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Forced tunneling and turning state explosion in pure Yang-Mills theory
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We considerforcedtunneling in QCD, described semiclassically by instanton—anti-instanton field configu-
rations. By separating topologically different minima we obtain details of the effective potential and study the
turning stateswhich are similar to the sphaleron solution in electroweak theory. These states are alternatively
derived as minima of the energy under the constraints of fixed size and Chern-Simons number. We study, both
analytically and numerically, the subsequent evolution of such states by solving the classical Yang-Mills
equations in real time, and find that the gauge field strength is quickly localized into an expanding shell of
radiating gluons. The relevance to high-energy collisions of hadrons and nuclei is briefly discussed.
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[. INTRODUCTION oped in QCD[9], notably the search for hard processes in-
duced by small-sized instantonsvhich continues at the
DESY ep collider HERA[10].

The existence of topologically distinct non-Abelian gauge  another role for instanton-induced processes has recently
fields, with tunneling between corresponding classical vacugeen proposed by Kharzeev, Kovchegov, and Létl and
described semiclassically by instantofid, is one of the Nowak, Shuryak, and ZahedL2]. These works focus on
most spectacular nonperturbative effects of field theory. Sigtypical QCD instantons, of size~1/3 fm[3], which deter-
nificant progress has been made in understanding instantopine thesemi-hardscale ofQ~1—2 GeV. It was proposed
induced effects in quantum chromodynami@@CD), ex-  that topological tunneling is behind the well-known features
plaining both explicit (1) chiral symmetry breaking at the of high energy scattering described phenomenologically by
single-instanton leve[2] and spontaneous SNf) chiral  the so-called “soft” Pomeron. These ideas were further
symmetry breaking by the instanton ensenile Euclidean  tested in Ref[13], where they were demonstrated to be rea-
correlation functions, studied phenomenologically and on th%onably consistent with experimental data.
lattice, have been explained to a significant extent by instan- gjnce the 1960s, attempts have been made to explain
tons as well4]. _ 3 high-energy hadronic collisions with multiperipheral models,

With tunneling phenomena appargntly So Importantith ity various ladder diagrams describing hadron production.
tual quark and gluon propagation, it is reasonable to th'nkIt was realized that in order to get cross-sections which are

them also relevant imeal processes such as scattering O ot falling at hiah eneraies. one needettorfield exchange
particle production in Minkowski space. We thus seek con- g 9 gies, 9

tributions to parton scattering amplitudes from the theory of" the t-channel. With the discovery of QCD, gluons natu-

instanton-related objects, and supporting experimental ev'!r_al_ly play this role. Generic. perturbative Q.C(PQCD in- ,
dence. spired models appeared with processes like that shown in

With this as our motivation, we concentrate in this paper”19- 1@. Eventually this development led to the Balitskil
on the theoretical basis of such effects from pure Yang-Mills7adin-Kuraev-LipatoVBFKL) gluon laddeif14], which pro-
theory. Specific applications to high-energy processes witfluces an(approximately supercritical Pomeron, a “hard”
hadrons or nuclei are left for future work, although we will Pomeron with the intercept well above 1. Recent studies of
discuss phenomenological generalities where relevant.  high energy hard processes, especially at HERA, have indeed

Progress in understanding of the role of tunneling in highfound strong growth of the cross section with energy for
energy processes has been tempered by technical probletigly hard processesQ?>1 Ge\?), consistent with the
for years. Significant insights were obtained in the 19&)s BFKL treatment.
and further developed in the early 1996s-8] through work But various data at theemi-hardscale ofQ?~1 Ge\?
in electroweak theory. In this case, the instanton-inducedlemonstrate rather different growth with energy, consistent
cross section is readily identified by baryon number violationwith a “soft” Pomeron. Whatever it might be, the Pomeron
and many noteworthy features of these processes weshould be an object of a particular size deduced from the
found. However, quantitative estimates of the associatedlope of its Regge trajectorg’ ~1/(2 GeVY. This size of
cross sections proved to be far below observable limits andourse cannot be explained by basically scale-invariant
interest quickly waned. Similar ideas have also been develPQCD, and thus calls for a nonperturbative derivation.

A. Instanton-induced scattering in QCD
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An impressive body of work has addressed this problem with

] . A .

! - classical Weizszker-Williams fields of gluons, the color
./’ glass condensafd7]. Here we consider a different classical

1t process, one involving topological objects. In Figc)lwe

' R schematically show a barrier separating two topologically

]

distinct classical vacua, with Chern-Simons numbéis g

=0 and 1. Unlike a standard instanton transition, shown by
the horizontal dashed line, in a high energy collision a finite
amount of energy is absorbed. This can be viewed as a
“forced tunneling” event (either of the other two dashed
lines) which ends at @urning state where the total energy is
equal to the potential energy, so that the paths can exit the
(Euclidean domain below the barrier. These colored un-
stable objects are close relatives of electroweak sphalerons
[18,19, which are defined at the barrier's peak. We will
demonstrate how these objects then evolve with conserved
energy, developing into an exploding shell of color field.
This part of the process is diagrammed with the horizontal
lines in Fig. 1c).

Before we come to these explosions, we will discuss in
detail the instanton—anti-instantohl { configurations which
describe this forced tunneling. They provide one way toward
the understanding of the effective potential separating topo-

cs logically different gauge fields, as well as the turning states
themselves. We then proceed to another derivation of the
same results as static solutions in classical Yang-Mills theory

of gluong to (b) a nonperturbative inelastic process, incorporatingCOnStr‘Tjllned In Size. The_ real-_tlme decay of t_he static conf_lgu-
collisions of a fewt-channel gluons with the instantdthe shaded ration is StUQ'ed In deta|l_, using both E?m_ilyt'c and numen(_:al
circle), resulting in multi-gluon production. The bottom figure ~ Methods, ultimately leading to a description of the expanding
shows the same process, but in a quantum mechanical way. TH&€lls in terms of gluonic quanta.

energy of the Yang-Mills field versus the Chern-Simons number,

N¢s, is a periodic function, with zeros at integer points. Timgan- B. Spherically symmetric Yang-Mills fields

ton (shown by the lowest dashed linis a transition between such

: i . o In this paper we will be making use of(8 symmetric
points. However if some nonzero energy is deposited into the pro-Yan -Mills fields. usina a notation throuahout which we will
cess during transition, the virtual patthe dashed lineleads to a 9 ' 9 9

turning states from which starts the real time motion outside the mtmduc? presenfjly. F%r the ”$P') color SlJ_bgrou? In Whmh f
barrier(shown by horizontal solid lingsThe maximal cross section we are mte_reStea’ spherically symmetric con |gurat|on_s 0
corresponds to the transition to the top of the barrier, called 4h€ gauge fieldd’; can be expressed through the following

