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Forced tunneling and turning state explosion in pure Yang-Mills theory
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We considerforced tunneling in QCD, described semiclassically by instanton–anti-instanton field configu-
rations. By separating topologically different minima we obtain details of the effective potential and study the
turning states, which are similar to the sphaleron solution in electroweak theory. These states are alternatively
derived as minima of the energy under the constraints of fixed size and Chern-Simons number. We study, both
analytically and numerically, the subsequent evolution of such states by solving the classical Yang-Mills
equations in real time, and find that the gauge field strength is quickly localized into an expanding shell of
radiating gluons. The relevance to high-energy collisions of hadrons and nuclei is briefly discussed.
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I. INTRODUCTION

A. Instanton-induced scattering in QCD

The existence of topologically distinct non-Abelian gau
fields, with tunneling between corresponding classical va
described semiclassically by instantons@1#, is one of the
most spectacular nonperturbative effects of field theory. S
nificant progress has been made in understanding instan
induced effects in quantum chromodynamics~QCD!, ex-
plaining both explicit UA(1) chiral symmetry breaking at th
single-instanton level@2# and spontaneous SU(Nf) chiral
symmetry breaking by the instanton ensemble@3#. Euclidean
correlation functions, studied phenomenologically and on
lattice, have been explained to a significant extent by ins
tons as well@4#.

With tunneling phenomena apparently so important invir-
tual quark and gluon propagation, it is reasonable to th
them also relevant inreal processes such as scattering
particle production in Minkowski space. We thus seek co
tributions to parton scattering amplitudes from the theory
instanton-related objects, and supporting experimental
dence.

With this as our motivation, we concentrate in this pap
on the theoretical basis of such effects from pure Yang-M
theory. Specific applications to high-energy processes w
hadrons or nuclei are left for future work, although we w
discuss phenomenological generalities where relevant.

Progress in understanding of the role of tunneling in h
energy processes has been tempered by technical prob
for years. Significant insights were obtained in the 1980s@5#
and further developed in the early 1990s@6–8# through work
in electroweak theory. In this case, the instanton-indu
cross section is readily identified by baryon number violat
and many noteworthy features of these processes w
found. However, quantitative estimates of the associa
cross sections proved to be far below observable limits
interest quickly waned. Similar ideas have also been de
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oped in QCD@9#, notably the search for hard processes
duced by small-sized instantonswhich continues at the
DESY ep collider HERA @10#.

Another role for instanton-induced processes has rece
been proposed by Kharzeev, Kovchegov, and Levin@11# and
Nowak, Shuryak, and Zahed@12#. These works focus on
typical QCD instantons, of sizer;1/3 fm @3#, which deter-
mine thesemi-hardscale ofQ;122 GeV. It was proposed
that topological tunneling is behind the well-known featur
of high energy scattering described phenomenologically
the so-called ‘‘soft’’ Pomeron. These ideas were furth
tested in Ref.@13#, where they were demonstrated to be re
sonably consistent with experimental data.

Since the 1960s, attempts have been made to exp
high-energy hadronic collisions with multiperipheral mode
with various ladder diagrams describing hadron producti
It was realized that in order to get cross-sections which
not falling at high energies, one neededvectorfield exchange
in the t-channel. With the discovery of QCD, gluons nat
rally play this role. Generic perturbative QCD~PQCD! in-
spired models appeared with processes like that show
Fig. 1~a!. Eventually this development led to the Balitski˘-
Fadin-Kuraev-Lipatov~BFKL! gluon ladder@14#, which pro-
duces an~approximately! supercritical Pomeron, a ‘‘hard’
Pomeron with the intercept well above 1. Recent studies
high energy hard processes, especially at HERA, have ind
found strong growth of the cross section with energy
truly hard processes (Q2@1 GeV2), consistent with the
BFKL treatment.

But various data at thesemi-hardscale ofQ2;1 GeV2

demonstrate rather different growth with energy, consist
with a ‘‘soft’’ Pomeron. Whatever it might be, the Pomero
should be an object of a particular size deduced from
slope of its Regge trajectory,a8;1/(2 GeV)2. This size of
course cannot be explained by basically scale-invar
PQCD, and thus calls for a nonperturbative derivation.
©2002 The American Physical Society04-1
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Existing models for the soft Pomeron also include ladd
made oft-channel gluons, and the differences between th
lie mainly in the construction of their rungs. Each of th
various models has a unique answer forwhat is actually
producedin gluon-gluon partonic collisions. For example,
Ref. @15# a pair of pions in the scalar channel or a sca
glueball is produced. The introduction into this problem
instanton-induced vertices@11,12,16#, shown schematically
in Fig. 1~b!, led to a different idea: the object produced
neither a gluon~as in BFKL! nor any colorless hadronic
state, but rather acoloredcluster of the gluon field, which in
turn decays into several gluons. It has been shown that
cross section peaks at an invariant cluster mass in the r
2.523 GeV @11,12#. It is very important that the state
which are produced are not a random group of gluons,
rather their coherent superposition. Understanding their c
position is the main objective of this work.

A quantum-mechanical interpretation of the collision pr
cess is central to this question of prompt gluon producti

FIG. 1. The top of the figure compares~a! a typical inelastic
perturbative process~two t-channel gluons collide, producing a pa
of gluons! to ~b! a nonperturbative inelastic process, incorporat
collisions of a fewt-channel gluons with the instanton~the shaded
circle!, resulting in multi-gluon production. The bottom figure~c!
shows the same process, but in a quantum mechanical way.
energy of the Yang-Mills field versus the Chern-Simons numb
Ncs , is a periodic function, with zeros at integer points. Theinstan-
ton ~shown by the lowest dashed line! is a transition between suc
points. However if some nonzero energy is deposited into the
cess during transition, the virtual path~the dashed line! leads to a
turning states, from which starts the real time motion outside th
barrier~shown by horizontal solid lines!. The maximal cross section
corresponds to the transition to the top of the barrier, calle
sphaleron.
03600
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An impressive body of work has addressed this problem w
classical Weizsa¨cker-Williams fields of gluons, the colo
glass condensate@17#. Here we consider a different classic
process, one involving topological objects. In Fig. 1~c! we
schematically show a barrier separating two topologica
distinct classical vacua, with Chern-Simons numbers1 NCS
50 and 1. Unlike a standard instanton transition, shown
the horizontal dashed line, in a high energy collision a fin
amount of energy is absorbed. This can be viewed a
‘‘forced tunneling’’ event ~either of the other two dashe
lines! which ends at aturning state, where the total energy is
equal to the potential energy, so that the paths can exit
~Euclidean! domain below the barrier. These colored u
stable objects are close relatives of electroweak sphale
@18,19#, which are defined at the barrier’s peak. We w
demonstrate how these objects then evolve with conse
energy, developing into an exploding shell of color fie
This part of the process is diagrammed with the horizon
lines in Fig. 1~c!.

Before we come to these explosions, we will discuss
detail the instanton–anti-instanton (Ī I ) configurations which
describe this forced tunneling. They provide one way tow
the understanding of the effective potential separating to
logically different gauge fields, as well as the turning sta
themselves. We then proceed to another derivation of
same results as static solutions in classical Yang-Mills the
constrained in size. The real-time decay of the static confi
ration is studied in detail, using both analytic and numeri
methods, ultimately leading to a description of the expand
shells in terms of gluonic quanta.

