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Debye screening at finite temperature reexamined

R. A. Schneider
Physik-Department, Technische Universita¨t München, D-85747 Garching, Germany

~Received 5 February 2002; published 15 August 2002!

We present an alternative way to calculate the screening of the static potential between two charges in
~non-!Abelian gauge theories at high temperatures. Instead of a loop expansion of a gauge boson self-energy,
we evaluate the energy shift of the vacuum to ordere2 after applying an external static magnetic field and
extract a temperature- and momentum-dependent dielectric permittivity. The hard thermal loop gluon and
photon Debye masses are recovered from the lowest lying Landau levels of the perturbed vacuum. In QED, the
complete calculation exhibits an interesting cancellation of terms, resulting in a logarithmic runninga(T). In
QCD, a Landau pole inas arises in the infrared from the sign of the gluon contribution, as in more sophisti-
cated thermal renormalization group calculations.
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I. INTRODUCTION

In quantum field theory, fluctuations of the vacuum gi
rise to the production of pair quanta which tend to screen~or
antiscreen! the charge of a heavy test particle. If one pert
batively calculates the nonrelativistic potentialV(r ) between
two unlike static charges, say, in QED, the usual Coulom
like behavior is modified by the photon self-energyP(K2)
such that

V~r !5E d3k

~2p!3
eikW•rW

2e2

k21P~K252k2!
, ~1!

where k5ukW u and K5(k0,kW ). Inserting the textbook resul
for P(K2) and expanding for small distancesk2@me

2 , the
quantum fluctuations lead to an effective coupling consta

aeff~k!5
a

12
a

3p
logS k2

L2D , ~2!

whereL5exp(5/3)me is a scale related to the electron ma
me . This is, of course, the familiar result of the runnin
coupling in QED which is commonly obtained using reno
malization group methods. In Refs.@1,2#, it has been shown
that the running of a coupling constant atT50 can be un-
derstood in physical terms by the polarizability of th
vacuum. The effects of fluctuations can be incorporated
certain extent in a scale-dependent dielectric permittivitye
that defines an effective chargeaeff5a/e. In vacuum, Lor-
entz invariance dictates that

me51, ~3!

wherem is the magnetic permeability. Calculatingm(k) at
the momentum scalek and extracting the leading log contr
bution, one finally recovers the familiar expressions for
running couplings in QED and QCD. Then, asymptotic fre
dom can be interpreted in terms of a paramagnetic gro
state.
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In this work, we extend the approach of@1,2# to finite
temperature and calculate an effective coupling cons
aeff(k,T). Instead of loop expansion, we evaluate the ene
shift of the vacuum to ordere2 after applying an externa
~chromo!magnetic fieldH. The connection of magnetic pe
meability and dielectric permittivity at finite temperature
made by invoking a renormalization group argument. QC
with a magnetic background field at finite temperature h
been studied in a number of works@3#. In contrast with pre-
vious approaches, we lay out a nontechnical calculation
charge screening without reference to propagators or s
energies, resorting to entities that have an immediate ph
cal interpretation~energy densities and susceptibilities!. Our
work then allows an alternative, although slightly more ph
nomenological, view of screening at high temperature.

A possible dissolution of bound quarkonia states, e
J/c, was proposed long ago as an experimental signatur
the quark-gluon plasma in heavy-ion collisions. TheT de-
pendence of the interquark potential in QCD is therefore
great interest, and simulations of the potential in latt
gauge theory do indeed show a strong screening@4#. In per-
turbation theory, the quantity that enters the Fourier tra
form of the potential at finite temperature is the static limit
the longitudinal gauge boson self-energyPL(k0,k;T) @5#:

V~r ,T!5E d3k

~2p!3
eikW•rW

2e2

k21PL~0,k;T!
. ~4!

Equivalently, one can define a dielectric permittivity by@6#

e~k,T!511
PL~0,k,T!

k2
. ~5!

