with an in
ment in the radial quantum number. This suggests that
division into fast and slow modes is a crude approximation
best.!

If we were in 311 rather than in 211 dimensions, the
above description of the model would change as follow
First, rotations of the flux-loop around a diameter provide
additional source of angular momentum, and Eq.~5! acquires
a corresponding angular momentum term. In addition th
are extra phonons arising from fluctuations of the loop n
mal to its plane. This doubling of modes leads to a doubl
of the value of the string Casimir energy in Eq.~3!.

The simplest version of the Isgur-Paton model setsF(r)
51 in Eq.~4! so that there is no fudge factor. Sinces merely
sets the overall scale of the mass spectrum, the mass r
m/As are then predicted with no free parameters at
These predictions~borrowed from Ref.@7#! are listed in
Table II. The comparison is withSU(N→`), since in that
limit, just as in the model, heavy glueballs do not decay. T
overall qualitative agreement is remarkable, with only t
021 far from its prediction in theC51 sector, and moti-
vates the more detailed investigation of this paper.

III. GENERALIZING THE ISGUR-PATON FLUX TUBE
MODEL

In this section we point to several ways in which t
original Isgur-Paton model can be generalized. We start w
the observation that one can build on other strings than
fundamental. We then point out that a curvature term in
effective string action makes an important difference. T
argument for both these extensions is compelling. We t
turn to the short-distance fudge factorF(r) in Eq. ~4!, point
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out its shortcomings and suggest some alternatives. We le
to the next section the important question of how to split
C56 spectra in a way that is both natural in terms of t
string model and reproduces the main features of the
served splitting.

A. Extra strings, extra states

The flux tube in the Isgur-Paton model contains flux in t
fundamental representation; it joins charges that are in
representation. For SU(N>4) there exist charges in highe
representations which cannot be screened by virtual adj
charges~i.e. gluons! down to the fundamental. One can lab
charges in these representations by the way they trans
under a center gauge transformation,zPZN . If they acquire
a factorzk we will refer to them as havingN-ality k. Since
gluons transform trivially under the center they cann
screen theN-ality of a charge. For each such charge we ha
a flux tube of a correspondingN-ality k, which will possess a
string tensionsk . We can consider a closed tube of su
flux, and we can then build a whole spectrum of glueb
states on this flux string just as we did for the fundamen
k51, string in the Isgur-Paton model. Thus asN grows the
spectrum will acquire extra towers of states that are ident
to the spectrum obtained with the fundamental flux loop
cept that their overall energy scale isAsk /s1 ~ignoring any
mixing!.

If observed, such a spectrum would be a remarka
manifestation of the underlying string structure of glueba
Of course it is not guaranteed that such a spectrum actu
exists in the string picture: this will depend on the dynami

TABLE II. Glueball masses in units of the string tension. Pr
dictions of the simple no-parameter Isgur-Paton flux tube mo
compared to the actual spectrum of the SU(N5`) theory.

mG /As
JPC SU(`) IP model

011 4.065~55! 3.12
011* 6.18~13! 6.46
011** 7.99~22! 8.72
261 6.88~16! 6.79
261* 8.62~38! 9.06
021 9.02~30! 13.86
461 9.64
161 10.00~25! 10.84
361 8.30

022 5.91~25! 3.12
022* 7.63~37! 6.46
022** 8.96~65! 8.72
262 7.94~35! 6.79
262* 9.62~66! 9.06
012 9.47~116! 13.86
462 9.64
162 9.38~60! 10.84
362 8.30
6-3
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ROBERT W. JOHNSON AND MICHAEL J. TEPER PHYSICAL REVIEW D66, 036006 ~2002!
Consider for example the case of SU~4!. If it happens to be
the case thatsk52,” 2sk51 then thek52 flux tube can break
up into two k51 ~fundamental! flux loops, so that thek
52 states are just multi-glueball scattering states formed
of the k51 glueball states. In the SU~4! gauge theory it is
known @13# that sk52.1.4sk51 in both D5211 and D
5311, and so the corresponding extra states should e
there. However the lattice calculations have not identifi
enough excitations~in eachJPC sector! to test for the pos-
sible presence of such extra states, so we will ignore
potential state replication in the remainder of this pap
apart from pointing to its great interest for future calculatio
@10#.

B. Curvature or elasticity

The flux tube must have a finite thickness if it is to have
finite energy density; presumably it will beO(1/As). Such a
finite flux tube will presumably possess an effective elas
ity. In string language this is a curvature term. For a mes
the curvature of the straight string joining the quarks is z
and so a curvature term would have no effect to the orde
1/r that we are including. For a closed string, on the ot
hand, the curvature is constant and integrates to a;1/r con-
tribution. The constant of proportionality, our effective ela
ticity, we denote bygE and we will regard it as an unknow
free parameter. Note that we may regard the Casimir en
of the closed loop as simply renormalizing the elasticity

g5gE2
13

12
~6!

just as thecr piece was absorbed into a renormalization
s. Although there has been some discussion@14# as to the
sign such an elasticity should take, we shall leaveg as a free
parameter, whose value is to be determined by fitting
spectrum.