B. Spherically symmetric Yang-Mills fields

In this paper we will be making use of O~3! symmetric
Yang-Mills fields, using a notation throughout which we w
introduce presently. For the SU~2! color subgroup in which
we are interested, spherically symmetric configurations
the gauge fieldA m

a can be expressed through the followin
four space-time~0, j 51 . . . 3) andcolor (a51 . . . 3) struc-
tures:

A j
a5A~r ,t !Q j

a1B~r ,t !P j
a1C~r ,t !S j

a

A 0
a5D~r ,t !

xa

r
~1!

with

Q j
a5

e jamxm

r
, P j

a5da j2
xaxj

r 2
, S j

a5
xaxj

r 2
. ~2!

It is convenient to express the scalar functions in Eq.~1! in
terms of fourr and t dependent functions, which are simila
to the fields of the (111)-dimensional Abelian gauge-Higg
model (Am50,1,f,a) on a hyperboloid@20#:

1This will be introduced formally below. Here it is sufficient t
note only that we consider a definite pair of gauge potentials, se
rated on one of the many coordinates of our quantum system.
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A5
11f sina

r
, B5

f cosa

r
, C5A1 , D5A0 .

~3!

One can express the field strengths in these terms as

E j
a5G 0 j

a 5
1

r
@]0f sina1f cosa~]0a2A0!#Q j

a

1
1

r
@]0f cosa2f sina~]0a2A0!#P j

a

1~]0A12]1A0!S j
a ~4!

and

B j
a5

1

2
e jklG kl

a 5
1

r
@2]1f cosa1f sina~]1a2A1!#Q j

a

1
1

r
@]1f sina1f cosa~]1a2A1!#P j

a1
12f2

r 2
S j

a ,

~5!

where]0[] t and]1[] r .
The action in (311)-dimensional Minkowski

(2,1,1,1) space reduces as

S5
1

4g2E d3xdt@~B j
a!22~E j

a!2#

54pE drdtF ~]mf!21f2~]ma2Am!21
~12f2!2

2r 2

2
r 2

2
~]0A12]1A0!2G , ~6!

with the summation now over the (111)-dimensional
(2,1) metric.

The spherical ansatz is preserved by a set of gauge tr
formations generated by unitary matrices of the type

U~r ,t !5expS i
b~r ,t !

2r
taxaD . ~7!

These transformations naturally coincide with the gau
symmetry of the corresponding Abelian Higgs model:

f85f, a85a1b, Am8 5Am1]mb. ~8!

This freedom can be used to gauge out, for example, theA0
component.

Topological properties of the gauge field are governed
the topological current

Km52
1

32p2 emnrsS G nr
a A s

a2
g

3
eabcA n

aA r
bA s

c D . ~9!
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Although this current is not gauge invariant, its change
related to the~gauge invariant! local topological charge

]mKm52
1

32p2G mn
a G̃mn

a . ~10!

Within the spherical ansatz and theA050 gauge, the topo-
logical current takes a simpler form,

K05
1

8p2r 2
@~12f2!~]1a2A1!2]1~a2f cosa!#

Ki5
xi

8p2r 3
@~12f2!]0a2]0~a2f cosa!#,

~11!

while the topological charge becomes

]mKm5
1

8p2r 2
$2]0@~12f2!~]1a2A1!#

1]1@~12f2!~]0a2A0!#%. ~12!

Note that only gauge-invariant combinations of field deriv
tives appear here.

As a ‘‘topological coordinate’’ marking the tunnelin
paths and the turning states one can use the Chern-Sim
number

NCS5E d3xK0

52
1

2pE dr~12f2!~]1a2A1!1
1

2p
~a2cosa!ur 50

r 5` .

~13!

The first, gauge-invariant term is sometimes called thecor-

rectedor true Chern-Simons number@21,22#, ÑCS, while the
second~gauge-dependent! term is referred to as thewinding

number. It is the change inÑCS which is equivalent to the
integral over the local topological charge.

II. INSTANTON –ANTI-INSTANTON CONFIGURATIONS

A. Forced tunneling

A brief introduction to the quantum mechanics of gluo
in high energy collisions has been given in the Introductio
The effect of colliding partons can be included in vario
forms. For example, these fields can be represented asnon-
zero external currents which affect the tunneling paths
Yang-Mills field. In the zero-current, vacuum case, the us
instanton solutions are spherically symmetric in four Eucl
ean dimensions. The collision problem of two~or more! par-
tons, on the contrary, at nonzero impact parameters does
have even anaxial symmetry. The reader therefore may wo
der why this~and all previous works! on the subject consid
ers (311)-dimensional spherically symmetric fields.
4-3
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The justification for this ansatz is that the absolute m
nitude of the tunneling field is large compared to exter
forces. Also, as will be shown below, spherically symmet
clusters are an energy minimum for fixed size and topolo
cal coordinate. Should the resulting cluster not have ex
spherical symmetry one can always approach the prob
perturbatively, considering first the external forces projec
onto the direction of tunneling, and then other component
small corrections. The resulting (111)-dimensional problem
is readily solved numerically and, to a great extent, anal
cally.

Unlike separated instantons~I! and anti-instantons (Ī ),
combined Ī I configurations are neither selfdual nor an
selfdual and do not satisfy classical equations of moti
They are not extrema of the action, since they describe
valley stretching between true extrema—the zero fi
~equivalent to anĪ I at zero separation! and well-separatedĪ I

pair. Substituting anyĪ I trial function into the Yang-Mills
equation of motion, we find a finite

DmGmn5Jn . ~14!

This means some external current must be applied to
gauge fields if we want to use semiclassical analysis.
process can only then be interpreted as a classicalĪ I , or a
forced path. There are two interpretations ofĪ I configura-
tions with different consequences.

The historical view is that such fields describe quant
fluctuations in the Yang-Mills vacuum, the process in whi
a virtual path goes under the barrier, then reverses course
ends up in thesameminimum from which it started. This
process has zero net topological charge. Naturally, the e
studies concentrated on the action corresponding to th
configurations, the quantity which controls its weight in t
path integral. The first such work was done long ago
Callan, Dashen, and Gross@23#, resulting in a dipole force
and the actiondS;1/T4 at large distanceT between the cen
ters. Higher terms in the multipole expansion have been
cussed in the literature after that, e.g.@24#. When it was
eventually realized that quark-inducedĪ I pairings are more
important for the instanton ensemble in QCD@25#, interest in
the pure Yang-Mills theory waned.

Although in this paper we neither evaluate instanto
induced cross sections nor describe the production of
turning states in heavy-ion collisions, it is clear that the
tion of instanton–anti-instanton configurations is the key
such calculations. Details relevant to partonic collisions h
been covered in Refs.@7,8,26,27# and deep inelastic scatte
ing has been discussed in Refs.@10,28#. Here we focus on the
final-state solution, irrelevant to the cross section, which
termines the produced particle spectra. Similar ground
covered in Ref.@29#, using a different approach.

Since the external forces from the partonic current
work on theĪ I pair, the energy at intermediate times is no
zero. We will consider only cases in which the fields at po
tive and negative times are essentially the same~modulo a
sign and, sometimes, a gauge transformation!. Thus this en-
ergy will be even undert→2t, with a natural maximum a
03600
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t50. As a result, all quantities which are odd under th
transformation~like the electric field! naturally vanish at this
instant. The remaining,purely magneticconfiguration is
what we define as theturning stateof this path.