0 instanton 1

N

FIG. 1. The top of the figure comparéa) a typical inelastic
perturbative proceséwo t-channel gluons collide, producing a pair

sphaleron four space-timd0, j=1...3) andcolor (a=1. .. 3)struc-
tures:
Existing models for the soft Pomeron also include ladders a_ p a a a
. T=Ar)OF+B(r H)IT+C(r, 1)
made oft-channel gluons, and the differences between them AF=AD OB OITHC(r 2]
lie mainly in the construction of their rungs. Each of the X@
various models has a unique answer fanat is actually ASzD(r,t)T (1)

producedin gluon-gluon partonic collisions. For example, in
Ref. [15] a pair of pions in the scalar channel or a scalanyith
glueball is produced. The introduction into this problem of
instanton-induced verticeldl1,12,16, shown schematically a2 EjamX" a
in Fig. 1(b), led to a different idea: the object produced is 0; T o 1}=6aj— 2 == @
neither a gluon(as in BFKL) nor any colorless hadronic
state, but rather eoloredcluster of the gluon field, which in |t is convenient to express the scalar functions in @g.in
turn decays into several gluons. It has been shown that therms of fourr andt dependent functions, which are similar
cross section peaks at an invariant cluster mass in the range the fields of the (% 1)-dimensional Abelian gauge-Higgs
2.5-3 GeV [11,17. It is very important that the states model (A,—01.%.a) on a hyperboloid 20]:
which are produced are not a random group of gluons, but
rather their coherent superposition. Understanding their com=—————
position is the main objective of this work. This will be introduced formally below. Here it is sufficient to

A quantum-mechanical interpretation of the collision pro-note only that we consider a definite pair of gauge potentials, sepa-
cess is central to this question of prompt gluon productionrated on one of the many coordinates of our quantum system.
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1+ ¢sina ¢ cosa Although this current is not gauge invariant, its change is
=——F B=—F—, C=A;, D=A, related to thggauge invariantlocal topological charge
3 L
: : 9, Kh=———G2 G 10
One can express the field strengths in these terms as " 32 G urGur (10

Within the spherical ansatz and tbg=0 gauge, the topo-

1 _ . .
E7=GH; =F[a0¢> sina+ ¢ cosa(dya—Ay)10% logical current takes a simpler form,
1 0_ _ 42 _ —_ —
+ [0 cosa— ¢ sina(doa—Ag) JIIT K 8W2r2[(1 ¢°)(d1a—Aq)—d1(a— ¢ cosa)]
+(doA1— 91A0) X} (4) _ Xi ,
'=—3[(1- ¢ dpa—do(a— ¢ cosa)],
1y
1 . .
Bﬁzzejklgﬁlz F[ — 1 cosa+ ¢ sin a(é’la—Al)]®ja while the topological charge becomes
. , 2 1-47 g KE——t (= o[ (1= ) (d1a—Ay)]
+F[o7l¢sma+(ﬁCOSa((?la—Al)]Hj+r—22j , u 872r2 0 1 1
(5) +01[ (1~ ¢?)(doar—Ao) T} (12
wheredy=4d, andd,; =4, . Note that only gauge-invariant combinations of field deriva-
The action in (3r1)-dimensional Minkowski tives appear here.
(—,+,+,+) space reduces as As a “topological coordinate” marking the tunneling
paths and the turning states one can use the Chern-Simons
1 number
S= —f d*xdtf (B§)*= (€)%
492
NCS:f d3XK0
1— 2\2
=4wf drdt| (9,4)2+ ¢2((9ﬂa—AM)2+# L . )
2r :_ZJ dr(1—¢?)(d,a—A;)+ E(a—COSa)Iﬁ;Ef.
r2
- E(ﬁoAl—ﬁle)2 , (6) (13

The first, gauge-invariant term is sometimes calleddbe
with the summation now over the {11)-dimensional rectedor true Chern-Simons numbéR1,27, Ncs, while the
(—,+) metric. second(gauge-dependenterm is referred to as th&inding

The spherical ansatz is preserved by a set of gauge trangymper It is the change ifNcs which is equivalent to the
formations generated by unitary matrices of the type integral over the local topological charge.

r,t
U(r,t)zex;{ i @Taxa), (7) II. INSTANTON —ANTI-INSTANTON CONFIGURATIONS
r

A. Forced tunneling

These transformations naturally coincide with the gauge A prief introduction to the quantum mechanics of gluons
symmetry of the corresponding Abelian Higgs model: in high energy collisions has been given in the Introduction.
) The effect of colliding partons can be included in various

P'=¢, a'=atB, A=A, tI.B @) forms. For example, these fields can be representetas

) zero external currents which affect the tunneling paths of
This freedom can be used to gauge out, for exampleAhe yang-Mills field. In the zero-current, vacuum case, the usual

component. ) ) instanton solutions are spherically symmetric in four Euclid-
Topological properties of the gauge field are governed byan dimensions. The collision problem of téa@ more par-
the topological current tons, on the contrary, at nonzero impact parameters does not
1 have even aaxial symmetry. The reader therefore may won-
g der why this(and all previous worKson the subject consid-
K =— nvpo a a_Y abca b yc ) Yy \ 1 : HRJ¢
# 32m2 € GupA 3¢ Ay Ao © ers (3+1)-dimensional spherically symmetric fields.
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The justification for this ansatz is that the absolute magt=0. As a result, all quantities which are odd under this
nitude of the tunneling field is large compared to externaltransformatior(like the electric fielgl naturally vanish at this
forces. Also, as will be shown below, spherically symmetricinstant. The remainingpurely magneticconfiguration is
clusters are an energy minimum for fixed size and topologiwhat we define as theirning stateof this path.
cal coordinate. Should the resulting cluster not have exact The resumng action Corresponds to an excitatmnb-
spherical symmetry one can always approach the problempility of this turning state created by the external curignt
perturbatively, considering first the external forces projected
onto the direction of tunneling, and then other components as
small corrections. The resulting {11)-dimensional problem P~ |(0|J|turning staty}?. (15)
is readily solved numerically and, to a great extent, analyti-
cally.

Unlike separated instantor$) and anti-instantonsi{, Through this mechanism the excitation Idf pairs leads to

combined 1l configurations are neither selfdual nor anti- {he production of real particles, as advertised in the Introduc-
selfdual and do not satisfy classical equations of motioniion and to be analyzed in the next sections.

They are not extrema of the action, since they describe the
valley stretching between true extrema—the zero field

(equivalent to anl at zero separatigrand WeII-separateE B. Simple 11 trial functions
pair. Substituting anyt1 trial function into the Yang-Mills
equation of motion, we find a finite We now consider the simplest example of a possible turn-
DG =3 (14) ing state, a straightforv_varﬁ sum ansatz. With it,_ we can
pIpy v demonstrate some basic features, although we will find them

This means some external current must be applied to thsufficient for our purposes and move to a more compli-
gauge fields if we want to use semiclassical analysis. Th&&t€d ansatz in the next subsection.

process can only then be interpreted as a classicabr a Written in the singular gauge, treum ansats,

forced path There are two interpretations &f configura-
tions with different consequences.

The historical view is that such fields describe quantum
fluctuations in the Yang-Mills vacuum, the process in which
a virtual path goes under the barrier, then reverses course and

ends up in thesameminimum from which it started. This where we assume that both the instanton and the anti-

process has zero net topological charge. Naturally, the earl) . :
studies concentrated on the action corresponding to thesﬁ/éstanton(the first and second terms, respectiyaigve the

configurations, the quantity which controls its weight in the 32Me color orientation and sipe The vectory,=x—z and

path integral. The first such work was done long ago b 2=X"Z are the dlstgnces from the observation poirto
Callan, Dashen, and Grog83], resulting in a dipole force the instanton and anti-instanton centers. In what follows we

assumez,=(T/2,0,0,0) andz=(—T/2,0,0,0), where the

and the actionsS~ 1/T* at large distanc@& between the cen- . .
imaginary time between centersTs

ters. Higher terms in the multipole expansion have been dis Note that althouah a sinale instanton’s profile behaves as
cussed in the literature after that, e[@4]. When it was 1oug ge S P 2
1/x near the origin, the physical quantm@iv) is finite.

