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The spectrum of glueballs in21 dimensions is calculated within an extended class of Isgur-Paton flux tube
models and compared to lattice calculations of the low-lying$8¢) glueball mass spectrum. Our modifi-
cations of the model include a string curvature term and a new way of dealing with the short-distance cutoff.
We find that the generic model is remarkably successful at reproducing the positive charge conj@zation,
+, sector of the spectrum. The only lar@end robust discrepancy involves the 0" state, raising the inter-
esting possibility that the lattice spin identification is mistaken and that this state is in factMiditionally,
the Isgur-Paton model does not incorporate any mechanism for spl@ting from C=+ (in contrast with
the case in 3-1 dimensions while the “observed” spectrum does show a substantial splitting. We explore
several modifications of the model in an attempt to incorporate this physics in a natural way. At the qualitative
level we find that this constrains our choice to the picture in whicithet splitting is driven by mixing with
new states built on closed loops of adjoint flux. However, a detailed numerical comparison suggests that a
model incorporating an additional direct mixing between loops of opposite orientation is likely to work better,
and that, in any case, a nonzero curvature term will be required. We also point out that a characteristic of any
string model of glueballs is that the SN~ ) mass spectrum will consist of multiple towers of states that are
scaled up copies of each other. To test this will require a lattice mass spectrum that extends to somewhat larger
masses than currently available.
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I. INTRODUCTION such as gluon potentig#t] and bag model§5], or flux tube
(string) models[6]. In this paper we shall confine ourselves
While it is now possible to calculate the spectrum of con-to a study of the latter.

tinuum non-Abelian gauge theories with some precision, us- Models try to isolate the essential physics and neglect
ing standard lattice Monte Carlo techniqués-3], we know  everything else; thus they necessarily involve approxima-
little about the structure of these glueballs. This is to betions. So one does not expect precise agreement with the
contrasted with states containing quarks where, at least fdtnown spectrum. If we are only looking for semi-
the low-lying spectrum, the quark model provides a remarkquantitative or even qualitative agreement, it is important to
ably successful semi-quantitative model framework for un-est the model in as many relevant contexts as possible. One
derstanding the structure of mesons and baryapart from  fact we can usefully use here is that string modelsd in-
the inte_resting cases of scalar mesons and pseudoscalieq bag modelscan be equally motivated in any gauge
flavor-singlet mesons theory that has linear confinement and hence string-like flux

The glueballs of the S(3) non-Abelian gauge theory in hes This suggests that it would be useful to test this model

3+ 1 dimensions are partlcularly important _because the presﬁfot only in 3+ 1 dimension$7] but also in 2+ 1 dimensions
ence of such extra nonquarkonium states in the spectrum

QCD (and in the experimental spectrirwould provide a Where non-Abelian gauge theories appear to be linearly con-

direct reflection of the gauge fields in the theory. Understand]ilnlng and detailed mass spectra are availdBlé]. This is

ing just how they do sémixing, decays etgwould be made what we shall do in this papel\We remark that recent im-

easier if we understood something about their structure. yr2rovements in the lattice callculatlog of tlif)a=h3+ 1dSU(3)
fortunately, beyond providing some information about g|ue_spectrurr[2] warrant a complete update of the study 1]

ball sizes, lattice Monte Carlo calculations have as yet given N the next section we briefly review the Isgur-Paton flux
us little insight into their structure. Such calculations involve tubeé model for glueballgs] and describe the qualitative fea-
connected correlators of several operators and while they afgres of the mass spectrum that it predicts for 8))gauge
simple in principle it is, in practice, much harder to achievetheories inD=2+1. We compare this spectrum with the
sufficient statistical accuracy than in the corresponding masgrue” spectrum as calculated on the latti¢8], which, for
calculations. the reader’s convenience, we summarize in Table | borrowed

An alternative way to learn about the structure of glue-from [3]. We point out where the main discrepancies and
balls is through a reliable model—just as the quark modedifficulties lie and we point out some compelling generaliza-
provides us with useful information on the structure of thetions of the model. In the subsequent section we address a
low-lying mesons and baryons. To establish whether a gluemajor such difficulty: how to incorporate an acceptalle
ball model is “reliable” one can compare the spectrum it = = splitting into the model. We finish with a summary of
predicts to the known spectrufas calculated from the lat- our results. Finally we remark that a summary of some of our
tice). This is the approach we follow here. There are twopreliminary results has appeared elsewH&le and a much
obvious models that one might try: constituent gluon modelsmore detailed exposition appears|i0].
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TABLE I. Glueball masses in units of the string tension, in the continuum [iBitThe SU¢c) values are
obtained by extrapolating the SNE5) values with arD(1/N?) correction.

mg/Jo

State Su2) SU®3) SU(4) SU(5) SU(*)
(s 4.71843) 4.32941) 4.23650) 4,18455) 4.06555)
0*** 6.8310) 6.529) 6.3913) 6.2013) 6.1813)
of T 8.1515) 8.2317) 8.0522) 7.8522) 7.9922)
0~ 6.489) 6.27195) 6.0318) 5.91(25)
0 * 8.1516) 7.8620) 7.87(25) 7.6337)
0™~ ** 9.81(26) 9.21(30) 9.51(41) 8.9665)
0+ 9.9532) 9.30(25) 9.31(29) 9.1929 9.0230)
0t~ 10.5229) 10.3550) 9.4375) 9.47116)
2+ 7.8214) 7.1312) 7.1513) 7.1920) 6.89(16)
otk 8.51(20) 8.5918)

2-7 7.8614) 7.3611) 6.86(18) 7.1816) 6.8921)
27" 8.80(20) 8.7528) 8.6724) 8.6238)
27~ 8.7517) 8.2232) 8.2421) 7.8935)
27+ 10.3127) 9.91(41) 9.7945) 9.46(66)
2+~ 8.3821) 8.3325) 8.0240) 8.0450)
2F* 10.5%30) 10.6460) 9.97(55) 9.9791)
1*++ 10.4234) 10.2224) 9.91(36) 10.2650) 9.98125)
1+ 11.1342) 10.1927) 10.8555) 10.2834) 10.0640)
1 9.86123) 9.5035) 9.6540) 9.36(60)
1+~ 10.41(36) 9.70145) 9.9344) 9.4375)

Il. THE ISGUR-PATON FLUX TUBE MODEL OF cluded in the mod€]6] because infinitesimah=1 fluctua-
GLUEBALLS tions are the same as infinitesimal translations of the circle.

