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Radiative corrections to Kaluza-Klein masses
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Extra-dimensional theories contain a number of almost degenerate states at each Kaluza-Klein level. If extra
dimensional momentum is at least approximately conserved then the phenomenology of such nearly degenerate
states depends crucially on the mass splittings between KK modes. We calculate the complete one-loop
radiative corrections to KK masses in general 5 and 6 dimensional theories. We apply our formulas to the
example of universal extra dimensions and show that the radiative corrections are essential to any meaningful
study of the phenomenology. Our calculations demonstrate that Feynman diagrams with loops wrapping the
extra dimensions are well-defined and cutoff independent even though higher dimensional theories are not
renormalizable.
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I. INTRODUCTION

Radiative corrections are known to play an important r
for precision measurements, but are generally not expe
to radically change the nature of high energy ‘‘discover
processes like the production and decay of new particle
collider experiments.

In this paper we point out that this expectation can
completely wrong with respect to the collider physics
some extra-dimensional models. Radiative corrections
crucial for determining the decays of Kaluza-Klein~KK ! ex-
citations. This is because at the tree level KK masses
quantized, and all momentum preserving decays are exa
at threshold. Radiative corrections then become the domi
effect in determining which decay channels are open.

Consider for example the simplest case of a massless
propagating in a single circular extra dimension with rad
R. This theory is equivalently described by a four dime
sional theory with a tower of states with tree level mas
mn5n/R. The integern corresponds to the quantized m
mentump5 in the compact dimension and becomes a qu
tum number~KK number! under aU(1) symmetry in the 4d
description. The tree level dispersion relation of a 5
massless particle is fixed by Lorentz invariance of the t
level Lagrangian

E25pW 21p5
25pW 21mn

2 , ~1!

where pW is the momentum in the usual three spatial dire
tions. Ignoring branes and orbifold fixed points, KK numb
is a good quantum number and is preserved in all inte
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tions and decays. We see from Eq.~1! that at the tree leve
the KK modes of leveln.1 are exactly at threshold fo
decaying to lower level KK modes. For example, in 5D QE
with massless photons and electrons the reaction

e(2)→e(1)1g (1) ~2!

is exactly marginal at the tree level. It is straightforward
include electroweak symmetry breaking masses. This g
no mass shift to the photon and its KK modes and gener
massesAmn

21me
2 for the electrons at KK leveln. Including

these shifts one finds that the reaction~2! is just barely for-
bidden by phase space, and one concludes that all elec
KK modes are stable. However, using realistic valuesme
; MeV and R21; TeV, the difference between the tota
masses on both sides of Eq.~2! normalized to the KK mode
masses is only of orderme

2/mn
2;10212. Clearly, this minus-

cule mass splitting is completely irrelevant if there are rad
tive corrections to Eq.~1! which would start at ordera
;1022. This is reminiscent of the case ofW-ino-LSP in
supersymmetric models where the tiny tree levelW-ino mass
splitting is overwhelmed by the radiative corrections@1#.

We now show that there are indeed radiative correcti
to the KK masses. The dispersion relation~1! follows from
local 5D Lorentz invariance of the tree level Lagrangia
However, 5D-Lorentz invariance is broken by the compac
fication. This breaking is non-local and cannot be seen in
renormalized couplings of the local 5D Lagrangian, but
contributes to the 4d masses of KK modes because of the
delocalized wave functions in the fifth dimension. More e
plicitly, the leading mass correctionsdmn

2 to Eq. ~1! come
from loop diagrams with internal propagators which wr
around the compactified dimension. The sign andn depen-
dence of these corrections determines which decay chan
are open and which KK modes are stable. For the exampl
©2002 The American Physical Society05-1
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5D QED, we find radiative corrections at ordera as antici-
pated; they render the reaction~2! allowed with phase spac
of orderaR21;10 GeV.

In this paper we compute mass corrections at one loop
a general theory with fields of spin 0,1

2 and 1. Our results
are finite and well defined. At first sight, this might see
surprising since the 5D theory is not renormalizable. Ho
ever, the 5D Lorentz violating corrections to KK mod
masses involve propagation over finite distances~around the
extra dimension! and are exponentially suppressed for m
menta which are large compared to the compactifica
scale. Thus our results are UV finite and do not depend
the choice of regulator as long as it is 5D Lorentz invaria
and sufficiently local.

Applying these results to the standard model requires
troducing an additional complication. Obtaining chiral ferm
ons in 4D from a 5D theory is only possible with addition
breaking of 5D Lorentz invariance. Two frequently discuss
choices are introducing chiral fermions on branes or imp
ing orbifold boundary conditions on fermions in the bulk. W
focus on the latter because we wish to minimize the break
of 5D Lorentz invariance. The resulting model in which a
the standard model fields live in the bulk of an orbifold
known as ‘‘universal extra dimensions’’@2#. We consider the
orbifolds S1/Z2 andT2/Z2.

Both orbifolds have fixed points which break extr
dimensional translation invariance, and we expect new in
actions localized on the fixed points. Clearly, the presenc
such localized interactions violates 5D momentum conse
tion, and KK number is no longer preserved. However
discrete subgroup remains unbroken. In theS1/Z2 case, this
is ‘‘KK parity,’’ a parity flip of the extra dimension. In the 4D
description KK parity is aZ2 symmetry under which only
KK modes with odd KK number are charged. The symme
implies that the lightest KK particle at level 1~the LKP! is
stable. Note that KK parity and the LKP play an analogo
role to R parity and the LSP in supersymmetry.

In the presence of orbifold boundaries higher level K
modes can decay to lower level KK modes via KK numb
violating interactions. These decays compete with KK nu
ber preserving decays, and it becomes a phenomenologi
important question which channels dominate. The ans
can be understood very simply. Since the KK number vio
ing interactions exist only on the boundaries they turn i
volume suppressed couplings between KK modes. This
plies that even though KK number violating decays ha
larger phase space they are more strongly suppressed
cause they are proportional to the square of smaller coup
constants. Therefore, the question of which momentum
serving decays are allowed by phase space remains phe
enologically important also in theories on orbifolds.

In addition to giving rise to new interactions, the boun
ary terms also include 5D Lorentz violating kinetic term
which contribute to the masses of KK modes and are imp
tant in determining decay patterns. In Ref.@3# it was shown
that the coefficients of boundary terms receive logarith
cally divergent contributions at one loop. Thus it is not on
possible to include boundary terms in orbifold theories, it
inconsistent not to include them. The coefficients of the
03600
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terms correspond to new parameters of the theory. They c
tain incalculable contributions from unknown physics at t
cutoff as well as contributions from loops in the low-ener
theory which we compute in this paper.

This paper is structured as follows. In the next section
compute radiative corrections to masses of KK modes for
arbitrary theory with scalars, fermions, and gauge fields i
5D theory on a circle. In Sec. III we discuss the addition
complications which arise for orbifolds where all field
propagate in the bulk and compute the renormalization
boundary couplings. In Sec. IV we apply the results of t
previous sections to the standard model in ‘‘universal ex
dimensions’’ and determine the complete one-loop correc
spectrum. Section V contains our conclusions. Details of
calculations can be found in the Appendixes.

II. BULK CORRECTIONS FROM COMPACTIFICATION

To begin, we discuss the simplest higher dimensio
theory: an extra dimension compactified on a circleS1 with
radiusR (x512pR;x5). We assume that 5D Lorentz invar
ance is respected by the short-distance physics, and is
broken by the compactification. The momentum in the 5
dimension, which is quantized in units of 1/R, becomes a
mass for the KK modes after compactification.
5-dimensional Lorentz invariance were exact, the KK mo
masses coming from the 5th dimensional momentum wo
not receive corrections. For example, the kinetic term o
scalar field living in 5 dimensions is

L.Z]mf]mf2Z5]5f]5f, m50,1,2,3. ~3!