.event;JaIItyf re?rl]lzgd :ha’; quark—lndtL)chdelti pairnngs ?re mtqre However, for the sum ansatz this feature is lost and the same
er?por anYor |\6/I'I|?St?]n on enserr:j e in QCTy], interest in quantity goes as £# near the origin.
€ pure Yang-its theory waned. This unphysical feature can be quickly remedied by the

. Although in thls_paper we ne|.ther evaluate 'r.]Stamon'ratio ansatZ 30], which for identical sizes and orientations is
induced cross sections nor describe the production of the

turning states in heavy-ion collisions, it is clear that the ac-
tion of instanton—anti-instanton configurations is the key to

Nauw¥Y1P®  MauYop®
Vay2+p?)  y3(y3+p?)’

SAST0 = (16)

2 2

such calculations. Details relevant to partonic collisions have WP o P

been covered in Ref§7,8,26,27 and deep inelastic scatter- 9 . Ta Y1 2 ﬂa,MVY2y§

ing has been discussed in Rdfk0,28. Here we focus on the 5A o) = PR : (17
final-state solution, irrelevant to the cross section, which de- 1+ p_+p_

termines the produced particle spectra. Similar ground was yf yg

covered in Ref[29], using a different approach.
Since the external forces from the partonic current do

work on thel | pair, the energy at intermediate times is non-These trial functions are simple enough to have analytic ex-
zero. We will consider only cases in which the fields at posipressions for the field strength, the energy of static turning
tive and negative times are essentially the sdamedulo a  states, and the Chern-Simons number. For reference, one has
sign and, sometimes, a gauge transformatidhus this en- the following expressions for the magnetic and electric fields
ergy will be even undet— —t, with a natural maximum at squared:
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B?=163847688%+ 1024 2t%+ 3072°+ 2304°R?+ 6400 2t*R2+ 2048 2t*+ 512 *t* + 1824*R*+ 3072* + 4608 *R?
+1024 512+ 192%R*+ 512 %t?R?— 1024 “t?+ 144°R°+ 1216 2t°R*+ 2816 *t°R?+ 28& *R*+ 768 8+ 76& °R?
+48r?R8+3R®)/(16r*+32rt?+ 8r2R%+ 16t*— 8t?R?>+ R*+ 32r2+ 32t2+ 8R?)*, (18

E2=1048576%(32r 2t* + 48*R%+ 64r “t2+ 64r 2t2+ 80r 2t2R2+ 48t2R%+ 24t°R*+ 12R*+ 32r 2+ 32r 6+ 64r 2R?+ 26r 2R*

+64r*R%+64r*+ 12R?+ 3RO)/(16r*+ 32r2t°+ 8r?R?+ 16t*— 8t°R?*+ R*+ 32r2+ 32t2+ 8R?)*. (19
|
Their scalar product is set of trial functions can only accomplish about one third of
the journey we would like to make, in terms of the topologi-
B-E= —393218R(R?+ 2+ 412+ 4t2) (16t*+ 24t2R? cal quantityNcs. This inadequacy will become apparent af-

ter comparison with the results to follow.
4320224 322+ R4+ 1604+ 8r2R%) /(1604 + 32r 212 P

+8r?R?+ 16t%— 8t°R?+ R*+ 32r2+ 32t°+ 8R?)*,
(20)

C. The Yung ansatz, or going uphill

As a natural set of | configurations, one of us31] sug-
where we have sgt=1 andR=T is the intercenter distance. gested starting from a well-separated pair and galogn-
One can see that, in the simplest case of identical sizesill, along the gradient of the actidrNaturally, minimiza-

and orientations for thé and I, time reflection symmetry  tion of the action leads to compleﬁa annihilation and zero

— —t of the problem is indeed manifest, so that action.
R R It was shown by Yung that these configurations can gen-
Al(r,t=0)=0, &&(x,t=0)=0. (21 erally be obtained from a solution of the streamline equation

[24]. He found solutions for large separatid& p and used
This is illustrated in Fig. @). Since configurations of this them to derive the next order terms in thieinteraction, to
typeamterpolate between a mostly dei'a region, V\&?](ZI) O(1/T%). A clever conformal symmetry was used to reduce
=Bm(z)), to an anti-dual region, whei&(z))=—B(z)),  the Yang-Mills problem to that of a double well potential.
it is intuitive that the electric field vanishes in the center. The same trick was then used in the numerical solution of the
This situation can be readily interpreted in th®=0  streamline equatiof8,32], in which it was observed that the
tive of the gauge field—the canonicalomentumin Yang-  \ery accurate approximation to a true solution, not only at

Mills field quantization. Thus thé=0 magnetic state is in- . . L
deed identified as a turning state, in which motion islargeT(as Yung intendedbut in fact forall finite 11 sepa-

momentarily stopped. For separati@hcomparable to the rationsT. As expected, aT =0, Il annihilation occurs and
sizep the energy is finite, with a maximuE~ 1/(gp). the field strength vanishés. B
The energyE and Chern-Simons numbtg for either Since we take a different view @i configurations in this
the sum or ratio ansatz can be calculated as a function afork, we interpret a solution of the streamline equation
separationT directly, with the hope that a parametric plot of Yung ansatyas a set of forced paths goinghill against the
E(Ncg) will reveal a useful profile of the barrier as a func- gradient of the force. This process reaches its turning point
tion of this topological coordinate. (or state, with some maximal energy and Chern-Simons
Alas, for the sum ansatz this idea produces reasonableumber, and then turns back. Because the process proceeds
results only for very large separatiofiz2p. WhenT is of  uphill, unlike with other trial functions with some arbitrary
the orderp, the energyE(T) of the turning statéas well as  driving force, we expect that all trajectories rise alahg
the action for the entire configuratipbbecomes very large, same pathalthough those with largéF go further up.
while the topological coordinatl-gT) remains fixed. It is The Yung ansatz for the field configuration is rather com-
therefore obvious that this set of paths does not describe thaicated, and is best written in matrix form:
travel across the ridge separating classical vacua which we
want to study. Instead, this path rises with the barrier but————
continues to increase as the origin is approached, following a?This can easily be done numerically, and a set of such curves for
direction apparently orthogonal to the topological coordinatahe quantum-mechanical double well potential and the correspond-
we want to study. ing set ofl1 configurations was found in that work.
The ratio ansatz yields somewhat better results, with finite 3This is not obvious from the Yung expression; it was first found

(and even simplefield structure at alll, including the point  numerically. The Yung formula’s complicated result B0 is
T=0. However the results, shown in Fig. 3, indicate that thisnothing but a pure gauge.
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X,y,Z

T ‘ 201

a

N\

S

0 0.05 01 015 02 025 03 035

FIG. 3. The normalized energiR, versus the Chern-Simons
number for the ratio ansatz.