. . - As usual when one quantizes over modes of all frequen-
Consider a quark and an antiquark sufficiently far apart. . . . I
: g . - cies there is a divergent contribution to the vacuum energy.
In a linearly confining theory, they will be joined by a flux

tube which contributes an energy that is approximately pro-rF:1 aarﬁzzztzljir?lvgg;gt pf((;e jac?z?re ?ﬁzc;rebsetdamtggrsearser;or_
portional to its length. One can attempt to use such states a5 g M=oy ' ‘ppea
the basis for a flux tube model of quarkonia. The correspond.§ fing Casimir energy. It 1S universal for bo_sonlc strings and,
ing model for glueballs would be based on a loop of funda" the case where the strings end on static quarks, is called

mental color flux that closes on itself. This color singlet ob—the Lischer term[11]. In the present case the string has

ject contains no quarks. If we neglect its thickness, we havgenodm rather than fixed boundary conditions, just as in cal-

a closed string of flux, and the glueball mass spectrum igulatlons involving Polyakov loopkl2], but the coefficient

obtained by finding the energy eigenstates of the quantize
string. This is the starting point for the Isgur-Paton md@g!

iffers due to the exclusion of thex=1 mode. Putting all
is together we can write the energy of the string plus its

and our consequent extensions. modes as

We start with a closed string of color flux in the form of a 13 1
circle of radiusp with bare string tensiow,,, and hence a Es=2mpo— - +— E m(n;+n.). 3
bare energy 120 pm=2

However, we know that what we have is not really a one-
dimensional string but rather a flux tube whose width will be
. o . . ~1/yo. For the low-lying states of interest to us we expect
Fluctuations about this circle are decomposed into dlscretewllw and so one might expect the simple harmonic fluc-

phonons of definite helicity. These phonons carry angula uations of the flux tube to be somehow suppressed. This is
morreﬂtum, e sboel;;erg mu;t be a term proportional to thﬁ"lcorporated within the Isgur-Paton modi6] by multiplying
total phonon num » given by the contribution of the phonons to the enefgycluding that

of the vacuum by a heuristic suppression factor that rapidly
> m(nh+no) 2) approaches unity gs increases. This leads to a final string
m=2 energy

Ep=2mopp. (1)

EphononsE

o Z
Il
oIk

added to the total energy of the state. Note that the above EM(p)=27 U+M Ty
sums begin with then=2 mode. Them=1 mode is ex- s\P p p

F(p) 4
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wherey=—13/12, M is defined in Eq(2) andF(p) is the TABLE Il. Glueball masses in units of the string tension. Pre-
factor that suppresses the string excitations at smah the  dictions of the simple no-parameter Isgur-Paton flux tube model
original model this was chosen to Bg¢p)=1—e ?, where =~ compared to the actual spectrum of the 8l5{=) theory.

f is a parameter which we would expect to ®¢,o). This

form is reasonable but somewhat arbitrary; one might ask, __ Mg /o

for example, why the string energys2 o, is not modified at J SU(=) P model

small p as vyell. _ _ ) ot+ 4.06555) 3.12
To quantize the string, we must take into account its mo- ~++x 6.1913 6.46

tion in the radial direction as well. In the Isgur-Paton model O Fr 7.9922) 8.72
one identifie__s the conjugate momentum for the string and o+ 6.8916) 6.79
writes a Schrdinger equation in the radial coordinaie SR 8:62(38) 9.06
_ g2 0+ 9.0230) 13.86
Tomg dg2 T Es (€ [ WO =Eu(®) 5 4 o
1= 10.0Q25) 10.84
_ 3 ; 3*F 8.30
where&= p*'“turns out to be the natural variable to use here.
This formalism assumes that the phonon modes are “fast” g—- 5.91(25) 3.12
compared to the collective radial modes and that they cang--—= 7.6337) 6.46
therefore be treated as providing an effective potential for g--+» 8.9665) 8.72
these latter modes. Clearly such an “adiabatic” assumption 5= - 7.9435) 6.79
is at best approximate: the model has only one sc¢ateand ot —* 9.6266) 9.06
so there is no reason for the phonon fluctuations toloeh 0+~ 9.47(116) 13.86
faster than the collective radial fluctuations for the low-lying ;- 9.64
part of the spectrum that will interest usndeed if one cal- 15— 9.3960) 10.84
culates[7] the low-lying spectrum one finds that the energy 3+~ ' 8.30

splitting associated with an increment in the phonon number
is of the same order as the splitting associated with an incre-
ment in the radial quantum number. This suggests that the

division into fast and slow modes is a crude approximation apyt its shortcomings and suggest some alternatives. We leave
best) . . _ _ to the next section the important question of how to split the
If we were in 3+1 rather than in 2 1 dimensions, the c=+ spectra in a way that is both natural in terms of the

above description of the model would change as followsstring model and reproduces the main features of the ob-
First, rotations of the flux-loop around a diameter provide anserved splitting.

additional source of angular momentum, and &jjacquires
a corresponding angular momentum term. In addition there
are extra phonons arising from fluctuations of the loop nor-
mal to its plane. This doubling of modes leads to a doubling The flux tube in the Isgur-Paton model contains flux in the
of the value of the string Casimir energy in EG). fundamental representation; it joins charges that are in that
The simplest version of the Isgur-Paton model $&ts) representation. For SM=4) there exist charges in higher
=1 in Eq.(4) so that there is no fudge factor. Singenerely  representations which cannot be screened by virtual adjoint
sets the overall scale of the mass spectrum, the mass ratiobargedi.e. gluong down to the fundamental. One can label
m/\Jo are then predicted with no free parameters at allcharges in these representations by the way they transform
These predictiongborrowed from Ref.[7]) are listed in under a center gauge transformatiae, Zy . If they acquire
Table II. The comparison is witlBU(N— ), since in that & factorz® we will refer to them as havingj-ality k. Since
limit, just as in the model, heavy glueballs do not decay. Thegluons transform trivially under the center they cannot
overall qualitative agreement is remarkable, with only thescreen théN-ality of a charge. For each such charge we have
0~ " far from its prediction in theC=+ sector, and moti- @ flux tube of a correspondirfg-ality k, which will possess a
vates the more detailed investigation of this paper. string tensiono,. We can consider a closed tube of such
flux, and we can then build a whole spectrum of glueball
states on this flux string just as we did for the fundamental,
k=1, string in the Isgur-Paton model. Thus Mgrows the
spectrum will acquire extra towers of states that are identical
In this section we point to several ways in which theto the spectrum obtained with the fundamental flux loop ex-
original Isgur-Paton model can be generalized. We start witltept that their overall energy scales /o, (ignoring any
the observation that one can build on other strings than theixing).
fundamental. We then point out that a curvature term in the If observed, such a spectrum would be a remarkable
effective string action makes an important difference. Themanifestation of the underlying string structure of glueballs.
argument for both these extensions is compelling. We the®f course it is not guaranteed that such a spectrum actually
turn to the short-distance fudge fact(p) in Eqg. (4), point  exists in the string picture: this will depend on the dynamics.