Both Z andZ5 receive divergent quantum corrections. How
ever, if 5-dimensional Lorentz invariance were exact, th
contributions would be equal, so that the masses of the
modes coming from the (]5f)2 term would stay uncorrected
More generally, exact Lorentz invariance would imply th
the energy is only a function ofupW u21p5

2, and henceE2

5upW u21p5
21m2 does not receivep5-dependent corrections

All KK mode masses would be given byp5
21m2 with the

samep5 dependence, and the only correction would be d
to renormalization of the zero mode massm.

However, 5-dimensional Lorentz invariance is broken
long distances by the compactification, so in general
masses of the KK modes do receive radiative correctio
Feynman diagrams are sensitive to the Lorentz symm
breaking if they have an internal loop which winds arou
the circle of the compactified dimension, as shown in Fig
so that it can tell that this direction is different from th

FIG. 1. Lorentz violating loop.
5-2
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others. This is a non-local effect as the size of the loop
not be shrunk to zero. Such non-local loop diagrams
well-defined and finite, even though the higher-dimensio
theory is non-renormalizable.

We can isolate the finite 5D Lorentz violating correctio
from the divergent 5D Lorentz invariant corrections by e
ploying a very simple subtraction prescription: from eve
loop diagram in the compactified theory we subtract the c
responding diagram of the uncompactified theory. The
divergences are canceled because the two theories are
tical at short distances, but the KK mass corrections are
altered because the subtraction is 5D Lorentz invariant.

To make this more explicit, first note that momenta in t
compact dimension are discrete. Therefore the fi
dimensional phase space integral

E d5k

~2p!5
••• ~4!

becomes

1

2pR (
k5

E d4k

~2p!4
••• ~5!

for compact dimensions.
Our subtraction prescription is to simply subtract Eq.~4!

from Eq. ~5! for each diagram. To better understand t
physical meaning of this prescription and to explicitly de
onstrate that Eqs.~4! and~5! contain the same divergence w
rewrite the KK sum using the Poisson resummation iden

1

2pR (
m52`

`

F~m/R!5 (
n52`

`

f ~2pRn!, ~6!

where f (x) andF(k) are related by Fourier transformation
03600
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f ~x!5F 21$F~k!%5E
2`

` dk

2p
e2 ikxF~k!. ~7!

The resummation formula turns a sum over KK numbersm
~or KK momentak55m/R) into a sum over winding num-
bers n ~or position space windingsn2pR around the fifth
dimension!. Note that then50 term in the sum is identica
to the phase space integral of an uncompactified extra dim
sion

f ~0!5E
2`

` dk5

2p
F~k5!5E d5k

~2p!5
•••. ~8!

Thus our subtraction prescription simply amounts to leav
out the divergentn50 term in the re-summed expression f
each Feynman diagram. The remaining terms in the s
~with nÞ0) correspond to particle loops with net windingn
around the compactified dimension.1 They are all finite and
so is their sum.

To illustrate the calculation, we consider the relative
simple example of QED in 411 dimensions with one spatia
dimension compactified on a circle. We will calculate t
correction to the masses of KK photons due to the elect
loop. The one loop vacuum polarization~Fig. 2! is given by

FIG. 2. Vacuum polarization diagram.
ge

mension.
nd get
iPmn52e2(
k5

E d4k

~2p!4
trFgm

1

k”1 ig5k5

gn

1

~k”2p” !1 ig5~k52p5!
G

524e2(
k5

E d4k

~2p!4

km~kn2pn!1kn~km2pm!2gmnk~k2p!1gmnk5~k52p5!

~k22k5
2!@~k2p!22~k52p5!2#

~9!

where p,k are 4-momenta,k55m/R with m5 integers, and the volume factor 1/(2pR) has been absorbed into the gau
couplinge25e5

2/(2pR).
As usual we use Feynman parametrization to combine the denominators,

iPmn524e2E
0

1

da(
k5

E d4k

~2p!4

Nmn

@k22k58
21a~12a!~p22p5

2!#2
~10!

1More precisely, they correspond to diagrams in which the internal propagators form a non-contractible loop around the extra di
The parametern is the winding number of the internal loop. The diagrams with a contractible loop are 5D Lorentz invariant a
subtracted.
5-3
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where

Nmn52kmkn1gmn„2k21a~12a!~p22p5
2!

1~2a21!p5k581k58
2
…22a~12a!pmpn , ~11!

andk585k52ap5. To calculate the correction to the mass
of the KK modes, we concentrate on the terms proportio
to gmn ,

Pmn5gmnP12pmpnP2 . ~12!

We can setp25p5
2 in the leading order approximation. Re

placingkmkn by gmnk2/4, and performing the Wick rotation
we have

P1524e2E
0

1

da(
k5

E d4kE

~2p!4

1

2
kE

21~2a21!p5k581k58
2

~kE
21k58

2!2
.

~13!

It is convenient to rescalekE ,k5 ,k58 ,p5 by 1/R so that they
become dimensionless numbers andk5 ,p5 run over integers.
Using the formula

1

Ar
5

1

~r 21!! E0

`

d,, r 21e2A,, ~14!

we obtain

P152
4e2

R2 E0

1

da(
k5

E d4kE

~2p!4E0

`

d,,

3F1

2
kE

21~2a21!p5k581k58
2Ge2(kE

2
1k58

2),. ~15!

Next, we perform thed4kE integral

P152
4e2

16p2R2E0

1

daE
0

`

d,,

3(
k5

F 1

,3
1

~2a21!p5k58

,2
1

k58
2

,2 Ge2k58
2,

52
e2

4p2R2E0

1

daE
0

`

dt

3(
k5

F11
~2a21!p5k58

t
1

k58
2

t Ge2k58
2/t, ~16!

where t51/,. Now we use the Poisson resummation fo
mula, Eq.~6!, to turn the sum overk5 into a sum over wind-
ing numbers. The inverse Fourier transformations needed
03600
s
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F 21$e2k5
2/t%5A t

4p
e2x2t/4

F 21$k5e2k5
2/t%52 i

xt

2
A t

4p
e2x2t/4

~17!

F 21$k5
2e2k5

2/t%5S 2
x2t2

4
1

t

2DA t

4p
e2x2t/4

F 21$F~k585k52ap5!%5 f ~x!e2 iaxp5.

The result is

P152
e2

2pR2 (
x52pn

E
0

1

dae2 iaxp5E
0

`

dtA t

4p

3e2x2t/4F3

2
2 i S a2

1

2D xp52
x2t

4 G
52

e2

2pR2 (
x52pn

E
0

1

dae2 iaxp5

3F3

2

2

uxu3
2 i S a2

1

2D xp5

2

uxu3
2

x2

4

12

uxu5
G

52
e2

2pR2 (
n52`

` E
0

1

dae2 ia2pnp5

3„2 i ~2a21!2pnp5…
1

u2pnu3
. ~18!

For the zero mode (p550), we haveP150, i.e., there is no
correction to the mass as expected by gauge invariance.
nonzero KK modes, the correction to their masses is
tained by dropping the divergentn50 term as discussed
above

dmKK
2 52

e2

2pR2 (
nÞ0

2

u2pnu3

52
e2

4p4R2 (
n51

`
1

n3
52

e2z~3!