C. Modification at short distances

Since the flux tube has a finite width, a glueball will pr
sumably cease to look like an excited closed string whenr is
much less than that width. This is embodied in the Isg
Paton model by a fudge factorF(r)512e2 f r which sup-
presses the contribution of the string phonons asr→0, as in
Eq. ~4!. The detailed form ofF(r) is largely arbitrary, as is
the choice to suppress the phonon excitations but not
2pr string contribution. Since the spectrum of the stri
model is nonsingular when we setF(r)51, the effects of the
suppression factor are not large and the details do not m
greatly. We have calculated the spectrum for various po
bilities and we find that as far as theC51 spectrum is
concerned what one needs is a modest short-distance
pression so as to get the 011,211 splitting about right, and
then one can tune theg/r contribution so as to raise th
overall spectrum to about the right level.

A quite different possibility is to make the string tension
function ofr rather than to impose a fudge factorF(r). This
is motivated by a recent study@15# of closed flux tubes in the
dual Ginzburg-Landau theory. They find that the effect
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string tension,se f f(r), varies withr so as to vanish asr
→0. One can in fact parametrize the observed variation q
accurately using

se f f~r!5s~12e21.72r!. ~7!

One can then quantize the string model with th
r-dependent string tension and solve for its spectrum. Si
se f f(r) appears in the mass and hence in the kinetic ene
of the loop, the quantization is not entirely straightforwa
and we leave its description to the Appendix.~More details
may be found in@10#.! The qualitative effect of using a vari
ablese f f(r) in Eq. ~5! is that at smallr the kinetic energy is
enhanced relative to the potential energy. This is much
same as the effect of our fudge factorF(r). However it has
the advantage that there is no free parameter~or functional
form! to choose and there is no ambiguity as to how o
should apply it.

IV. SPLITTING CÄ¿ FROM CÄÀ

For N.2 the flux tube carries an arrow. In the simp
Isgur-Paton model there is no mixing between loops of
posite flux, and the resulting states are degenerate. Sinc
direction of the flux reverses under charge conjugationC,
this predicts degenerateC56 spectra, as in Table II. We
now turn to the problem of how one might split thisC56
degeneracy in a way that is both natural in terms of the str
model and reproduces the main features of the obse
splitting. We shall begin by summarizing what these featu
are and we shall then consider two possible dynam
mechanisms: direct mixing and adjoint mixing. Addition
mechanisms, such as indirect mixing andk-string mixing, are
explored in @10#. In each case we shall ask how well th
main observed features are reproduced.

A. The observedCÄ¿ÕÀ splitting

From the masses listed in Table I we see that theC5
1/2 splitting possesses the following qualitative feature

In Fig. 1 we plot two examples of theC56 splitting, as

FIG. 1. Some of the observed SU(N) C56 splittings plotted
versus 1/N2: the mass difference between the 022 and the 011

(d) and that between the 262 and the 261 (s). As N→` the
dependence is expected to be linear in 1/N2, i.e. like the straight
lines added to the plot to guide the eye.
6-4
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STRING MODELS OF GLUEBALLS AND THE SPECTRUM . . . PHYSICAL REVIEW D66, 036006 ~2002!
a function of 1/N2. This is a natural variable to use since t
leading corrections to the large-N limit are expected to be
O(1/N2) @16#. We infer from this plot~and from similar plots
of other states! that the splitting remains nonzero in theN
5` limit; it is a leading order effect.

In SU~2! there is noC52 sector and one can ask wh
the SU~2! 01 mass continues to asN increases. This will
clearly depend on the dynamics that produces theC56
splitting for N>3. For example, if this dynamics simpl
splits the 011 and 022 equally from their naive degenera
masses, then we would expect the SU~2! 01 to continue
smoothly to the average of the 011 and 022 masses. As
another example, if the shift involves just the 022, then the
SU~2! 01 will continue smoothly to theN>3 011. Con-
versely, if the shift affects just the 011, then the continuation
should be with the 022. In Fig. 2 we plot the 011 and 022

masses, as well as the average of the two, as a functio
1/N2. We see that in all cases the variation withN for N
>3 can be described using just a leading}1/N2 correction.
We also note that the SU~2! 01 mass extrapolates precise
from the 011 masses while it is inconsistent with a smoo
extrapolation of the averagedC56 states or of the 022.
The same is true for the tensor: the SU~2! 21 mass is a
smooth continuation of the SU(N>3) 261 masses, and no
of the average of the 261 and 262 masses, or of the 222.
We shall see that this observation provides a tough const
on possible mechanisms for splitting theC51 and C52
sectors.