The perturbative one-loop thermal contribution toPL was
calculated long ago as@7#

PL~0,k,T!5
e2T2

3
[~mD

e !2 for QED ~6!

and
©2002 The American Physical Society03-1
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PL~0,k,T!5S Nc1
Nf

2 Dg2T2

3
[~mD

c !2 for QCD ~7!

which define screening massesmD . Here,e and g are the
electromagnetic and strong coupling, respectively,Nc is the
number of colors, andNf is the number of thermally active
flavors. Since the static limits of the self-energies are m
mentum independent, the poles of the expression in Eq.~4!
are simply the gauge invariant Debye massesmD defined in
Eqs. ~6! and ~7! and lead to an exponential damping of t
potentialV(r );exp(2mDr)/r. In particular, this form ofPL
has the consequence that gluonsscreenthe strong interac-
tion, in contrast to the zero temperature case, over long
tances. However, the formula for the running QCD coupl
constant commonly used in finite temperature calculati
assumes that typical momentum transfers are of the orde
the temperature; hence,

as~T!;
1

~11Nc22Nf !log~T!
. ~8!

In this expression, gluons therefore retain their antiscreen
property, reflecting the ultraviolet sector of the theory. T
transition to Debye screening is not obvious. Anoth
troublesome feature of QCD screening at finite tempera
is the behavior of the Debye mass at next-to-leading or
which reads@8#

mD
(2)~T!5mD

(1)1
Ncg

2T

4p
logS C

g D , ~9!

with mD
(1) given by Eq.~7!. HereC is a constant arising from

the ad hocremoval of infrared singularities involving chro
momagnetic static modes. The appearance of the nonpe
bative logarithmic term questions the applicability of loo
calculations somewhat. Furthermore, whereas in QED
self-energy tensorPmn is gauge independent, this is not th
case in QCD, which makes the very definition of a Deb
mass conceptually difficult. Finally, due to the nonlinear co
pling of the gluons, relation~5! remains valid only within
certain gauges~like the temporal axial gauge! @9#. An evalu-
ation of the effective charge and its possible screening
relying on a Feynman graph expansion is therefore desira

II. THE ZERO TEMPERATURE CASE

In this section, we define our notation and briefly revie
the calculation of Refs.@1,2#. To obtain a scale-dependentm,
let us look at the change in the energyE of the vacuum when
an external magnetic fieldH is applied:

DE52
1

2
@4px~H !#VH22Evac, ~10!

wherem(H)5114px(H), andx(H) is the field-dependen
magnetic susceptibility. As soon as the energies atH50 and
finite H are known to some approximation, a field- or equiv
03600
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lently scale-dependentm(H) can be extracted. Later, the ex
ternal field 2eH is identified with the scaleK2 at which the
physical process is probed.

For charged scalar fields, the general expression for
energy spectrum of a single Fourier mode reads

En,k
6 5vkS nk

61
1

2D , ~11!

distinguishing between particles (1) and antiparticles (2).
The dispersion relationvk5k follows from the positive en-
ergy solution of the Klein-Gordon equation for massle
noninteracting particles. AtT50, the occupation numbernk

6

for the ground state is zero. Summing over particle and
tiparticle states, we recover the familiar divergent zero-po
vacuum energyE05(kvk . For massless spin-1

2 fermions,
the energy without an external field becomes

E0
f 522(

k
vk . ~12!

The factor 2 arises from the spin summation; the factor21
stems from the anticommutation relation obeyed by ferm
onic annihilation and creation operators. In the presence
the magnetic fieldH, we substitute]m→Dm5]m2 igqAm ,
where q is the charge of the~anti!particle in units of the
couplingg. Choosing the orientation of theH field along the
z axis, we construct a vector potential asAm5(0,0,x1H,0).
This choice forAm obeys]mAm50. In the following, we
treat QED and QCD in parallel and definee5qg. We have
to solve for the energy spectrum ofiD” c(x)50, which is
basically a relativistic version of the Landau theory for t
diamagnetic properties of an electron gas. The solution
the energy of a single Fourier mode becomes

En,k3 ,s3
5Ak3

212eH~n11/21s3!. ~13!