A. Extra strings, extra states

Ill. GENERALIZING THE ISGUR-PATON FLUX TUBE
MODEL
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Consider for example the case of @U If it happens to be 3 f ‘
the case thatr,_ , £ 20—, then thek=2 flux tube can break
up into two k=1 (fundamental flux loops, so that thek

=2 states are just multi-glueball scattering states formed OUpr “atol, 2F o T o |
of the k=1 glueball states. In the §4) gauge theory itis — v |77 }

known [13] that oy-,=1.40¢, in bothD=2+1 andD | 1 % ................
=3+1, and so the corresponding extra states should exis N I } ......... % .......... |
there. However the lattice calculations have not identified '

enough excitationgin eachJ”C sectoy to test for the pos-
sible presence of such extra states, so we will ignore this

potential state replication in the remainder of this paper, 0 o0z 00i 006 o008 01 oD
apart from pointing to its great interest for future calculations 1/N?
[10].

FIG. 1. Some of the observed SN\ C= =+ splittings plotted
B. Curvature or elasticity versus 1N2: the mass difference between the Dand the 0"

. ) o (®) and that between the™2 and the 2% (O). As N—x the
The flux tube must have a finite thickness if it is to have adependence is expected to be linear iN?/i.e. like the straight

finite energy density; presumably it will B8(1//o). Such @ jines added to the plot to guide the eye.
finite flux tube will presumably possess an effective elastic-
ity. In string language this is a curvature term. For a MesONgtring tensionoe(p), varies withp so as to vanish ap

the curvature of the straight string joining the quarks is zero_, o One can in fact parametrize the observed variation quite
and so a curvature term would have no effect to the order iccyrately using

1/p that we are including. For a closed string, on the other
hand, the curvature is constant and integrates-+dlé con- Teri(p)=0(1—e 17%), @
tribution. The constant of proportionality, our effective elas-
ticity, we denote byyg and we will regard it as an unknown One can then quantize the string model with this
free parameter. Note that we may regard the Casimir energy-dependent string tension and solve for its spectrum. Since
of the closed loop as simply renormalizing the elasticity — oes1(p) appears in the mass and hence in the kinetic energy
of the loop, the quantization is not entirely straightforward
13 and we leave its description to the Appendiklore details
YEYET 12 ®  may be found iff10].) The qualitative effect of using a vari-
ableo.s¢(p) in Eq. (5) is that at smalp the kinetic energy is
just as thecp piece was absorbed into a renormalization ofenhanced relative to the potential energy. This is much the
o. Although there has been some discusdibf] as to the same as the effect of our fudge factfp). However it has
sign such an elasticity should take, we shall legna@s a free  the advantage that there is no free param@erfunctional
parameter, whose value is to be determined by fitting théorm) to choose and there is no ambiguity as to how one
spectrum. should apply it.

C. Modification at short distances IV. SPLITTING C=+ FROM C=—

Since the flux tube has a finite width, a glueball will pre-
sumably cease to look like an excited closed string whén
much less than that width. This is embodied in the Isgur
Paton model by a fudge factét(p)=1—e" ' which sup-
presses the contribution of the string phonong-as0, as in
Eq. (4). The detailed form of(p) is Iargely a_rbitrary, asis now turn to the problem of how one might split this= +
the choice to suppress the phonon excitations but not thgegeneracy in a way that is both natural in terms of the string
2mrp string contribution. Since the spectrum of the string i, q4e| and reproduces the main features of the observed
model is nonsingular when we gép) =1, the effects of the  qjitiing. We shall begin by summarizing what these features
suppression factor are not large and the details do not mattgke and we shall then consider two possible dynamical
greatly. We have calculated the spectrum for various possiyechanisms: direct mixing and adjoint mixing. Additional
bilities and we find that as far as tfe=+ spectrum is  mechanisms, such as indirect mixing dastring mixing, are
concerned what one needs is a modest short-distance SUkplored in[10]. In each case we shall ask how well the

pression so as to get the'0,2" * splitting about right, and  nain observed features are reproduced.
then one can tune the/p contribution so as to raise the

overall spectrum to about the right level.

A quite different possibility is to make the string tension a
function of p rather than to impose a fudge factfp). This From the masses listed in Table | we see that Ghe
is motivated by a recent studi§5] of closed flux tubes in the +/— splitting possesses the following qualitative features:
dual Ginzburg-Landau theory. They find that the effective In Fig. 1 we plot two examples of thé= = splitting, as

For N>2 the flux tube carries an arrow. In the simple
Isgur-Paton model there is no mixing between loops of op-
posite flux, and the resulting states are degenerate. Since the
direction of the flux reverses under charge conjugatiyn
this predicts degenerateé= + spectra, as in Table Il. We

A. The observedC=+/— splitting
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I I l l ‘ moff_m0++:1.8526)\50'
s - >mMy--—Mmy++=1.0138) /o

>m177—m1++=—0.62(65)\s’t7 9

S

r S UUPPTPPPS T 1 (obtained atN=x) that the magnitude of the splitting also
""""""" g decreases with increasing phonon numBecall that for

L 1 the lightest]=0,2,1 glueball states the total phonon number
in Eq. (2) is M=0,2,5 respectively.Note that the decrease
we see is even faster when the splitting is expressed in terms
of the average mass. All this provides constraints on possible
0 0.05 0.1 015 0.2 0.25 splitting mechanisms.