The C56 splitting appears to decrease as the mass
creases. To be more specific we infer from

m0222m011.m022* 2m011* ~8!

that states with larger radial quantum number,nR , are split
less than those with smallernR . ~Recall that in the flux tube
model these lowest excitations are radial rather than p
non.! Furthermore we infer from

FIG. 2. The SU~2! 01 mass (!), the SU(N>3) 011 masses
(d), the SU(N>3) 022 masses (L), and the average of the 011

and 022 masses (s), plotted against 1/N2, with the expected large
N linear dependence shown in each case.
03600
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m0222m01151.85~26!As

.m2222m21151.01~38!As

.m1222m111520.62~65!As ~9!

~obtained atN5`) that the magnitude of the splitting als
decreases with increasing phonon number.@Recall that for
the lightestJ50,2,1 glueball states the total phonon numb
in Eq. ~2! is M50,2,5 respectively.# Note that the decreas
we see is even faster when the splitting is expressed in te
of the average mass. All this provides constraints on poss
splitting mechanisms.

B. Direct mixing

Since a flux loop has a direction,L or R, it is convenient
to introduce 2-component wave functions:

C[S cL

cR
D . ~10!

In this notation, we can write~unnormalized! C56 states as

CC515cS 1

0D 1cS 0

1D ,

~11!

CC525cS 1

0D 2cS 0

1D
and Eq.~5! becomes

HIPC5FHL 0

0 HR
G S cL

cR
D 5EC ~12!

whereHL[HR is the operator on the LHS of Eq.~5!.
With the above Hamiltonian there is no mixing betweenL

andR states and hence noC56 splitting. To obtain such a
splitting we need a nonzero probability for aL state to turn
into an R state and vice versa, which clearly requires so
off-diagonal terms to appear in the HamiltonianH. So we
alter Eq.~12! to define our ‘‘direct mixing’’ Hamiltonian as

HdirC5FHL a

a HR
G S cL

cR
D 5EC ~13!

where we shall choose to keepa real and constant. A simple
motivation for such a mixing arises from the observation t
when the radius of the flux loop is less than the flux tu
width, we have something that is no longer a distinct loo
but is rather some kind of ‘‘ball’’ which will no longer have
any definite orientation. In a path integral picture, we c
think of a path where a loop of orientationL ~for example!
shrinks into a ball, at which point it loses any memory of
initial orientation, and then expands back out into a loop
either orientation with equal probability. This transition w
lead to a finite amplitude betweenL andR loops.

We shall return later to ask how well this model fits th
spectrum. For now we concentrate on its qualitative pred
6-5
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ROBERT W. JOHNSON AND MICHAEL J. TEPER PHYSICAL REVIEW D66, 036006 ~2002!
tions, taking the approximationHL5HR5M whereM is the
mass of the unmixed state. Then the energy eigenstate
clearly

MC565M6a ~14!

so thatC56 states are split equally from their commo
Isgur-Paton value. Three immediate observations foll
from the above:

For states of approximately equalr, the splitting should
be roughly the same independent of the phonon number.
would be the case, for example, for the lightestJ50,1,2
states. However, as we have seen in Eq.~9!, the splitting
does in fact vary a great deal amongst these states.

It is the average of theC51 and C52 masses tha
equals the mass with no mixing. As we decreaseN from N
5` it is this average that should extrapolate to the SUN
52) value of the 01 mass, because the Hamiltonian there
the same asHL or HR . @All this up to O(1/N2) corrections.#
However we have seen in Sec. IV A that this is not the ca
the SU~2! 01 mass equals the SU(N>3) 011 mass up to
O(1/N2) corrections.

We expect the wave function to have a smooth limit
N→`, and so the probability forr to be less than the flux
tube radius should also have a nonzero limit. Thus theL↔R
mixing and the consequentC56 splitting should be non-
zero atN5`, just as is observed.~This appears to contradic
the conventional statement@16# that mixings vanish asN
→` but we believe that the standard arguments do not ap
to our kind of ‘‘mixing.’’ !

We might suppose that the first observation becomes
relevant when we perform the actual numerical calculatio
but unfortunately it remains an issue. Moreover, however
tune the parameters in this model, it remains the case th
is the average of the 011 and 022 masses that is predicte
to continue smoothly to the SU~2! 01 mass, and, as we hav
seen, this is contradicted by the lattice calculations. T
other, perhaps less straightforward, mechanisms need t
considered.

C. Adjoint string mixing

We pointed out in Sec. III A that in SU(N>4) theories
there exist extra stable strings and hence extra states. S
these are just scaled up versions of our fundamental st
spectrum they would not help in splittingC51 from C
52. However there is another type of string in the theo
that we have not yet considered: the one that carries ad
flux. Such a string carries no arrow: it is intrinsicallyC5
1. So any mixing would affect theC51 spectrum: the 011

mass would~probably! be driven down while the 022 would
be left undisturbed. But this does not lead to problems w
the 01 in SU~2! because the same adjoint string exists
SU~2! and would drive down the 01 mass there as well. S
we have a mechanism that might at last explain why
SU~2! 01 smoothly interpolates onto the 011 for SU(N
.2).

