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Radiative corrections to Kaluza-Klein masses
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Extra-dimensional theories contain a number of almost degenerate states at each Kaluza-Klein level. If extra
dimensional momentum is at least approximately conserved then the phenomenology of such nearly degenerate
states depends crucially on the mass splittings between KK modes. We calculate the complete one-loop
radiative corrections to KK masses in general 5 and 6 dimensional theories. We apply our formulas to the
example of universal extra dimensions and show that the radiative corrections are essential to any meaningful
study of the phenomenology. Our calculations demonstrate that Feynman diagrams with loops wrapping the
extra dimensions are well-defined and cutoff independent even though higher dimensional theories are not
renormalizable.
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[. INTRODUCTION tions and decays. We see from Ed) that at the tree level
the KK modes of levein>1 are exactly at threshold for

Radiative corrections are known to play an important roledecaying to lower level KK modes. For example, in 5D QED
for precision measurements, but are generally not expecteasith massless photons and electrons the reaction
to radically change the nature of high energy “discovery”
processes like the production and decay of new particles in
collider experiments.

In this paper we point out that this expectation can be
completely wrong with respect to the collider physics ofis exactly marginal at the tree level. It is straightforward to
some extra-dimensional models. Radiative corrections aréclude electroweak symmetry breaking masses. This gives
crucial for determining the decays of Kaluza-KIg¢kiK) ex- ~ no mass shift to the photon and its KK modes and generates
citations. This is because at the tree level KK masses amasses\/mszr me2 for the electrons at KK leveh. Including
qguantized, and all momentum preserving decays are exacthyese shifts one finds that the reacti@ is just barely for-
at threshold. Radiative corrections then become the dominamidden by phase space, and one concludes that all electron
effect in determining which decay channels are open. KK modes are stable. However, using realistic values

Consider for example the simplest case of a massless field MeV andR 1~ TeV, the difference between the total
propagating in a single circular extra dimension with radiusmasses on both sides of Eg) normalized to the KK mode
R This theory is equivalently described by a four dimen-masses is only of orden?m3~10~*2 Clearly, this minus-
sional theory with a tower of states with tree level massegule mass splitting is completely irrelevant if there are radia-
m,=n/R. The integern corresponds to the quantized mo- tive corrections to Eq(1) which would start at order
mentumps in the compact dimension and becomes a quan~10-2. This is reminiscent of the case &f-ino-LSP in
tum numberKK numbep under aU(1) symmetry inthe d  supersymmetric models where the tiny tree lalgino mass
description. The tree level dispersion relation of a 5D-splitting is overwhelmed by the radiative correctidis.
massless particle is fixed by Lorentz invariance of the tree We now show that there are indeed radiative corrections
level Lagrangian to the KK masses. The dispersion relatidn follows from

. . local 5D Lorentz invariance of the tree level Lagrangian.

E?=p?+pi=p?+m?, (1)  However, 5D-Lorentz invariance is broken by the compacti-

fication. This breaking is non-local and cannot be seen in the

wherep is the momentum in the usual three spatial direc-renormalized couplings of the local 5D Lagrangian, but it
tions. Ignoring branes and orbifold fixed points, KK numbercontributes to the d masses of KK modes because of their
is a good quantum number and is preserved in all interacdelocalized wave functions in the fifth dimension. More ex-

plicitly, the leading mass correctior&nﬁ to Eq. (1) come
from loop diagrams with internal propagators which wrap

e@_, e 1 (1) %)

*Electronic address: hcheng@theory.uchicago.edu around the compactified dimension. The sign andepen-
"Electronic address: matchev@phys.ufl.edu dence of these corrections determines which decay channels
*Electronic address: schmaltz@bu.edu are open and which KK modes are stable. For the example of
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5D QED, we find radiative corrections at orderas antici-
pated; they render the reacti@®) allowed with phase space
of orderaR™*~10 GeV.

In this paper we compute mass corrections at one loop fo
a general theory with fields of spin @,and 1. Our results
are finite and well defined. At first sight, this might seem
surprising since the 5D theory is not renormalizable. How-
ever, the 5D Lorentz violating corrections to KK mode
masses involve propagation over finite distan@sund the

extra dimensionand are exponentially suppressed for mo-iermgs correspond to new parameters of the theory. They con-
menta which are large compared to the compactificationyin jncalculable contributions from unknown physics at the

scale. Thus our results are UV finite and do not depend ogyoff as well as contributions from loops in the low-energy
the choice of regulator as long as it is 5D Lorentz '”Va”a”ttheory which we compute in this paper.

and sufficiently local. . This paper is structured as follows. In the next section we
Applying these results to the standard model requires ingompyte radiative corrections to masses of KK modes for an

troducing an additional complication. Obtaining chiral fermi- arbitrary theory with scalars, fermions, and gauge fields in a
ons in 4D from a 5D theory is only possible with additional 55 theory on a circle. In Sec. IIl we discuss the additional
breaking of 5D Lorentz invariance. Two frequently discussedyompjications which arise for orbifolds where all fields

choices are introducing chiral fermions on branes or imposbropagate in the bulk and compute the renormalization of

ing orbifold boundary conditions on fermions in the bulk. We boundary couplings. In Sec. IV we apply the results of the
focus on the latter because we wish to minimize the breakingo,;ious sections to the standard model in “universal extra

of 5D Lorentz invariance. The resulting model in which all dimensions” and determine the complete one-loop corrected

the standard model fields live in the bulk of an orbifold is gpectrum. Section V contains our conclusions. Details of our
known as “universal extra dimension§2]. We consider the 5 iculations can be found in the Appendixes.

orbifolds St/Z, and T?/Z,.

Both orbifolds have fixed points which break extra-
dimensional translation invariance, and we expect new inter- ! BULK CORRECTIONS FROM COMPACTIFICATION
actions localized on the fixed points. Clearly, the presence of begin, we discuss the simplest higher dimensional
;uch localized interactipns violates 5D momentum CONSeVameory: an extra dimension compactified on a ciglewith
tion, and KK number is no longer preserved. However, &adiusR (xs+ 2R~ xs). We assume that 5D Lorentz invari-
discrete subgroup remains unbroken. In ijé_zz case, this  ance is respected by the short-distance physics, and is only
is “KK parity,” a parity flip of the extra dimension. Inthe 4D yroken by the compactification. The momentum in the 5th
description KK parity is aZ, symmetry under which only  gimensjon, which is quantized in units ofRl/becomes a
KK modes with odd KK number are charged. The symmetrymass for the KK modes after compactification.  If
implies that the lightest KK particle at level (the LKP) is  5_gimensional Lorentz invariance were exact, the KK mode
stable. Note that KK parity and the LKP play an analogousmasses coming from the 5th dimensional momentum would

role to R parity and the LSP in supersymmetry. not receive corrections. For example, the kinetic term of a
In the presence of orbifold boundaries higher level KK gcg1ar field living in 5 dimensions is

modes can decay to lower level KK modes via KK number
violating interactions. These decays compete with KK num- £DZ3,pd b—Zsdsdpdsd, wu=0,1,2,3. 3
ber preserving decays, and it becomes a phenomenologically ®

important question which channels dominate. The answegy, 7 angz, receive divergent quantum corrections. How-

can be understood very simply. Since the KK number violatger it 5_dimensional Lorentz invariance were exact, these
ing interactions exist only on the boundaries they turn into