4p4R2
, ~19!

which is finite and independent of the KK level.
It is straightforward to follow the same procedure to c

culate the corrections in a more general theory which c
tains non-Abelian gauge fields, fermions, and scalars. In
calculation, we assumed that the zero mode masses are m
smaller than the compactification scale so that we can ign
them in the calculations. With the possible exception of
Higgs boson and the top quark, this is also the case of in
est for applications to the standard model.~For non-
vanishing zero mode massm0!1/R, there will be KK level
dependent corrections suppressed bym0

2/p5
2.! The one-loop

contributions from various diagrams are listed in Appendix
and we summarize the results here.
5-4
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The correction to the KK mode masses for the gauge fi
is given by

dmVKK

2 5
g2z~3!

16p4R2 S 3C~G!1 (
real scalars

T~r s!

24 (
fermions

T~r f ! D , ~20!

whereC(G)dab5 f acdf bcd@5N for SU(N)#, and T(r )dAB
5tr(TATB) is the Dynkin index of the representationr, nor-
malized to be 1/2 for the fundamental representation
SU(N). The sum over scalars is over the real compone
and needs to be multiplied by 2 for a complex scalar. N
that for a supersymmetric theory the correction vanishes
has to because the KK gauge bosons are BPS states.
the case of QED5, the zero mode mass is not correcte
dictated by gauge invariance.

A similar calculation yields the correction to the mass
the zero mode ofA5. We find

dmA
5
0

2
53dmVKK

2 , ~21!

which is in agreement with earlier calculations@4#. Note that
the KK modes ofA5 are ‘‘eaten’’ and become longitudina
components of the KK gauge fields.

For fermions, we find

dmf KK
50. ~22!

Fine tuning is required for a scalar to be light, as its~Lor-
entz invariant! mass receives power divergent corrections
matter whether the extra dimension is compact or not. We
interested in the difference between the corrections to
KK modes and the zero mode, assuming that the zero m
mass has been fine tuned to be smaller than the compa
cation scale. In calculating the potentially 5D Lorentz viola
ing contributions from loops with nonzero winding numbe
we find that the lowest order corrections to the squa
masses of the zero mode and KK modes are the same,

dmSKK

2 5dmS0

2 . ~23!

Therefore, they can be absorbed into the~infinitely renormal-
ized! zero mode mass, and then-th KK mode mass is simply
given by

mSn

2 5
n2

R2
1m0

2 ~24!

with no corrections at the lowest order.
The radiative corrections due to 5-dimensional Lore

violation are long-distance effects, so they are saturated
the contributions from the lowest lying KK modes, where t
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effects of accelerated running of couplings are not very
portant yet. Here we confine ourselves to one-loop orde
the calculation of the KK masses. The evolution of the co
plings contributes to the KK mass corrections starting at tw
loop order. They are to be included in a higher-loop calcu
tion as well as other two-loop or higher effects which cann
be absorbed into the running couplings. Also, in the abo
calculations we have ignored graviton loops@5#. Their effects
on KK mass splittings are negligible as they are suppres
by powers ofM PlR.

III. ORBIFOLD COMPACTIFICATIONS

In the previous section we considered the simplest co
pactification on a circle~the generalization to a torus in mor
extra dimensions is discussed in Appendix A!. However, a
higher dimensional fermion has 4 or more components.
four dimensional zero mode consists of both left-handed
right-handed fermions when compactified on a torus, and
resulting four dimensional theory is vector-like. To obta
chiral fermions in four dimensions, we need more comp
cated compactifications. One possibility is to compactify t
extra dimensions on an orbifold. In this section, we consi
the simplest example, anS1/Z2 orbifold, whereZ2 is the
reflection symmetryx5→2x5. In addition to their indirect
transformation via theirx5 dependence, fields can be even
odd under thisZ2 symmetry. A consistent assignment is
haveAm , m50,1,2,3 even, andA5 odd for the gauge field,
and cL even ~odd!, cR odd ~even! for the fermions. The
scalars can be either even or odd. From a field theory p
of view, the orbifold is simply a line segment of lengthL
5pR with boundary points~orbifold fixed points! at x5
50,pR. Even~odd! fields have Neumann~Dirichlet! bound-
ary conditions,]5f50(f50) at x550,pR.

The KK decomposition for even and odd fields is giv
by

F1~x,x5!5
1

ApR
f1

(0)~x!1A 2

pR(
n51

`

cos
nx5

R
f1

(n)~x!,

~25!

F2~x,x5!5A 2

pR(
n51

`

sin
nx5

R
f2

(n)~x!.

The zero mode of the odd field is projected out by the or
fold Z2 symmetry~or Dirichlet boundary conditions!. For a
fermion c, only cL ~or cR) has a zero mode, hence w
obtain a chiral fermion in the four dimensional theory. Sim
larly, theA5 zero mode is projected out and there is no ma
less adjoint scalar from the extra component of the ga
field.

The orbifold introduces additional breaking of higher d
mensional Lorentz invariance which leads to further corr
tions to KK mode masses. The orbifold fixed points bre
translational symmetry in thex5 direction, therefore momen
tum in thex5 direction~KK number! is no longer conserved
and we expect mixing among KK modes. However, a tra
lation by pR in the x5 direction remains a symmetry of th
5-5
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orbifold. We can see from Eq.~25! that under this transfor
mation the even number (n5even) KK modes are invarian
while the odd number (n5odd) KK modes change sign
Therefore, KK parity (21)KK ~not theZ2 in S1/Z2) is still a
good symmetry. Note that KK parity is a flip of the lin
segment about its center atx55pR/2 combined with theZ2
transformation which flips the sign of all odd fields.

Because 5D Lorentz and translation invariance are bro
at the orbifold boundaries, radiative corrections generate
ditional Lagrangian terms which are localized at the bou
aries and do not respect 5D Lorentz symmetry. The bound
terms contribute to masses and mixing of KK modes.
calculate them, we follow the work by Georgi, Grant, a
Hailu @3#. Fields on theS1/Z2 orbifold can be written as

f~x,x5!5
1

2
„F~x,x5!6F~x,2x5!…,

~26!

c~x,x5!5
1

2
„C~x,x5!6g5C~x,2x5!…,

whereF,C are unconstrained 5-dimensional boson and
mion fields, and the upper~lower! sign,1(2), corresponds
to f,cR being even~odd! underx5→2x5. The propagators
such as

S~x2x8,x52x58!5^c~x, x5!c̄~x8,x58!& ~27!

can be expressed in terms of unconstrained fields~26!. The
results are

S~p,p5 ,p58!5
i

2 H dp5 ,p
58

p”1 ig5p5

7
d2p5 ,p

58

p”1 ig5p5

g5J ~28!

for the fermion,

Dmn~p,p5 ,p58!5
2 igmn

2 H dp5 ,p
58
1d2p5 ,p

58

p22p5
2 J ,

~29!

D55~p,p5 ,p58!5
2 ig55

2 H dp5 ,p
58
2d2p5 ,p

58

p22p5
2 J ,
03600
n
d-
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for the gauge field~in the Feynman–’t Hooft gauge!, and

D~p,p5 ,p58!5
i

2 H dp5 ,p
58
6d2p5 ,p

58

p22p5
2 J ~30!

for the scalar boson.p5 andp58 are the outgoing and incom
ing fifth dimensional momenta~KK numbers!. They can be
different because 5D momentum is not conserved.

We calculate the one-loop diagrams with these modifi
propagators. Consider, for example, the one-loop contri
tion to the electron self-energy in 5D QED~Fig. 3!. Let us
first focus on the summation over momenta in the fifth
mension. The summations are of the form

(
k5 ,k58

~dk5 ,k
58
1d2k5 ,k

58
g5!~dp52k5 ,p

582k
58
1d2(p52k5),p

582k
58
!