The problem with this mechanism is, of course, that
adjoint string can be broken by gluon pair production so i
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not clear if it makes sense to use a closed adjoint loop as
basis for a set of states. However we know that asN→` the
string becomes stable@16# so at least for largeN it can be
used in this way. Since, as we have seen, lattice studies@3#
find that the low-lying SU~2! spectrum differs only by smal
corrections from SU(N5`), it is reasonable to assume th
the adjoint string has developed only a modest decay w
in SU~2!. ~As indeed seems to be the case@17# in 311
dimensions.! If so then the decay time will be long compare
to the characteristic time scale of the low-lying string mod
and we can safely quantize the string in the Isgur-Paton fa
ion. We will assume that this is so from now on, although
explicit lattice verification would clearly be very helpful.

We can use an extension of the formalism in the previo
subsection to derive the Hamiltonian, defining the wa
function as

C5S c1

c2

ca

D . ~15!

However sinceca always hasC51, the Hamiltonian

Had j5FH1 0 aa

0 H2 0

aa 0 Ha

G ~16!

is quite simple: we can clearly reduce it to a two-compon
calculation in theC51 sector, and a simple Isgur-Pato
calculation in theC52 sector. We shall assume that there
no mixing between fundamental and adjoint loop states
have differing phonon occupation numbers.

In Eq. ~16! H15H2 is the usual Isgur-Paton Hamil
tonian.Ha will be identical except that the scale is set by t
adjoint string tension,sa , rather than by the fundamentals.
It is frequently speculated thatsa and s are related by the
ratio of quadratic Casimirs

sa

s
5

2N2

N221
. ~17!

Lattice calculations inD5211 @18–20# find that for SU~2!
sa.2.5s, which is quite close to the value of 8/3 one o
tains from Eq.~17!. Thus we expect states based on the
joint loop to be about a factor ofA2.5;1.5 heavier than
corresponding states based on the fundamental loop, an
quite massive. Indeed, if we assume a simple two body m
ing, with H1 replaced byM5m022 andHa by Ma.1.5M ,
and if we choosea so as to obtain the observedm011 mass,
we find that the lightest scalar ‘‘adjoint’’ state hasMa,011

.1.8m022. This is light enough to be important by its ex
plicit presence in the spectrum, in addition to affecting t
fundamental states through mixing.

How can the fundamental flux loop mix with an adjoi
loop? Once again our underlying physical picture is that,
small r, these loops of string become rather like ‘‘balls’’ o
flux instead, which may reemerge as a loop of different o
6-6



w

e

us

n

no

l i
p
e
e

it

a
d

pli
a

d
ha
de
n

e

te

th

th
e
ru

fit
in

B.
s

re
ew
e
in

m

c.

the

the

’
the
his

ith
se
se

e for
ro-

ates
p
hus
ort,

The
a-
s of
t it
o is
To
in
to

est
ass,

ice
ch
t we

st it
st

ing
ical
d

he

ably
tes

he

that

as
-

ble
all

are

STRING MODELS OF GLUEBALLS AND THE SPECTRUM . . . PHYSICAL REVIEW D66, 036006 ~2002!
entation, or indeed even of a different type of flux. We no
have the following qualitative predictions:

As with the direct mixing of Sec. IV B, we expect th
mixing, and hence the splitting, to be leading order inN, as is
observed.

As remarked above, since the adjoint loop mixes with j
the C51 sector and does so for all SU(N>2) gauge theo-
ries, we expect the SU~2! 01 mass to continue smoothly o
to the SU(N.2) 011 masses, as is observed.

Whether the splitting decreases with increasing pho
numberM at fixed radial numbernR is however not clear—it
requires a detailed calculation.

The observed pattern of theC56 splitting has proved
very constraining on possible dynamics, but the mode
which the fundamental loop mixes with an adjoint loop a
pears to have the right qualitative features. In the next s
tion we shall see how well it can do at the quantitative lev

V. FITTING THE LATTICE SPECTRUM

We have performed a large variety of comparisons w
the lattice spectrum. We have used the differentC56 split-
ting mechanisms described in this paper; we have fitted to
the lattice masses or just to a more reliable subset as
cussed above; we have used the actual errors in thex2 or
expanded errors as described below; we have used ex
short distance fudge factors of various kinds or
r-dependent string tension as described earlier, or indee
suppression at all. The reader will be relieved to learn t
we do not intend to describe this very large number of mo
fits here but will rather focus on two of the most releva
examples. Some different model fits can be found in@9# and
others will appear in@10#.

The generalized flux tube model typically has two or thr
unknown parameters. First there isg, the~renormalized! cur-
vature or elasticity. Second there is the mixing parame
characterized by a strengtha0. There is the parameterf
which characterizes the short-distance cutoff imposed in
Isgur-Paton model. Alternatively we can usese f f(r) instead
of s at short distances and this enables us to do without
parameterf. We can then solve the model for various valu
of these parameters and find which fits the lattice spect
the best.