+pa+pR)(p1py). In the casep;=p,=p, which is the only
one we need, this relation reads

R?+2p2+ \(R?+2p?)%2—4p?
- - _

v 22

(23)
(b) —200 2p

FIG. 2. Instanton—anti-instanton configuratio(®.A schematic ~ All vectors without an indicative index are $2) matrices

picture in Euclidean space-time. The thick vertical libe,0, cor-  jpiinag by their contraction with the vector,= (1, i ;_)
responds to the location of the turning state. The definition of th or exampleR=x,—x,=R,o,. An overbar Simila;rly dé
AT AT R B

inter-center distanc€ is also shown(b) Distribution along the time . . =
notes contraction withr=(1,i7). Note that barred and un-

axis of 282, 2&2, and 28- £ for the ratio ansatz witfl = p, shown 4 matri I i te. in all t this is b
by the solid, dashed, and short-dashed lines respectively. The Cun%arre matrices always alternate, in all terms; this 1S because

for B- £ is the only one which ig-odd. ) |
Ta
igAZ””g(X):igAlﬁ”g(X)E osh
B y; R (;,AM_Y’f)Pi R Y, 061
V5, VRZ Vivi+ed VRZ Wy, <
04
(;Myz—y’z‘)pi N pP1P2 (7 v r
0u¥17Y1 L
Vitpd AR 02
= — = .

(22)

IA distance

y2 R (— v R vy,
~ = =0Y1 Y1) = (=,
~ 2 H 2
V3, VR VR VY, _
FIG. 4. Ncg versus the distance betweéh centersT in the
wherez is related to the conformal-invariant distanc®%(  Yung ansatz.
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Although all three trial functions are similar at largé
separatiorT, they are drastically different dt~ p. The Yung
ansatz is the only one which allows us to reasonably study
the effects of a large change in topological number. The
variation of the Chern-Simons number of the turning state

(t=0) as a function of thd| separationT can be seen in
Fig. 4. In this case we scan the entire rafQel].

We now proceed with a more detailed study of the static
turning states, residing on the=0 . . . 3 plane. The simplest
observable is the shape of the corresponding magnetic field
squared, or the energy density distribution, shown in Fig. 5

for few selected values dfi distanceT. Note that the curve
for T=2 (the most like the sphalerprshows indeed the
largest magnitude of the magnetic field. The shape is how-
ever rather uniform. Note also that, unlike the case of the
faulty sum and ratio trial functions, for smalld@rthe field

FIG. 5. TheB(r)? profile, not normalized, for the four values of Strength decreases, ultimately disappearing-a0.

T L o : The energy and energy density of the turning state con-
thell distanceT (in units of p) indicated in the legend. . i . ) :
( ) g figurations is therefore rather different for differehtHow-
one index of each matrix is dotted and the other not, intVE" &S Seen from Fig. 5, the. physical SIZES of these objects
spinor notation. Finally, the additional coordinate is are different as well. As classic Yang-Mills theory has scale
invariance, one may wish to make the more natural compari-

son of a scale-invariant combination, the energy times the

r/ho

Vo= Xo— ﬂ_ (24)  rms radiusR, defined as
Zp1—pP2
. . . L f d3rr2B2
Note that the first term is the instanton in teegular R2— (25

gauge, the second is the anti-instanton in réngular gauge, - s o
and the third is a “correction” term. The benefit of this rep- J d°r B
resentation is that the same 't Hooft symbol appears in all
three terms, and the entire construction originates from conln these terms, the normalized energy is
formal transformation of a spherically symmetric configura- 1 112
tion in which I, | share the same center. An unfortunate ER=> fd3rr282><f d3rB? (26)

feature of this expression is that time-reversal symmetry is
far from obvious, and it is not clear that the electric field atThis quantity is plotted versus the topological charge differ-
the mid-plane vanishes. However, this is in fact the case andnce in Fig. 6, and indeed displays a parabolic-looking maxi-

the field att=0 can be interpreted as a turning state. mum neaMNcs=1/2.
Energy*Size versus Ncs Time dependent paths: E¥R vs Ncs

30 T , . T I r
i L 2 .," o3 . i
- 25 ....“ o'.‘. _
1 o e 1

'y s

— 20 — ... L ’. —
. e _
4 sk o .

s ..
_ R .
— 5 — —
% ' ) ' 01 ' 06 ' 08 ' 1 % ' ) ' 01 ' 06 ' 08 ' 1

(@) (b)

FIG. 6. The normalized energiR, versus the Chern-Simons number for the Yung ansatz.(Blathows the positions of the turning
states for varioud, while (b) combines many points along the path#(Q); their small spread means that the Yung ansatz is nearly going
directly uphill, thus passing via the same points for differént
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Instead of only looking at the statie= 0 (and zero electric 4
field) turning states, one can instead follow {lseale invari- E= _2J’ dr
g

_ 42\2
(ar¢>2+¢2<ara>2+@
2r
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r2>
1+—
and energyER and the Chern-Simons number as a function P
of time t along each path. As expecteal| the paths in Fig.
6(b), for any T, actually climb nearly exactly the same cliff, + lj dr(1—¢?) o, a, (29
as they propagate into larger values of our topological coor- 2m
dinate.

where the tilde denotes the constrained energy. It is conve-
nient to introduce a dimensionless variable,
IIl. TURNING STATES FROM CONSTRAINED

r
MINIMIZATION =2 arctaré;

We will now define turning states in terms of the gauge
field, which connect the Euclidean and Minkowski domainssg that
of the field’s path. The turning state is characterized by the
condition that the generalized momentum, which in e . 8 (w2
=0 gauge coincides with the chromoelectric field, vanishes  E= —Zf df( (9¢p)?+ ¢*(dga)®+
or, equivalently, that all first time derivatives of the spatial 9=/
field components are zero. Using the notation introduced in
Sec. | B, this in turn means thag¢=dya=JdpA;=0 at the +r(1—- ¢2)(9§a) (30
time when the transition occurs. From now on we assume
that moment to bé=0. _ ) 5

At any given time it is possible to use the special gaugeNerex=7pg/(32m°). _ L
transformation, Eq(7), with a time-independent angj@ to The Euler-Lagrange equations for the remaining fields are
gauge outA,(r), still within the A;=0 gauge. Att=0 the 5
energy of the field can thus be written ﬂ?(ﬁ— ¢(a§a)2+(l_ ? ¢ +2kpdza=0 (31)

cosé

™

2 1

(1-¢*)?
2 cogé

R VAVA
E= 4—Zf dr{(a,¢)2+¢2(0ra)2+w . (op and
9 2 9 29.) + k(1 $?)=0. (32)

We now address the question of tha@inimal potential ~ Finiteness of the energy requires the boundary conditions
energy of the static Yang-Mills field, consistent with the ap-<;b2(— wl2)= ¢*(wl2)=1. Equation(32) integrates to
propriate constraints(i) a fixed value of the(corrected
Chern-Simons number, ariil) a given value of the rms size. 1— ¢?