In addition, thex1 space variable is shifted by2k2 /(eH).
Note that the energy depends only on two quantum numb
The third is ‘‘hidden’’ in the mentionedx1 shift. Heres35
6 1

2 , the z component of the spin. TheHs3 term clearly
shows the coupling of the spin to the external field, a
hence, if the spin of the fermion is antiparallel to theH field,
the energy is lowered. For QCD, there is also an implicit s
over the color chargesq hidden ine5gq. Finally, for a vec-
tor gauge boson theH-independent energy is the same as
a scalar field, except that there is an additional factor o
counting the transverse spin degrees of freedom:

E0
g52(

k
vk . ~14!

The sum over color degrees of freedom yields an additio
multiplicative factor ofNc

221. In the presence of the mag
netic field, we separate the fieldAm into the classical back-
ground partAm

b and the fluctuating quantum partAm
q . The

equations of motion becomeDmGmn50, whereGmn is the
gluon field strength tensor. With a suitable choice of ba
3-2
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ground gauge, the energy for the two physical degrees
freedom ofAm can be written as

En,k3 ,s3
5Ak3

212eH~n11/21s3!, ~15!

the same as in the fermionic case, but now withs3561.
Again, summation over the color charges is implicitly a
sumed.

We want to extract the leading log(H) contribution to the
energy shift induced by the external field. With the total sp
s of the particle considered andi 5 f ,g:

DEi5~21!2sS (
n,k2 ,k3 ,s3

En,k3 ,s3

i 2 (
k1 ,k2 ,k3 ,s3

vkD , ~16!

where

En,k3 ,s3

i 5Ak3
212eH~n11/21s3!. ~17!

Introducing a quantization volumeV5L3, we replace the
sum overk2 andk3 by an integral weighted with the densit
of states. Taking into account that thex1 variable was
shifted,k2 is restricted to 0<k2<LeH. Then,

(
k2 ,k3

→ L

2pE dk3

L

2p
~eH•L !5

V

4p2
~eH!E dk3 .

~18!

To regularize the divergence, we will use a uv cutoffL such
that 0<n<L2/2eH5nL and k3

2<L2. The first idea would
be to replace the sum overn by an integral. However, if we
perform the shiftn852eHn, we find that the integral would
be independent ofH to leading order. That is, we would hav
recovered the vacuum result, in the absence of the fieldH. So
what we need is thecorrection to the replacement of a sum
with an integral. Such a correction term suitable for our c
here is provided by a specific Euler sum rule

(
n5n1

n2

f ~n11/2!5E
n1

n2
f ~x!dx2

1

24
f 8~x!un1

n2.

We may now redefine the energy shift as

DEi5~21!2s(
s3

H (
n50

nL

f ~n11/21s3!

2E
0

nL
dn f~n11/21s3!J ,

where

f ~x!5
V

2p2
~eH!E

0

L

dk3Ak3
212eHx.

Since we are not interested in the soft modes of the orde
eH ~the leading log behavior is dominated by the uv beh
ior of the theory!, we split the sum into two pieces (N
!nL)
03600
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5 (
n50

N

1 (
n5N

nL

.

Let us treats3 formally as a continuous variable. Taylor ex
panding ins3 ~sincen>N@s3), we are left with

DEi5~21!2s(
s3

(
n5N

nL S f ~n11/2!2s3f 8~n11/2!

1
s3

2

2
f 9~n11/2!1••• D 1F~eH,N!. ~19!

Now F(eH,N), which represents the contributions from so
modes only, does not depend onL. It is thus proportional to
(eH)2 for dimensional reasons, a small nonleading log co
tribution, and may be safely neglected. The linear term ins3
vanishes upon summation, and resubstitutinge5gq, we find

DEi52
1

2
V~gH!2Fq2~21!2s

2p2 (
s3

S s3
2

2
2

1

24D logS L2

2eHD G .