. . ."~contributions would be equal, so that the masses of the KK
volume suppressed couplings between KK modes. This IMA0des coming from the,¢)? term would stay uncorrected.
plies that even though KK number violating decays hav

Sviore generally, exact Lorentz invariance would imply that
larger phase space they are more strongly suppressed b&—

cause they are proportional to the square of smaller couplinf'€_€Nergy is only a function ofp|?+p5, and henceE?
constants. Therefore, the question of which momentum pre=|p|?+pé+m? does not receiv@s-dependent corrections.
serving decays are allowed by phase space remains phenoAH KK mode masses would be given bz +m? with the
enologically important also in theories on orbifolds. sameps dependence, and the only correction would be due
In addition to giving rise to new interactions, the bound-to renormalization of the zero mode mass
ary terms also include 5D Lorentz violating kinetic terms  However, 5-dimensional Lorentz invariance is broken at
which contribute to the masses of KK modes and are importong distances by the compactification, so in general the
tant in determining decay patterns. In Ri] it was shown masses of the KK modes do receive radiative corrections.
that the coefficients of boundary terms receive logarithmif=eynman diagrams are sensitive to the Lorentz symmetry
cally divergent contributions at one loop. Thus it is not only breaking if they have an internal loop which winds around
possible to include boundary terms in orbifold theories, it isthe circle of the compactified dimension, as shown in Fig. 1,
inconsistent not to include them. The coefficients of theseso that it can tell that this direction is different from the

FIG. 1. Lorentz violating loop.
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others. This is a non-local effect as the size of the loop can k—p ks~
not be shrunk to zero. Such non-local loop diagrams are
well-defined and finite, even though the higher-dimensional
theory is non-renormalizable.

We can isolate the finite 5D Lorentz violating corrections
from the divergent 5D Lorentz invariant corrections by em-
ploying a very simple subtraction prescription: from every
loop diagram in the compactified theory we subtract the cor- k, ks
responding diagram of the uncompactified theory. The UV
divergences are canceled because the two theories are iden-
tical at short distances, but the KK mass corrections are un-
altered because the subtraction is 5D Lorentz invariant.

To make this more explicit, first note that momenta in the f(x)=F YF(k)}= fw %efikxl:(k)' @)
compact dimension are discrete. Therefore the five- 2T
dimensional phase space integral

FIG. 2. Vacuum polarization diagram.

The resummation formula turns a sum over KK numhbars
(or KK momentaks=m/R) into a sum over winding num-

5
f d’k (4) bersn (or position space windinge27R around the fifth
(2m)° dimension. Note that then=0 term in the sum is identical
to the phase space integral of an uncompactified extra dimen-
becomes sion
1 E f d4k (5) - dk5 d5k
27TR k5 (2,”.)4 f(O):f_wﬂF(k5)=J—(2W)5 (8)

for compact dimensions.

Our subtraction prescription is to simply subtract E4).
from Eq. (5) for each diagram. To better understand the
physical meaning of this prescription and to explicitly dem- =~ . : -
onstrate that Eq$4) and(5) contain the same divergence we (with n+0) correspond to particle loops with net winding

rewrite the KK sum using the Poisson resummation |dentlt)ﬂgogn::]ét}esﬁﬂqmpacnf'ed dimensibiThey are all finite and

To illustrate the calculation, we consider the relatively
B simple example of QED in#1 dimensions with one spatial
27R mZ_m FIM/R)= 2 f(2mRn), ©) dimension compactified on a circle. We will calculate the
correction to the masses of KK photons due to the electron
wheref(x) andF(k) are related by Fourier transformation loop. The one loop vacuum polarizatidfig. 2) is given by

Thus our subtraction prescription simply amounts to leaving
out the divergenh=0 term in the re-summed expression for
each Feynman diagram. The remaining terms in the sum

d*k
271')4

1 1
-y
Mkﬂ?’sks (K=p) +ivys(ks—ps)
:_4622 d4k kM(kV_pV)+kV(k,u,_pp,)_gp,vk(k_p)+g/.wk5(k5_p5)
(2m)* (k= k§)[(k—p)?~ (ks —ps)?]

wherep,k are 4-momentaks=m/R with m=integers, and the volume factor 1/R) has been absorbed into the gauge
couplinge?=e?/(27R).
As usual we use Feynman parametrization to combine the denominators,

1 d*k N
i V:.-4e2f d f “ 10
" o“% (2m)* [K2— k2 + a(1- a)(p?>— pd)]? o

__gg

(€)

More precisely, they correspond to diagrams in which the internal propagators form a non-contractible loop around the extra dimension.
The parameten is the winding number of the internal loop. The diagrams with a contractible loop are 5D Lorentz invariant and get
subtracted.
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where " t "
—1fa—kg/ty — —xt
F e } \/47Te

Noo=2K,K,+0,,(~ K>+ a(1- a)(p?~p)

+(2a—1)pskg+ks®)—2a(1-a)p,p,, (11 F ke KM =—j xt Lefxzt/“
> 2 Vax
andki=ks— aps. To calculate the correction to the masses $22  t n 17)
of the KK modes, we concentrate on the terms proportional f‘l{kze_kg/t}z 4|/ —xt/4
g,l,LV'
FYF(ki=ks—aps)}="f(x)e ' *XPs,
H,Lw:g/.wnl_ pp.pVHZ' (12) { ° ° Ps }
The result is

We can sep2=p§ in the leading order approximation. Re- )

. 2 . . B e 1 . 0 t
placingk,k, by g,,,k*/4, and performing the Wick rotation, - - 3 J dae*'“XPSJ at s
we have 27R2 xZ7mn Jo 0 4

3 1 X%t
1 , , —x2t4 2 _ _ = _ -
. d4kE§k§+(2a—1)p5k5+ ke? Xe > I(a Z)Xps 7
Hl=—4e2f da, —
o % J (2m)* (kgt+ks*)? e? 1
13 — d e—iaxp5
( ) 27TR2 x:227-rn fO “
It is convenient to rescalkg ,ks,ks,ps by 1R so that they 3 2 2 x2 12

become dimensionless numbers &gdps run over integers. X
Using the formula

_ 1
s——ila—5|Xps—%—+— —
2 x? ( 2) PSx® 4 x5

2 o0
e 1 .
1 1 © - _ z f d —ia2mnpg
_ —1,—Al ae

E_(I‘—l)!J’O aeere ™, (14) 27R2 n=== Jo

_ 1
we obtain X(=i(2a—=1)2mNnps)——. (19
|27n|
4e? (1 d*ke (= For the zero modeps=0), we havell,=0, i.e., there is no
=~ ? 0 < f (217)4fo dee correction to the mass as expected by gauge invariance. For
5

> 2 tained by dropping the divergemt=0 term as discussed
e (&0 (15 apove

1 2 ’ 12
x| 5 KE+ (2a—1)psks kg

2
e 2
Next, we perform thel*k integral oMz, = —
P £ Imed KK™ 27R2 %0 |23
4¢e2 1 P 2 » 2
le——f daf dee ___® 1
167°R?Jo 0 47*R%0=1n®  44°R?
1 (2a—1)psks k& 2 which is finite and independent of the KK level.
XU |Gt e It is straightforward to follow th dure to cal-
= | ¢3 2 2 is straightforward to follow the same procedure to ca
culate the corrections in a more general theory which con-
e2 1 o tains non-Abelian gauge fields, fermions, and scalars. In our
= A2RE Jo dafo dt calculation, we assumed that the zero mode masses are much
r