5~dp5 ,p
58
1d2p5 ,p

58
g5!(

k5

1(
k5

~d2k5 ,p51p
58

1d2k5 ,p52p
58
g5!. ~31!

Up to a factor of 1
2 , the term proportional todp5 ,p

58

1d2p5 ,p
58
g5 reproduces the corresponding diagram in 5

QED on a circle, and we can simply recycle the result of
previous section. The relative factor of1

2 arises because th
Z2 orbifolding projects out half of the states of the theory
S1. The second term gives rise to new contributions to
self-energy which violate 5D momentum by integer mu
tiples of 2/R. We will see shortly that these terms are lo
divergent. The corresponding counter terms are localized
the fixed points of the orbifold atx550 andx55pR.

Denoting the ‘‘boundary’’ contribution to the self-energ
by S̄(p;p5 ,p58) we have

FIG. 3. Electron self-energy diagram.
mes from
2 i S̄~p;p5 ,p58!52
g2

4 (
k5

E d4k

~2p!4 Fgn~k”1 ig5k5!gmgmn2g5~k”1 ig5k5!g5

~k22k5
2!@~k2p!22~k52p5!2#

G ~d2k5 ,p51p
58
6d2k5 ,p52p

58
g5! ~32!

where the first term in the numerator comes from the 4-dimensional gauge field components and the second term co
the 5th component of the gauge field. After Feynman parametrization and Wick rotation, this becomes
5-6
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2 i S̄~p;p5 ,p58!5
ig2

4 (
k5

E
0

1

daE d4kE

~2p!4

~ap”15ig5k5!~d2k5 ,p51p
58
6d2k5 ,p52p

58
g5!

@kE
22a~12a!p21k5

222ak5p52ap5
2#2

→ ig2

64p2
ln

L2

m2 (
k5

F1

2
p”15ig5k5G~d2k5 ,p51p

58
6d2k5 ,p52p

58
g5!

5
ig2

64p2
ln

L2

m2 Fp”
16g5

2
15ig5p5

16g5

2
15ig5p58

17g5

2 G for even R(p52p58). ~33!
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The arrow in the second line indicates that we have only k
the leading logarithmic divergence. In the log,L represents
the cutoff andm is the renormalization scale. The equality
the final line holds only forR(p52p58) even, for odd differ-

ences we haveS̄(p,p5 ,p58)50.
This result can be understood~following @3#! as the renor-

malization of terms in the 5D Lagrangian which are localiz
at the boundaries of the orbifold. Fourier transforming
position space, we obtain

dL̄.S d~x5!1d~x52L !

2 D Lg2

64p2
ln

L2

m2

3@c̄1i ]”c115~]5c̄2!c115c̄1~]5c2!#,

~34!

where L appears because of a change in normalization
fields in going from 4D to 5D;L combines with the 4D
gauge coupling to giveLg25g5

2. The delta functions are nor
malized to *0

ed(x)dx51. We have been using Feynma
gauge in the above calculation. For general ’t Hooftj
gauges, one can show that the coefficients in front ofi ]” and
]5 are given by 112(j21) and 51(j21), respectively.

The logarithmically divergent result means that we sho
include counterterms localized at the boundaries to ca
the divergence. Our calculation only determined the runn
contribution between the cutoffL andm, given initial values
for the boundary terms atL. We implicitly assumed in our
calculations that the boundary terms at the cutoff are sm
If large boundary terms were present, they would mix K
modes of different levels and correspondingly shift th
masses. Both effects would have to be taken into accoun
calculating the radiative corrections. The KK spectru
would then have a complicated dependence on the unkn
boundary terms at the high scale. We continue to assume
there are no large boundary terms, and the logarithmic di
gences can be absorbed into the cutoffL with L not too
large. Note that this assumption is self-consistent becaus
boundary terms which are generated by radiative correct
are loop-suppressed.

The leading order correction to the mass of then-th KK
mode is obtained from Lagrangian terms which are quadr
in the n-th KK mode. Mass corrections due to the mixin
among different KK modes are of higher order.
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We expand the boundary terms~34! in terms of the KK
modes and consider the modification of the kinetic terms
the n-th KK mode (nÞ0),

Zn1c̄n1i ]”cn11c̄n2i ]”cn21Zn5~ c̄n1]5cn22c̄n2]5cn1!,

~35!

where

Zn15112@112~j21!#
g2

64p2
ln

L2

m2
,

Zn55112@51~j21!#
g2

64p2
ln

L2

m2
. ~36!

Note thatZn251 becausecn2 vanishes on the boundary
After rescalingcn1 to canonical kinetic terms, the correctio
to the KK mode mass is given by

d̄mn

mn
5

Zn5

AZn1

215
9

4

g2

16p2
ln

L2

m2
, ~37!

which is independent of the gauge parameterj. The correc-
tion is proportional to then-th mode massn/R, in contrast
with the bulk contribution discussed in the previous secti

For a more general theory which contains non-Abel
gauge fields, fermions and scalars, the radiatively gener
boundary terms from various diagrams are listed in App
dix B. In the following, we summarize the one-loop corre
tions to the KK mode masses. We always assume that
boundary terms are small, and can be treated as pertu
tions.

The corrections to the masses of KK modes for gau
bosons, fermions,Z2 even scalars, andZ2 odd scalars are
given by

d̄mVn

2 5mn
2 g2

32p2
ln

L2

m2

3F23

3
C~G!2

1

3 (
real scalars

~T~r !even2T~r !odd!G ,
~38!
5-7



e
e

tio
m
e
e
th

ng
an
th
er
en

t

, w
c
en
ro
d
he

uge
that

wo
KK
vel

ing
of

bu-
ak
up-

del

-
ing

nd
sion

en-
n
ion
er

ob-
uire
w,
rs
ve
gful

ard
s

n

the
lity
o-
gs

des
the
ro-
c-

in

CHENG, MATCHEV, AND SCHMALTZ PHYSICAL REVIEW D66, 036005 ~2002!
d̄mf n
5mn

1

64p2
ln

L2

m2

3F9C~r !g22 (
even scalars

3h1
2 1 (

odd scalars
3h2

2 G ,
~39!

d̄mS1n

2 5m̄21mn
2 1

32p2
ln

L2

m2

3F6g2T~r !2 (
even scalars

l11

2
1 (

odd scalars

l12

2 G ,
~40!

d̄mS2n

2 5mn
2 1

32p2
ln

L2

m2

3F9g2T~r !1 (
even scalars

l12

2
2 (

odd scalars

l22

2 G ,
~41!

whereh andl are Yukawa and quartic scalar couplings r
spectively. Their normalization is chosen to yield vertic
with no numerical factors in the Feynman rules. Them̄2 in
the expression for the even scalars contains a contribu
12m̄2 to the KK mode mass from a boundary mass ter
minus a contributionm̄2 to the zero mode mass from th
same boundary term. The relative factor of two between z
mode and KK modes comes from the normalization of
wave functions in Eq.~25!.

The boundary terms also induce KK number violati
couplings. Because KK parity is not broken, KK number c
only be violated by even units in these couplings. Using
QED onS1/Z2 example, we can calculate the one-loop v
tex diagram for the KK number violating coupling betwe
the photon and the electron, Fig. 4. The result is simply
replace]” in Eq. ~34! by the covariant derivativeD” . To obtain
the couplings among the physical eigenstates, however
have to take into account the kinetic and mass mixing effe
on the external legs. A more detailed discussion is in App
dix C. The result can be related to the mass corrections f
the boundary terms as both come from operators localize
the boundaries. For example, we find that t
c̄0gmTaP1c0A2m coupling is given by

FIG. 4. One-loop diagram for the KK number violating vertex
the 5 dimensional QED.
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A2
F d̄~mA2

2 !

m2
2

22
d̄~mf 2

!

m2
G . ~42!