~20!

The sum over a SU(Nc) multiplet of the squared chargesq2

is Nf /2 for the fundamental representation (Nf quark flavors!
and Nc/2 for the adjoint representation~the gluons!. For
QCD, the susceptibility becomes

4px→2g2
11Nc22Nf

48p2
logS 2eH

L2 D ,

which reproduces the expression obtained by renormal
tion group calculations if we identify 2eH5K2. For QED,
the sum over the charge~s! is simply 1, so we obtain

4px→1
e2

12p2
logS 2eH

L2 D ,

again in accordance with Eq.~2!. Having outlined the calcu-
lation of @1,2#, we now proceed to the main part of the pap
and switch on temperature.

III. THE TEMPERATURE-DEPENDENT PART

At finite temperatureT, the occupation numbernk
6 ap-

pearing in Eq.~11! does not vanish any more for the therm
ground state; insteadnk5@exp(bvk)21#215nBE, the usual
Bose-Einstein distribution function (b51/T). For fermions,
nk5@exp(bvk)11#215nFD , the Fermi-Dirac distribution
function. Thus, when summing over the infinitely many d
grees of freedom, we find for the total vacuum energy o
charged scalar field

E0
s5(

k
vk„112nBE~vk!…. ~21!
3-3
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The result clearly separates into the divergent vacuum
already treated and a finite,T-dependent part. In the case of
finite magnetic fieldH, the higher energy modes~17! are
occupied with their respective thermal probabilities, and
can write (i 5 f ,g)

DEi5Ei2E0
i , ~22!

Ei5 (
n,k2 ,k3 ,s3

En,k3 ,s3

i

3F ~21!2s1
2

exp~bEn,k2 ,s3

i !2~21!2sG , ~23!

E0
i 5 (

k1 ,k2 ,k3 ,s3

vkF ~21!2s1
2

exp~bvk!2~21!2sG .

~24!

Again, we need to extract the leading thermal contribution
m(k). However, at finite temperature, relation~3! does not
hold any more. One could imagine starting with

m~k!e~k!5n~k!2, ~25!

wheren is the index of refraction. This quantity is related
the photon or gluon phase velocity byvp51/n, andvp could
be extracted from the~full ! dispersion relation of the corre
sponding gauge boson sincevp5vk /k. However, Eq.~25!
holds only for ‘‘on-shell’’ propagating gauge bosons. Sin
Lorentz invariance is formally broken by the presence of
heat bath,m and e become functions ofk0 and k, and Eq.
~25! reads, more explicitly,m(vk ,k)e(vk ,k)5n(k)2. Here,
we consider an off-shell external field, so a relation betwe
m(0,k) ande(0,k) is required.

The total energy density of the system can be written
the sum of the field and the induced medium energy dens

Etot5
1

2
H21

1

V (
i

DEi . ~26!

Introducing an effective fieldHeff , we rewriteE as

Etot5
1

2
Heff

2 5
1

2

~eH!2

eeff
2

.

In the last step we made use of the fact thateH has to be
renormalization group invariant, soeH5eeffHeff . The effec-
tive coupling constant is now defined by@2,3#

1

eeff
2

[2
]Etot

]~eH!2
5

1

e2
@124px~2eH,T!#,

using Eqs.~10! and ~26!. Replacing 2eH by k2, as atT50,
our master formula hence reads
03600
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e
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e
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aeff~k,T!5
a

e~k,T!
5

a

124px~k,T!
. ~27!

The thermal piece of Eq.~23! can be compactly rewritten a

Eth~T,b,s,s3!