1/N?

g o = 00 ©
T
L

'

< — (%] w
T
Il

B. Direct mixing
FIG. 2. The SWY2) 0" mass &), the SUN=3) 0** masses

(@), the SUN=3) 0~ ~ masses ¢ ), and the average of the'd Since a flux loop has a directioh,or R, it is convenient
and 0~ massesQ), plotted against N2, with the expected large- [0 introduce 2-component wave functions:
N linear dependence shown in each case. y
qu< L). (10)

a function of 1N2. This is a natural variable to use since the =
Ieadlngzj corrections to the large-limit are expected to be |, this notation, we can writtunnormalizeliC= + states as
O(1/N<) [16]. We infer from this ploand from similar plots
of other statesthat the splitting remains nonzero in tihe 1 0
=oo |imit; it is a leading order effect. Ve =y 0 + 1)

In SU(2) there is noC= — sector and one can ask what (11)
the SU2) 0" mass continues to al increases. This will 1 0
cle_ar_ly depend on the dynamics_that_ produce_s (the_i WC_ZI/I(O) _lp(l)
splitting for N=3. For example, if this dynamics simply
splits the 0" and 0"~ equally from their naive degenerate
masses, then we would expect the (3U0" to continue and Eq.(5) becomes
smoothly to the average of the’0 and 0~ masses. As Ho 01{¢
another example, if the shift involves just the 0, then the HpV¥= 0 H ( ): EW (12
SU(2) 0* will continue smoothly to theN=3 0**. Con- RI\ YR

versely, if the shift affects just the'0", then the continuation whereH, =Hp, is the operator on the LHS of E¢5).

should be with the 0™ In Fig. 2 we plot the 0 and 0" ) With the above Hamiltonian there is no mixing betwéen
Masses, as well as the average of the two, as a function gf,r states and hence r@= = splitting. To obtain such a
IN?. We see that in all cases the va_rlatlor; whthfor N gpjitting we need a nonzero probability forLastate to turn
=3 can be described using just a leadm@/N® correction.  jntg anR state and vice versa, which clearly requires some
We also note that the SB) 0" mass extrapolates precisely off-diagonal terms to appear in the Hamiltonigh So we
from the 0" * masses while it is inconsistent with a smooth gjter Eq.(12) to define our “direct mixing” Hamiltonian as

extrapolation of the averaged= + states or of the 0.

The same is true for the tensor: the @U2" mass is a i
smooth continuation of the SBIE=3) 2= masses, and not Hair ¥ = (¢ ):E‘I’ (13
of the average of the2" and 2~ masses, or of the 2. R

We shall see that this observation provides a tough constraifhere we shall choose to keepreal and constant. A simple

HL o

o HR

on possible mechanisms for splitting thie=+ andC=— motivation for such a mixing arises from the observation that
sectors. when the radius of the flux loop is less than the flux tube
The C= = splitting appears to decrease as the mass inwidth, we have something that is no longer a distinct loop,
creases. To be more specific we infer from but is rather some kind of “ball” which will no longer have
any definite orientation. In a path integral picture, we can
M-~ — Mg+ +>Mg——+ — Mo+ +x (8)  think of a path where a loop of orientatidn(for example

shrinks into a ball, at which point it loses any memory of its
initial orientation, and then expands back out into a loop of
that states with larger radial quantum numbegy, are split  either orientation with equal probability. This transition will
less than those with smalleg. (Recall that in the flux tube lead to a finite amplitude betwedénandR loops.
model these lowest excitations are radial rather than pho- We shall return later to ask how well this model fits the
non, Furthermore we infer from spectrum. For now we concentrate on its qualitative predic-
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tions, taking the approximatiod, =Hg=M whereM is the ~ not clear if it makes sense to use a closed adjoint loop as the
mass of the unmixed state. Then the energy eigenstates #@Sis for a set of states. However we know thahas~ the
clearly string becomes stabld6] so at least for largd\ it can be
used in this way. Since, as we have seen, lattice stl8ies
Mco.=M=*a (14)  find that the low-lying S2) spectrum differs only by small
corrections from SU{ =), it is reasonable to assume that
so thatC=+ states are split equally from their common the adjoint string has developed only a modest decay width
Isgur-Paton value. Three immediate observations follown SU(2). (As indeed seems to be the case] in 3+1
from the above: dimensions.If so then the decay time will be long compared
For states of approximately equal the splitting should o the characteristic time scale of the low-lying string modes,
be roughly the same independent of the phonon number. Thid we can safely quantize the string in the Isgur-Paton fash-
would be the case, for example, for the lightdst0,1,2  ion. We will assume that this is so from now on, although an
states. However, as we have seen in B, the spliting  explicit lattice verification.would clearly b(_a very helpful. _
does in fact vary a great deal amongst these states. We can use an extension of the formalism in the previous
It is the average of th&€=+ and C=— masses that Subsection to derive the Hamiltonian, defining the wave

equals the mass with no mixing. As we decrebsgom N function as
= it is this average that should extrapolate to the SU(

=2) value of the 0 mass, because the Hamiltonian there is v+
the same asl, or Hg. [All this up to O(1/N?) corrections) v=| ¢ |. (15
However we have seen in Sec. IV A that this is not the case: Vs

the SU2) 0" mass equals the SME3) 0" mass up to
O(1/N?) corrections.

We expect the wave function to have a smooth limit as
N—o, and so the probability fop to be less than the flux H. 0

However since), always ha<C= +, the Hamiltonian

tube radius should also have a nonzero limit. Thus.theR “a
mixing and the consequei@= =+ splitting should be non- Hagj=| 0 H- 0 (16)
zero atN=oo, just as is observedThis appears to contradict ag; 0 H,

the conventional statemefl6] that mixings vanish af

— 0 but we believe that the standard arguments do not appl quite simple: we can clearly reduce it to a two-component
to our kind of “mixing.”) _ _ _calculation in theC=+ sector, and a simple Isgur-Paton
We might suppose that the first observation becomes ircalculation in theC=— sector. We shall assume that there is

relevant when we perform the actual numerical calculationspo mixing between fundamental and adjoint loop states that
but unfortunately it remains an issue. Moreover, however weyaye differing phonon occupation numbers.

tune the parameters in this model, it remains the case that it |n Eq. (16) H,=H_ is the usual Isgur-Paton Hamil-

is the average of the’0" and 0~ masses that is predicted tonian.H, will be identical except that the scale is set by the
to continue smoothly to the SB) 0™ mass, and, as we have adijoint string tensiong,, rather than by the fundamental
seen, this is contradicted by the lattice calculations. Thug js frequently speculated that, and o are related by the
other, perhaps less straightforward, mechanisms need to Bgtio of guadratic Casimirs
considered.
g, 2N2
C. Adjoint string mixing > NZ—1° a7

We pointed out in Sec. Il A that in SW(=4) theories
there exist extra stable strings and hence extra states. Sintattice calculations iD=2+1 [18-2( find that for SU2)
these are just scaled up versions of our fundamental string,=2.50,, which is quite close to the value of 8/3 one ob-
spectrum they would not help in splitting=+ from C  tains from Eq.(17). Thus we expect states based on the ad-
= —. However there is another type of string in the theoryjoint loop to be about a factor of2.5~1.5 heavier than
that we have not yet considered: the one that carries adjoir@orresponding states based on the fundamental loop, and so
flux. Such a string carries no arrow: it is intrinsical/= quite massive. Indeed, if we assume a simple two body mix-
+. So any mixing would affect th€ =+ spectrum: the 0* ing, with H, replaced byM =my-- andH, by M,=1.5M,
mass wouldprobably be driven down while the 0~ would  and if we choosex so as to obtain the observed,++ mass,
be left undisturbed. But this does not lead to problems withwe find that the lightest scalar “adjoint” state h&, o+ +
the 0" in SU(2) because the same adjoint string exists in=1.8m,--. This is light enough to be important by its ex-
SU(2) and would drive down the 0 mass there as well. So plicit presence in the spectrum, in addition to affecting the
we have a mechanism that might at last explain why thdundamental states through mixing.