In this section we will describe what we find when we
the lattice data with adjoint string mixing, as described
Sec. IV C, or with direct mixing, as described in Sec. IV
In both cases we shall use ar-dependent string tension, a
described in Sec. III C, to embody the short distance cor
tions to the flux tube picture, in a way that introduces no n
parameters. In our physical picture of the mixing, we se
as occuring at smallr and so we choose the mixing term
Eqs.~13!, ~16! to satisfy

a~r!5aS 12
se f f~r!

se f f~`! D ~18!

~where we now drop the subscript onaa). In the case of
adjoint mixing we determine the adjoint string tension fro
Eq. ~17!. Thus there are two parameters to be fitted:g5gE
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213/12, wheregE is the string curvature described in Se
III B, and a is the mixing strength.

There are however some problems with just taking
mass spectrum as given in Table I and doing a least-x2 fit on
the model parameters. First we have already seen that
model prediction is going to be far from the lattice 021, so
including it in the fit might badly distort the final ‘‘best fit.’
Moreover there are theoretical reasons for thinking that
lattice 021 spin assignment might be mistaken and that t
is actually a 421. ~And, similarly, that the lattice 012 is
really a 412.! To a lesser extent similar questions arise w
the purportedJ51 states. We shall therefore exclude the
states from the fit but will instead quote the values for the
masses, as predicted by the best fit to the other states.

A second problem is that the most accurate masses ar
the lightest states. Having the smallest errors these will p
vide the most important component of thex2 function that
determines the best fit. On the other hand the lightest st
possess the smallest radiusr and so we expect the flux loo
model to suffer the largest corrections for such states. T
we might not want them to dominate, and so possibly dist
the best fit.

This second problem has no unambiguous resolution.
fact is that we know that the model is a simple approxim
tion that can at best incorporate only the essential feature
glueball structure. The most that we can expect is tha
roughly reproduces the spectrum and whether it can do s
what we want to learn when we fit the model to the data.
do this we need to embody what we mean by ‘‘roughly’’
some specific way into the fitting procedure. In order not
be unduly biased by the very small errors on the light
masses, we have enhanced all the errors by 5% of the m
and add it in quadrature with the statistical error. In pract
the best fits turn out to be similar whether we perform su
an enhancement or not. That is to say, we are saying tha
want to know if the model can fit the masses within65%.
Of course the best fit might do better than that; but at lea
will not be driven by the very small errors on the lighte
masses for which it is probably least reliable.

In each case we obtain the predicted spectrum by solv
the coupled set of differential equations, using the numer
technique detailed in@10#, on a grid in parameter space, an
then we perform a final simplex minimization starting at t
most favorable grid point to find the bestx2 fit. ~With just
two parameters such a crude approach works reason
well.! The best fit is determined using the lightest three sta
in the 011 and 022 sectors, and the two lightest states in t
261 and 262 sectors.

We have remarked that there are reasons to think
these simple models should work best in theN→` limit, and
so we display the results of fitting to the lattice spectrum
extrapolated toN→`. A more thorough display of the re
sults for allN may be found in@10#. In Table III we show the
mass spectra for the adjoint mixing mechanism, and in Ta
IV we present the values of the fitted parameters, for
values ofN. In Fig. 3 we display the spectrum atN5`. The
corresponding spectra for the direct mixing mechanism
6-7
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ROBERT W. JOHNSON AND MICHAEL J. TEPER PHYSICAL REVIEW D66, 036006 ~2002!
shown in Table V, and in Table VI are the parameters for
direct mechanism. Figure 4 displays the direct mixing sp
trum atN5`.

We see from the figures that the best fits, whether
tained using the direct or the adjoint mixing mechanisms,
of an overall reasonable quality. A closer examination of
detailed spectra does however show that both models h
some minor difficulties. The direct mechanism has proble
with the excitations in theJ50 sector: by the time the third
excitation is reached, which has a greater averager than the
ground state, the conjugate mixing drives the two mo
states much farther apart than they ought to be. The way
the adjoint mixing model avoids this problem is that t
mass of the lightest adjoint loop state is naturally close
that of the 011!, becauseAsa /s f;1.5. Thus, after mixing,
the 011! can be largely an adjoint loop, and the 011!! can
then be~largely! the first fundamental loop excitation. How
ever, the direct mixing mechanism does have numeric
better values ofx2, and thus we ought to consider it mo
likely than the adjoint mixing mechanism. This suggests t
a flux tube model that combines both direct and adjoint m

TABLE III. Best fit spectrum of the adjoint-mixing flux tube
model to the SU(N) glueball masses, in units of the string tensio

mG /As
State SU~2! SU~3! SU~4! SU~5! SU(`)