5VT4S b

2p2 (
s3

(
n50

`

3E
0

`

dx
Ax21b~n11/21s3!

exp~Ax21b~n11/21s3!!2~21!2sD , ~28!

wherex is dimensionless andb52eH/T2 is a measure for
the ratio of quantum and thermal effects. We consider
high temperature limitb!1 in the rest of the paper.

A. A first „incomplete… approximation

The sum appearing in expression~28! obviously cannot
be evaluated exactly. It is instructive to work out the fir
intuitive approximation to the sum although we will show
the next section that it is too crude.

Consider the fermionic part. Note that the factorb(n
11/21s3) plays the role of a mass term in the integral in E
~28!, so the contribution of the terms in the sum becom
exponentially suppressed asn increases. In contrast to th
T50 case we are therefore interested in the behavior of
sum atsmall n where thes3 spin component is not negli
gible. Thus we cannot apply a Taylor expansion ins3, as
done in Eq.~19!, and need an exact summation overs3.
Isolating then the lowest lying Landau mode (n50,s35
21/2) and combining the remaining expressions into
single sum, we find

Ef

VT4
[Ẽf

5
b

24
1

b

p2 (
n50

` E
0

`

dx
Ax21b~n11!

exp~Ax21b~n11!!11
.

~29!

Sinceb!1, the terms in the sum vary slowly withn, so we
can again try to trade the sum for an integral overn:

Ẽf5
b

24
1

2

p2E0

`

dr
r 2Ar 21b

exp~Ar 21b!11
. ~30!

Neglecting terms of orderb in the integral, we obtain as a
first approximation

E(0)
f 52

1

2
VH2F2

~mD
e !2

2eH G1
7

4

p2

15
VT4 ~31!

for QED with the hard thermal loop~HTL! Debye mass de-
fined in Eq.~6!. The second term is simply the energyE0

f (T)
3-4
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of a thermally excited, noninteracting massless fermi
antifermion pair, i.e., the thermal energy of theunperturbed
vacuum that has to be subtracted@cf. Eq. ~22!#. This means
that we have recovered within our simple framework t
perturbative one-loop HTL result from the lowest Land
level contribution to the energy of the magnetically perturb
thermal vacuum. The energy difference that enters in
~10! already yields 4px(H,T) as the expression in squa
brackets, and the effective coupling constant reads, follow
Eq. ~27!,

aeff~k,T!5
a

e~k,T!
5

a

11
~mD

e !2

k2

,

as within HTL perturbation theory, Eq.~5!.
For QCD withNf flavors, we obtain

E(0)
f 52

1

2
VH2F2

mD, f
2

2eHG1Nf

7p2

60
VT4 ~32!

with the fermionic part of the squared QCD Debye mass~7!,
mD, f

2 5Nf /6g2T2. For the total evaluation of the QCD su
ceptibility, we need to add the contribution from the gau
bosons. At zero temperature, contributions from ‘‘unphy
cal’’ gluon states in the calculation of the energy spectru
Eq. ~15!, are exactly cancelled by Fadeev-Popov ghost c
tributions within the background gauge condition used he
Since we only consider excitations of energy levels that w
evaluated atT50, no ambiguity arises and we still wor
only with physical gluon degrees of freedom with two pola
ization states. We proceed in close analogy to the fermio
case: first, we sum overs3561. A subtlety arises since th
combinationn50 ands3521 in Eq. ~28! gives a negative
value under the square root for smallx. This ‘‘tachyonic’’
mode is related to a possible instability of the vacuum@10#.
Its effect on the magnetic field over large distances, howe
is negligible; the sum overn for s3521 therefore starts only
at n51. Isolating again the lowest lying physical Landa
level (n51,s3521) contribution to the sum, we are le
with

Eg

VT4
[Ẽg5

b

2p2E0

`

dx
Ax21b/2)

exp~Ax21b/2!21

1
b

p2 (
n50

` E
0

`

dx
Ax21b~n13/2!

exp~Ax21b~n13/2!!21
.

~33!