On the other hand, couplings involving the zero mode ga
boson are governed by gauge invariance which implies
KK number violating interactions such asc̄2gmTaP1c0A0m
vanish.

IV. THE STANDARD MODEL IN UNIVERSAL EXTRA
DIMENSIONS

We now apply the results obtained in the previous t
sections to the standard model in extra dimensions. The
modes of standard model fields receive additional tree le
mass contributions from electro-weak symmetry break
which we have not taken into account in the calculations
the previous sections. Here, we include all these contri
tions but we ignore effects which involve both electro-we
symmetry breaking and radiative corrections. They are s
pressed by bothg2/16p2 and v2/mn

2 and are numerically
negligible.

We consider the case in which all the standard mo
fields propagate in the same extra dimensions~universal ex-
tra dimensions! @2,6#. Theoretical motivations for consider
ing such scenarios include electroweak symmetry break
@6#, the number of fermion generations@7#, and proton sta-
bility @8#. Here we take a phenomenological approach a
consider the simplest case of one universal extra dimen
compactified on anS1/Z2 orbifold. The orbifold compactifi-
cation is necessary to produce chiral fermions in four dim
sions. In@2,9,10# it was shown that the current constraint o
the compactification scale for one universal extra dimens
is only about 300 GeV. Because of tree-level KK numb
conservation, KK states can only contribute to precision
servables in loops, and direct searches for KK states req
pair production. If the compactification scale is really so lo
then KK states will be copiously produced at future collide
@11,12#. As we have argued in the Introduction, the radiati
corrections have to be taken into account in any meanin
study of the phenomenology of these KK modes.

We assume the minimal field content of the stand
model in one extra dimension. The fermion
Qi ,ui ,di ,Li ,ei , i 51,2,3 are all 4-component fermions i
411 dimensions.@The upper case letters representSU(2)
doublets and the lower case letters representSU(2) singlets.#
Under theZ2 orbifold symmetry,QL ,uR ,dR ,LL ,eR are even
so that they have zero modes, which are identified with
standard model fermions. Fermions with opposite chira
@QR ,uL ,dL ,LR ,eL# are odd and their zero modes are pr
jected out. In order to allow Yukawa couplings the Hig
field must be even under theZ2.

To obtain the corrections to the masses of the KK mo
of the standard model fields we simply substitute into
formulas from the previous two chapters and include app
priate group theory and multiplicity factors. The bulk corre
tions are given by~bulk contributions in theS1/Z2 orbifold
are half of those in theS1 compactification!
5-8
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d~mBn

2 !52
39

2

g82z~3!

16p4 S 1

RD 2

,

d~mWn

2 !52
5

2

g2
2z~3!

16p4 S 1

RD 2

,

d~mgn

2 !52
3

2

g3
2z~3!

16p4 S 1

RD 2

, ~43!

d~mf n
!50,

d~mHn

2 !50,

whereBn are the KK modes of theU(1) hypercharge gaug
boson,Wn are the KK modes of theSU(2)W gauge bosons
andgn are the KK modes of the gluon.

The boundary terms receive divergent contributio
which require counterterms. The finite parts of these co
terterms are undetermined and remain as free paramete
the theory.2 Here we shall make the simplifying assumptio
that the boundary kinetic terms vanish at the cutoff scaleL
and compute their renormalization to the lower energy sc
m. The corrections from the boundary terms are then gi
by

d̄mQn
5mnS 3

g3
2

16p2
1

27

16

g2
2

16p2
1

1

16

g82

16p2D ln
L2

m2
,

d̄mun
5mnS 3

g3
2

16p2
1

g82

16p2D ln
L2

m2
,

d̄mdn
5mnS 3

g3
2

16p2
1

1

4

g82

16p2D ln
L2

m2
,

d̄mLn
5mnS 27

16

g2
2

16p2
1

9

16

g82

16p2D ln
L2

m2
,

d̄men
5mn

9

4

g82

16p2
ln

L2

m2
, ~44!

d̄~mBn

2 !5mn
2S 2

1

6D g82

16p2
ln

L2

m2
,

2This is reminiscent of the case of low energy supersymme
where in the absence of an explicit theory of supersymmetry bre
ing we do not know the values of the soft masses at high sca
Nevertheless, we can compute their renormalization within a gi
visible sector model like the MSSM. Hence one can predict
superpartner masses only under specific assumptions about
values at the high scale.
03600
s
-
of

le
n

d̄~mWn

2 !5mn
2 15

2

g2
2

16p2
ln

L2

m2
,

d̄~mgn

2 !5mn
2 23

2

g3
2

16p2
ln

L2

m2
,

d̄~mHn

2 !5mn
2S 3

2
g2

21
3

4
g822lHD 1

16p2
ln

L2

m2
1m̄H

2 .

Here lH is the Higgs quartic coupling,L.2(lH/
2)(H†H)2 (mh5AlHv,v5246 GeV), and m̄H

2 is the
boundary mass term for the Higgs mode. The renormal
tion scalem should be taken to be approximately the mass
the corresponding KK mode. In the above formulas, we h
not included contributions from Yukawa couplings, whic
can be ignored except for the top quark Yukawa coupli
Including the top Yukawa coupling introduces no new co
rections to the Higgs KK modes, but the KK modes of t
third generationSU(2) doublet quarkQ3 and theSU(2)
singlet t receive additional corrections,

d̄ht
mQ3n

5mnS 2
3

4

ht
2

16p2
ln

L2

m2D
d̄ht

mtn
5mnS 2

3

2

ht
2

16p2
ln

L2

m2D . ~45!

The corrected masses for most of the KK modes can sim
be read off from Eqs.~43! and ~44!. However, for certain
fields there are also non-negligible tree-level contributio
from electro-weak symmetry breaking, which introduce m
ings among the states. This effect is important for the ‘‘ph
ton’’ and ‘‘Z,’’ the two KK modes of the top quark, the Higg
boson KK modes, and to a lesser extent for the bottom
tau KK modes.

The mass eigenstates and eigenvalues of the KK ‘‘p
tons’’ and ‘‘Z’s’’ are obtained by diagonalizing their mas
squared matrix. In theBn , Wn

3 basis it is

S n2

R2
1 d̂mBn

2 1
1

4
g82v2

1

4
g8g2v2

1

4
g8g2v2

n2

R2
1 d̂mWn

2 1
1

4
g2

2v2D , ~46!

where d̂ represents the total one-loop correction, includi
both bulk and boundary contributions. Note that the mixi
angle is different from the zero mode Weinberg angle
cause of the correctionsd̂mBn

2 andd̂mWn

2 . Figure 5 shows the

dependence of the mixing angleun for the n-th KK level on
~a! R21 for fixed LR520; and ~b! LR for fixed R21

5300 GeV. For largeR21 or LR, where the corrections
become sizable, the neutral gauge boson eigenstates be
approximately pureBn andWn

3 .

y,
k-
s.
n
e
eir
5-9
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FIG. 5. Dependence of the ‘‘Weinberg’’ angleun for the first few KK levels (n51,2, . . . ,5) on~a! R21 for fixed LR520 and~b! LR
for fixed R215300 GeV.
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Similarly, the eigenstates and eigenvalues of the KK f
mions are obtained from the corresponding mass matri
For example, the mass matrix for the top KK modes is

S n

R
1 d̂mTn

mt

mt 2
n

R
2 d̂mtn

D , ~47!

whereTn andtn representSU(2) doublet quarks and single
quarks respectively.