SU(2) 0" smoothly interpolates onto the*d for SU(N How can the fundamental flux loop mix with an adjoint
>2). loop? Once again our underlying physical picture is that, for
The problem with this mechanism is, of course, that thesmall p, these loops of string become rather like “balls” of
adjoint string can be broken by gluon pair production so it isflux instead, which may reemerge as a loop of different ori-
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entation, or indeed even of a different type of flux. We now—13/12, whereyg is the string curvature described in Sec.
have the following qualitative predictions: Il B, and « is the mixing strength.

As with the direct mixing of Sec. IV B, we expect the  There are however some problems with just taking the
mixing, and hence the splitting, to be leading ordeNijrasis  mass spectrum as given in Table | and doing a Ig&dtt on

observed. _ o _ ~ the model parameters. First we have already seen that the
As remarked above, since the adjoint loop mixes with justy,odel prediction is going to be far from the lattice 0, so

the C=+ sector and does so for all SNE2) gauge theo- jncjyding it in the fit might badly distort the final “best fit.”
ries, we expect the S@) 0" mass to continue smoothly 0N yjoreover there are theoretical reasons for thinking that the
to the SUN>2) 0 _Masses, as I ob_seryed. . lattice 0" * spin assignment might be mistaken and that this
Whether the splitting decreases with increasing phonofy actually a 4 . (And, similarly, that the lattice 0~ is
p: qn;ﬁgrsMaaégéjg (;ag;?élﬂ;?obneh Is however not clear—it really a 4" .) To a lesser extent similar questions arise with
) the purported]=1 states. We shall therefore exclude these

The observed pattern of thé= = splitting has proved ; o
very constraining on possible dynamics, but the model istates from the fit but will instead quote the values for these

which the fundamental loop mixes with an adjoint loop ap_masses, as pred|cted_ by the best fit to the other states.
pears to have the right qualitative features. In the next sec- A S€cond problem is that the most accurate masses are for

tion we shall see how well it can do at the quantitative level the lightest states. Having the smallest errors these will pro-
vide the most important component of tlyé function that

determines the best fit. On the other hand the lightest states
possess the smallest radjpsand so we expect the flux loop
We have performed a large variety of comparisons withmodel to suffer the largest corrections for such states. Thus
the lattice spectrum. We have used the diffei@rt = split-  we might not want them to dominate, and so possibly distort,
ting mechanisms described in this paper; we have fitted to athe best fit.
the lattice masses or just to a more reliable subset as dis- This second problem has no unambiguous resolution. The
cussed above; we have used the actual errors inyther  fact is that we know that the model is a simple approxima-
expanded errors as described below; we have used expligipn that can at best incorporate only the essential features of
short distance fudge factors of various kinds or agyeball structure. The most that we can expect is that it
p-dependent string tension as described earlier, or indeed ngygnly reproduces the spectrum and whether it can do so is
suppression at all. The reader will be relieved to learn thay nat we want to learn when we fit the model to the data. To
we do not intend to describe this very large number of mode&0 this we need to embody what we mean by “roughly” in

fits herle buSt will :ja};fher f?cusdo?f_ttwo of lghefmozé}rgec\j/antsome specific way into the fitting procedure. In order not to
exampies. Some different modet its can be foung=nan be unduly biased by the very small errors on the lightest

others will appear if10]. 0
The generalized flux tube model typically has two or three"aSSes, We have enhanced all the errors by 5% of the mass,

unknown parameters. First thereyisthe (renormalized cur- and add iF in quadrature With the statistical error. In practice
vature or elasticity. Second there is the mixing parametePhe best fits turn out to be sm_ular whether we perf_orm such
characterized by a strength,. There is the parametef an enhancement or not. That is to say, we are saying that we

which characterizes the short-distance cutoff imposed in th/ant to know if the model can fit the masses withirb%.
Isgur-Paton model. Alternatively we can usgi(p) instead O_f course the_best fit might do better than that; but at least it
of o at short distances and this enables us to do without th#ill not be driven by the very small errors on the lightest
parametef. We can then solve the model for various valuesmasses for which it is probably least reliable.
of these parameters and find which fits the lattice spectrum In each case we obtain the predicted spectrum by solving
the best. the coupled set of differential equations, using the numerical
In this section we will describe what we find when we fit technique detailed ifl0], on a grid in parameter space, and
the lattice data with adjoint string mixing, as described inthen we perform a final simplex minimization starting at the
Sec. IV C, or with direct mixing, as described in Sec. IV B. most favorable grid point to find the begt fit. (With just
In both cases we shall usepadependent string tension, as two parameters such a crude approach works reasonably
described in Sec. Il C, to embody the short distance correowell.) The best fit is determined using the lightest three states
tions to the flux tube picture, in a way that introduces no newin the 0" * and 0" ~ sectors, and the two lightest states in the
parameters. In our physical picture of the mixing, we see ib*+ gnd 2*~ sectors.

as occuring at smapp and so we choose the mixing term in  \We have remarked that there are reasons to think that