Replacing the sum by an integration, settingb50 in the
integrals, and summing over color, the result becomes

E(0)
g 52

1

2
VH2F2

mD,g
2

2eHG12~Nc
221!

p2

15
VT4. ~34!
03600
-
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Again, the last term is the thermal energyE0
g(T) of the un-

perturbed SU(Nc) gluon vacuum. The expression in squa
brackets exactly corresponds to the gluonic part of
squared QCD Debye mass,mD,g

2 5Nc/3g2T2. Putting all the
pieces together, the effective coupling becomes

as,eff~k,T!5
as

11
~mD

c !2

k2

,

very similar to the QED case. In our model, the hard therm
loop ~chromo!electric Debye masses therefore appear as
lowest Landau level contribution to the energy differen
that arises when one probes the thermal vacuum by a~chro-
mo!magnetic field. It is worth noting that, in this approxim
tion, the alignment of an external field alwaysincreasesthe
thermal energy of the vacuum, regardless of the non-Abe
structure of the theory. Thereforex(k,T) is always negative
and we conclude, using Eq.~27!, that the static potentia
would become screened by both fermions and gauge bos

B. A better approximation

However, additional contributions to Eqs.~31!, ~32!, and
~34! of thesame order in e2 arise from two sources. First, th
expansion of the integrals~30! and~33! in b is similar to the
high temperature expansion of loop integrals with mass
particles in the small quantitym0 /T. The Appendix contains
the relevant formula. Second, the correction to the repla
ment of the sum by an integral yields terms to orderb andb2

that are provided by the Euler-MacLaurin formula

(
n50

N

f ~n!5E
0

N

f ~x!dx1
1

2
@ f ~N!1 f ~0!#

1
1

12
@ f 8~N!2 f 8~0!#1•••, ~35!

where the dots denote terms with higher derivatives inf (n).
For our purposes, Eq.~35!, taking N→`, is sufficient, as
long as f (x)PC 2 for xP@0,N#. When calculating the ther
mal contribution to the vacuum energy, we include the
correction terms to the integral in the following and expa
all integrals in the small parameterb, using the relations
presented in the Appendix. The summation of all terms
ordere2 then alters the results in Eqs.~32! and~34! qualita-
tively.

C. Results for QED

For fermions, we start with Eq.~29!. Definingd25b, we
obtain to orderd4
3-5
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Ẽ(1)
f 5

d2

24
1

2

p2E0

`

dr
r 2Ar 21d2

exp~Ar 21d2!11
1

1

2 F d2

p2E0

`

dr
Ar 21d2

exp~Ar 21d2!11
G

1
1

12F2
d4

2p2E0

`

dxH 1

Ax21d2
2

1

11exp~2Ax21d2!
J 1

exp~Ax21d2!11
G . ~36!
he

su
r

th
re

im-
re
tum
n

ar

as
f

o-

rly
r

Eq.
r

Using the functionsf i(y) andg1(y) defined in the Appen-
dix, we rewrite

Ẽ(1)
f 5

d2

24
1

2

p2
f 5~d!1

5d2

2p2
f 3~d!1

d4

2p2
f 1~d!

2
d4

24p2
g1~d!. ~37!

Expanding ind and keeping all terms up toO(d4), surpris-
ingly all terms of orderd2 cancel, and we are left with

Ẽ(1)
f 5

7p2

60
1

d4

96p2
log~A fd

2! ~38!

with g50.5772 . . . and theconstantAf5exp(2g21)/p2

.0.12. The first term is the well-known thermal part of t
vacuum energy in the absence of the fieldH. Sinced2!1,
the alignment of a magnetic field hencedecreasesthe energy
of the vacuum at finite temperature, in contrast to the re
of the previous section. The susceptibility in QED therefo
becomes

4px~H,T!52
a

3p
logS Af

2eH

T2 D . ~39!