The resulting action corresponds to an excitationprob-
ability of this turning state created by the external currenJ,

P; z^0uJuturning state& z2. ~15!

Through this mechanism the excitation ofĪ I pairs leads to
the production of real particles, as advertised in the Introd
tion and to be analyzed in the next sections.

B. Simple Ī I trial functions

We now consider the simplest example of a possible tu

ing state, a straightforwardĪ I sum ansatz. With it, we can
demonstrate some basic features, although we will find th
insufficient for our purposes and move to a more comp
cated ansatz in the next subsection.

Written in the singular gauge, thesum ansatzis,

g

2
A am

sum~x!5
h̄amny1

nr2

y1
2~y1

21r2!
1

hamny2
nr2

y2
2~y2

21r2!
, ~16!

where we assume that both the instanton and the a
instanton~the first and second terms, respectively! have the
same color orientation and sizer. The vectorsy15x2zI and
y25x2zĪ are the distances from the observation pointx to
the instanton and anti-instanton centers. In what follows
assumezI5(T/2,0,0,0) andzĪ 5(2T/2,0,0,0), where the
imaginary time between centers isT.

Note that although a single instanton’s profile behaves
1/x near the origin, the physical quantity (G mn

a )2 is finite.
However, for the sum ansatz this feature is lost and the s
quantity goes as 1/x2 near the origin.

This unphysical feature can be quickly remedied by
ratio ansatz@30#, which for identical sizes and orientations

g

2
A am

ratio~x!5

ha,mny1
n
r2

y1
2

1h̄a,mny2
n
r2

y2
2

11
r2

y1
2

1
r2

y2
2

. ~17!

These trial functions are simple enough to have analytic
pressions for the field strength, the energy of static turn
states, and the Chern-Simons number. For reference, one
the following expressions for the magnetic and electric fie
squared:
4-4
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BW 2516384~768t811024r 2t613072t612304t6R216400r 2t4R212048r 2t41512r 4t411824t4R413072t414608t4R2

11024r 6t21192t2R41512r 2t2R221024r 4t21144t2R611216r 2t2R412816r 4t2R21288r 4R41768r 81768r 6R2

148r 2R613R8!/~16r 4132r 2t218r 2R2116t428t2R21R4132r 2132t218R2!4, ~18!

EW251048576t2~32r 2t4148t4R2164r 4t2164r 2t2180r 2t2R2148t2R2124t2R4112R4132r 2132r 6164r 2R2126r 2R4

164r 4R2164r 4112R213R6!/~16r 4132r 2t218r 2R2116t428t2R21R4132r 2132t218R2!4. ~19!
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Their scalar product is

BW •EW52393216tR~R21214r 214t2!~16t4124t2R2

132r 2t2132t21R4116r 418r 2R2!/~16r 4132r 2t2

18r 2R2116t428t2R21R4132r 2132t218R2!4,

~20!

where we have setr51 andR5T is the intercenter distance
One can see that, in the simplest case of identical s

and orientations for theI and Ī , time reflection symmetryt
→2t of the problem is indeed manifest, so that

A 0
a~rW,t50!50, E m

a ~xW ,t50!50. ~21!

This is illustrated in Fig. 2~b!. Since configurations of this
type interpolate between a mostly dual region, withE m

a (zI)
5B m

a (zI), to an anti-dual region, whereE m
a (zĪ )52B m

a (zĪ ),
it is intuitive that the electric field vanishes in the center.

This situation can be readily interpreted in theA050
gauge, in which the electric field is simply the time deriv
tive of the gauge field—the canonicalmomentumin Yang-
Mills field quantization. Thus thet50 magnetic state is in
deed identified as a turning state, in which motion
momentarily stopped. For separationT comparable to the
sizer the energy is finite, with a maximumE;1/(gr).

The energyE and Chern-Simons numberNCS for either
the sum or ratio ansatz can be calculated as a functio
separationT directly, with the hope that a parametric plot
E(NCS) will reveal a useful profile of the barrier as a fun
tion of this topological coordinate.

Alas, for the sum ansatz this idea produces reason
results only for very large separation,T>2r. WhenT is of
the orderr, the energyE(T) of the turning state~as well as
the action for the entire configuration! becomes very large
while the topological coordinateNCS(T) remains fixed. It is
therefore obvious that this set of paths does not describe
travel across the ridge separating classical vacua which
want to study. Instead, this path rises with the barrier
continues to increase as the origin is approached, followin
direction apparently orthogonal to the topological coordin
we want to study.

The ratio ansatz yields somewhat better results, with fin
~and even simple! field structure at allT, including the point
T50. However the results, shown in Fig. 3, indicate that t
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set of trial functions can only accomplish about one third
the journey we would like to make, in terms of the topolog
cal quantityNCS. This inadequacy will become apparent a
ter comparison with the results to follow.

C. The Yung ansatz, or going uphill

As a natural set ofĪ I configurations, one of us@31# sug-
gested starting from a well-separated pair and goingdown-
hill , along the gradient of the action.2 Naturally, minimiza-

tion of the action leads to completeĪ I annihilation and zero
action.

It was shown by Yung that these configurations can g
erally be obtained from a solution of the streamline equat
@24#. He found solutions for large separationT@r and used

them to derive the next order terms in theĪ I interaction, to
O(1/T6). A clever conformal symmetry was used to redu
the Yang-Mills problem to that of a double well potentia
The same trick was then used in the numerical solution of
streamline equation@8,32#, in which it was observed that th
approximate ansatz suggested by Yung also happens to
very accurate approximation to a true solution, not only

largeT ~as Yung intended! but in fact forall finite Ī I sepa-

rationsT. As expected, atT50, Ī I annihilation occurs and
the field strength vanishes.3

Since we take a different view ofĪ I configurations in this
work, we interpret a solution of the streamline equation~or
Yung ansatz! as a set of forced paths goinguphill against the
gradient of the force. This process reaches its turning p
~or state!, with some maximal energy and Chern-Simo
number, and then turns back. Because the process proc
uphill, unlike with other trial functions with some arbitrar
driving force, we expect that all trajectories rise alongthe
same path, although those with largerT go further up.

The Yung ansatz for the field configuration is rather co
plicated, and is best written in matrix form:

2This can easily be done numerically, and a set of such curves
the quantum-mechanical double well potential and the correspo

ing set of Ī I configurations was found in that work.
3This is not obvious from the Yung expression; it was first fou

numerically. The Yung formula’s complicated result atT50 is
nothing but a pure gauge.
4-5
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igA m
Yung~x!5 igA am

Yung~x!
ta

2

5
ȳ̃2

Aỹ2

R

AR2

~ s̄my12y1
m!r1

2

y1
2~y1

21r1
2!

R̄

AR2

ȳ̃2

Aỹ2

1
~ s̄my22y2

m!r2
2

y2
21r2

2
1

r1r2

zy1
2~y2

21r2
2!
F ~ s̄my12y1

m!