V. FITTING THE LATTICE SPECTRUM

Egs.(13), (16) to satisfy these simple models should work best in Mhe> o limit, and
so we display the results of fitting to the lattice spectrum as
a(p):a< 1 ‘Teff(P)) (18) extrapolated tdN—o. A more thorough display of the re-
Teti(®) sults for allN may be found if10]. In Table 1l we show the

mass spectra for the adjoint mixing mechanism, and in Table
(where we now drop the subscript ar,). In the case of IV we present the values of the fitted parameters, for all
adjoint mixing we determine the adjoint string tension fromvalues ofN. In Fig. 3 we display the spectrum Mt=. The
Eq. (17). Thus there are two parameters to be fittee: y¢ ~ corresponding spectra for the direct mixing mechanism are
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TABLE lll. Best fit spectrum of the adjoint-mixing flux tube Neo
model to the SUY) glueball masses, in units of the string tension. ' ' ' ' ' '
15 B
mg/Jo
State SuR2) SU(3) SuU4) SU(5) SU()
o+ 4.87 4.29 4.09 4.04 3.94 °
ot+* 6.84 7.03 6.86 6.86 6.78 °
Q= 8.05 9.05 8.88 8.81 8.51 o °
(O 6.04 5.83 5.60 5.36 x
o % 8.86 8.70 8.53 8.35 © o o Tl.
0 ** 1090 1077  10.63 10.48 r i H il
0" 14.06 14.13 14.00 13.93 13.78 "« o }
0*- 14.21 14.07 13.98 13.82 x|
4=+ 11.05 10.25 10.13 10.17 10.16 Zb ‘ {0 x N
4+~ 11.93 11.77 11.59 11.41 B
2+* 7.55 6.87 6.70 6.70 6.64 x Hx
2%+ 996 911 897 901 899 | I R
2*- 8.59 8.40 8.19 7.97 o
2+ 10.83 10.68 10.52 10.35 5 T
1= 9.95 9.19 9.05 9.07 9.05 I.
1=~ 10.87 10.70 10.52 10.33
3= 8.78 8.06 7.91 7.92 7.88 -
3= 9.76 9.58 9.39 9.18
shown in Table V, and in Table VI are the parameters for the
direct mechanism. Figure 4 displays the direct mixing spec- o L ! L L L L .
trum atN=co. M=zmin +0)

We see from the figures that the best fits, whether ob- - . .
tained using the direct or the adjoint mixing mechanisms, are FIG. 3. The SpeCtrum_for the ad10|_nt mixing mechanism com-
of an overall reasonable quality. A closer examination of the’2ed 10 attice data @i=c. The x axis gives the total phonon

. numberM. The 0 * and 0" ~ are compared withM =4, and states
detailed spectra does however show that both models ha
some minor difficulties. The direct mechanism has problems
with the excitations in thd=0 sector: by the time the third
excitation is reached, which has a greater a\/emg'mn the Ing should be able to do much better than either model alone.
ground state, the conjugate mixing drives the two modelCombining these models is quite natural; our picture for the
states much farther apart than they ought to be. The way thatay an oriented fundamental loop may evolve into an adjoint
the adjoint mixing model avoids this problem is that theloop (through contracting into a small “disoriented” baik
mass of the lightest adjoint loop state is naturally close tcprecisely the way we saw the direct mixing between funda-
that of the 0" **, because/o,/o;~1.5. Thus, after mixing, Mental loops of opposite orientation proceeding. This picture
the 0" ** can be largely an adjoint loop, and thé 0** can  Will, in general, require two mixing parameters. While it is
then be(largely) the first fundamental loop excitation. How- interesting to explore these ide@t0] the analysis would
ever, the direct mixing mechanism does have numerica”y:learly benefit from improved lattice calculations where a
better values ofy?, and thus we ought to consider it more larger number of excited states are accurately determined.
likely than the adjoint mixing mechanism. This suggests that Returning to the best fit parameters listed in Tables IV and

a flux tube model that combines both direct and adjoint mix-Vl, we observe that all our fits requirg to be positive or
very close to zero. Ignoring the values for @) there is a

trend in the values of consistent with a M? relationship;
see[10] for more details. Taken together with E@) this
tells us that the observed mass spectra do indeed require a
nonzero curvaturéelasticity) term, yg[0.5,1.4, in the ef-

jith J=1 are compared witiv =5.

TABLE IV. Best fit parameters of the adjoint mixing model.

Adjoint loop mixing

2
Group ¢ 4 Xs/DOF fective string model for the confining flux tube.
SU(2) 0.86+0.65 —0.19+0.07 0.47 From either Fig. 3 or Fig. 4 we see that the conventional
SU(3) 4.5+0.60 0.57-0.09 1.1 spin assignments of the heavier states are called into ques-
SU4) 4.2+0.66 0.42:0.08 1.2 tion. The model consistently puts the 4 and the 4~
SU(5) 3.8+0.84 0.25-0.08 1.4 states at masses corresponding to lattice states with spin O.
SU(x) 3.3+0.8 0.070.07 0.99 These states do not contribute to the and so their masses

are purely predictive—the agreement is remarkable. Further-
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TABLE V. Best fit spectrum of the direct-mixing flux tube N==
model to the SUY) glueball masses, in units of the string tension. ' ' ' ' ' '
151 E
mg/Jo
State Su2) SU(3) SU4) SU(5) SU()
(s 4.67 4.37 4.19 4.13 4.19 °
0*** 7.84 6.98 6.84 6.84 6.22 o
OFTHx 9.77 7.66 7.43 7.11 7.07 )
0 - 6.03 5.82 5.64 5.21 ° °
0~ * 8.86 8.69 8.56 8.24 o o o Tl,
0 ** 1090 1076  10.65 10.38 or - il
0" 13.86 13.66 13.52 13.48 13.32 g ° }
0™ 14.43 14.25 14.15 14.01
4=+ 10.13 10.04 9.90 9.91 10.13 Zo ‘ ° {o x o= H 3
4% 11.92 11.76 11.62 11.29 “ .
2+ 7.35 6.83 6.67 6.64 6.76 H"
25T 9.86 8.92 8.79 8.80 8.90 I" I P
25~ 8.58 8.39 8.22 7.84 o
25 10.83 10.68 10.54 10.24 5T 7
1=+ 10.88 9.03 8.89 8.88 9.07 1~
1=~ 10.87 10.70 10.55 10.21
3=t 8.59 7.96 7.80 7.79 7.95 " o—
3= 9.76 9.58 9.42 9.06
more, while the lattice states™T agree with the model's
predictions for the lightest state withl =5 (which is the 0 . . ) , , )
smallest value oM giving spin 1), the states conventionally ° ! %Adm(n;fn-m) 4 5 6

labeled  ~ are at the mass predicted for states witls= 3.