011 4.87 4.29 4.09 4.04 3.94
011* 6.84 7.03 6.86 6.86 6.78
011** 8.05 9.05 8.88 8.81 8.51
022 6.04 5.83 5.60 5.36
022* 8.86 8.70 8.53 8.35
022** 10.90 10.77 10.63 10.48
021 14.06 14.13 14.00 13.93 13.78
012 14.21 14.07 13.98 13.82
421 11.05 10.25 10.13 10.17 10.16
412 11.93 11.77 11.59 11.41
261 7.55 6.87 6.70 6.70 6.64
261* 9.96 9.11 8.97 9.01 8.99
262 8.59 8.40 8.19 7.97
262* 10.83 10.68 10.52 10.35
161 9.95 9.19 9.05 9.07 9.05
162 10.87 10.70 10.52 10.33
361 8.78 8.06 7.91 7.92 7.88
362 9.76 9.58 9.39 9.18

TABLE IV. Best fit parameters of the adjoint mixing model.

Adjoint loop mixing
Group a g x5

2/DOF

SU~2! 0.8660.65 20.1960.07 0.47
SU~3! 4.560.60 0.5760.09 1.1
SU~4! 4.260.66 0.4260.08 1.2
SU~5! 3.860.84 0.2560.08 1.4
SU(`) 3.360.8 0.0760.07 0.99
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ing should be able to do much better than either model alo
Combining these models is quite natural; our picture for
way an oriented fundamental loop may evolve into an adjo
loop ~through contracting into a small ‘‘disoriented’’ ball! is
precisely the way we saw the direct mixing between fun
mental loops of opposite orientation proceeding. This pict
will, in general, require two mixing parameters. While it
interesting to explore these ideas@10# the analysis would
clearly benefit from improved lattice calculations where
larger number of excited states are accurately determine

Returning to the best fit parameters listed in Tables IV a
VI, we observe that all our fits requireg to be positive or
very close to zero. Ignoring the values for SU~2!, there is a
trend in the values ofg consistent with a 1/N2 relationship;
see@10# for more details. Taken together with Eq.~6! this
tells us that the observed mass spectra do indeed requ
nonzero curvature~elasticity! term,gEP@0.5,1.0#, in the ef-
fective string model for the confining flux tube.

From either Fig. 3 or Fig. 4 we see that the conventio
spin assignments of the heavier states are called into q
tion. The model consistently puts the 421 and the 412

states at masses corresponding to lattice states with sp
These states do not contribute to thex2, and so their masse
are purely predictive—the agreement is remarkable. Furt

.

FIG. 3. The spectrum for the adjoint mixing mechanism co
pared to lattice data atN5`. The x axis gives the total phonon
numberM. The 021 and 012 are compared withM54, and states
with J51 are compared withM55.
6-8
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STRING MODELS OF GLUEBALLS AND THE SPECTRUM . . . PHYSICAL REVIEW D66, 036006 ~2002!
more, while the lattice states 161 agree with the model’s
predictions for the lightest state withM55 ~which is the
smallest value ofM giving spin 1!, the states conventionall
labeled 162 are at the mass predicted for states withM53.
These states are also related by a spin ambiguity of mod
a cubic lattice, and so we must also investigate these ass
ments in the future as well.

Finally we remark that the features we have described
not only robust against the detailed fitting procedures u
but much the same conclusions are obtained if we replace
r dependence of the string tension with a short dista
modification of the kind shown in Eq.~4!.

VI. CONCLUSIONS

In this paper we set out to test the idea that glueballs
quantized closed strings of color-electric flux. Such a pict
arises naturally in linearly confining theories, such as SU(N)
gauge theories in 211 and 311 dimensions, where distan
fundamental charges are connected by flux tubes.

We started out with the specific dynamical framework
the Isgur-Paton flux tube model@6#, in which the excitations

TABLE V. Best fit spectrum of the direct-mixing flux tub
model to the SU(N) glueball masses, in units of the string tensio

mG /As
State SU~2! SU~3! SU~4! SU~5! SU(`)

011 4.67 4.37 4.19 4.13 4.19
011* 7.84 6.98 6.84 6.84 6.22
011** 9.77 7.66 7.43 7.11 7.07
022 6.03 5.82 5.64 5.21
022* 8.86 8.69 8.56 8.24
022** 10.90 10.76 10.65 10.38
021 13.86 13.66 13.52 13.48 13.32
012 14.43 14.25 14.15 14.01
421 10.13 10.04 9.90 9.91 10.13
412 11.92 11.76 11.62 11.29
261 7.35 6.83 6.67 6.64 6.76
261* 9.86 8.92 8.79 8.80 8.90
262 8.58 8.39 8.22 7.84
262* 10.83 10.68 10.54 10.24
161 10.88 9.03 8.89 8.88 9.07
162 10.87 10.70 10.55 10.21
361 8.59 7.96 7.80 7.79 7.95
362 9.76 9.58 9.42 9.06

TABLE VI. Best fit parameters of the direct mixing model.