Finally we discuss the KK modes of the Higgs field. T
KK modes of W and Z acquire their masses by ‘‘eating
linear combinations of the fifth component of the gau
fields and the Higgs KK modes. The orthogonal combin
tions remain physical scalar particles. For 1/R@MW,Z , the
longitudinal components of the KK gauge bosons mos
come fromA5, and the physical scalars are approximat
the KK excitations of the Higgs field. There are 4 states
each KK level,Hn

6 ,Hn
0 ,An

0 ~notice thatH0
6 andA0

0 are just
the usual Goldstone bosons in the SM!. Their corrected
masses are given by

mH
n
0

2
'mn

21mh
21 d̂mHn

2

mH
n
6

2
'mn

21MW
2 1 d̂mHn

2 ~48!

mA
n
0

2
'mn

21MZ
21 d̂mHn

2 .

In Fig. 6, we show a sample spectrum for the first KK ex
tations of all standard model fields, both at the tree level~a!
and including the one-loop corrections~b!. We have fixed
R215500 GeV, LR520, mh5120 GeV, m̄H

2 50 and as-
sumed vanishing boundary terms at the cutoff scaleL. We
see that the KK ‘‘photon’’ receives the smallest correctio
and is the lightest state at each KK level. Unbroken K
parity (21)KK implies that the lightest KK particle~LKP! at
level one is stable. Hence the ‘‘photon’’ LKPg1 provides an
03600
-
s.

-

y
y
t

-

s

interesting dark matter candidate. The corrections to
masses of the other first level KK states are generally la
enough that they will have prompt cascade decays dow
g1.3 Therefore KK production at colliders results in gene
missing energy signatures, similar to supersymmetric mod
with stable neutralino LSP. Collider searches for this s
nario appear to be rather challenging because of the KK m
degeneracy and will be discussed in a separate publica
@13#.

V. CONCLUSIONS

Loop corrections to the masses of Kaluza-Klein exci
tions can play an important role in the phenomenology
extra dimensional theories. This is because KK states o
given level are all nearly degenerate, so that small corr
tions can determine which states decay and which are sta

In this paper we computed the corrections to the mas
of the KK excitations of gauge fields, scalars and spin1

2

fermions with arbitrary couplings in several extr
dimensional scenarios. Our results for one and two circu
extra dimensions are presented in Sec. II and Appendix
They are finite and cut-off independent as long as the cu
is 5D Lorentz invariant and local. In Sec. III we extended o
results to the case of orbifoldsS1/Z2 and T2/Z2. We found
divergences which introduce cut-off dependence. The co
sponding counterterms can be seen to be localized at
fixed points of the orbifold. The same technique for calcul
ing corrections to KK masses can be easily applied to m
general compactifications, as long as the Lorentz invaria
is preserved at short distance in the bulk.

In Sec. IV we apply these results to the standard mode

3The first level gravitonG1 ~or right-handed neutrinoN1 if the
theory includes right handed neutrinosN0) could also be the LKP.
However, the decay lifetime ofg1 to G1 or N1 would be compa-
rable to cosmological scales. Therefore,G1 and N1 are irrelevant
for collider phenomenology but may have interesting consequen
for cosmology.
5-10
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FIG. 6. The spectrum of the first KK level at~a! tree level and~b! one loop, forR215500 GeV,LR520, mh5120 GeV,m̄H
2 50, and

assuming vanishing boundary terms at the cut-off scaleL.
te
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extra dimensions and give explicit formulas for the correc
masses of all KK excitations. We hope that these results
be useful to practitioners of the phenomenology of univer
extra dimensions and other models with standard mo
fields in the ‘‘bulk’’ ~intriguing examples are@14,15#!.
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APPENDIX A: ONE-LOOP BULK CONTRIBUTIONS

In this appendix we list the one-loop corrections to K
masses from various diagrams with nonzero winding nu
bers.

FIG. 7. One-loop diagrams for the gauge boson self-energy~a!
Al2Ak loop, ~b! Al2A5 loop, ~c! A52A5 loop, ~d! ghost loop,~e!
Al loop, ~f! A5 loop, ~g! fermion loop,~h! scalar-scalar loop, and~i!
scalar loop.
03600
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We consider one extra dimension compactified on a cir
S1 with radius R. The various one-loop diagrams for th
gauge boson self-energy are shown in Fig. 7. The contr
tions from nonzero winding numbers to the zero mode a
nonzero modes in the Feynman–’t Hooft gauge are listed
Table I. After summing over all diagrams, we find that t
total contribution to the zero mode is 0, and the contribut
to nonzero modes is

dmVKK

2 5
g2z~3!

16p4R2 S 3C~G!1 (
real scalars

T~r s!

24 (
fermions

T~r f ! D . ~A1!

The one-loop contribution to the fermion self-energy
also obtained easily. For the example of QED,

S523e2E da(
k5

E d4kE

~2p!4

3
a~p”1 ig5p5!1 ig5k58

@kE
21k58

22a~12a!~p22p5
2!#2

, ~A2!

TABLE I. The contributions from the diagrams in Figs. 7~a!–
7~i!. All these terms are multipliedg2z(3)/16p4R2. For the scalar
loops in ~h! and ~i!, the results are for each real component.

Diagram Nonzero mode Zero mode

~a! C(G) 2
9
2 C(G)

~b! 22C(G) C(G)
~c! 0 2C(G)
~d! 0 1

2 C(G)
~e! 3C(G) 3C(G)
~f! C(G) C(G)
~g! 24T(r f) 0
~h! 0 2T(r s)
~i! T(r s) T(r s)
5-11
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TABLE II. The contributions toa1 ,a2 ,a3 from the diagrams in Figs. 7~a!–7~i! and Figs. 8~b8!,8~c8!.
There is no contribution from fermions at one loop due to the cancellation between theZ2 even and odd
fermion components. For the scalar loops in~h! and~i!, the upper~lower! sign is for theZ2 even~odd! scalar,
and the results are for each real component.

Diagram a1 a2 a3

~a! @
19
6 2(j21)#C(G) @

11
3 2(j21)#C(G) @

9
2 1

9
4 (j21)#C(G)

~b! 0 0 @31
3
4 (j21)#C(G)

~b8! 0 0 3
2 (j21)C(G)

~c! 1
3 C(G) 1

3 C(G) @211(j21)#C(G)
~c8! 0 0 22(j21)C(G)
~d! 1

6 C(G) 2
1
3 C(G) 2

1
2 C(G)

~e! C(G) 0 @232
3
2 (j21)#C(G)

~f! C(G) 0 @12(j21)#C(G)
~g! 0 0 0
~h! 7

1
3 T(r s) 7

1
3 T(r s) 6T(r s)

~i! 0 0 7T(r s)
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where k585k52ap5. The term proportional tok58 vanishes
after Poisson resummation. The remainder is a function
p”1 ig5p5 and therefore does not contribute to KK mo
masses. Similar arguments apply to all other fermion s
energy diagrams.

Scalar masses are not protected by symmetries, and
can receive power-divergent contributions. However, we
use the same method to isolate the finite contributions fr
loops with nonzero winding numbers. We find that these
nite corrections are the same for zero mode and non
modes in the leading order form0!1/R. They are both given
by

z~3!

16p4R2 S 4g2T~r !1 (
real scalars

l

2
2 (

4-comp fermions
4hf

2D
~A3!

and can be absorbed into the overall mass term. At the low
order, there is no relative correction between zero mode
nonzero mode.