2
ȳ̃2

Aỹ2

R

AR2
~ s̄my12y1

m!
R̄

AR2

ȳ̃2

Aỹ2

G , ~22!

wherez is related to the conformal-invariant distance, (R2

FIG. 2. Instanton–anti-instanton configurations.~a! A schematic
picture in Euclidean space-time. The thick vertical line,t50, cor-
responds to the location of the turning state. The definition of
inter-center distanceT is also shown.~b! Distribution along the time

axis of 2BW 2, 2EW2, and 2BW •EW for the ratio ansatz withT5r, shown
by the solid, dashed, and short-dashed lines respectively. The c

for BW •EW is the only one which ist-odd.
03600
1r1
21r2

2)/(r1r2). In the caser15r25r, which is the only
one we need, this relation reads

z25
R212r21A~R212r2!224r2

2r2
. ~23!

All vectors without an indicative index are SU~2! matrices
obtained by their contraction with the vectorsm5(1,2 i tW ),
for exampleR5x12x25Rmsm . An overbar similarly de-
notes contraction withs̄5(1,i tW ). Note that barred and un
barred matrices always alternate, in all terms; this is beca

e

rve

FIG. 3. The normalized energy,ER, versus the Chern-Simon
number for the ratio ansatz.

FIG. 4. NCS versus the distance betweenĪ I centersT in the
Yung ansatz.
4-6
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one index of each matrix is dotted and the other not,
spinor notation. Finally, the additional coordinate is

ỹ25x22
Rr2

zr12r2
. ~24!

Note that the first term is the instanton in thesingular
gauge, the second is the anti-instanton in theregular gauge,
and the third is a ‘‘correction’’ term. The benefit of this re
resentation is that the same ’t Hooft symbol appears in
three terms, and the entire construction originates from c
formal transformation of a spherically symmetric configu
tion in which Ī , I share the same center. An unfortuna
feature of this expression is that time-reversal symmetr
far from obvious, and it is not clear that the electric field
the mid-plane vanishes. However, this is in fact the case
the field att50 can be interpreted as a turning state.

FIG. 5. TheB(r )2 profile, not normalized, for the four values o

the Ī I distanceT ~in units of r) indicated in the legend.
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Although all three trial functions are similar at largeĪ I
separationT, they are drastically different atT;r. The Yung
ansatz is the only one which allows us to reasonably st
the effects of a large change in topological number. T
variation of the Chern-Simons number of the turning st
(t50) as a function of theĪ I separationT can be seen in
Fig. 4. In this case we scan the entire range@0,1#.

We now proceed with a more detailed study of the sta
turning states, residing on thet50 . . . 3 plane. The simplest
observable is the shape of the corresponding magnetic
squared, or the energy density distribution, shown in Fig
for few selected values ofĪ I distanceT. Note that the curve
for T52 ~the most like the sphaleron! shows indeed the
largest magnitude of the magnetic field. The shape is h
ever rather uniform. Note also that, unlike the case of
faulty sum and ratio trial functions, for smallerT the field
strength decreases, ultimately disappearing atT50.

The energy and energy density of the turning state c
figurations is therefore rather different for differentT. How-
ever, as seen from Fig. 5, the physical sizes of these obj
are different as well. As classic Yang-Mills theory has sc
invariance, one may wish to make the more natural comp
son of a scale-invariant combination, the energy times
rms radius,R, defined as

R25

E d3r r 2B 2

E d3r B 2

. ~25!

In these terms, the normalized energy is

ER5
1

2 F E d3rr 2B 23E d3rB 2G1/2

. ~26!

This quantity is plotted versus the topological charge diff
ence in Fig. 6, and indeed displays a parabolic-looking ma
mum nearNCS51/2.
g
oing
FIG. 6. The normalized energy,ER, versus the Chern-Simons number for the Yung ansatz. Plot~a! shows the positions of the turnin
states for variousT, while ~b! combines many points along the path (tÞ0); their small spread means that the Yung ansatz is nearly g
directly uphill, thus passing via the same points for differentT.
4-7
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Instead of only looking at the statict50 ~and zero electric
field! turning states, one can instead follow the~scale invari-
ant! energyER and the Chern-Simons number as a funct
of time t along each path. As expected,all the paths in Fig.
6~b!, for anyT, actually climb nearly exactly the same clif
as they propagate into larger values of our topological co
dinate.

III. TURNING STATES FROM CONSTRAINED
MINIMIZATION

We will now define turning states in terms of the gau
field, which connect the Euclidean and Minkowski doma
of the field’s path. The turning state is characterized by
condition that the generalized momentum, which in theA0
50 gauge coincides with the chromoelectric field, vanish
or, equivalently, that all first time derivatives of the spat
field components are zero. Using the notation introduced
Sec. I B, this in turn means that]0f5]0a5]0A150 at the
time when the transition occurs. From now on we assu
that moment to bet50.

At any given time it is possible to use the special gau
transformation, Eq.~7!, with a time-independent angleb to
gauge outA1(r ), still within the A050 gauge. Att50 the
energy of the field can thus be written

E5
4p

g2 E drF ~] rf!21f2~] ra!21
~12f2!2

2r 2 G . ~27!

We now address the question of theminimal potential
energy of the static Yang-Mills field, consistent with the a
propriate constraints:~i! a fixed value of the~corrected!
Chern-Simons number, and~ii ! a given value of the rms size
The former parametrizes the position of configuration on
topological scale, and the latter is needed to break dilata
symmetry of the problem, which otherwise prevents any c
figuration of finite size from being the minimum of the e
ergy.

We will break the scale invariance of the theory by sett
a requirement that the ratio

^r 2&5

E d3x r2B2

E d3x B2

~28!

has a particular value,r2, for the static solution we seek. T
keep both the Chern-Simons number and mean radius
stant we introduce Lagrange multipliers and search for th
minimal combination of4

4Without the term introduced to fix the Chern-Simons number
equivalently, for a zero corresponding Lagrange multiplier, t
problem would be equivalent to the SU~2! sphaleron on a 3D spher
that was solved by Smilga@33#.
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Ẽ5
4p

g2 E drS 11
r 2

r2D F ~] rf!21f2~] ra!21
~12f2!2

2r 2 G
1

h

2pE dr~12f2!] ra, ~29!

where the tilde denotes the constrained energy. It is con
nient to introduce a dimensionless variable,

j52 arctanS r

r D2
p

2
,

so that

Ẽ5
8p

g2 E2p/2

p/2

djS ~]jf!21f2~]ja!21
~12f2!2

2 cos2j

1k~12f2!]ja D ~30!

wherek5hrg2/(32p2).
The Euler-Lagrange equations for the remaining fields

]j
2f2f~]ja!21

~12f!2f

cos2j
12kf]ja50 ~31!

and

]j~f2]ja!1k]j~12f2!50. ~32!

Finiteness of the energy requires the boundary conditi
f2(2p/2)5f2(p/2)51. Equation~32! integrates to

]ja52k
12f2

f2
, ~33!

with a vanishing integration constant as follows from t
form of the energy. After the substitution of]ja into Eq.~31!
one has

]j
2f1

~12f2!f

cos2j
5k2

12f4

f3
. ~34!

A solution to this equation exists for21,k,1,

f2512~12k2!cos2j. ~35!

Hereafter we assume thatf is positive.
In term of the usualr coordinate, we have instead

f~r !5S 12~12k2!
4r2r 2

~r 21r2!2D 1/2

] ra~r !522k
12f2

f2

r

r 21r2
. ~36!