The former parametrizes the position of configuration on the dea=— K?’
topological scale, and the latter is needed to break dilatation

symmetry of the problem, which otherwise prevents any conyith a vanishing integration constant as follows from the
figuration of finite size from being the minimum of the en- form of the energy. After the substitution ofa into Eq.(31)

(33

ergy. ) ) _one has
We will break the scale invariance of the theory by setting
a requirement that the ratio 1— &2 1— &*
a§¢>+( PV _ 17 (34)
cos¢ @3
o A solution to this equation exists for 1<x<1,
(r)=——"— (28)
f d®x B? $?=1—(1— k?)coE. (35)

Hereafter we assume thébtis positive.
has a particular valug?, for the static solution we seek. To  In term of the usuat coordinate, we have instead

keep both the Chern-Simons number and mean radius con- 1o

stant we introduce Lagrange multipliers and search for their ) 4p%r?
minimal combination of ()= 1-(1= k)
(re+p%)

. . : . 1-¢% »p

Without the term introduced to fix the Chern-Simons number or, da(r)=—2k—— ——. (36)
equivalently, for a zero corresponding Lagrange multiplier, this ¢2 re+ p2
problem would be equivalent to the &) sphaleron on a 3D sphere
that was solved by Smilgg83]. The sphaleron solution corresponds«te 0 and

036004-8



FORCED TUNNELING AND TURNING STAE ...

301

25

201

15+

101

or- v0|.1' ' '0.|2 o 0.|3I ' I0.|4 o 0.|5

FIG. 7. The potential energig versusN¢s, for the analytic
turning state solution of Eq36).

|r2—p?|

d(r)=——, a(r)=m6(r—p). (37
r“+p

For anyx and mean squared radis?) = p?, the poten-
tial energy density is

1 1—«?)2
_52:24704;

2 (r2+p2)4’ (38)

the integral of which is the potenti@inagneti¢ energy of the
static configuration,

(1-«%)?

EB:3772 >
g°p

(39

The corrected Chern-Simons number, computed from the

first term of Eq.(13), is
~ 1 )
Nes=550r(x) (2+] w) (1= ). (40

Figure 7 shows the profile of the potential eneky versus

PHYSICAL REVIEW D 66, 036004 (2002

IV. EXPLOSIONS OF THE TURNING STATES:
ANALYTIC TREATMENT

We are now going to use the static field configuration,
found in the previous section, as an initial condition for real-
time, Minkowski evolution of the gauge field. Let us first
consider the equations of motion in the4{1)-dimensional
dynamical system. Variation of the action, K@), gives

_ 42
NERlE

9,0" b+ p(d,a—A,)? r

0 (42)

M ¢p*(d,a—A,)]=0

(42
r2
¢2( (91a— Al) - l?o[?(&oAl_ (91A0)} = O
r2
¢2(300_Ao)_31[5(30A1—(91A0)} =0.
(43
The solution of Eq(42) has the form
d*(doa—Ag)= — 1t
d*(d1a—A1)=—doth, (44)

wherey(r,t) is an arbitrary smooth function. Equatiofs)
are consistent with this solution if

2y
JoA1— 1A= — z (45)
Now, combining Eq(42) and Eqgs.(43) one has
[ 2y
é’”(# :aoAl_alezr_z, (46)

which can be viewed as a necessary and sufficient condition
for ¢ to be a solution for Eq(42) and Egs.(43) simulta-
neously. Equatiori41) is now

2 _ 42
V02 A=) _

d,0"$— pe 0. (47)

;
The initial conditions for Eqs(46) and (47) are
G(r,0)=¢(r),
dob(r,1)]=0=0,
J1g(r,00= = $(r)?doar(r)=0=y(r,0) =0,

Aop(r,D)]i—o=— p(r)?dsa(r),

Ncs. Itis very similar, although not identical, to the findings where thet-independent fields on the right sides of the equa-
of the preceding sectiofsee Fig. where Yung's ansatz was tions are the static solutions @ and « from the previous

used for forced paths.

section.
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D. M. OSTROVSKY, G. W. CARTER, AND E. V. SHURYAK PHYSICAL REVIEW D56, 036004 (2002

As with static solutions, it is more convenient to discuss d—Zq(l—q2)=0. (52)
the time-evolution equations in hyperbolic coordinates. Let

us choosew and 7 such that . . . . . N
This is the equation for a one-dimensional particle moving in

p COS® psinT double-well potential of the formu(q) =(1-q%)?/2.
(48 We now have to check that the scher-Schechter solu-
tion satisfies the initial conditions, E¢50). This is indeed

The physical domain of €r <« and—o<t<w is covered the case if one identifie$(0)= x and takes|(0)=0. For the

by —m2<w<m/2 and — 72+ w<7<m/2—w. Fort>0, nitial condition of this type[i.e., for energys=q?/2

the corresponding domain is-7/2<w<m/2 and 0<7  +U(q)<1/2], the solution of Eq(52) is

<m/2— w. This change of variable@y) is a conformal one.
In the new variables Eq$46) and (47) becomé

r=———-, = .
cosT—sSInw COosST—SInw

q(m)=qdn(q(7—7),k), (53
(0:4)°=(3,4)° (1= )¢
2 2 — ~
B AR e + co2w =0 where dn is Jacobi's function arg= \/2— «? is the second
stopping point for a particle in the potentidi(q). We have
Iso defined
a d 2 a
_ Tiﬂ le//_ 4 =0.
2 $?> cofw )
(49) =22 and o= s
2— K2 0 2’

Before solving these equations let us note that it is pos-
sible to predict the largé-behavior of the gauge field from . o . . )
the form of the conformal transformatid@8). Indeed, the WhereT, the period of oscillations in the potentidl(q), is
t—o limit corresponds to the line=7/2— o on the (@, 7) T=2.K(k)., with K(I§) be.mg the complete elllptl_c mtegra! of
plane. If one now takes the limfit—t|— = (regardless of the the first kind. The idea is, of course, that “oscillations” in

limit for |r—t|/t), the position on the¢,) plane is either P€gin from the rest point, close to=0. _
w——112. 70 or w— /2. . This means that the Let us now look at several properties of the solution for

entire liner= m/2— w corresponds to space-time points with [arg€ times. The solutioriS3) is apparently regular in the

finite differences betweenandt and, therefore, ity andy  (@,7) plane, and therefore for large times the field is con-
are smooth functions ab and r, then for asymptotic times Centrated near=t. At asymptotic times the energy density,

the field is concentrated near the t line. This corresponds  &(T»1), is given by
to the fields expanding as a thin shell in space.

We must now supply Eq949) with initial conditions, 8 - p? 8
which are dme(r,)= 5= 1=k 50— . (59
g°p p t+(r—1
d(w,7=0)°=1—(1- k?)cofw
The change in topological charge is
&qu(w!T)lT:O:O
Ww,7=0)=0 2= | “dPxata
0
(@, 7)| 0= P op(w, )] 1 24
T ) r=0" 3 _qin,, Ot v 7)1t=0
1-sine :EJ drdt| — d?y+ o2 y— r—zl
=k(1—-k?)cofw. (50) 5
T 5 cn(gqm,k)
One of the solutions of Eqg49), first found in 1977 by = 5 k(3= k%) —sgri«)arcco ey (59
Luscher[34] and Schechte35], is am,
#(0,7)°=1-[1-0*(7)]coS® The evolution ofN¢s begins from timet=0, where
a7 B 1
W)= "5cosw, (5D Neg(0)= Zsgrtm)(1—[x)?(2+[x]), (56

with a functionq(7) that satisfies _ _
and ast—oo its limit is Ngg(0) =Ncg(0)+AQ.
We now estimate number of gluons produced by the de-
One can find a discussion of Eq49) and some of its solutions scribed evolution. Ing, ¢ language the chromoelectric and
in [22]. chromomagnetic fields are
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1 ) d, i coOSa
E?:F(ﬁﬂﬁsma—T) 1

1 drsina 2y

+ - di¢ coSa+ rT>H?+ r—ZEJa

1 dufsina
Bf‘=—?(a,¢c03a+T)®?