One can also generalize to more extra dimensions.
example, we consider two extra dimensions compactified
a square torus with radiusR for both dimensions. The resu
is very similar to the one extra dimension case, except
the factor

z~3!5 (
n51

`
1

n3
'1.202 ~A4!

in the 5-dimensional formulas is replaced by

1

p (
m,nPZ

m21n2Þ0
1

~m21n2!2

5
4

p S z~4!1 (
m51

`

(
n51

`
1

~m21n2!2D
[

4

p
@z~4!1D#'

4

p
31.506, ~A5!
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and one has to include theA6 loop, which contributes like a
real adjoint scalar. There is also an extra adjoint scala
each KK level coming from a linear combination ofA5 and
A6, which is not eaten by the KK gauge bosons. The corr
tion to the KK mode masses of the gauge boson and the e
adjoint scalar are the same and are both given by

dmVKK

2 ~6D !5
g2@z~4!1D#

4p5R2 S 4C~G!1 (
real scalars

T~r s!

2 (
4-comp fermions

4T~r f ! D . ~A6!

APPENDIX B: ONE-LOOP BOUNDARY CONTRIBUTIONS

In this appendix, we list the one-loop contributions to t
boundary terms for gauge fields, fermions, and scalars for
S1/Z2 orbifold compactification. The results for the case o
two dimensional orbifoldT2/Z2 are briefly discussed at th
end.

The one-loop diagrams for the gauge boson self ene
are shown in Fig. 7. We keep only logarithmically diverge
contributions to the boundary terms. They can be written

P̄mn5
g2

64p2
ln

L2

m2 H gmnp2a12pmpna2

1gmn

p5
21p58

2

2
a3J S for p585p51

2n

R D . ~B1!

In Table II, we lista1 ,a2 ,a3 in thej gauge~using the gauge
fixing of the 5 dimensional generalized Lorentz gauge c
dition!. In this gauge,Am andA5 do not decouple forjÞ1,
so there are additional divergent diagrams shown in Fig
Adding all contributions together, we obtain
5-12
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P̄mn5
g2

64p2
ln

L2

m2 H ~gmnp22pmpn!F S 11

3
2~j21! DC~G!

2
1

3 (
real scalars

„T~r !even2T~r !odd…G
1gmn

~p5
21p58

2!

2
„41~j21!…C~G!J

S for p585p51
2n

R D . ~B2!

The correction to the squared mass of then-th mode KK
gauge boson can be obtained from the term proportiona
gmn , by settingp25p5

25p58
25mn

25n2/R2, and multiplying
by the wave function normalization factor (A2)2,

d̄mVn

2 5mn
2 g2

32p2
ln

L2

m2 F23

3
C~G!2

1

3 (
real scalars

„T~r !even

2T~r !odd…G . ~B3!

One can see that the result is gauge independent.
The one-loop fermion self-energy diagrams are shown

Fig. 9. Keeping only the logarithmically divergent contrib
tions, we can write

S̄5
1

64p2
ln

L2

m2 Fp”
16g5

2
b12S ip5

16g5

2

2 ip58
17g5

2 Db2G S for p585p51
2n

R D . ~B4!

The contributions tob1 ,b2 are listed in Table III. The cor-
rection to the fermion KK mode mass is given by

FIG. 8. Additional divergent contributions to the gauge bos
self-energy in thej gauge whereAm andA5 do not decouple.~b8!
Al2A5 ,Ak loop; ~c8! A52A5 ,Ak loop.

FIG. 9. One-loop diagrams for the fermion self-energy:~a!
gauge boson loop;~b! scalar boson loop.
03600
to

n

d̄mf n
5mn

1

64p2
ln

L2

m2 F9C~r !g22 (
even scalars

3h1
2

1 (
odd scalars

3h2
2 G . ~B5!

A Z2 even scalar can receive power-divergent contrib
tions to both the bulk mass term and the boundary m
term. We need to fine tune these mass terms to have a
scalar. The boundary mass term causes mixing among
modes and we need to re-diagonalize the mass matrix to
the eigenstates if it is large. The possibility of a light sca
arising because of cancellation between the bulk mass
the boundary mass may be interesting, but will not be c
sidered here. Instead, we assume that both the bulk mass
the boundary mass are tuned to be much smaller than
compactification scale, so that we can treat the bound
mass term as a small perturbation and ignore the higher o
mixing effects. The boundary mass term can be written a

L

2
„d~x5!1d~x52L !…m̄2F†F. ~B6!

Using the KK decomposition, Eq.~25!, we find that the con-
tribution to the zero mode ism̄2, while to the nonzero mode
is 2 m̄2, due to the normalization factorA2 at the boundaries
Therefore, the nonzero KK modes receive a correctionm̄2

relative to the zero mode from the boundary mass term~ig-
noring a weak scale dependence due to the wave func
renormalization!. We can also calculate the correction due
the boundary kinetic terms. The one-loop diagrams for
scalar self-energy are shown in Fig. 10. They can be writ
as

TABLE III. The contributions tob1 ,b2 from the diagrams in
Figs. 9~a!,9~b!. C(r ) is defined C(r )d i j 5(aTik

a Tk j
a @5(N2

21)/(2N) for the fundamental representation ofSU(N) gauge
group#. The upper~lower! sign in ~b! is for Z2 even~odd! scalars.

Diagram b1 b2

~a! @2122(j21)#g2C(r ) @51(j21)#g2C(r )
~b! 7h2 7h2

FIG. 10. One-loop diagrams for the scalar boson self-energy~a!
Al-scalar loop,~b! A5-scalar loop,~c! Al loop, ~d! A5 loop, ~e!
fermion loop, and~f! scalar loop.
5-13
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1

64p2
ln

L2

m2 H p2c11
p5

21p58
2

2
c2J S for p585p51

2n

R D .

~B7!

The coefficientsc1 ,c2 ~in the Feynman gauge! are given in
Table IV. Including the normalization factor (A2)2, we have
the correction to the KK modes of an even scalar,

d̄mS1n

2 5m̄21mn
2 1

32p2
ln

L2

m2 F6g2T~r !2 (
even scalars

l11

2

1 (
odd scalars

l12

2 G , ~B8!

where the sum is over real components.
For an odd scalar, there is no boundary mass term.

correction comes only from boundary kinetic terms,

1

64p2
ln

L2

m2
p5p58d1 S for p585p51

2n

R D . ~B9!

The coefficientsd1 from one-loop diagrams are listed i
Table V. The total correction to the KK modes of an o
scalar KK is

d̄mS2n

2 5mn
2 1

32p2
ln

L2

m2 F9g2T~r !1 (
even scalars

l12

2

2 (
odd scalars

l22

2 G . ~B10!

TABLE IV. The contributions toc1 ,c2 ~in Feynman gauge!
from the diagrams in Figs. 10~a!–10~f!. The upper~lower! sign in
~f! is for a Z2 even~odd! scalar in the loop.

Diagram c1 c2

~a! 4g2T(r ) 2g2T(r )
~b! 0 3g2T(r )
~c! 0 24g2T(r )
~d! 0 g2T(r )
~e! 0 0

~f! 0 7
l

2

TABLE V. The contributions tod1 ~in Feynman gauge! from the
diagrams in Figs. 10~a!–10~f!. The upper~lower! sign in ~f! is for a
Z2 even~odd! scalar in the loop.