(2a—1)pskl k.2 , them in the calculations. With the possible exception of the
x> T PSS i}e— kst (16)  Higgs boson and the top quark, this is also the case of inter-
ks t t est for applications to the standard mod¢For non-

vanishing zero mode mass,<1/R, there will be KK level
wheret=1/. Now we use the Poisson resummation for-dependent corrections suppressednhﬁ/pé.) The one-loop

nonzero KK modes, the correction to their masses is ob-

smaller than the compactification scale so that we can ignore

mula, Eq.(6), to turn the sum oveks into a sum over wind-  contributions from various diagrams are listed in Appendix A

ing numbers. The inverse Fourier transformations needed awnd we summarize the results here.
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The correction to the KK mode masses for the gauge fieléffects of accelerated running of couplings are not very im-
is given by portant yet. Here we confine ourselves to one-loop order in
the calculation of the KK masses. The evolution of the cou-
plings contributes to the KK mass corrections starting at two-

2
2 = %(30((3” > T(ry) loop order. They are to be included in a higher-loop calcula-
KK 167°R real scalars tion as well as other two-loop or higher effects which cannot
be absorbed into the running couplings. Also, in the above
—4 2 T 20 calculations we have ignored graviton logg$ Their effects
, T(re) |, (20) e g
fermions on KK mass splittings are negligible as they are suppressed

by powers ofMp|R.

where C(G) 8ap="Tacdfbed =N for SU(N)], and T(r) dag
=tr(TAT®) is the Dynkin index of the representationnor- lll. ORBIFOLD COMPACTIFICATIONS
malized to be 1/2 for the fundamental representation of
SU(N). The sum over scalars is over the real component
and needs to be multiplied by 2 for a complex scalar. Not«%
that for a supersymmetric theory the correction vanishes as i
has to because the KK gauge bosons are BPS states. As
the case of QEDS5, the zero mode mass is not corrected
dictated by gauge invariance.

A similar calculation yields the correction to the mass of
the zero mode oAs. We find

In the previous section we considered the simplest com-
actification on a circléthe generalization to a torus in more
xtra dimensions is discussed in Appendix Mowever, a
igher dimensional fermion has 4 or more components. Its

r dimensional zero mode consists of both left-handed and
?@ht—handed fermions when compactified on a torus, and the
resulting four dimensional theory is vector-like. To obtain
chiral fermions in four dimensions, we need more compli-
cated compactifications. One possibility is to compactify the
extra dimensions on an orbifold. In this section, we consider

5mio=35m\2,KK, (21)  the simplest example, aB/Z, orbifold, whereZz, is the
5 reflection symmetryxs— —xs. In addition to their indirect
transformation via theixs dependence, fields can be even or
which is in agreement with earlier calculatio. Note that  odd under thisz, symmetry. A consistent assignment is to
the KK modes OfA5 are “eaten” and become |0ng|tud|nal haveAM, /»L:0111213 even, anAS odd for the gauge f|e|d,

components of the KK gauge fields. and ¢, even (odd), ¥ odd (even for the fermions. The
For fermions, we find scalars can be either even or odd. From a field theory point
of view, the orbifold is simply a line segment of lengith
omg  =0. (22 =R with boundary points(orbifold fixed point$ at xg

=0,7R. Even(odd) fields have Neuman(Dirichlet) bound-
Fine tuning is required for a scalar to be light, as(iter- ary conditions,ds¢p=0(¢=0) atxs;=0,7R.
entz invariant mass receives power divergent corrections no The KK decomposition for even and odd fields is given
matter whether the extra dimension is compact or not. We arby
interested in the difference between the corrections to the
KK modes and the zero mode, assuming that the zero mode

mass has been fine tuned to be smaller than the compactifi- ®+(x,x5)=i¢(+°)(x)+ A /iz Cosrﬁ M (x),
cation scale. In calculating the potentially 5D Lorentz violat- V7R TRA=1 R

ing contributions from loops with nonzero winding number, (25
we find that the lowest order corrections to the squared 5 = x
masses of the zero mode and KK modes are the same, — /= in 0 4 (n)
D _(X,Xs) \/WR,; sin—= ¢ (x).
2 2
5mSKK— 5mso. (23

The zero mode of the odd field is projected out by the orbi-
fold Z, symmetry(or Dirichlet boundary conditions For a
fermion ¢, only ¢, (or ¢g) has a zero mode, hence we
obtain a chiral fermion in the four dimensional theory. Simi-
larly, the A5 zero mode is projected out and there is no mass-
less adjoint scalar from the extra component of the gauge
n2 field.
m§ = —+mj (24) The orbifold introduces additional breaking of higher di-
R mensional Lorentz invariance which leads to further correc-
tions to KK mode masses. The orbifold fixed points break
with no corrections at the lowest order. translational symmetry in the; direction, therefore momen-
The radiative corrections due to 5-dimensional Lorentztum in thexs direction(KK numbe is no longer conserved,
violation are long-distance effects, so they are saturated bgnd we expect mixing among KK modes. However, a trans-
the contributions from the lowest lying KK modes, where thelation by 7R in the x5 direction remains a symmetry of the

Therefore, they can be absorbed into @iminitely renormal-
ized) zero mode mass, and theth KK mode mass is simply
given by
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orbifold. We can see from Ed25) that under this transfor- Pk oy4oa

mation the even numbengE even) KK modes are invariant P~ kMS ks

while the odd numbern=o0dd) KK modes change sign.

Therefore, KK parity 1)K (not theZ, in SY/Z,) is still a P, P - P, D5
good symmetry. Note that KK parity is a flip of the line % ; s

segment about its center @= wR/2 combined with theZ,

transformation which flips the sign of all odd fields. FIG. 3. Electron self-energy diagram.

Because 5D Lorentz and translation invariance are broken
at the orbifold boundaries, radiative corrections generate ad-
ditional Lagrangian terms which are localized at the boundT T )

. or the gauge fieldin the Feynman-"t Hooft gaugeand
aries and do not respect 5D Lorentz symmetry. The boundary gaug d y gauge
terms contribute to masses and mixing of KK modes. To

calculate them, we follow the work by Georgi, Grant, and i | Opg.pi T O pg.p!
Hailu [3]. Fields on theS'/Z, orbifold can be written as D(p,p5,pé)=§ 52 5 > (30)
P™—Ps
1
P(X,X5) = 5 (P(X,X5) £ P (X, = Xs)), for the scalar bosorps andpy are the outgoing and incom-

(26) ing fifth dimensional moment&K numberg. They can be
different because 5D momentum is not conserved.
P(X,X5) = E(\p(x,x5)i sV (X, —Xs)), We calculate the one-loop diagrams with these modified
2 propagators. Consider, for example, the one-loop contribu-
tion to the electron self-energy in 5D QEEig. J). Let us
where® , ¥ are unconstrained 5-dimensional boson and fer.ﬁrSt focus on the summation over momenta in the fifth di-
mion fields, and the uppdfower) sign, +(—), corresponds mension. The summations are of the form
to ¢,y being evenlodd) underxs— —xs. The propagators
such as
k;(’ (Okg k.t Okg k. V5) (Fp—kg pL k. T O (pg—kg),pL kL)
)