The sphaleron solution corresponds tok50 and

r,
s

4-8
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f~r !5
ur 22r2u

r 21r2
, a~r !5pu~r 2r!. ~37!

For anyk and mean squared radius^r 2&5r2, the poten-
tial energy density is

1

2
B2524r4

~12k2!2

~r 21r2!4
, ~38!

the integral of which is the potential~magnetic! energy of the
static configuration,

EB53p2
~12k2!2

g2r
. ~39!

The corrected Chern-Simons number, computed from
first term of Eq.~13!, is

ÑCS5
1

4
sgn~k!~21uku!~12uku!2. ~40!

Figure 7 shows the profile of the potential energyEB versus
ÑCS. It is very similar, although not identical, to the finding
of the preceding section~see Fig. 6! where Yung’s ansatz wa
used for forced paths.

FIG. 7. The potential energyEB versusÑCS, for the analytic
turning state solution of Eq.~36!.
03600
e

IV. EXPLOSIONS OF THE TURNING STATES:
ANALYTIC TREATMENT

We are now going to use the static field configuratio
found in the previous section, as an initial condition for re
time, Minkowski evolution of the gauge field. Let us fir
consider the equations of motion in the (111)-dimensional
dynamical system. Variation of the action, Eq.~6!, gives

]m]mf1f~]ma2Am!21
~12f2!f

r 2
50 ~41!

]m@f2~]ma2Am!#50
~42!

f2~]1a2A1!2]0F r 2

2
~]0A12]1A0!G50

f2~]0a2A0!2]1F r 2

2
~]0A12]1A0!G50.

~43!

The solution of Eq.~42! has the form

f2~]0a2A0!52]1c

f2~]1a2A1!52]0c, ~44!

wherec(r ,t) is an arbitrary smooth function. Equations~43!
are consistent with this solution if

]0A12]1A052
2c

r 2
. ~45!

Now, combining Eq.~42! and Eqs.~43! one has

]mS ]mc

f2 D 5]0A12]1A05
2c

r 2
, ~46!

which can be viewed as a necessary and sufficient cond
for c to be a solution for Eq.~42! and Eqs.~43! simulta-
neously. Equation~41! is now

]m]mf2
~]mc!2

f3
1

~12f2!f

r 2
50. ~47!

The initial conditions for Eqs.~46! and ~47! are

f~r ,0!5f~r !,

]0f~r ,t !u t5050,

]1c~r ,0!52f~r !2]0a~r !50⇒c~r ,0!50,

]0c~r ,t !u t5052f~r !2]1a~r !,

where thet-independent fields on the right sides of the equ
tions are the static solutions off and a from the previous
section.
4-9



s
Le

os

th

in

-

f

for

n-
y,

de-
d

D. M. OSTROVSKY, G. W. CARTER, AND E. V. SHURYAK PHYSICAL REVIEW D66, 036004 ~2002!
As with static solutions, it is more convenient to discu
the time-evolution equations in hyperbolic coordinates.
us choosev andt such that

r 5
r cosv

cost2sinv
, t5

r sint

cost2sinv
. ~48!

The physical domain of 0,r ,` and2`,t,` is covered
by 2p/2,v,p/2 and 2p/21v,t,p/22v. For t.0,
the corresponding domain is2p/2,v,p/2 and 0,t
,p/22v. This change of variables~48! is a conformal one.

In the new variables Eqs.~46! and ~47! become5

2]t
2f1]v

2 f2
~]tc!22~]vc!2

f3
1

~12f2!f

cos2v
50

2]t

]tc

f2
1]v

]vc

f2
2

2c

cos2v
50.

~49!

Before solving these equations let us note that it is p
sible to predict the large-t behavior of the gauge field from
the form of the conformal transformation~48!. Indeed, the
t→` limit corresponds to the linet5p/22v on the (v,t)
plane. If one now takes the limitur 2tu→` ~regardless of the
limit for ur 2tu/t), the position on the (v,t) plane is either
v→2p/2, t→0 or v→p/2, t→p. This means that the
entire linet5p/22v corresponds to space-time points wi
finite differences betweenr and t and, therefore, iff andc
are smooth functions ofv andt, then for asymptotic times
the field is concentrated near ther 5t line. This corresponds
to the fields expanding as a thin shell in space.

We must now supply Eqs.~49! with initial conditions,
which are

f~v,t50!2512~12k2!cos2v

]tf~v,t!ut5050

c~v,t50!50

]tc~v,t!ut505
r

12sinv
] tc~v,t!u t50

5k~12k2!cos2v. ~50!

One of the solutions of Eqs.~49!, first found in 1977 by
Lüscher@34# and Schechter@35#, is

f~v,t!2512@12q2~t!#cos2v

c~v,t!5
q̇~t!

2
cos2v, ~51!

with a functionq(t) that satisfies

5One can find a discussion of Eqs.~49! and some of its solutions
in @22#.
03600
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q̈22q~12q2!50. ~52!

This is the equation for a one-dimensional particle moving
double-well potential of the formU(q)5(12q2)2/2.

We now have to check that the Lu¨scher-Schechter solu
tion satisfies the initial conditions, Eq.~50!. This is indeed
the case if one identifiesq(0)5k and takesq̇(0)50. For the
initial condition of this type @i.e., for energy «5q̇2/2
1U(q),1/2#, the solution of Eq.~52! is

q~t!5q̃dn„q̃~t2t0!,k…, ~53!

where dn is Jacobi’s function andq̃5A22k2 is the second
stopping point for a particle in the potentialU(q). We have
also defined

k252
12k2

22k2
and t0q̃5

T

2
,

whereT, the period of oscillations in the potentialU(q), is
T52K(k), with K(k) being the complete elliptic integral o
the first kind. The idea is, of course, that ‘‘oscillations’’ int
begin from the rest point, close tot50.

Let us now look at several properties of the solution
large times. The solution~53! is apparently regular in the
(v,t) plane, and therefore for large times the field is co
centrated nearr 5t. At asymptotic times the energy densit
e(r ,t), is given by

4pe~r ,t !5
8p

g2r2
~12k2!2S r2

r21~r 2t !2D 3

. ~54!

The change in topological charge is

DQ5E
0

`

d3xdt ]mKm

5
1

2pE drdtF2] t
2c1] r

2c2
2c

r 2 G
5

p

2
k~32k2!2sgn~k!arccosS cn~ q̃p,k!

dn~ q̃p,k!
D . ~55!

The evolution ofÑCS begins from timet50, where

ÑCS~0!5
1

4
sgn~k!~12uku!2~21uku!, ~56!

and ast→` its limit is ÑCS(`)5ÑCS(0)1DQ.
We now estimate number of gluons produced by the

scribed evolution. Inf,c language the chromoelectric an
chromomagnetic fields are
4-10



u

au

n-

s-

av-
ern-
vo-
to

y,
ich
at

iate
us
int
ays

of
gy
me-

to
ted
of
uc-
n-
n-
of

ill
re-

ak
us.

ined
ffec-
s at
n is

e-
m

, as
e
e

o-
ns
is

FORCED TUNNELING AND TURNING STATE . . . PHYSICAL REVIEW D 66, 036004 ~2002!
Ej
a5

1

r S ] tf sina2
] rc cosa

f DQ j
a

1
1

r S ] tf cosa1
] rc sina

f DP j
a1

2c

r 2
S j

a , ~57!