Direct mixing
Group a g x5

2/DOF

SU~2! 20.4260.12 1.6
SU~3! 2.1760.6 0.5760.10 1.0
SU~4! 2.1560.6 0.4160.10 1.1
SU~5! 1.9860.6 0.2860.10 1.3
SU(`) 1.3660.6 20.0360.11 0.65
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of the closed flux loop are either radial or phonon-like, a
we confronted its mass spectrum with the rather accu
mass spectra available inD5211 SU(N) gauge theories
@3#. As N→` the gauge theory simplifies in ways whic
bring it closer to some of the model’s assumptions, e.g.
neglect of decays, and so one can argue that a comparis
this limit makes particular sense. If we express the obser
masses in units of the observed string tension, then the m
el’s predictions for these dimensionless ratios involve no f
parameters at all. We found that these predictions were,
the most part, quite remarkably good in theC51 sector of
states; and for theC52 sector they embodied the mai
qualitative features even if the quantitative comparison w
less good.

Of course, when the flux tube radius,r, is smaller than
the flux tube width the picture must break down, embod
in the model by suppressing the potential energy belowr
;1/f , wheref is a parameter that needs to be determined
which we expect to beO(As). In this paper we described
other ways of including such a cutoff; in particular through
dependence of the string tension onr. By takings(r) from
calculations in the literature@15#, one can avoid having the
additional parameterf to fit. We then pointed out that on
should in general include a string curvature term, which fo

.

FIG. 4. The spectrum for the direct mixing mechanism co
pared to lattice data atN5`. The x axis gives the total phonon
numberM. The 021 and 012 are compared withM54, and states
with J51 are compared withM55.
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ROBERT W. JOHNSON AND MICHAEL J. TEPER PHYSICAL REVIEW D66, 036006 ~2002!
closed loop will make a contributiongE /r to the effective
potential that is of the same form as the Casimir string
ergy. This introduces a parameterg that needs to be deter
mined. Finally we noted that theC56 degeneracy in the
model mass spectrum is contradicted by the splittings see
the lattice spectrum and we were compelled to consider
namical mechanisms that might reproduce these splittin
Such mechanisms typically involve a mixing parametera
that also needs to be determined. In searching for the be
to the observed spectrum, we found that whatever mix
mechanism we used we invariably required a substan
positive string curvature contribution,gEP@0.5,1#.

The qualitative features of the observedC56 splittings
proved to be very constraining. The only mechanism that
were able to construct that was natural, simple and had
right qualitative behavior, involved adding to the basic fl
tube model a sector of states built on closed loops of adj
flux. These are intrinsicallyC51 and we introduced a mix
ing between these states and theC51 states built on the
fundamental loop. We pictured the mixing as arising at sm
r where a closed flux tube becomes a flux-less ‘‘ball,’’ a
we conjectured that this kind of mixing may be leading ord
in 1/N, as required by the lattice spectrum. The implicati
of these calculations and also calculations with other mix
mechanisms, such as a direct mixing between fundame
loops of opposite orientation, was that the simultaneous p
ence of adjoint loop and direct mixing was likely to be mu
more successful in quantitatively reproducing the obser
spectrum.

However even these best fits always left us with one v
large discrepancy: the 021 state. In the model this is a
highly excited state~involving eight phonon units! and is
predicted to be much heavier than the lattice 021. This is a
robust result of the model: the splitting of the 011 and 211

states, which is two phonon units, is what essentially de
mines the 021 mass. On the other hand the predicted 421

mass is very close to the lattice 021 mass~and also for the
model’s 412 and lattice 012). This suggests that the lattic
calculation may have mislabeled this state; after all one c
not distinguishJ50 from J54 by the rotational symmetrie
of a square lattice. This has provoked lattice calculations
are attempting to resolve this rather basic question@21,22#.
~For a detailed exposition of the problem, as well as a me
for its solution, see@10#.!

If there are states built on the adjoint loop they will b
about half as heavy again as the corresponding states bu
the fundamental loop and so only the very lightest are lik
to be present in the currently available lattice spectru
Moreover, since the adjoint loop can break, these states
have large decay widths, their masses may be shifted f
their naive values, and perhaps only the lightest states
actually exist. However, with a modest improvement in t
quality of the lattice calculations, one could search for th
presence. The same improvement would allow us to se
for degeneracies between states of differingJ but with the
same number of phonon ‘‘units.’’ For example there will b
an excited 011 with phonon contentnm52

1 5nm52
2 51 that

should be degenerate with a 411 with phonon content
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2 50. Such ~near! degeneracies provide
characterisitic pattern that would test the general dynam
of the Isgur-Paton flux tube model.

In SU(N>4) gauge theories there are additional strin
than the fundamental which will be stable if their string te
sions are low enough. InD5311 this is expected to be th
case on theoretical grounds@23#, and indeed is known to be
the case for SU~4! @13,24#. Thus the string model predict
that, if we neglect mixings and decays, the observed m
spectrum will contain towers of states that are ex
scaled-up replicas of the spectrum arising from the fun
mental string, and that the number of these ‘‘towers’’
states will grow asN→`. This is a dramatic and robus
prediction of the basic flux tube picture which can and ne
to be investigated by lattice calculations.