S(x—X',X5— X&) = (X, X5) (X', X5)) (27)

. . . = 6 1+ 5, ! + 5 ’
can be expressed in terms of unconstrained fié¥@s. The ( Ps5:Ps p5,p575)k25 kzs ( 2ks Pst P

results are
+ 52k5,p57pé75)- (31)
) o_

PPy Ps.Py

i
— +
p+iysps P+ivysps

S(p!p51pé):2[

y5} (29 Up to a factor of 3, the term proportional t05p5,pé
+5*r>5vp_é,75 reproduces the corresponding diagram in 5D
QED on a circle, and we can simply recycle the result of the
previous section. The relative factor §farises because the

Z, orbifolding projects out half of the states of the theory on
_igw{ 5psvpé+ 5_p5,pé] S'. The second term gives rise to new contributions to the

for the fermion,

D u(P:Ps,Ps) = self-energy which violate 5D momentum by integer mul-
tiples of 2R. We will see shortly that these terms are log
(29 divergent. The corresponding counter terms are localized on
] the fixed points of the orbifold ats=0 andxs= wR.

p?—p3

D_enoting the “boundary” contribution to the self-energy
by 3 (p;ps,ps) we have

; Oy o/ —O_ '
—1055] “Ps.Pg Ps.Pg
Dss(P.Ps,Ps) = {

2 p®—p3

¥ (K+i7vsKs) ¥*9,.,— vs(K+1vsKs) v5
(k*=K3)[(k—p)?—(ks— ps)?]

= N d*k
—IE(p;p5,p5)=—Z kZ f

- (277)4 (52k5,p5+ péi 52k5,p5—pé75) (32

where the first term in the numerator comes from the 4-dimensional gauge field components and the second term comes from
the 5th component of the gauge field. After Feynman parametrization and Wick rotation, this becomes
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e pp=T 3 fld JdAkE (AP +ST75K5) D2 oy ™ Ok 505 75)
a 1Ps5,P5) = —— @
et ks 0 (2m)* [kE—a(l—a)p®+ki—2aksps—aps]?

1 .
> p+5i y5k5} (62kg.ps+py = 2k ps—p, V)

1+ ys 1+

. Vs . ,1175 ’
p 5 +5|75DST+5| YsPs—5 for even R(ps—ps). (33

The arrow in the second line indicates that we have only kept We expand the boundary terni34) in terms of the KK
the leading logarithmic divergence. In the loy,represents modes and consider the modification of the kinetic terms for
the cutoff andu is the renormalization scale. The equality in the n-th KK mode (n+0),

the final line holds only foR(ps—ps) even, for odd differ-

ences we hav& (p,ps,ps)=0. Zoi s i 0+ i 0+ Zog(Wn st — - Isifin ),
This result can be understogillowing [3]) as the renor-
malization of terms in the 5D Lagrangian which are localized (35
at the boundaries of the orbifold. Fourier transforming to
position space, we obtain where
5 ) g2 A2
— [6(X5)+6(xs—L)\ L A Z,.=1+2[1+2(&é-1 In—,
sio X T oxsm L)) Lg” A n+ [1+2(6- D - "
2 64m?  u?
- . - — 2 A2
X[¢+|ﬂ¢++5(0751//,)l)0++51//+(075¢/,)], Zn5:1+2[5+(§_1)] 9 In— . (36)
(34) 64m%  u?

ote thatZ,_=1 becausea/,_ vanishes on the boundary.
fter rescalingy,,, to canonical kinetic terms, the correction
to the KK mode mass is given by

where L appears because of a change in normalization o
fields in going from 4D to 5D;L combines with the 4D
gauge coupling to givEg2=g§. The delta functions are nor-
malized to [§6(x)dx=1. We have been using Feynman

. : , My, Zns 9 g> A2
gauge in the above calculation. For general 't Hogft = —1=- In—, (37)
gauges, one can show that the coefficients in fron#aind My VZ,, 4 167% u?

ds are given by #2(£—1) and 5+ (&£—1), respectively.

The logarithmically divergent result means that we shouldwhich is independent of the gauge parametethe correc-
include counterterms localized at the boundaries to cancdion is proportional to the-th mode mass$\/R, in contrast
the divergence. Our calculation only determined the runningvith the bulk contribution discussed in the previous section.
contribution between the cutoX andu, given initial values For a more general theory which contains non-Abelian
for the boundary terms at. We implicitly assumed in our gauge fields, fermions and scalars, the radiatively generated
calculations that the boundary terms at the cutoff are smallboundary terms from various diagrams are listed in Appen-
If large boundary terms were present, they would mix KK dix B. In the following, we summarize the one-loop correc-
modes of different levels and correspondingly shift theirtions to the KK mode masses. We always assume that the
masses. Both effects would have to be taken into account inoundary terms are small, and can be treated as perturba-
calculating the radiative corrections. The KK spectrumtions.
would then have a complicated dependence on the unknown The corrections to the masses of KK modes for gauge
boundary terms at the high scale. We continue to assume thaesons, fermionsZ, even scalars, and, odd scalars are
there are no large boundary terms, and the logarithmic divegiven by
gences can be absorbed into the cutbffwith A not too
large. Note that this assumption is self-consistent because the _ ) 2 A
boundary terms which are generated by radiative corrections 9My, = mn32 ;In—
are loop-suppressed. K

The leading order correction to the mass of thth KK
mode is obtained from Lagrangian terms which are quadratic X7 C6G)~3 > (T(Never= T(Nogd |
in the n-th KK mode. Mass corrections due to the mixing real scalars
among different KK modes are of higher order. (38
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—k — —
P Ay, As g &( miz) o( mfz)
ps — kg ps — ks — > (42)
V2| m2 m;
pypg k P Ps
kg ks

On the other hand, couplings involving the zero mode gauge
boson are governed by gauge invariance which implies that

KK number violating interactions such @gy“T2P_. oPo,

FIG. 4. One-loop diagram for the KK number violating vertex in vanish.

the 5 dimensional QED.

IV. THE STANDARD MODEL IN UNIVERSAL EXTRA
5 | A? DIMENSIONS
m; =m,——In—
642 w? We now apply the results obtained in the previous two
sections to the standard model in extra dimensions. The KK
}1 modes of standard model fields receive additional tree level
mass contributions from electro-weak symmetry breaking
(39) which we have not taken into account in the calculations of
the previous sections. Here, we include all these contribu-
1 A2 tions but we ignore effects which involve both electro-weak
In— symmetry breaking and radiative corrections. They are sup-
2m® p? pressed by bottlg?/167% and v?/m? and are numerically
N negligible.