Bj
a52

1

r S ] rf cosa1
] tc sina

f DQ j
a

1
1

r S ] rf sina2
] tc cosa

f DP j
a1

12f2

r 2
S j

a . ~58!

Terms proportional toS j
a are longitudinal and die out ast

→`. The remainder is a purely transverse field. Now let
take into account that fort→`, ] rf→] tf, and the same for
c. Therefore

Ej
a→ 1

r S ] rf sina2
] rc cosa

f DQ j
a

1
1

r S ] rf cosa1
] rc sina

f DP j
a , ~59!

Bj
a→2

1

r S ] rf cosa1
] rc sina

f DQ j
a

1
1

r S ] rf sina2
] rc cosa

f DP j
a . ~60!

The main result becomes apparent when we choose a g
where

f] rf cosa1] rc sina50,

in which

Ej
a→ 1

r
A~] rc!2

f2
1~] rf!2Q j

a

→ 12k2

rr S r2

r21~r 2t !2D 3/2

Q j
a , ~61!

Bj
a→ 12k2

rr S r2

r21~r 2t !2D 3/2

P j
a . ~62!

We now perform a Fourier transform, finding
03600
s

ge

Ej
a~kW !54pr~12k2!K1~vr!Q j

a

Bj
a~kW !54pr~12k2!K1~vr!P j

a , ~63!

whereQ j
a andP j

a are the color/space projectors in mome
tum space analogous to those in coordinate space~2!, the
frequencyv5ukW u, andK1 is a Bessel function. One can ea
ily verify that Bj

a5e j lmklEm
a /k, as is required for a radiation

field.

V. EXPLOSIONS OF THE TURNING STATES:
NUMERICAL STUDIES

In the previous section we studied the asymptotic beh
ior of turning states constrained by sphaleron size and Ch
Simons number. In this section we consider step-by-step e
lution of the turning states, a numerical analysis similar
sphaleron decay in electroweak theory@36,37#. The numeri-
cal approach naturally allows for mathematical flexibilit
and it is used to consider the decay of static states wh
replace the unphysical power-law behavior of the fields
large distance with a phenomenologically more appropr
exponential tail. The classical field configurations are th
fixed in size indirectly by a mass parameter, a constra
which is subsequently relaxed as the state quickly dec
into free-streaming gluons.

As a result of scale invariance, the QCD instanton is
indeterminate size. While it is clear from phenomenolo
and lattice studies that the instanton vacuum favors a so
what narrow size distribution centered atr̄.0.3 fm, the rea-
son for this is yet unknown, although it is presumably due
interactions between instantons. It is thus natural that rela
classical objects, born in some way from the excitation
instantons, share a similar size. We arrange this by introd
ing a phenomenological gluon mass term in the initial co
figuration which is promptly relaxed as this unstable co
figuration begins to decay. We stress that the relaxation
this size constraint does not initiate the explosion; we w
show that the turning state is an unstable configuration
gardless of the mass term’s presence.

The similarity between this procedure and electrowe
sphaleron decay is clear, but not mathematically continuo
For the Higgs mechanism, the sphaleron size is constra
by the scalar vacuum condensate which introduces an e
tive mass for the gauge fields. This condensate vanishe
the sphaleron center, where the classical gauge field actio
maximal. This feature persists in the limit of infinite gaug
Higgs coupling, when the Higgs field is fixed at its vacuu
expectation value~VEV! constant for all other points in
space. Inserting a mass term for the gauge fields by hand
we do here for QCD, is thus very similar to this infinit
coupling limit of electroweak dynamics, the only differenc
being that the mass is finite inall of space. This leads to a
difference in field behavior at the origin.

We begin with the Yang-Mills action, with a phenomen
logical mass term added, and will look for static solutio
with spherical symmetry in Minkowski space. The action
written
4-11



i
q.

n

at

. 8
io

e
a

e
alf

and

ust
the
g

n-

D. M. OSTROVSKY, G. W. CARTER, AND E. V. SHURYAK PHYSICAL REVIEW D66, 036004 ~2002!
S5
4p

g2 E dtdrH ḟ1
21ḟ2

21
1

2
r 2Ȧ1

22~f18!22~f28!2

2
~12f1

22f2
2!2

2r 2
22A1~f1f282f1f28!2A1

2~f1
21f2

2!

2m2F ~11f1!21f2
21

1

2
r 2A1

2G J . ~64!

As before, we have taken a spherical ansatz similar to W
ten’s @20# for the gauge field. Following the notations of E
~1!,

A5
12f1

r
, B5

f2

r
, C5A1 , D5A0 , ~65!

where all scalar functions depend on bothr and t. We ini-
tially work in the temporal gauge, whereA0(r ,t)50.

The equations of motion are easily obtained, and we fi

f̈12f191
f1

r 2
~f1

21f2
221!1f1A1

222f28A12f2A18

1m2~f111!50,

f̈22f291
f2

r 2
~f1

21f2
221!1f2A1

212f18A1

1f1A181m2f250,

Ä11
2

r 2
A1~f1

21f2
2!1

2

r 2
~f18f22f1f28!1m2A150.

~66!

In the static limit, we seek a purely magnetic turning st
solution. One can be found for thef1 field component from
the equation

f192
f1

x2
~f1

221!2~f111!50, ~67!

which is simply Eqs.~66! with f25A150 and written in
terms of the dimensionless variablex[mr. With the bound-
ary conditions

f1~x!→1 as x→0,

f1~x!→21 as x→`,

a numerical solution is easily obtained and shown in Fig
This is quite similar to the approximate electroweak solut
found by Klinkhammer and Manton@19# in the limit of infi-
nite Higgs self-coupling. The primary difference is the b
havior near the origin, which in the QCD case involves
logarithm forx!1:

f1~x!511
2

3
x2ln x2ax21O~x4ln x!, ~68!
03600
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where a51.98 was determined numerically. Defining th
turning state’s size as the radius at which the profile is at h
its maximum~i.e. where it crosses the origin!, we find mr
.0.9. We match this to the size of the average instanton
find

m50.9r21.540 MeV. ~69!

Before we discuss the decay of this configuration we m
find the unstable modes orthogonal to it which determine
‘‘downhill’’ directions in field space. This is done by solvin
eigenvalue equations for fluctuations in the fieldsf2 andA1
in the presence of the turning state configuration.

We take the terms linear inf2 andA1 from Eqs.~66! and
require

f̈2~x,t !52v2f2~x,t !, Ä1~x,t !52v2A1~x,t !.
~70!

We then have the eigenvalue equations:

f291S V2211
1

x2D f212f18A11f1A1850,

S V2212
2

x2
f1

2D A12
2

x2
~f18f22f1f28!50,

~71!

wheref1 is the classical solution in Fig. 8 and the dime
sionless frequency isV5v/m. The longitudinal field com-
ponent may be eliminated with

A15
2~f18f22f1f28!

~V221!x222f1
2

. ~72!

Substituting this into the first of Eqs.~71!, we find the be-
havior near the origin:

f2~x!5cx1/2(12A128y), ~73!

where

FIG. 8. The static turning state solution,f1(r ,0).
4-12
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y5
11V2

12V2

and c is an arbitrary normalization. Both fields vanish asx
→`.