We have seen that the kind of exercise undertaken in
paper, testing a model against lattice calculations, has a f
ful impact in both directions. We have been forced to gen
alize the model in ways that, in retrospect, are entirely na
ral. And the model points to both potential weaknesses in
lattice calculations and motivates specific further calcu
tions that promise to be very informative however they tu
out.

ACKNOWLEDGMENTS

We are grateful to Jack Paton for valuable discussi
during the course of this work. One of us~R.W.J.! would like
to thank the Rhodes Trust for financial support.

APPENDIX

In this appendix we briefly describe how we derive t
canonical variables for the Isgur-Paton model. First we d
cuss the traditional model’s equation, and then we desc
how we generalize the formalism to accommodate an ef
tive string tension that varies with the loop radius.

1. The Isgur-Paton Hamiltonian

We have a circular loop of massm52pr which moves in
an effective potential provided by the phonon modes etc
discussed earlier in this paper. Thus the kinetic and poten
terms are

T5
pr

2

4psr
, V52psr1F~r!

M1g

r
, ~A1!

whereF(r) is the usual short distance fudge-factor, whi
we shall now set to unity for convenience. Under the tra
scriptionpr→ i\(]/]r) we have~with \51)

T5
pr

2

2m
→ 21

4ps

]

]r

]

]r

r
. ~A2!

We want canonical variablesj,Pj such thatT is quadratic in
Pj . In passing from the above classical system to the qu
6-10
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STRING MODELS OF GLUEBALLS AND THE SPECTRUM . . . PHYSICAL REVIEW D66, 036006 ~2002!
tum system there is an ambiguity how to order the vario
terms inT. We choosePr5(]/]r)/r1/2 so thatT}Pr

2 . That
is to say we choose

j5r3/2, ~A3!

so that

T→ 21

4ps S 3

2D 2 ]2

]j2
5

29

16ps

]2

]j2
~A4!

and we arrive at Eq.~5!.

2. Generalizing to s„r…

If the vacuum of non-Abelian gauge theories is a~type-II!
dual superconductor, then flux tubes will arise through a d
Meissner effect. Thus it is interesting and relevant to ask h
closed flux tubes behave as the radius is varied in
Ginzburg-Landau theory of type-II superconductors.
pointed out in@15# what happens is that the effective strin
tensionseff(r) vanishes asr→0, roughly as in Eq.~7!. If we
replaces in the Isgur-Paton model by such aseff(r) we will
be providing the model with a short-distance cutoff that
both natural and employs no free parameters. The price
this is some complication in the quantization of the mod
However, as we shall now see, this is a problem that can
overcome.

As we saw earlier, the tricky term in quantizing the Isgu
Paton model is the kinetic energy, so that is where we w
begin. Abusing notation slightly,

T5
pr

2

2m
→ 21

4p
S ]

]r

Aseff~r!r
D 2

, ~A5!

whereseff(r) is now included in ther dependence of the
kinetic energy. Ifseff were a constant, we would getT as in
Eq. ~A4!. Now we must find a canonical variablej such that

dj

dr

d

dj

Aseff~r!r
5

d

dj
~A6!
D

cl
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dj5seff
1/2~r!r1/2dr. ~A7!

Substituting the function in Eq.~7! for seff , we find

j5s1/2E drr1/2~12e21.72r!1/2, ~A8!

where the integration constant has been determined by
boundary conditionj(0)50. This integral cannot be put into
closed form, yet we need the inverse function explicitly so
to substitute it into the potentialV„r(j)…. While it would be
nice to include explicitly the function from@15#, any func-
tion which approximates it reasonably well will suffice. S
rather than using Eq.~7! we shall use a less natural form, b
one that will suit our manipulations better. Now, we need
function for seff(r) which goes to zero asr→0 and which
approachess asr→`, and which is integrable with respec
to the measurer1/2dr. As an example consider

seff~r!5s~12e2 f r3/2
!2 ~A9!

which, with a suitable value forf, will crudely approximate
the dependence found in@15#. Performing the integral, and
imposingj(0)50, we have

j5s1/2E drr1/2~12e2 f r3/2
!5

2

3
s1/2S r3/22

1

f
1

1

f
e2 f r3/2D .

~A10!

We cannot find the functional inverse explicitly, but as w
are ultimately working with a discrete set$j j% related to$t j%,
we can simply solve the equation numerically to giver j
which we can put into the potentialV5V„r(j j )…. @In prac-
tice we have usedseff5s(12e2 f r)2 which leads to a
slightly more complex relation than the above.# Returning to
the kinetic energy,

T→21

4p

]2

]j2
, ~A11!

and we proceed with the numerical solution of the d
cretized equation as described earlier.
/
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