- We consider the case in which all the standard model
odd scalars 2 fields propagate in the same extra dimensi@msversal ex-
(40) tra dimensions[2,6]. Theoretical motivations for consider-

ing such scenarios include electroweak symmetry breaking
B 1 A2 [6], the number of fermion generatiofg], and proton sta-
5m§ =mﬁ In— bility [8]. Here we take a phenomenological approach and
-n 3272 ,u2 consider the simplest case of one universal extra dimension
compactified on ar$'/Z, orbifold. The orbifold compactifi-
9g2T(r)+ E o _ )‘} cation is necessary to produce chiral fermions in four Qimen-
evenscalars 2 oddscalars 2 sions. In[2,9,1Q it was shown that the current constraint on
(41) the compactification scale for one universal extra dimension

is only about 300 GeV. Because of tree-level KK number

whereh and \ are Yukawa and quartic scalar couplings re-conservation, KK states can only contribute to precision ob-
spectively. Their normalization is chosen to yield verticesServables in loops, and direct searches for KK states require
with no numerical factors in the Feynman rules e in pair production. If the compactification scale is really so low,
the expression for the even scalars contains a. contributiof} KK states will be copiously produced at future colliders

—, 1,12. As we have argued in the Introduction, the radiative
+2m?” to the KK mode mass from a boundary mass t€rm..rections have to be taken into account in any meaningful

minus a contributiorm? to the zero mode mass from the study of the phenomenology of these KK modes.
same boundary term. The relative factor of two between zero \We assume the minimal field content of the standard
mode and KK modes comes from the normalization of themodel in one extra dimension. The fermions
wave functions in Eq(25). Q;.u;,di,Li,e, i=1,2,3 are all 4-component fermions in
The boundary terms also induce KK number violating4+1 dimensions[The upper case letters repres@it(2)
couplings. Because KK parity is not broken, KK number candoublets and the lower case letters repreSdi2) singlets]
only be violated by even units in these couplings. Using theynder thez, orbifold symmetryQ, ,ug,dg,L, ,eg are even
QED onS'/Z, example, we can calculate the one-loop ver-so that they have zero modes, which are identified with the
tex diagram for the KK number violating coupling between standard model fermions. Fermions with opposite chirality
the phOtOﬂ and the electron, Flg 4. The result is Slmply tq:QRvuL ,dL ,LR,eL] are odd and their zero modes are pro-
replace/ in Eq. (34) by the covariant derivativ®. To obtain  jected out. In order to allow Yukawa couplings the Higgs
the couplings among the physical eigenstates, however, Wigeld must be even under the,.
have to take into account the kinetic and mass mixing effects Tg obtain the corrections to the masses of the KK modes
on the external legs. A more detailed discussion is in Appenof the standard model fields we simply substitute into the
dix C. The result can be related to the mass corrections fl'Ol"fbrmu|aS from the previous two Chapters and include appro-
the boundary terms as both come from operators localized gjriate group theory and multiplicity factors. The bulk correc-
the boundaries. For example, we find that thetions are given bybulk contributions in thes'/Z, orbifold
o Y* TP, oA, coupling is given by are half of those in th&' compactification

9C(r)g>~ >, 3h’+ > 3h?

even scalars odd scalars

X

Sl 2 2
omg =m-+my

X

A
60°T()~ X o+

even scalars

X
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399’25(3)(1)2 _ 15 g2 A2
5(mBn) 2 16,4 \R B(mwn) my, 5 16772|n,u2'
595((3)(1)2 — 23 g2 A2
o)== 3 Tont | R o) =7 1o 7
n 2 167* \R " 167 w
2
3934(3)[1)2 =2 2(3 2. 3 ) 1 A -
2 V= _ — = o(mg )=mil =g5+—-g'“—\ In—+mg.
o(myg ) 2 1674 \R (43 (mg n| 5927 79 M) 6n2 2 H
_ Here Ny is the Higgs quartic coupling,£D —(\y/
5(mf )_Ov t 2 — .
n 2)(H'H) (my=+Ajv,v=246 GeV), and myj is the
5 boundary mass term for the Higgs mode. The renormaliza-
5(mHn):0’ tion scalex should be taken to be approximately the mass of

the corresponding KK mode. In the above formulas, we have

whereB,, are the KK modes of th&J(1) hypercharge gauge not included contributions from Yukawa couplings, which
boson,W,, are the KK modes of th&U(2),, gauge bosons can be ignored except for the top quark Yukawa coupling.
andg, are the KK modes of the gluon. Including the top Yukawa coupling introduces no new cor-

The boundary terms receive divergent contributionsrections to the Higgs KK modes, but the KK modes of the
which require counterterms. The finite parts of these counthird generationSU(2) doublet quarkQ; and theSU(2)
terterms are undetermined and remain as free parameters sihglett receive additional corrections,
the theory’ Here we shall make the simplifying assumption

that the boundary kinetic terms vanish at the cutoff scale _ 3 ht2 A2
and compute their renormalization to the lower energy scale ShMQy,=Mn| = 7 ——In—
. . 167 u
u. The corrections from the boundary terms are then given
by
5 3 h | A 4
_ oF 27 gf 1 g2 A? G ]
omg =mp| 3 BT PRET 5 In—2,
n 1672 161672 161672) 4 .
The corrected masses for most of the KK modes can simply
) be read off from Eqgs(43) and (44). However, for certain
o 12 A2 . S . .
_ O3 g fields there are also non-negligible tree-level contributions
om, =my| 3 + n—, . o .
n 1672 16m2) w2 from electro-weak symmetry breaking, which introduce mix-
ings among the states. This effect is important for the “pho-
2 '2 5 ton” and “Z,” the two KK modes of the top quark, the Higgs
S — 93 1 9 A_ boson KK modes, and to a lesser extent for the bottom and
omg =my| 3 +
DN C16m2 4 16m2) w2’ tau KK modes.
The mass eigenstates and eigenvalues of the KK “pho-
2 2 2 tons” and “Z’'s” are obtained by diagonalizing their mass
— 27 95 9 ¢ A ; 3 L
sm. =mp| — +— In—, squared matrix. In th&,,, W;, basis it is
n 16 1672 16 1642) w2
2
n< . 1 1
B 9 g2 A2 E—'— 5mén+ Z{g’zv2 Zg'gzv2
oMe, =My @|HE1 (44) . ) L , (46)
n° .
29'9202 —2+5m\2,\,+zg§v2
1 12 A2 R "
S 2 2 g
5(msn):mn<—g) >In—. . o
167 u where § represents the total one-loop correction, including

both bulk and boundary contributions. Note that the mixing
angle is different from the zero mode Weinberg angle be-

2Thic i i A «
Thls_ls reminiscent of the case of low energy supersymmetry.5 ;se of the Correctior&nzB and 5m\2/v . Figure 5 shows the
where in the absence of an explicit theory of supersymmetry break- n n

ing we do not know the values of the soft masses at high scale§l€Pendence of the mixing anghg for the n-th KK level on

-1 : o : -1
Nevertheless, we can compute their renormalization within a giveri® R~ for fixed AR—?P: and (b) AR for fixed R
visible sector model like the MSSM. Hence one can predict the=300 GeV. For largeR™" or AR, where the corrections

superpartner masses only under specific assumptions about th&lECOme sizable, the neutral gauge boson eigenstates become
values at the high scale. approximately purd, andW?3.
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100 T T T T 100 T T T f
sk (a) AR=20 A s5F (b) R™!=300 GeV -

tree~-level, any n tree—level, any n

one—loop:

n=1

400 600 800
R™! (GeV)

FIG. 5. Dependence of the “Weinberg” angt for the first few KK levels (=1,2, ...,5) on(@ R for fixed AR=20 and(b) AR
for fixed R"1=300 GeV.