Diagram d1

~a! 0
~b! 5g2T(r )
~c! 4g2T(r )
~d! 2g2T(r )
~e! 0

~f! 6
l

2

03600
e

Finally, we briefly describe the results for 2 extra dime
sions compactified on aT2/Z2 orbifold, with a square torus
T2 of radiusR for each side. TheZ2 is a 180° rotation in the
x5 ,x6 plane, which flips the signs of bothx5 and x6. The
gauge componentsA5 ,A6 are odd underZ2 while Am ,m
50,1,2,3 are even. There will be induced terms localized
the orbifold fixed points (x5 ,x6)
5(0,0),(0,pR),(pR,0),(pR,pR), which break
6-dimensional Lorentz invariance.

The KK states are labeled by a pair of KK numbe
(n1 ,n2), with (n1 ,n2) and (2n1 ,2n2) identified. There are
KK parities associated with each KK number. The results
similar to the 5-dimensional case onS1/Z2, except that we
need to include the extraA6 component, which contribute
like an odd adjoint real scalar. We have

d̄mV(n1 ,n2)

2 5m(n1 ,n2)
2 g2

32p2
ln

L2

m2

3F8C~G!2
1

3 (
real scalars

~T~r !even2T~r !odd!G ,
~B11!

d̄mf (n1 ,n2)
5m(n1 ,n2)

1

64p2
ln

L2

m2

3F12C~r !g22 (
even scalars

3h1
2 1 (

odd scalars
3h2

2 G ,
~B12!

d̄mS1(n1 ,n2)

2 5m̄21m(n1 ,n2)
2 1

32p2
ln

L2

m2

3F7g2T~r !2 (
even scalars

l11

2
1 (

odd scalars

l12

2 G ,
~B13!

d̄mS2(n1 ,n2)

2 5m(n1 ,n2)
2 1

32p2
ln

L2

m2

3F8g2T~r !1 (
even scalars

l12

2
2 (

odd scalars

l22

2 G .
~B14!

In addition, there are also KK states corresponding to
linear combination ofA5 and A6 which is not eaten by the
KK gauge boson. These KK states are odd adjoint scal
Their corrections are just like the odd adjoint scalars’

d̄mP(n1 ,n2)

2 5m(n1 ,n2)
2 g2

32p2
ln

L2

m2

3F8C~G!1 (
real scalars

„T~r !even2T~r !odd…G .
~B15!
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APPENDIX C: KK NUMBER VIOLATING
COUPLINGS

In this appendix we discuss the KK number violating co
plings in an orbifold compactification. Using the example
one extra dimension compactified onS1/Z2, we consider the
KK number violating couplings between the fermion and t
gauge field. Figure 11 shows the one-loop vertex correcti
for the fermion gauge interactions. The contributions to
KK number violating interaction are logarithmically dive
gent. They can be written as

d̄L.2
L

2
„d~x5!1d~x52L !…f 1

g2

64p2

3 ln
L2

m2
gc̄gmTaP1cAm

a , ~C1!

whereP15PR or PL is the projection on theZ2 even fer-
mions. The coefficientsf 1 from the diagrams in Fig. 11 ar
listed in Table VI. Summing over them gives

f 1~ total!5C~r !@112~j21!#1C~G!F21
1

2
~j21!G .

~C2!
To obtain the couplings among the physical mass eig

states, we need to include the KK number violating mass
kinetic mixing effects on the external legs, since they
also one-loop effects. The~4-dimensional! kinetic mixing
needs to be treated with some care. We illustrate this wi
simple example of two real scalars,fp ,fq , with masses
mp,mq , and a small kinetic mixing proportional toe:

FIG. 11. One-loop diagrams for the fermion-gauge boson in
action: ~a! Al-fermion-fermion loop,~b! A5-fermion-fermion loop,
~c! Al-Ak-fermion loop, and~d! A5-A5-fermion loop,

TABLE VI. The contributions tof 1 from the diagrams in Figs
11~a!–11~d!.

Diagram f 1

~a! @2C(r )2C(G)#@11(j21)#
~b! 2C(r )1

1
2 C(G)

~c! C(G)@31
3
2 (j21)#

~d! 2
1
2 C(G)
03600
-
f

s
e

n-
d

e

a

L5
1

2
]mfp]mfp1e]mfp]mfq1

1

2
]mfq]mfq2

1

2
mp

2fp
2

2
1

2
mq

2fq
2 . ~C3!

We will only work in the leading order ofe. First, we re-
definefp to absorb the mixing term,

fp85fp1efq fq8'fq

or

fp'fp82efq8 fq'fq8 . ~C4!

In terms offp8 ,fq8 , the mass terms become

2
1

2
mp

2fp8
21emp

2fp8fq82
1

2
mq

2fq8
2 . ~C5!

r- FIG. 12. The KK number violating coupling fo

c̄0gmTaP1c0A2m
a . The dot represents the kinetic mixing and th

cross represents the mass mixing. The contributions from var
diagrams are A2g(g2/16p2)ln(L2/m2)3 ~a! one-loop vertex:
$C(r )@112(j21)#12C(G)@21

1
2 (j21)#%, ~b! A2~external!-A0

kinetic mixing: $@ 11
3 2(j21)#C(G)2

1
3 ( real scalars„T(r 1)

2T(r 2)…%, ~c! A2-A0 mass mixing:@21
1
2 (j21)#C(G), and ~d!,

~e! c02c2 mass mixing:$251(j21)C(r )%32.

FIG. 13. The KK number violating coupling fo

c̄2gmTaP1c0A0m
a . The dot represents kinetic mixing and the cro

represents mass mixing. The contributions from various diagra
are A2g(g2/16p2)ln(L2/m2)3 ~a! one-loop vertex:$C(r )@112(j
21)#12C(G)@21

1
2 (j21)#%, ~b! c2~external!-c0 kinetic mixing:

$2@112(j21)#%, ~c! A2-A0 mass mixing: $2@21
1
2 (j

21)#C(G)%, ~d! c2~external!-c0 mass mixing:@51(j21)#C(r ),
and ~e! c0~external!-c2 mass mixing:$2@51(j21)#C(r )%.
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Now we can diagonalize the mass matrix by a rotation
tweenfp8 and fq8 . The physical eigenstatesfp9 and fq9 are
given approximately by

fp9'fp81
emp

2

mq
22mp

2
fq8'fp1

emq
2

mq
22mp

2
fq

~C6!

fq9'fq82
emp

2

mq
22mp

2
fp8'fq2

emp
2

mq
22mp

2
fp .

In particular, if one of them is massless,mp50, the relation
between the physical states and the original states is sim
given by Eq.~C4!.

As an example, we compute the coupling between
mass eigenstates of a second~or 2n-th! KK mode gauge
boson and two zero mode fermions. The contributions
shown in Fig. 12. Combining all contributions we obtain t
c̄02c02A2 interaction vertex to be
ys

. D

s
N.
in

n-

ll

03600
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e

re

~2 igmgTaP1!A2
g2

64p2
ln

L2

m2 F23

3
C~G!

2
1

3 (
real scalars

„T~r !even2T~r !odd…29C~r !G
5~2 igmgTaP1!

A2

2 F d̄~mA2

2 !

m2
2

22
d̄~mf 2

!

m2
G . ~C7!

It is not too surprising that it is related to the mass corr
tions from the boundary terms. TheA2 factor comes from
the normalization of the KK mode at the boundaries.

One can also check the KK number violating couplin
involving the zero mode gauge boson, e.
c̄2gmTaP1c0A0m

a ~Fig. 13!. We find that they vanish as re
quired by gauge invariance.4

4However, there can be higher dimensional operators such

c̄2smnTaP1c0F0mn
a .
ys.
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