We have solved these equations numerically, finding
wave functions plotted in Fig. 9 with the frequency

v2523.4m2. ~74!

The functionA1 is logarithmically divergent at the origin
reflecting the difference between this massive model and
electroweak case@38# in which the Higgs field always van
ishes at the origin.6 There is therefore no smooth continu
tion between this model and the electroweak one in the li
of large coupling.

These solutions for the unstable modes, which along w
the classicalf1(r ) complete our initial conditions, were pu
on a lattice with spacingDx50.01 and evolved at time step
of Dt5531024, wheret[mt. The unstable modes, actin
as a small push to properly initiate the decay, were norm
ized as

E dx@f2~x!212x2A1~x!2#5531023. ~75!

Coincident with this push we setm50, in effect turning off
the mass term, since here we are interested in the tur
state decaying into the vacuum where no such term is m
vated. Although this effectively removes the size constra
on f1(r ,0), the subsequent dynamical expansion is a re
of the push in the unstable directions of this saddle-po
solution rather than an inflation of the classical field config
ration.

6The dominant unstable mode in the electroweak case asl→` is
the scalar field component orthogonal to the condensate@38#. This
mode is absent here.

FIG. 9. The unstable eigenmodes,f2(r ) andA1(r ), arbitrarily
normalized.
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Once the real-time solutions to Eqs.~66! with m50 have
been found at a given time step, the total energy is rea
computed as

E5
4p

g2 E drF ḟ1
21ḟ2

21
1

2
r 2Ȧ1

21~f18!21~f28!2

1
~12f1

22f2
2!2

2r 2
22A1~f1f282f1f28!

1A1
2~f1

21f2
2!G . ~76!

At every time step it was verified that the energy rema
equal to that of the initial state. Taking the instanton vacu
value of

8p2

g2
512, ~77!

the total energy of the decaying object was calculated
found to be

E54.62r21.2.8 GeV. ~78!

The Chern-Simons number was also computed at e
time step. In our present gauge, this is written as

NCS5
1

2pE dr@~12f1!f281f18f22~12f1
22f2

2!A1#.

~79!

The gauge invariance of changes in this quantity was veri
numerically.

The energy and Chern-Simons densities, defined as
integrands of Eqs.~76! and ~79!, are shown in Fig. 10. The
shell-like expansion is illustrated in these plots, as well as
similarity of the energy profile at all times. Note that the

FIG. 10. Energy~solid lines! and Chern-Simons number dens
ties ~dashed lines! for three times during the explosion,t50.4, 3,
and 6 fm.~Note the scale difference between the two quantities!
4-13
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plots are in a (111)-dimensional description, and the corr
sponding three-dimensional radial density differs by a fac
of 1/r 2.

It is clear from the curves in Fig. 10 that the Cher
Simons number changes during the decay. As shown in
11, our fields stabilize at long times withDNCS.0.12. From
this we see that the turning state does not complete an
stanton transition, which would require a return to a st
with an integral Chern-Simons number. Due to this freez
in the topology, nontrivial fermionic solutions will accom
pany the resulting Yang-Mills fields. These will be discuss
elsewhere.

The transition from a purely magnetic configuration
one with equal electric and magnetic components is show
Fig. 12, for an early and late time in the evolution. The dec
progresses rather rapidly; att51.4 fm, the ratio
E(r )2/B(r )2.0.95 for allr. Thereafter the ratio continues t
quickly approach unity.

In order to analyze the final state at late times, we work
a gauge in whichB(r ,t)50. This requires the trans

FIG. 11. Change in the Chern-Simons number.

FIG. 12. The electric~solid lines! and magnetic~dashed lines!
fields at timest50.4 fm andt53 fm. Plotted are1

2 x2E(x)2 and
1
2 x2B(x)2; their sum is the energy density.
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formation to a new set of fields:

f̃15f1cosu1f2sinu

f̃252f1sinu1f2cosu

Ã15A12u8

Ã052 u̇, ~80!

where

u5arctanS f2

f1
D . ~81!

Promptly dropping the tildes, we write the total energy
terms of the new fields,

E5
4p

g2 E drF ḟ1
21~f18!21

~12f1
2!2

2r 2
1

r 2

2
~Ȧ12A08!2

1f1
2~A1

21A0
2!G . ~82!

At late times, the field strength is confined to a thin sh
at radiusr 5t. Free, expanding field behavior is also o
served numerically, such that

Ḟ~r ,t !52F8~r ,t ! ~83!

for each fieldf1 , A1, andA0. This simplifies the equations
of motion for the latter two,

Ä12Ȧ0852
2

r 2
f1

2A1

A092Ȧ1852
2

r
~A082Ȧ1!1

2

r 2
f1

2A1 , ~84!

in that the right-hand sides of both vanish as the shell
pands at large times. We can thus conclude that

Ȧ12A0850 ~85!

for mt@1.
The condition for this gauge is

Ȧ0f112A0ḟ12A18f122A1f1850. ~86!

Combining this with Eq.~85!, we have

f1~Ȧ02A18!22~f18A12ḟ1A0!50, ~87!

and can deduce that

A01A150 ~88!

at late times.
The contribution fromf1 will be of the form
4-14
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f1~r ,t !511w~r ,t !, ~89!

wherew is an excitation above the vacuum. Using the res
just obtained~88!, its linearized equation of motion simpli
fies to

ẅ2w91
2

r 2
w50. ~90!

The solution is of the form

w~r ,t !5E dk w~k!r @ j 1~kr !1 iy1~kr !#cos~kt!, ~91!

with Fourier amplitudesw(k) and the spherical Bessel func
tions j 1(z) andy1(z).

Although the majority of gluon radiation is carried in th
f1 field, physical quanta also lie in small excitations of t
field

c~x,t!5f1~x,t!A0~x,t!,

which encodes oscillations between the transverse degre
freedom. From Eqs.~86! and~88!, we have a wave equation

c̈2c950. ~92!

These harmonics contribute to the energy via the final te
in Eq. ~82!.

The total energy can then be written in momentum sp
as

E5
16m

g2 E dp@p2w~p!21c~p!2#, ~93!

in terms of the dimensionless momentump5k/m. The Fou-
rier amplitudes are computed from the solutions of the s
tial fields:

w~p!25U E dx px@ j 1~px!1 iy1~px!#w~x!U2

c~p!25U E dx eipxc~x!U2

. ~94!

Numerically, this expression for the energy is within 1%
that of the initial configuration for all timest>3 fm, further
demonstrating the rapid onset of free-field behavior.

VI. PRODUCTION OF TURNING STATES IN HEAVY ION
COLLISIONS

A. The PQCD cutoff in vacuum versus excited matter

Although this paper does not generally deal with pheno
enological applications, we will eventually come to an es
mate of the number of gluons produced in the explosion o
turning state. The resulting divergence in this number can
be resolved without some explanation of the limited appli
bility of the classical Yang-Mills description. This leads
the issue of the PQCD cutoff.
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It is well known that in the QCD vacuum the ‘‘semi-hard
or ‘‘substructure scale’’Q2;122 GeV2 is simultaneously
the lower boundary of PQCD as well as theupperboundary
of low energy effective approaches such as ch
Lagrangians. Furthermore, in any discussion of instant
induced reactions it is implicitly assumed that instanto
were the primary source of that scale, and since they
included explicitly no other nonperturbative cutoffs a
needed. This, of course, is not strictly true as confin
forces require the final state be comprised of hadrons, bu
make the usual separation of scales and assume that
state interactions merely redistribute the wave functio
without changing the total probabilities.