Similarly, the eigenstates and eigenvalues of the KK ferinteresting dark matter candidate. The corrections to the
mions are obtained from the corresponding mass matricesnasses of the other first level KK states are generally large
For example, the mass matrix for the top KK modes is enough that they will have prompt cascade decays down to

v1.2 Therefore KK production at colliders results in generic
n +3m m missing energy signatures, similar to supersymmetric models
R T ' with stable neutralino LSP. Collider searches for this sce-
n ) (47) nario appear to be rather challenging because of the KK mass
m; — ——25mt degeneracy and will be discussed in a separate publication
R " [13].
whereT,, andt, represenSU(2) doublet quarks and singlet
quarks respectively. V. CONCLUSIONS

Finally we discuss the KK modes of the Higgs field. The
KK modes of W and Z acquire their masses by “eating” Loop corrections to the masses of Kaluza-Klein excita-
linear combinations of the fifth component of the gaugetions can play an important role in the phenomenology of
fields and the H|ggs KK modes. The orthogona| Combina_extra dimensional theories. This is because KK states of a
tions remain physical scalar particles. FOR$/M,y z, the given level are all nearly degenerate, so that small correc-
longitudinal components of the KK gauge bosons mostlytions can determine which states decay and which are stable.
come fromAs, and the physical scalars are approximately In this paper we computed the corrections to the masses
the KK excitations of the Higgs field. There are 4 states aPf the KK excitations of gauge fields, scalars and spin-

each KK level,H> ,H2 A? (notice thatH; andA$ are just fermions with arbitrary couplings in several extra-
the usual Goldstone bosons in the SNTheir corrected dimensional scenarios. Our results for one and two circular

masses are given by extra dimensions are presented in Sec. Il and Appendix A.
They are finite and cut-off independent as long as the cutoff
mi‘g%mﬁju mZ+ ‘5man is 5D Lorentz invariant and local. In Sec. Il we extended our

results to the case of orbifold3/Z, and T?/Z,. We found
divergences which introduce cut-off dependence. The corre-

2 2002 4 B2 . .
mHnernﬁL'V'w+ omy (48)  sponding counterterms can be seen to be localized at the
fixed points of the orbifold. The same technique for calculat-
mio% mﬁ+ M§+ 3ma _ ing corrections to _KK.masses can be easily applleq to more
n n general compactifications, as long as the Lorentz invariance

is preserved at short distance in the bulk.

In Fig. 6, we show a sample spectrum for the first KK exci- In Sec. IV we apply these results to the standard model in

tations of all standard model fields, both at the tree léagl
and including the one-loop correctiori). We have fixed

R™*=500 GeV, AR=20, m,=120 GeV, m;=0 and as-  37pg first level gravitonG, (or right-handed neutrind\; if the
sumed vanishing boundary terms at the cutoff sceléVe  theory includes right handed neutrintig) could also be the LKP.
see that the KK “photon” receives the smallest correctionsHowever, the decay lifetime of; to G, or N; would be compa-
and is the lightest state at each KK level. Unbroken KKrable to cosmological scales. Therefo@, and N, are irrelevant
parity (—1)X implies that the lightest KK particldLKP) at  for collider phenomenology but may have interesting consequences
level one is stable. Hence the “photon” LKf, provides an  for cosmology.
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FIG. 6. The spectrum of the first KK level &) tree level andb) one loop, forR"1=500 GeV,AR=20, m,=120 Gev,ﬁﬁ:o, and
assuming vanishing boundary terms at the cut-off sdale

extra dimensions and give explicit formulas for the corrected We consider one extra dimension compactified on a circle
masses of all KK excitations. We hope that these results wils! with radius R. The various one-loop diagrams for the
be useful to practitioners of the phenomenology of universajauge boson self-energy are shown in Fig. 7. The contribu-
extra dimensions and other models with standard modeions from nonzero winding numbers to the zero mode and
fields in the “bulk” (intriguing examples argl4,15). nonzero modes in the Feynman-"t Hooft gauge are listed in
Table I. After summing over all diagrams, we find that the

total contribution to the zero mode is 0, and the contribution

) to nonzero modes is
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3C(G)+ X T(ry

real scalars

-4 > T(rp . (A1)

fermions

The one-loop contribution to the fermion self-energy is

, . . , also obtained easily. For the example of QED,
In this appendix we list the one-loop corrections to KK

masses from various diagrams with nonzero winding num-

APPENDIX A: ONE-LOOP BULK CONTRIBUTIONS

d%ke
bers. S = —3e2J de,
ks (2m)*
A/\ A)\ A5
a(p+iysps)+iyske
X, (A2)
[ke+ ks —a(l—a)(p —ps)]
(a) A () A () #s
TABLE I. The contributions from the diagrams in FigSa@
A, As 7(i). All these terms are multiplied?¢(3)/167*R?. For the scalar

loops in(h) and (i), the results are for each real component.

Diagram Nonzero mode Zero mode
(d) (e) 69)
@ C(G) -3C(G)
(b) —2C(G) C(G)
© 0 -C(G)
M/\Q\/\A/ f\/vv‘\\ /,r\/\/\z -‘\ //l (d) 0 %C(G)
) (e 3C(G) 3C(G)
h i
(8) (h) ® 0 c(G) c(G)
FIG. 7. One-loop diagrams for the gauge boson self-endayy: (@ —4T(ry) 0
A,—A, loop, (b) A, —As loop, (c) As— As loop, (d) ghost loop,(e) (h) 0 —T(rg)
A, loop, (f) As loop, (g) fermion loop,(h) scalar-scalar loop, and) 0 T(re) T(r)

scalar loop.
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TABLE Il. The contributions toa; ,a,,a; from the diagrams in Figs.(@-7(i) and Figs. &'),8(c).
There is no contribution from fermions at one loop due to the cancellation betweefy tleen and odd
fermion components. For the scalar loopghinand(i), the upperlower) sign is for theZ, even(odd) scalar,
and the results are for each real component.

Diagram a, a, as
@ [%—(£-1)]IC(G) [5-(£-1)]IC(G) [3+32(£-1)]C(G)
(b) 0 0 [3+3(£-1)]C(G)
(0" 0 0 3(£-1)C(G)
(© 3C(G) 3C(G) [—1+(£-1)]C(G)
() 0 0 —2(¢-1)C(G)
(d §C(G) —3C(G) —3C(G)
(e C(G) 0 [-3-3(£-1)]C(G)
) C(G) 0 [1-(£-1)1C(G)
(9) 0 0 0
(h F5T(ry F3T(ry =T(ry)
(i) 0 0 FT(rg)

where ki=ks— aps. The term proportional tk; vanishes and one has to include th loop, which contributes like a
after Poisson resummation. The remainder is a function ofeal adjoint scalar. There is also an extra adjoint scalar at
p+iysps and therefore does not contribute to KK mode each KK level coming from a linear combination Af and
masses. Similar arguments apply to all other fermion selfAs, which is not eaten by the KK gauge bosons. The correc-
energy diagrams. tion to the KK mode masses of the gauge boson and the extra
Scalar masses are not protected by symmetries, and thegljoint scalar are the same and are both given by
can receive power-divergent contributions. However, we can
use the same method to isolate the finite contributions from
loops with nonzero winding numbers. We find that these fi-
nite corrections are the same for zero mode and nonzero
modes in the leading order fany<1/R. They are both given

by )

- > AT(rp)
(3 12T+ S 2o 4h?