These states are also related by a spin ambiguity of mod4 on FIG. 4. The spectrum for the direct mixing mechanism com-

a cubic lattice, and so we must also investigate these assigpared to lattice data @i=c. The x axis gives the total phonon

ments in the future as well. numberM. The 0 * and 0" ~ are compared witthM =4, and states
Finally we remark that the features we have described ar#ith J=1 are compared witl =5.

not only robust against the detailed fitting procedures used

but much the same conclusions are obtained if we replace thgt the closed flux loop are either radial or phonon-like, and

p dependence of the string tension with a short distancgue confronted its mass spectrum with the rather accurate

modification of the kind shown in Ed4). mass spectra available b=2+1 SU(N) gauge theories
[3]. As N—o the gauge theory simplifies in ways which
VI. CONCLUSIONS bring it closer to some of the model's assumptions, e.g. the

neglect of decays, and so one can argue that a comparison in
this limit makes particular sense. If we express the observed
€masses in units of the observed string tension, then the mod-
el’s predictions for these dimensionless ratios involve no free
parameters at all. We found that these predictions were, for
the most part, quite remarkably good in t8e= + sector of

In this paper we set out to test the idea that glueballs ar
guantized closed strings of color-electric flux. Such a pictur
arises naturally in linearly confining theories, such asI$JJ(
gauge theories in 21 and 3+ 1 dimensions, where distant
fundamental charges are connected by flux tubes.

We started out with the specific dynamical framework of

X . o states; and for the€€=— sector they embodied the main
the Isgur-Paton flux tube modg8], in which the excitations qualitative features even if the quantitative comparison was
less good.

TABLE VI. Best fit parameters of the direct mixing model. Lo
"p ! in9 Of course, when the flux tube radiys, is smaller than

the flux tube width the picture must break down, embodied
in the model by suppressing the potential energy betow

Direct mixing

2
Group ¢ L4 X</DOF ~1/f, wheref is a parameter that needs to be determined but
SU((2) —0.42-0.12 1.6 which we expect to b®(yo). In this paper we described
SU(3) 2.17+0.6 0.57-0.10 1.0 other ways of including such a cutoff; in particular through a
SU(4) 2.15+0.6 0.41-0.10 1.1 dependence of the string tension @nBy taking o(p) from
SU(5) 1.98+0.6 0.28-0.10 1.3 calculations in the literaturgl5], one can avoid having the
SU(x) 1.36+0.6 —0.03+0.11 0.65 additional parametef to fit. We then pointed out that one

should in general include a string curvature term, which for a

036006-9



ROBERT W. JOHNSON AND MICHAEL J. TEPER PHYSICAL REVIEW B6, 036006 (2002

closed loop will make a contributione/p to the effective n;_,=2, n._,=0. Such (nea) degeneracies provide a
potential that is of the same form as the Casimir string encharacterisitic pattern that would test the general dynamics
ergy. This introduces a parametgrthat needs to be deter- of the Isgur-Paton flux tube model.

mined. Finally we noted that th€= + degeneracy in the In SU(N=4) gauge theories there are additional strings
model mass spectrum is contradicted by the splittings seen ifian the fundamental which will be stable if their string ten-
the lattice spectrum and we were compelled to consider dysions are low enough. ID=3+1 this is expected to be the
namical mechanisms that might reproduce these splitting$ase on theoretical groun¢i23], and indeed is known to be
Such mechanisms typically involve a mixing parameter the case for SU) [13,24. Thus the string model predicts
that also needs to be determined. In searching for the best fffat, if we neglect mixings and decays, the observed mass
to the observed spectrum, we found that whatever mixinggPectrum will contain towers of states that are exact
mechanism we used we invariably required a substantiaic@/€d-up replicas of the spectrum arising from the funda-
positive string curvature contributiony [0.5,1]. mental string, and that the number of these “towers” of

The qualitative features of the observ€d= + splittings states will grow asN—co. This Is a dramatic and robust

roved to be very constraining. The only mechanism that w rediction of the basic flux tube picture which can and needs
b y 9. Y 0 be investigated by lattice calculations.

were ablg to. construct. tha_t was natura_l, simple and _had the We have seen that the kind of exercise undertaken in this
right qualitative behavior, mvolvgd adding to the basic f,lu_x aper, testing a model against lattice calculations, has a fruit-
tube model a sector of states built on closed loops of adjoing, impact in both directions. We have been forced to gener-

flux. These are intrinsicallf = + and we introduced a mix-  gjize the model in ways that, in retrospect, are entirely natu-
ing between these states and e + states built on the 3] And the model points to both potential weaknesses in the
fundamental loop. We pictured the mixing as arising at smal|attice calculations and motivates specific further calcula-
p where a closed flux tube becomes a flux-less “ball,” andtions that promise to be very informative however they turn
we conjectured that this kind of mixing may be leading orderout.
in 1/N, as required by the lattice spectrum. The implication

of these calculations and also calculations with other mixing
mechanisms, such as a direct mixing between fundamental
loops of opposite orientation, was that the simultaneous pres- We are grateful to Jack Paton for valuable discussions
ence of adjoint loop and direct mixing was likely to be muchduring the course of this work. One of (R.W.J) would like
more successful in quantitatively reproducing the observetb thank the Rhodes Trust for financial support.

spectrum.

However even these best fits always left us with one very
large discrepancy: the 0" state. In the model this is a
highly excited statginvolving eight phonon unijsand is In this appendix we briefly describe how we derive the
predicted to be much heavier than the lattice'0 This is a  canonical variables for the Isgur-Paton model. First we dis-
robust result of the model: the splitting of thé 0 and 2°*  cuss the traditional model’s equation, and then we describe
states, which is two phonon units, is what essentially deterhow we generalize the formalism to accommodate an effec-
mines the 0 © mass. On the other hand the predicted™4 tive string tension that varies with the loop radius.
mass is very close to the lattice ® mass(and also for the
model’s 4"~ and lattice 0 ). This suggests that the lattice
calculation may have mislabeled this state; after all one can- ) ) )
not distinguish)=0 from J=4 by the rotational symmetries ~ \We have a circular loop of mags=2p which moves in
of a square lattice. This has provoked lattice calculations tha®n effective potential provided by the phonon modes etc. as
are attempting to resolve this rather basic quesizin22. discussed earlier in this paper. Thus the kinetic and potential
(For a detailed exposition of the problem, as well as a mean$fms are
for its solution, se¢10].) 2

If there are states built on the adjoint loop they will be T= Py V=2map+F(p) M+y (A1)
about half as heavy again as the corresponding states built on Amop’ p
the fundamental loop and so only the very lightest are likely
to be present in the currently available lattice spectrumwhereF(p) is the usual short distance fudge-factor, which
Moreover, since the adjoint loop can break, these states maye shall now set to unity for convenience. Under the tran-
have large decay widths, their masses may be shifted frorscriptionp,—i#%(d/dp) we have(with 7 =1)
their naive values, and perhaps only the lightest states will
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APPENDIX