We assert, however, that the PQCD cutoff is quite diff
ent in heavy ion collisions. It has been argued over the ye
that excited matter might be in a quark-gluon plasma~QGP!
phase of QCD~see e.g. Ref.@39#!. Whether equilibrated or
not, it is nevertheless qualitatively very different from th
QCD vacuum: instantons are suppressed, and there is ne
confinement nor chiral symmetry breaking to set a nonp
turbative cutoff.

Therefore the limits on the Yang-Mills field descriptio
are entirely different, and actually determined by much si
pler phenomena. The QGP, a plasma-like phase, screen
self perturbatively@39#. A quasi-particle description become
appropriate, in which the quarks and gluons have finite
fective masses. In equilibrium and at high temperature th
are ‘‘thermal masses’’; the gluon has the well-known effe
tive mass@39#

Mg
25

g2T2

2 S Nc

3
1

Nf

6 D ~95!

whereNc and Nf are the number of colors and flavors, r
spectively. Although this mass grows with temperature
high T, just aboveTc it is actually smaller than the PQCD
cutoff in vacuum. Such nonmonotonic behavior is confirm
by lattice thermodynamics data, which can be well fitt
with quasiparticle masses.

Moreover, in the ‘‘BNL Relativistic Heavy Ion Collider
~RHIC! window,’’ Tc,T,3Tc , one finds the approximately
constant gluon and quark effective masses@40#

Mg'0.4 GeV, Mq'0.3 GeV, ~96!

the first of which provides the cutoff of our classical trea
ment; at this scale the classical Yang-Mills action for gluo
is to be modified by inclusion of an appropriate effecti
Lagrangian describing such screening effects, such as t
suggested by Taylor and Wong@41#.

B. Multiplicity and spectra of prompt gluons

With solutions for the fields at all times, in both the an
lytic and numerical treatments of the previous two sectio
we have analyzed the final states to determine the par
number. While we find a similar number of produced p
ticles from both approaches, about four gluons produced
turning state, the energy distribution of this prompt glue
very sensitive to the classical configuration used to initi
the explosion. While the field solutions found using co
strained quantization~Sec. III! and an effective mass~Sec.
4-15
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V! are qualitatively similar, both leading to an expandi
shell of radiation, we find a substantial difference in fin
state momentum distributions. This can be traced to the
tails of the two solutions asr→`, where we contrast a
power-law behavior in Eq.~36! with an exponential fall-off
in the solution of Fig. 8, asf1(r ,0);exp(2mr)21. As men-
tioned above, we consider the second case to be of gre
physical relevance, as the gluonic field is not massless p
nomenologically~and even vacuum instantons ought to ha
exponential tails!. Furthermore, we have used two differe
gauges in our calculations, each chosen to simplify
analysis and field strengths. While the final particle num
is invariant under gauge transformation, the distributions
not. We now consider both results.

To find the number of gluons in each mode one compa
the field strength in the momentum representation to th
which have energyv. In the evolution described analyticall
in Sec. IV, the occupation number is

n~kW !5
64p2

g2
~12k2!2

r2

v
K1~vr! ~97!

and the gluon energy distribution function is

n~v!5
32

g2
~12k2!2vr2K1

2~vr!. ~98!

The corresponding energy spectrumE(v)5vn(v) is shown
in Fig. 13.

Because the Fourier transforms of the fields are finite,
occupation number~97! behaves as 1/v for small v. The
number of particles is thus logarithmically divergent a
should be cut off at some low scale where the PQCD
scription of gluons is no longer valid, leading toNg
; log(1/Mgr). As explained in the previous subsection,
heavy ion collisions this cutoff, identified with the gluo
effective mass of Eq.~96!, is still relatively small as com-
pared to the typical momenta of gluons produced.

FIG. 13. The energy spectrumE(v) obtained from the analytic
solution, in units of (16/g2)(12k2)2, versuss5vr.
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The prompt particle energy distribution that was also o
tained in the numerical treatment of Sec. V, defined as
integrand of the expression in Eq.~93!, is shown in Fig. 14 at
a very late time in the evolution (t550 or t.20 fm). Like
the previous distribution, it is finite at the origin, but in co
trast it peaks at nonzero momentum, a result of the differ
choice of gauge. For illustrative purposes it is compared w
a thermal distribution of bosons at a temperatureT
5285 MeV. We note that in an equilibrated environme
the effective mass and screening effects will only modify t
profile belowk50.4 GeV, where a relatively small part o
the spectrum resides.

The produced gluons are free streaming, with no mec
nism for equilibration, and yet our distribution is very simila
to the thermal one for momenta below about 1.5 GeV. S
a nearly thermal distribution has also been obtained fr
similar calculations using an entirely different classical fie
approach in Ref.@42#. One can speculate that such an oste
sible equilibration may contribute to the success of hydro
namics in calculating particle spectra and elliptic flow
RHIC @43#. Our finding of four physical gluons from ever
decayed turning state is also in line with RHIC entropy p
duction, assuming that the density of these classical obj
corresponds to that of instantons in the vacuum. The t
energy of the turning state, found above to be 2.8 GeV
carried by gluons with a distribution peaked around 8
MeV. This average can be viewed as an upper bound, s
in a more complete treatment a portion of this energy will
used for the production of light quark pairs. This next st
will be addressed in a later publication.

VII. CONCLUSIONS

In this work we have studied forced tunneling in pu
SU~2! Yang-Mills theory. This process, generated throu
the excitation of instantons in the QCD vacuum, leads
unstable classicalturning stateswhich explosively decay
into gluonic radiation. These states and their decays are s
lar to the physics of sphalerons in the electroweak theor

FIG. 14. Energy spectrum of prompt gluons~solid line!, ob-
tained from the numerical solution, and a thermal distribution w
T5285 MeV ~dashed line!.
4-16
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If this semi-classical treatment of pure Yang-Mills theo
is indeed relevant to the physics of QCD, the turning sta
should play a prominent role in the production of glue
high-energy hadronic collisions. In the case ofNN collisions
the produced gluons will propagate into the QCD vacuum
be quickly recombined into secondary hadrons. For he
ion collisions, however, the large quantity of prompt gl
produced from the many turning states would be relea
into a highly excited, perhaps deconfined medium. Obse
able consequences in both situations were discussed rec
in Ref. @44#, and the results of this work support many of t
estimates therein. Finally, we have obtained energy spe
for the prompt gluons that serve as the initial state in
dynamics of a heavy ion collision and found that, unlike t
overall explosive dynamics, it is sensitive to the details of
initial turning state profile. We plan to further investiga
phenomenological implications of the turning states in la
works, with the role of fermion production a top priority.
n
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Note added. Following this paper’s submission, applica
tions to heavy-ion collisions were discussed in detail in R
@45#. It was also demonstrated theoretically that the Yan
Mills turning states can dominate the cross section
prompt production in Ref.@46#, using the method of singula
instantons. This work employed a more physical radiat
gauge in computing the final gluon spectrum, which can
compared with gauges chosen for convenience in this pa
Fermion production was also subsequently addressed in
@47#, in which an exact solution in the field of an explodin
turning state background was found.
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