Note that the prefactor of the logarithm is the same as in
zero-temperature case. Including this pure quantum cor
tion for the QED running coupling, Eq.~2!, all momentum
dependence drops out, and we finally obtain with Eq.~27!

aeff~k,T!5
a

12
a

3p
logS T2

LT
2D

with

LT5me

eg17/6

p
.

L

3
, ~40!

which is valid to ordere2 and for momenta

me!k!T. ~41!

Using the zero-temperature couplingaeff(k) from Eq. ~2!,
the effective coupling can, to this order, be rewritten as

aeff~k,T!5aeff~T!5aeff~^k&.3T!. ~42!
03600
lt
e

e
c-

So the common practice used in perturbation theory of s
ply taking the running of the coupling at zero temperatu
and setting as the scale the thermally averaged momen
scale^k&.3T does indeed find support from our calculatio
for QED.

D. Results for QCD

For QCD, the fermionic contribution takes a form simil
to the QED result,

4px~H,T!52
g2Nf

24p2
logS Af

2eH

T2 D . ~43!

Note that the prefactor of the logarithm is again the same
at zero temperature. The calculation of the gluonic part ox
runs along the same lines. Starting with Eq.~33! and setting
d25b/2, we obtain by use of the functionshi(y) andg2(y)

Ẽg5
2

p2
h5~A3d!1

d2

p2
@7h3~A3d!1h3~d!#

1
d4

p2 Fh1~d!13h1~A3d!2
1

6
g2~A3d!G . ~44!

Expanding, we find that all terms of orderd3 cancel and the
result becomes

Ẽg5
2p2

15
2

b

12
2

5b2

128p2
log~Agb!, ~45!

with the constantAg5exp@2g213/101(11/5)log3#/(32p2)
.0.03. As for the fermionic part, the alignment of a chr
momagnetic field hence alwayslowersthe energy of the glu-
onic vacuum; however, this time the difference goes linea
in b and not only logarithmically. Finally summing ove
color, the gluonic susceptibility reads

4px~H,T!5
Nc

3

g2T2

2eH
15Nc

g2

48p2
logS A g

2eH

T2 D .

~46!

In this expression the sign is reversed as compared to
~43!, and 4px is always positive. The total thermal result fo
QCD, excluding theT50 contribution, becomes
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as,eff~k,T!5
as

12as

4pNc

3

T2

k2
2

as

12p F5NclogS A gk2

T2 D 22Nf logS A fk
2

T2 D G . ~47!
ga
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Since the gluon contribution dominates by far over the lo
rithmic fermionic, there isantiscreeningat high temperature
and long distances. This result is in contrast to expecta
and lattice results on the interquark potential@4#. Extrapolat-
ing Eq. ~47! beyond the kinematical regiong!k/T!1
where our approximations are valid, a Landau pole appe
in the infrared regionk/T.g. Figure 1 shows the ratio
as,eff /as as a function ofk/T for a weak couplingg50.1,
compared to the usual HTL result. A similar behavior is a
found in more sophisticated renormalization group analy
of the running coupling at finite temperature~see, e.g.,
@3,11–13#!. We note that our results compare quite well w
the numerical solutions obtained in Ref.@12#. Since Eq.~47!
depends only on the dimensionless quantityk/T, taking the
limit T→` at largek is in a sense equivalent to probing th
infrared regionk→0 at smallerT, indicating that nonpertur-
bative physics plays an important role even at highT. The
necessity for a soft magnetic mass;g2T as an infrared regu
lator in loop calculations@see Eq.~9!# supports this line of
reasoning.

IV. CONCLUSIONS

We presented an alternative way to calculate the scree
of the static potential between two charges in~non-!Abelian
gauge theories at finite temperature by looking at the m
netic properties of the vacuum. Instead of a loop expans
we calculated the energy shift of the vacuum at finite te
perature to ordere2 after applying an external~chromo!mag-
netic fieldH as a probe. Magnetic permeability and dielect
permittivity were connected by a renormalization group
gument.