4-comp fermions
167*R? real scalars2  4-comp fermions

L4)+A
5m§KK(6D)=%(4C(G)+ > T(re)

real scalars

(A6)

(A3) APPENDIX B: ONE-LOOP BOUNDARY CONTRIBUTIONS

and can be absorbed into the overall mass term. At the lowest |, this appendix, we list the one-loop contributions to the
order, there is no relative correction between zero mode angoundary terms for gauge fields, fermions, and scalars for the
nonzero mode. _ _ _ Sz, orbifold compactification. The results for the case of a

One can also generalize to more extra dimensions. Fa{yo dimensional orbifoldr?/Z, are briefly discussed at the
example, we consider two extra dimensions compactified ogpg.

the factor contributions to the boundary terms. They can be written as
3)= E} 1202 (A4)
g( _n=l n3 4 . 2 A2 5
H,u,ll: 2|n_2 g,u,vp a;— p,upvaz
in the 5-dimensional formulas is replaced by 647"
m?+n?#£0 p§+ péz , 2n
1 _ + 0, agf |for pi=pst = |. (B
2 R
T mneZ (m2+ n2)2

_ f {(4)+ E 2 1 In Table I, we lista;,a,,az in the £ gauge(using the gauge
™ m=1n=1 (M?+n?)? fixing of the 5 dimensional generalized Lorentz gauge con-
4 4 dition). In this gaugeA, andAs do not decouple fog+1,
_a _° so there are additional divergent diagrams shown in Fig. 8.
N w[§(4)+A] T »1.506, (A5) Adding all contributions together, we obtain
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TABLE Ill. The contributions tob,,b, from the diagrams in

A)\ A5
Figs. 9a,9(b). C(r) is defined C(r)&;=3,TiTs [=(N?
—1)/(2N) for the fundamental representation 8fJU(N) gauge
As Ay Ay Ay group]. The upper(lowen sign in (b) is for Z, even(odd scalars.
(b7) (c))

Diagram b, b,

FIG. 8. Additional divergent contributions to the gauge boson 5 5
self-energy in thet gauge whered, andAs do not decouple(b’) @ [- 1_2(‘5: 32')]9 C(r) [5+(§il)2]g c(r)
A,—As,A, loop; (c') As—As,A, loop. (b) *h *h

— g® A? 5 11 B 2
H#V_64772|n_2 (g,uvp _p/.va) g_(g_ 1) C(G) §mf =mn_|n_ 9C(r)92_ E 3h3—
K n 64772 ,u,2 even scalars
1
a § rea%;alars(-r(r)even_ T(")Odd)} + E 3h2— " (BS)
odd scalars
(p§+ pgz) A Z, even scalar can receive power-divergent contribu-
t0u— % (@+(E-1)C(G) tions to both the bulk mass term and the boundary mass

term. We need to fine tune these mass terms to have a light
scalar. The boundary mass term causes mixing among KK
modes and we need to re-diagonalize the mass matrix to find
the eigenstates if it is large. The possibility of a light scalar
) arising because of cancellation between the bulk mass and
The correction to the squared mass of thth mode KK the poundary mass may be interesting, but will not be con-
gauge boson can be obtained from the term proportional tgjgered here. Instead, we assume that both the bulk mass and
J,.». by settingp?=p3=ps?=m;=n?/R? and multiplying  the boundary mass are tuned to be much smaller than the
by the wave function normalization factox/2)?, compactification scale, so that we can treat the boundary
mass term as a small perturbation and ignore the higher order
mixing effects. The boundary mass term can be written as

2n
(for ps=ps+ E) ) (B2)

2 2
_ g 23 1
omy =mi——In—|=C(G) =3 X (T(Neven
n 327 u real scalars L —
5(5(x5)+ S(xs—L))m“dTd, (B6)
—T(r)odd)}- (B3)

Using the KK decomposition, E¢25), we find that the con-

tribution to the zero mode im?, while to the nonzero mode

One can see that the result is gauge independent. is 2m?, due to the normalization factaf2 at the boundaries.
The one-loop fermion self-energy diagrams are shown inrherefore, the nonzero KK modes receive a correction

Fig. 9. Keeping only the logarithmically divergent contribu- rg|ative to the zero mode from the boundary mass tégn

tions, we can write noring a weak scale dependence due to the wave function

renormalization We can also calculate the correction due to
the boundary kinetic terms. The one-loop diagrams for the

2
S = L |nA_[p 1*7s b, — ( ipsli Vs scalar self-energy are shown in Fig. 10. They can be written
647> u? 2 2 as
15 2n
_ipéTys) bz} (for pg=p5+ﬁ . (B% ;\AA&Z ff”Ai\-,z Ay
The contributions td,,b, are listed in Table Ill. The cor- (a) (b) (c)
rection to the fermion KK mode mass is given by
As
{F/\/\/\_\I l//, \\\‘ i:? -".}{*Q};-—" .\\ ,,’|
- N (@) (®) ® *

(a) (b)
FIG. 10. One-loop diagrams for the scalar boson self-enéayy:
FIG. 9. One-loop diagrams for the fermion self-enerds: A,-scalar loop,(b) As-scalar loop,(c) A, loop, (d) As loop, (e)

gauge boson loop}) scalar boson loop. fermion loop, andf) scalar loop.
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TABLE IV. The contributions tocy,c, (in Feynman gauge
from the diagrams in Figs. 18—-10f). The upperlower) sign in
(f) is for aZ, even(odd scalar in the loop.

Diagram (o Cy
@ 4g°T(r) 29°T(r)
(b) 0 39°T(r)
(© 0 —4g%T(r)
(d) 0 9°T(r)
(® 0 0
. Y
® 0 =5
A2 p2+ pL? 2n
2 r_
64772|n;{ pcci+ 5 (o (for Ps=pPs+ E)

(B7)

The coefficient,c, (in the Feynman gaugere given in
Table IV. Including the normalization factok/@)?, we have
the correction to the KK modes of an even scalar,

A2
In—
u?

69°T(r)—

) N
Z 2

even scalars

_ _ 1
om3, =m?+m?
n " 3272

Ao

odd scalars 2

(B8)

where the sum is over real components.

For an odd scalar, there is no boundary mass term. The

correction comes only from boundary kinetic terms,

—1 | —2 d
n PsPsdy
2 2

641 . (B9)

, 2n
for p;=ps+ R

The coefficientsd; from one-loop diagrams are listed in
Table V. The total correction to the KK modes of an odd

scalar KK is

2

s Ns

even scalars 2

omg_ =m; 9g%T(r)+

3272 In?

N__
} : (B10)
odd scalars 2

TABLE V. The contributions tal; (in Feynman gaugdrom the
diagrams in Figs. 1@-10(f). The upper(lower) sign in (f) is for a
Z, even(odd) scalar in the loop.

Diagram d;
@ 0
(b) 5g°T(r)
(© 4g°T(r)
(d) —g?T(r)
(e) 0
A
() ii

PHYSICAL REVIEW D66, 036005 (2002

Finally, we briefly describe the results for 2 extra dimen-
sions compactified on &%/Z, orbifold, with a square torus
T2 of radiusR for each side. Th&, is a 180° rotation in the
Xs,Xg plane, which flips the signs of botky and xg. The
gauge componentfs,As are odd undeiZ, while A, ,u
=0,1,2,3 are even. There will be induced terms localized at
the orbifold fixed points X5,Xg)
=(0,0),(0#R),(7R,0),(7R,7R), which break
6-dimensional Lorentz invariance.