1 _ dyip cOSar 1— ¢?

+—| drpsina— 3 )Hf‘+ 2 P

(57)

(58)

PHYSICAL REVIEW D 66, 036004 (2002

EX(K)=4mp(1-k)K1(wp)OF

Bfi(k)=4mp(1- x*)K(wp)II], (63)

where@? and H? are the color/space projectors in momen-
tum space analogous to those in coordinate spagethe
frequencyw= |IZ|, andK, is a Bessel function. One can eas-
ily verify that Bf'= €,k Eq/k, as is required for a radiation
field.

V. EXPLOSIONS OF THE TURNING STATES:
NUMERICAL STUDIES

In the previous section we studied the asymptotic behav-
ior of turning states constrained by sphaleron size and Chern-

Terms proportional t&} are longitudinal and die out &  gjmons number. In this section we consider step-by-step evo-
—o. The remainder is a purely transverse field. Now let ugytion of the turning states, a numerical analysis similar to

take into account that fdr—, d, ¢— d; ¢, and the same for

. Therefore

a

o COSa)
T e

¢
a,wsina)
¢

1
E?—>F<(9r¢>sina—

112

d, ¢ cosa+ i

1
+ —
r

dpsina|
7 )GJ

d, i cosa

¢

1
Bf—— F( dy ¢ cosa+

drpsina—

1
+— )H‘T".
r J

The main result becomes apparent when we choose a gau

where

¢d, ¢ cosa+d,sina=0,

in which

1 [(9,4)?
E?AF\/%—F((?r(b)z@?

5 5 32

B2— 17« P 2

j r 2. .12 i
P\ pt(r—t)

We now perform a Fourier transform, finding

(59

(60

(61)

(62

sphaleron decay in electroweak the@86,37. The numeri-
cal approach naturally allows for mathematical flexibility,
and it is used to consider the decay of static states which
replace the unphysical power-law behavior of the fields at
large distance with a phenomenologically more appropriate
exponential tail. The classical field configurations are thus
fixed in size indirectly by a mass parameter, a constraint
which is subsequently relaxed as the state quickly decays
into free-streaming gluons.

As a result of scale invariance, the QCD instanton is of
indeterminate size. While it is clear from phenomenology
and lattice studies that the instanton vacuum favors a some-

what narrow size distribution centeredeat 0.3 fm, the rea-
son for this is yet unknown, although it is presumably due to
interactions between instantons. It is thus natural that related
classical objects, born in some way from the excitation of
instantons, share a similar size. We arrange this by introduc-
ing a phenomenological gluon mass term in the initial con-
HGuration which is promptly relaxed as this unstable con-
figuration begins to decay. We stress that the relaxation of
this size constraint does not initiate the explosion; we will
show that the turning state is an unstable configuration re-
gardless of the mass term’s presence.

The similarity between this procedure and electroweak
sphaleron decay is clear, but not mathematically continuous.
For the Higgs mechanism, the sphaleron size is constrained
by the scalar vacuum condensate which introduces an effec-
tive mass for the gauge fields. This condensate vanishes at
the sphaleron center, where the classical gauge field action is
maximal. This feature persists in the limit of infinite gauge-
Higgs coupling, when the Higgs field is fixed at its vacuum
expectation valugVEV) constant for all other points in
space. Inserting a mass term for the gauge fields by hand, as
we do here for QCD, is thus very similar to this infinite
coupling limit of electroweak dynamics, the only difference
being that the mass is finite @l of space. This leads to a
difference in field behavior at the origin.

We begin with the Yang-Mills action, with a phenomeno-
logical mass term added, and will look for static solutions
with spherical symmetry in Minkowski space. The action is
written

036004-11
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47 I ' ' ' '
S= —zf dtdr[ Pt d3+ STPAI= (617 = (h))? 1
g
(1- ¢7— ¢3)? , , 05 |
T 2R bid i) AL ¢))
1 < 0
—m? (1+ ¢1) %+ 5+ Er2A§ . (64)
As before, we have taken a spherical ansatz similar to Wit- 05
ten’s[20] for the gauge field. Following the notations of Eq.
(1, L
1_ ) . 1 )
At g% a boa, (69 0 i > 3 s 5
r r mr
where all scalar functions depend on betlandt. We ini- FIG. 8. The static turning state solutiog(r,0).

tially work in the temporal gauge, whedg(r,t)=0. ) ) o

The equations of motion are easily obtained, and we fingvhere «=1.98 was determined numerically. Defining the
turning state’s size as the radius at which the profile is at half
its maximum(i.e. where it crosses the originwe find mp

. $1

b1~ P1+ r—2(¢§+ B5— 1)+ 1AT—2h5A 1 — oA] =0.9. We match this to the size of the average instanton and
find
2 _
Fmi(¢y+1)=0, m=0.9 =540 MeV. (69)
b Before we discuss the decay of this configuration we must
br— o+ —2(¢§+ ¢§— 1)+ ¢2A§+ 2¢1A, find the unstable modes orthogonal to it which determine the
r? “downhill” directions in field space. This is done by solving

eigenvalue equations for fluctuations in the fielblsand A;
in the presence of the turning state configuration.
We take the terms linear igp, andA; from Eqgs.(66) and

+ 1AL+ mMPp,=0,

.2 2 )
Avt SAUGTH 89+ (102 dudy) + mPA1=0. require
(66) ¢Z(X!t):_w2¢2(xit)! Al(xvt):_szl(Xlt)- ( )
70
In the static limit, we seek a purely magnetic turning state . .
solution. One can be found for thg, field component from We then have the eigenvalue equations:
the equation
1
b1, P+ QZ_lJF; b2t 2¢1A1+ $1A1=0,
¢'1’—?(¢1—1)—(¢1+1)=0, (67)
. . . . . . 2 2 2 2 ! ’
which is simply Egs.(66) with ¢,=A;=0 and written in O =1-—¢1| A1~ — (P12~ h1¢3) =0,
terms of the dimensionless variablesmr. With the bound- X X
ary conditions (77)
$1(x)—1 asx—0 where ¢, is the classical solution in Fig. 8 and the dimen-
’ sionless frequency i€l = w/m. The longitudinal field com-
b1(x)—>—1 asx—x, ponent may be eliminated with
a numerical solution is easily obtained and shown in Fig. 8. 3 2(p1hy— Pp13)
This is quite similar to the approximate electroweak solution 1= (72)

2_1\w2_o 42"
found by Klinkhammer and Mantofi9] in the limit of infi- (Q7=1x"=241

nite Higgs self-coupling. The primary difference is the be-gypstituting this into the first of Eq$71), we find the be-
havior near the origin, which in the QCD case involves anavior near the origin:

logarithm forx<<1:

) ¢2(X):CX1/2(1_ \«‘1—8y), (73)
_ T2l vy 2 4

P1(X)=1+ 3x InX— ax“+ O(x*Inx), (68) where
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FIG. 10. Energy(solid lineg and Chern-Simons number densi-