FIG. 1. The ratioas,eff /as of Eq. ~47! as a function ofk/T for a
couplingg50.1 andNf50 ~solid line!. For comparison, the corre
sponding ratio in the HTL calculation, using the Debye mass of
~7!, is also plotted~dashed line!.
03600
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Using a high temperature expansionH/T2!1, the gluon
and photon Debye masses appearing in the HTL calcula
were recovered in a first, though incomplete approximati
originating from the lowest lying Landau level contributio
to the thermal energy. Taking into account all contributio
to order e2 in QED, the final expression in the kinemat
region ~41! shows a logarithmic, momentum-independe
running ofa with temperature, as expected from simply i
serting the average thermal momentum^k&.3T in the zero-
temperature running coupling.

In QCD, we found indications for a Landau pole at sm
k/T that arises, as in more sophisticated thermal renorm
ization group calculations, from the sign of the gluon cont
bution, despite well controlled approximations and a co
pletely different approach as compared to conventio
perturbation theory. Our calculation may serve as yet ano
indication that an expansion in a presumably small coupl
g at high temperatures ceases to yield sensible results
some quantities, and that this failure is not specific to a Fe
man graph expansion. Truly nonperturbative input that
probably linked to the understanding of confinement is th
called for.
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APPENDIX

Here we present the formulas used to evaluate
d-dependent integrals appearing in Eqs.~44! and ~37!. Fer-
mionic integrals of the form

f n~y!5E
0

`

dx
xn21

Ax21y2

1

exp~Ax21y2!11

can be expanded for smally ~note our slightly different con-
vention compared to@9#!. In particular,

f 1~y!52
1

2 F logS y

p D1gG1•••, ~A1!

f 3~y!5
p2

12
1

y2

4 F logS y

p D1g2
1

2G1•••, ~A2!

f 5~y!5
7p4

120
2

p2

8
y22

3

16
y4F logS y

p D1g2
3

4G1•••

~A3!

whereg50.5772 . . . is theEuler-Mascheroni constant. Fo
bosons,
.
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a

log
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hn~y!5E
0

`

dx
xn21

Ax21y2

1

exp~Ax21y2!21
.

The corresponding expansions read

h1~y!5
p

2y
1

1

2 F logS y

4p D1gG1•••, ~A4!

h3~y!5
p2

6
2

p

2
y2

y2

4 F logS y

4p D1g2
1

2G1•••,

~A5!

h5~y!5
p4

15
2

p2

4
y21

p

2
y3

1
3

16
y4F logS y

4p D1g2
3

4G1•••. ~A6!

For the evaluation of derivative terms, we need the lead
log(y) behavior of integrals such as

g6~y!5g1
6~y!1g2

6~y!

5E
0

`

dxS 1

Ax21y2
2

1

16exp~2Ax21y2!
D

3
1

exp~Ax21y2!61
. ~A7!

The expansion of the first term in parentheses,g1
6 , is known

sinceg1
15 f 1 andg1

25h1. For the evaluation of the second
trick is convenient. Introduce a parametera to write
m
.

03600
g

g2
6~y;a!52E

0

`

dx
exp~aAx21y2!

@exp~aAx21y2!61#2
. ~A8!

Obviously, g2
6(y;1) is the sought quantity. Nowg2

6(y;a)
can also be written as

]

]a F E
0

`

dx
1

Ax21y2

1

exp~aAx21y2!61
G5

d

da
g1

6~ay!.

~A9!

Expanding Eq.~A8! for small y hence yields

g2
2~y;a!52

1

a2

p

2y
1

1

2a
1••• for bosons ~A10!

and

g2
1~y;a!52

1

2a
1••• for fermions.

~A11!

Settinga51 and putting the pieces together, the leading-
behavior of Eq.~A7! is

g1~y!52
1

2 F logS y

p D1g11G1••• for fermions

~A12!

and

g2~y!51
1

2 F logS y

4p D1g11G1••• for bosons.

~A13!
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