1. The Isgur-Paton Hamiltonian

actually exist. However, with a modest improvement in the P
quality of the lattice calculations, one could search for their 2 —
- p —1 dp dp
presence. The same improvement would allow us to search T=_r_ , =77 (A2)
for degeneracies between states of differihgut with the 2u 4Amo p

same number of phonon “units.” For example there will be
an excited 0 with phonon content,,_,=n,_,=1 that We want canonical variableiP, such thafT is quadratic in
should be degenerate with a*4 with phonon content P.. In passing from the above classical system to the quan-
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tum system there is an ambiguity how to order the variousor
terms inT. We chooseP,= (3/dp)/p**? so thatT«P?. That

is to say we choose dé=aaf(p)p*dp. (A7)
£=p32 (A3) Substituting the function in E(7) for o, we find
so that _ AR U201 _ a—172\1/2
§=o077| dpp7(1—e )75 (A8)
-1 (3\2# -9 & : . -
P (7—§2= ma—gz (A4) where the integration constant has been determined by the

boundary conditiorg(0)=0. This integral cannot be put into
closed form, yet we need the inverse function explicitly so as
to substitute it into the potentidl(p(£)). While it would be
nice to include explicitly the function froril5], any func-
tion which approximates it reasonably well will suffice. So
If the vacuum of non-Abelian gauge theories i€ywe-1l)  rather than using Eq7) we shall use a less natural form, but
dual superconductor, then flux tubes will arise through a duabne that will suit our manipulations better. Now, we need a
Meissner effect. Thus it is interesting and relevant to ask hoviunction for o¢(p) which goes to zero ags—0 and which
closed flux tubes behave as the radius is varied in th@pproaches asp—oo, and which is integrable with respect
Ginzburg-Landau theory of type-Il superconductors. Asto the measure'?dp. As an example consider
pointed out in[15] what happens is that the effective string o
tensiono«(p) vanishes ap— 0, roughly as in Eq(7). If we oei(p)=0c(1l—e P72 (A9)
replaceo in the Isgur-Paton model by suchuag(p) we will ) , , , ,
be providing the model with a short-distance cutoff that isWhich, with a suitable value fok, will crudely approximate
both natural and employs no free parameters. The price fdhe dependence found [15]. Performing the integral, and
this is some complication in the quantization of the model.MPOsINg£(0)=0, we have
However, as we shall now see, this is a problem that can be

and we arrive at Eq(5).

2. Generalizing to o (p)

overcome. é= Gllzf dppllz(l— e—f,ﬁ’% _ 301/2 p3/2_ 1 +Ee—fp3/2
As we saw earlier, the tricky term in quantizing the Isgur- 3 fof
Paton model is the kinetic energy, so that is where we will (A10)

begin. Abusing notation slightly, We cannot find the functional inverse explicitly, but as we

P 2 are ultimately working with a discrete sg;} related toft;},

2 4 > we can simply solve the equation numerically to give

T= &_,_ _% , (A5) which we can put into the potentiagd=V(p(¢;)). [In prac-
2 AT\ ow(p)p tice we have usedres=o(1—e )2 which leads to a

) . . slightly more complex relation than the abopReturning to
where geg(p) is now included in thep dependence of the the kinetic energy,

kinetic energy. Ifo.4 were a constant, we would gétas in

Eqg. (A4). Now we must find a canonical variabfesuch that -1 &
T———, (A11)
d¢ d am g
dp d¢ d . : . .
- (AB) and_ we proce_ed with the_ numeru_:al solution of the dis-
Voei(p)p A€ cretized equation as described earlier.
[1] M. Teper, hep-th/9812187. [9] R. Johnson and M. Teper, Nucl. Phys(Boc. Supp).63, 197
[2] C. Morningstar and M. Peardon, Phys. Rev.6D, 034509 (1998.
(1999. [10] R. Johnson, Ph.D. thesigttp://www-astro.physics.ox.ac.uk/
[3] M. Teper, Phys. Rev. 39, 014512(1999. ~rjohnson/thesis.ps
[4] A. Szczepanialet al, Phys. Rev. Lett76, 2011(1996. [11] M. Luscher, K. Symanzik, and P. Weisz, Nucl. Phiad73
[5] G. Karl and J. Paton, Phys. Rev. @1, 074002(2000; T. H. 365(1980.
Hansson, inNon-Perturbative Methodsedited by S. Narison [12] Ph. de Forcrand, G. Schierholz, H. Schneider, and M. Teper,
(World Scientific, Singapore, 1985 Phys. Lett.160B, 137 (1985.
[6] N. Isgur and J. Paton, Phys. Rev.3}, 2910(1985. [13] B. Lucini and M. Teper, Phys. Lett. BO1, 128(2001); Phys.
[7] T. Moretto and M. Teper, hep-lat/9312035; T. Moretto, Ph.D. Rev. D64, 105019(2001).
thesis, Oxford University, 1993. [14] H. Kleinert and A.M. Chervyakov, hep-th/9601030.
[8] V. Agostini, G. Carlino, M. Caselle, and M. Hasenbusch, Nucl.[15] Y. Koma, H. Suganuma, and H. Toki, Phys. Rev6@ 074024
Phys.B484, 331(1997). (1999.

036006-11



ROBERT W. JOHNSON AND MICHAEL J. TEPER PHYSICAL REVIEW B6, 036006 (2002

[16] G. 't Hooft, Nucl. Phys.B72, 461 (1974; E. Witten, ibid. Stephenson, Nucl. PhyB550, 427 (1999.
B160, 57 (1979; S. Coleman, 1979 Erice Lectures; A. Mano- [21] R. Johnson and M. Teper, Nucl. Phys(Boc. Supp). 73, 267
har, 1997 Les Houches Lectures, hep-ph/9802419. (1999.
[17] S. Deldar, Phys. Rev. B2, 034509(2000; G. Bali, ibid. 62, [22] R. Johnson and M. Tepéin progress
114503(2000. [23] A. Hanany, M. Strassler, and A. Zaffaroni, Nucl. Ph&13
[18] J. Paton(private communication 87 (1998; M. Strassler, Nucl. Phys. BProc. Supp). 73, 120
[19] A. Momen and C. Rosenzweig, Phys. Revs6) 1437(1997). (1999.

[20] G. Poulis and H. Trottier, Phys. Lett. BOO, 358 (1997); P. [24] M. Wingate and S. Ohta, Phys. Rev.a3, 094502(2001).

036006-12