FIG. 9. The unstable eigenmodes,(r) andAy(r), arbitrarily  jies (dashed linesfor three times during the explosiot=0.4, 3,

normalized. and 6 fm.(Note the scale difference between the two quantjties.
1+ 02 Once the real-time solutions to Ed66) with m=0 have
y= 1-02 been found at a given time step, the total energy is readily

computed as
andc is an arbitrary normalization. Both fields vanish»as

. . 1 ..
P+ Pyt STOATH (9D ()

— 0, = —7T
We have solved these equations numerically, finding the E= g2f dr
wave functions plotted in Fig. 9 with the frequency .
" (1- 71— d’z)z

or? —2A1(p13— h16b3)

w?=—3.4m°. (74)

The functionA; is logarithmically divergent at the origin,
reflecting the difference between this massive model and the +A2( 2+ B2
electroweak casg38] in which the Higgs field always van-
ishes at the origifi.There is therefore no smooth continua-
tion between this model and the electroweak one in the limiAt every time step it was verified that the energy remains
of large coupling. equal to that of the initial state. Taking the instanton vacuum

These solutions for the unstable modes, which along wittvalue of
the classicakp,(r) complete our initial conditions, were put
on a lattice with spacindx=0.01 and evolved at time steps 8r?
of A7=5x10"4, wherer=mt. The unstable modes, acting ?:lz’ (77
as a small push to properly initiate the decay, were normal-

ized as the total energy of the decaying object was calculated and
found to be

. (76)

f dX[ ha(X)2+2x*A1(x)?]=5x10"°. (75 E=4.62 =28 GeV. (78)

Coincident with this push we set=0, in effect turning off The Chern-Simons number was also computed at each
the mass term, since here we are interested in the turningme step. In our present gauge, this is written as

state decaying into the vacuum where no such term is moti-

vated. Although this effectively removes the size constraint 1 . s

on ¢4(r,0), the subsequent dynamical expansion is a result NCS:ZJ' drl(1= 1) dot+ d1do— (1= 71— P3)A1].

of the push in the unstable directions of this saddle-point (79

solution rather than an inflation of the classical field configu-

ration. The gauge invariance of changes in this quantity was verified
numerically.

The energy and Chern-Simons densities, defined as the
5The dominant unstable mode in the electroweak case-as is  integrands of Eqs(76) and (79), are shown in Fig. 10. The
the scalar field component orthogonal to the conderi&de This  shell-like expansion is illustrated in these plots, as well as the
mode is absent here. similarity of the energy profile at all times. Note that these
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-0.02 - - - - - - - formation to a new set of fields:
-0.04 $1= $1C0S0+ hpsin b
-0.06 $r=— p1Sin O+ P,c0s0
-0.08 ~
8 A1:A1_ 0’
=4
-0.1 - )
A0= - 0, (80)
-0.12
where
-0.14
6=arctar(ﬁ . (81
-0.16 : . : : : : : ¢1
0 10 20 30 40 50 60 70 80
mt Promptly dropping the tildes, we write the total energy in
FIG. 11. Change in the Chern-Simons number. terms of the new fields,
2\2
plots are in a (¥ 1)-dimensional description, and the corre- E= 4_”] dr| 62+ (p))%+ (1-¢7) n f(A yNAY:
sponding three-dimensional radial density differs by a factor 92 1 1 22 21 o
of 1/r2.
It is clear from the curves in Fig. 10 that the Chern- 0 o o
Simons number changes during the decay. As shown in Fig. + p1(ATTAD) | (82

11, our fields stabilize at long times witN-g=0.12. From

this we see that the turning state does not complete an in- A |ate times, the field strength is confined to a thin shell
stanton transition, which would require a return to a statey radiusr =t. Free, expanding field behavior is also ob-
with an integral Chern-Simons number. Due to this freezing;qpeq numerically, such that
in the topology, nontrivial fermionic solutions will accom-
pany the resulting Yang-Mills fields. These will be discussed d(rt)=—d'(r 1)
elsewhere.

The transition from a purely magnetic configuration to for each field;, A;, andA,. This simplifies the equations
one with equal electric and magnetic components is shown igf motion for the latter two,
Fig. 12, for an early and late time in the evolution. The decay
progresses rather rapidly; at=1.4 fm, the ratio L 2
E(r)?/B(r)?=0.95 for allr. Thereafter the ratio continues to Ar=Ap=—— piA;
quickly approach unity. r

In order to analyze the final state at late times, we work in

(83

i hichB =0. Thi i h - AN 2 ’ 7 2
a gauge in whichB(r,t)=0 is requires the trans Ao_Alz_F(Ao—Al)Jfr—z(ﬁiAl, (84)
12 . : : . : : : . :
ng/z - in that the right-hand sides of both vanish as the shell ex-
" B2 1 pands at large times. We can thus conclude that
Ar—Ay=0 85)
o8| i |
P for mt=>1.
0.6 | The condition for this gauge is
oal | Pod1t2Agh1— Al b1~ 2A1 1 =0. (86)
,: Combining this with Eq(85), we have
02} | . .
/ X\ d1(Ao— A1) —2(h1A1— $1A0) =0, (87
0 L N | S

and can deduce that

FIG. 12. The electrigsolid lineg and magnetiddashed lines
fields at timest=0.4 fm andt=3 fm. Plotted are;x?E(x)2 and  at late times.
1x2B(x)?; their sum is the energy density. The contribution fromg, will be of the form
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d1(r,t)=1+¢(r,1), (89) It is well known that in the QCD vacuum the “semi-hard”
or “substructure scaleQ?~1—-2 Ge\? is simultaneously
whereg is an excitation above the vacuum. Using the resulthe lower boundary of PQCD as well as thgperboundary
just obtained(89), its linearized equation of motion simpli- of low energy effective approaches such as chiral
fies to Lagrangians. Furthermore, in any discussion of instanton-
induced reactions it is implicitly assumed that instantons
. 2 were the primary source of that scale, and since they are
¢—¢"+ = ¢=0. (90)  included explicitly no other nonperturbative cutoffs are
r needed. This, of course, is not strictly true as confining
forces require the final state be comprised of hadrons, but we
make the usual separation of scales and assume that final
state interactions merely redistribute the wave functions
cp(r,t)zf dk e(K)r[jo(kr)+iy,(kr)Jcogkt), (91)  without changing the total probabilities.

We assert, however, that the PQCD cutoff is quite differ-
ent in heavy ion collisions. It has been argued over the years
that excited matter might be in a quark-gluon plasiQ&P
phase of QCD(see e.g. Refl39]). Whether equilibrated or
not, it is nevertheless qualitatively very different from the
QCD vacuum: instantons are suppressed, and there is neither
confinement nor chiral symmetry breaking to set a nonper-
turbative cutoff.

Y1) = a6 VAN, ), Therefore the limits on the Yang-Mills field description

which encodes oscillations between the transverse degrees @ entirely different, and actually determined by much sim-

freedom. From Eqg86) and(88), we have a wave equation, Pler phenomena. The QGP, a plasma-like phase, screens it-
self perturbativelyf39]. A quasi-particle description becomes

J—y'=0. (92)  appropriate, in which the quarks and gluons have finite ef-
fective masses. In equilibrium and at high temperature these
These harmonics contribute to the energy via the final termare “thermal masses”; the gluon has the well-known effec-

The solution is of the form

with Fourier amplitudesp(k) and the spherical Bessel func-
tionsj4(z) andy,(2).