The KK states are labeled by a pair of KK numbers,
(nq,n5), with (ny,n,) and (—n4,—n,) identified. There are
KK parities associated with each KK number. The results are
similar to the 5-dimensional case @1/Z,, except that we
need to include the extrAg; component, which contributes
like an odd adjoint real scalar. We have

2 2
— g A
2 2 .
5mv(nl,n2)_ m(nl 'n2)32ﬂ_2 lnMZ
1
X[8C(G)=3 > (T(Never= T(Noad) |-
real scalars
(B12)
— B 1 A?
Ot 0,y = M0w.0) g2 ln?
x[12C(r)g®>~ > 3h’+ 3h2_},
even scalars odd scalars
(B12)
1 A?
2 —m2 2 —
S'*'(n n)_ m(nl ny) 32772|nlu2
N Ao
x| 7g2T(n - 3 ==+ —,
even scalars 2 odd scalars 2
(B13)
— 1 A?
2 —m2 _
5msi(n1,nz)_ m(nl nz) 3272 nMZ
N A__
X | 89T (r)+ S }
even scalars 2 odd scalars 2

(B14)

In addition, there are also KK states corresponding to the
linear combination ofA; and Ag which is not eaten by the
KK gauge boson. These KK states are odd adjoint scalars.
Their corrections are just like the odd adjoint scalars’

2 2

— g A

2 2 _

PP 0y~ M0s.19I35 2 "2
X[8C(G)+ > (T(Never T(Nodd |-

real scalars

(B15)
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Ay As by o o tho o o
(a) § (b) § (a) Ay (b)) A (c) Ay
Yo U o Yo by o
Ay A Asg As
(c) (d) (d) A, (e) Ay

FIG. 11. One-loop diagrams for the fermion-gauge boson inter- FIG. 12. The KK number violating coupling for
action: (a) A,-fermion-fermion loop,(b) As-fermion-fermion loop,  y,y#T2P_ A3, . The dot represents the kinetic mixing and the

(c) Ay-A,~fermion loop, andd) As-As-fermion loop, cross represents the mass mixing. The contributions from various
diagrams are 2g(g%167?3)In(A%xd)x (a) one-loop vertex:
APPENDIX C: KK NUMBER VIOLATING {C(N[1+2(£-1)]+2C(G)[2+ 2(£-1)]}, (b) Ay(external-A,
COUPLINGS kinetic  mixing:  {[ %~ (£~ 1)1C(G) ~ 3= rea scalakT(r 1)

In this appendix we discuss the KK number violating cou-~ 1(T-))}: (€) Ax-Aq mass mixing{ 2+ 3(¢-1)]C(G), and (d),
plings in an orbifold compactification. Using the example of (© %o~ #2 mass mixing{ -5+ (£ 1)C(r)}x 2.
one extra dimension compactified 8%Z,, we consider the
KK number violating couplings between the fermion and the
gauge field. Figure 11 shows the one-loop vertex corrections
for the fermion gauge interactions. The contributions to the
KK number violating interaction are logarithmically diver- _ £m2¢2 (C3)
gent. They can be written as 2 ara

1 1 1
L= 0,¢p0" byt €0, p0" bt 59, g0 $q— Emf,qﬁg

5 We will only work in the leading order o€. First, we re-

9 define ¢, to absorb the mixing term,

6472

— L
52 = = (8(x5) + 8(xs~ L))y
bp=dptedq g~ bq
A%
XIn— gy T3P YA, CH  or
)%

. o bp~dp—€dq b=~y (C9
whereP, =Py or P is the projection on th&, even fer-
mions. The coefficient§; from the diagrams in Fig. 11 are |n terms of¢r’],¢c’1, the mass terms become
listed in Table VI. Summing over them gives

1 1
1 - §m§¢r’,2+ emydidy— zmgfpgf. (C5)
fi(tota)=C(r)[1+2(£—-1)]+C(G)| 2+ 5(5—1) .
(C2 o Yo Y2 o %o 23 Yo
To obtain the couplings among the physical mass eigen- Ay
states, we need to include the KK number violating mass anc
kinetic mixing effects on the external legs, since they are
) ) o o A b A A
also one-loop effects. Th&-dimensional kinetic mixing (=) 0 (®) ’ © !
needs to be treated with some care. We illustrate this with €
: . Y2 o Yo 23 by o
simple example of two real scalarg,,,¢,, with masses
m,<mg, and a small kinetic mixing proportional ta
TABLE VI. The contributions tof, from the diagrams in Figs. (d) Ao (e) Ao
11(a)-11(d). —_— )
FIG. 13. The KK number violating coupling for
Diagram f, Zzy“TaP+l/;0A8#. The dot represents kinetic mixing and the cross
represents mass mixing. The contributions from various diagrams
@ [ZC(T)—C(G)]1[1+(§— 1)] are \2g(g%/1672)In(A%u?)x (a) one-loop vertex{C(r)[1+2(¢&
(b) —C(r)+3C(G) —1)]+2C(G)[2+ 2(£— 1)1}, (b) ,(external-i, kinetic mixing:
(© C(G)[3+3(¢-1)] {-[1+2(6-1)]}, (© A;A; mass mixing: {—[2+3(¢
(d) -1c(G) —1)]C(G)}, (d) ¢(external-¢yy mass mixing 5+ (£€—1)]C(r),

and (e) o(external-i, mass mixing{—[5+(£—1)]C(r)}.
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Now we can diagonalize the mass matrix by a rotation be- 2 A2[p

tween ¢, and ¢, . The physical eigenstates) and ¢, are
given approximately by

¢”%¢’+€—mf’¢'%¢ +E—m‘24¢
PP 5 S PT P 5 5 Pq

m2—m m2—m

g™ Mp g™ Mp

(Co)

¢1/%¢1 _ Gmg ¢/%¢ _ Emg ¢
AP 5 S PT P 5 %

Mg —m, Mg — M,

In particular, if one of them is massless, =0, the relation

between the physical states and the original states is simpigvolving the

given by Eq.(C4).

PHYSICAL REVIEW D66, 036005 (2002

. g 3
(—W’LgTaPQ\/E@'n; 3 C(6)

1
_ § reag‘éalars(-r(r)even_ T(r)odd)_ gc(r)}
AT \/E g(miz) E(mfz)
:(—lygTPJr)? 2 arall (C7)

It is not too surprising that it is related to the mass correc-
tions from the boundary terms. Th& factor comes from
the normalization of the KK mode at the boundaries.

One can also check the KK number violating couplings
zero mode gauge boson, e.g.,

Yoy TP, hoAG,, (Fig. 13. We find that they vanish as re-

As an example, we compute the coupling between thejuired by gauge invarianée.
mass eigenstates of a secofu 2n-th) KK mode gauge
boson and two zero mode fermions. The contributions are————
shown in Fig. 12. Combining all contributions we obtain the “However, there can be higher dimensional operators such as

ZO— Yo— A, interaction vertex to be EZUWTE‘H%FSM.
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