Although the majority of gluon radiation is carried in the
¢, field, physical quanta also lie in small excitations of the
field

in Eq. (82). tive masq 39
The total energy can then be written in momentum space
as Mz_ngz Nc+ N (95)
9 2 3 6
16m 2 2 2
E= ?f dplpe(p)“+¥(p)“], (93)  whereN, andN; are the number of colors and flavors, re-

spectively. Although this mass grows with temperature at
high T, just aboveT, it is actually smallerthan the PQCD
cutoff in vacuum. Such nonmonotonic behavior is confirmed
aby lattice thermodynamics data, which can be well fitted
with quasiparticle masses.
2 Moreover, in the “BNL Relativistic Heavy lon Collider
(RHIC) window,” T.<T<3T,, one finds the approximately
constant gluon and quark effective masgé3]

94) Mg~0.4 GeV, M,~0.3 GeV, (96)

in terms of the dimensionless momentys k/m. The Fou-
rier amplitudes are computed from the solutions of the sp
tial fields:

qo(p)2=f dx pxj1(pX)+iy1(pX)]e(X)

2

w(p>2=f dx ePXy(x)
the first of which provides the cutoff of our classical treat-
Numerically, this expression for the energy is within 1% of ment; at this scale the classical Yang-Mills action for gluons
that of the initial configuration for all timels=3 fm, further is to be modified by inclusion of an appropriate effective
demonstrating the rapid onset of free-field behavior. Lagrangian describing such screening effects, such as those
suggested by Taylor and Wonhd1].

VI. PRODUCTION OF TURNING STATES IN HEAVY ION o
COLLISIONS B. Multiplicity and spectra of prompt gluons

With solutions for the fields at all times, in both the ana-
lytic and numerical treatments of the previous two sections,

Although this paper does not generally deal with phenomwe have analyzed the final states to determine the particle
enological applications, we will eventually come to an esti-number. While we find a similar number of produced par-
mate of the number of gluons produced in the explosion of aicles from both approaches, about four gluons produced per
turning state. The resulting divergence in this number canndurning state, the energy distribution of this prompt glue is
be resolved without some explanation of the limited applicawvery sensitive to the classical configuration used to initiate
bility of the classical Yang-Mills description. This leads to the explosion. While the field solutions found using con-
the issue of the PQCD cutoff. strained quantizatioSec. Il) and an effective mas&Sec.

A. The PQCD cutoff in vacuum versus excited matter
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s FIG. 14. Energy spectrum of prompt gluofsolid line), ob-
FIG. 13. The energy spectrul(w) obtained from the analytic fained from the numerical solution, and a thermal distribution with
solution, in units of (164%)(1— x?)?, versuss= wp. T=285 MeV (dashed ling

V) are qualitatively similar, both leading to an expanding _The prompt particle energy distribution that was also ob-
shell of radiation, we find a substantial difference in finaltained in the numerical treatment of Sec. V, defined as the
state momentum distributions. This can be traced to the ddhtegrand of the expression in E§3), is shown in Fig. 14 at
tails of the two solutions as—, where we contrast a & Very late time in the evolutionr{=50 ort=20 fm). Like
power-law behavior in Eq(36) with an exponential fall-off the previous distribution, it is finite at the origin, but in con-
in the solution of Fig. 8, ag,(r,0)~exp(—mn—1. As men- trastit peaks at nonzero momentum, a re§L_|It of the dlffer(_ent
tioned above, we consider the second case to be of great@PO'Ce of gauge._For_lllustratlve purposes it is compared with
physical relevance, as the gluonic field is not massless phé thermal distribution of bosons at a temperatufe
nomenologically(and even vacuum instantons ought to have=285 MeV. We note that in an equilibrated environment,
exponential tails Furthermore, we have used two different the effective mass and screening effects will only modify this
gauges in our calculations, each chosen to simplify thérofile belowk=0.4 GeV, where a relatively small part of
analysis and field strengths. While the final particle numbethe spectrum resides. _ .
is invariant under gauge transformation, the distributions are  The produced gluons are free streaming, with no mecha-
not. We now consider both results. nism for equilibration, and yet our distribution is very similar
To find the number of gluons in each mode one compare! the thermal one for momenta below about 1.5 GeV. Such
the field strength in the momentum representation to thos@ nearly thermal distribution has also been obtained from
which have energw. In the evolution described analytically similar calculations using an entirely different classical field

in Sec. IV, the occupation number is approach in Refi42]. One can speculate that such an osten-
sible equilibration may contribute to the success of hydrody-
. 64n° ) 2p2 namics in calculating particle spectra and elliptic flow at

v(k)= 92 (1= ~Ka(wp) (97 RHIC [43]. Our finding of four physical gluons from every

decayed turning state is also in line with RHIC entropy pro-
duction, assuming that the density of these classical objects
corresponds to that of instantons in the vacuum. The total
32 energy of the turning state, found above to be 2.8 GeV, is
n(w)z—z(l—Kz)za)szi(wp)_ (98)  carried by gluons with a distribution peaked around 800
g MeV. This average can be viewed as an upper bound, since

in a more complete treatment a portion of this energy will be

The corresponding energy spectriitw) = wn(w) is shown  used for the production of light quark pairs. This next step

in Fig. 13. will be addressed in a later publication.

Because the Fourier transforms of the fields are finite, the
occupation numbe(97) behaves as &/ for small w. The
number of particles is thus logarithmically divergent and
should be cut off at some low scale where the PQCD de- In this work we have studied forced tunneling in pure
scription of gluons is no longer valid, leading tN SU(2) Yang-Mills theory. This process, generated through
~log(1Myp). As explained in the previous subsection, inthe excitation of instantons in the QCD vacuum, leads to
heavy ion collisions this cutoff, identified with the gluon unstable classicaturning stateswhich explosively decay
effective mass of Eq(96), is still relatively small as com- into gluonic radiation. These states and their decays are simi-
pared to the typical momenta of gluons produced. lar to the physics of sphalerons in the electroweak theory.

and the gluon energy distribution function is

VII. CONCLUSIONS
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If this semi-classical treatment of pure Yang-Mills theory = Note added Following this paper’s submission, applica-
is indeed relevant to the physics of QCD, the turning statesions to heavy-ion collisions were discussed in detail in Ref.
should play a prominent role in the production of glue in[45]. It was also demonstrated theoretically that the Yang-
high-energy hadronic collisions. In the case\ifl collisions ~ Mills turning states can dominate the cross section for
the produced gluons will propagate into the QCD vacuum, tgerompt production in Ref46], using the method of singular
be quickly recombined into secondary hadrons. For heavynstantons. This work employed a more physical radiation
ion collisions, however, the large quantity of prompt gluegauge in computing the final gluon spectrum, which can be
produced from the many turning states would be releasedompared with gauges chosen for convenience in this paper.
into a highly excited, perhaps deconfined medium. ObserviFermion production was also subsequently addressed in Ref.
able consequences in both situations were discussed recenfh7], in which an exact solution in the field of an exploding
in Ref.[44], and the results of this work support many of the turning state background was found.
estimates therein. Finally, we have obtained energy spectra
for the prompt gluons that serve as the initial state in the
dynamics of a heavy ion collision and found that, unlike the
overall explosive dynamics, it is sensitive to the details of the We thank I. Zahed and R. Venugopalan for useful
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