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Debye screening at finite temperature reexamined
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We present an alternative way to calculate the screening of the static potential between two charges in
(non-Abelian gauge theories at high temperatures. Instead of a loop expansion of a gauge boson self-energy,
we evaluate the energy shift of the vacuum to orefe@fter applying an external static magnetic field and
extract a temperature- and momentum-dependent dielectric permittivity. The hard thermal loop gluon and
photon Debye masses are recovered from the lowest lying Landau levels of the perturbed vacuum. In QED, the
complete calculation exhibits an interesting cancellation of terms, resulting in a logarithmic rug(ihgin
QCD, a Landau pole img arises in the infrared from the sign of the gluon contribution, as in more sophisti-
cated thermal renormalization group calculations.
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[. INTRODUCTION In this work, we extend the approach [f,2] to finite
temperature and calculate an effective coupling constant
In quantum field theory, fluctuations of the vacuum give a¢4(k, T). Instead of loop expansion, we evaluate the energy
rise to the production of pair quanta which tend to scr@en  shift of the vacuum to ordee? after applying an external
antiscreepthe charge of a heavy test particle. If one pertur-(chromgmagnetic fieldH. The connection of magnetic per-
batively calculates the nonrelativistic potentiglr) between meability and dielectric permittivity at finite temperature is
two unlike static charges, say, in QED, the usual Coulombimade by invoking a renormalization group argument. QCD
like behavior is modified by the photon self-enefgyK?)  with a magnetic background field at finite temperature has

such that been studied in a number of worf3]. In contrast with pre-
vious approaches, we lay out a nontechnical calculation of
d3k - - —e? charge screening without reference to propagators or self-
V(f)zj e — 5 N (1) energies, resorting to entities that have an immediate physi-
(2m) ke+1II(K = —k*)

cal interpretation(energy densities and susceptibililie®ur
R R work then allows an alternative, although slightly more phe-
where k= k| and K=(k%k). Inserting the textbook result nomenological, view of screening at high temperature.
for I1(K?) and expanding for small distanc&$> mﬁ, the A possible dissolution of bound quarkonia states, e.g.,
quantum fluctuations lead to an effective coupling constantJ/, was proposed long ago as an experimental signature of
the quark-gluon plasma in heavy-ion collisions. Thale-
@ pendence of the interquark potential in QCD is therefore of
a’eff(k):—kzr (2)  great interest, and simulations of the potential in lattice
@ Iog( ) gauge theory do indeed show a strong screepdigin per-
turbation theory, the quantity that enters the Fourier trans-
form of the potential at finite temperature is the static limit of
whereA =exp(5/3)m, is a scale related to the electron massthe longitudinal gauge boson self-eneidy (k% k;T) [5]:
m.. This is, of course, the familiar result of the running
coupling in QED which is commonly obtained using renor-
malization group methods. In Refdl,2], it has been shown V(r,T):J
that the running of a coupling constant &0 can be un-
derstood in physical terms by the polarizability of the ) ) ) ) o
vacuum. The effects of fluctuations can be incorporated to &duivalently, one can define a dielectric permittivity [8}
certain extent in a scale-dependent dielectric permittieity
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that defines an effective charges= a/e. In vacuum, Lor- I, (0k,T)
entz invariance dictates that e(kT)=1+ K2 : )
pne=1, 3

The perturbative one-loop thermal contributionIip was

where u is the magnetic permeability. Calculating(k) at calculated long ago &S]

the momentum scalke and extracting the leading log contri- o
buuqn, one flr_1ally recovers the familiar expressmns_for the I, (0k,T)= =(mg)2 for QED (6)
running couplings in QED and QCD. Then, asymptotic free- 3

dom can be interpreted in terms of a paramagnetic ground
state. and
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g°T? - lently scale-dependent(H) can be extracted. Later, the ex-
3 =(mp)” forQCD (7)  ternal field 2H is identified with the scal&? at which the
physical process is probed.

For charged scalar fields, the general expression for the
energy spectrum of a single Fourier mode reads

Ny
Ne+ '

I (0k,T)=

which define screening masses,. Here,e and g are the
electromagnetic and strong coupling, respectivhly,s the
number of colors, andl; is the number of thermally active
flavors. Since the static limits of the self-energies are mo- E k= ok
mentum independent, the poles of the expression in(&q.
are simply the gauge invariant Debye massgsdefined in
Egs.(6) and(7) and lead to an exponential damping of the
potential V(r)~exp(—mpr)/r. In particular, this form ofl1,

1
n|f+ E s (11)

distinguishing between particles-() and antiparticles {).
The dispersion relatiom, =k follows from the positive en-

has the consequence that glumstseenthe strong interac- ergy solutiqn of the Klein-Gordon equatio_n for mas§less,
tion, in contrast to the zero temperature case, over long didioninteracting particles. AL=0, the occupation number

tances. However, the formula for the running QCD coupling/©" the ground state is zero. Summing over particle and an-
constant commonly used in finite temperature calculationdiparticle states, we recover the familiar divergent zero-point

assumes that typical momentum transfers are of the order §RCUUM energyEy=>,w, . For massless spif-fermions,
the temperature; hence, the energy without an external field becomes

f__
(T~ Ef= 22k Wy . (12)

(1IN, — 2N;)log(T)" ®

The factor 2 arises from the spin summation; the faetdr

In this expression, gluons therefore retain their antiscreeningtemS from the anticommutation relation obeyed by fermi-
property, reflecting the ultraviolet sector of the theory. The, i anninilation and creation operators. In the presence of

transition to Debye screening is not obvious. Anotherthe magnetic fieldH, we substitutes, D ,=d,—igqA,

troublesome feature of QCD screening at finite temperatursvhereq is the charge of théantiparticle in units of the

is the behavior of the Debye mass at next-to-leading order - : - : -
which readg8] ¢ouplingg. Choosing the orientation of the field along the

z axis, we construct a vector potential Ag=(0,0x;H,0).
N.G2T c This choice forA, opeysaMAﬂzo. In the following, we
m(DZ)(T)=m(D1)+ 9 o (_) (9) treat QED and QCD in parallel and defiee= qg. We have
4 g to solve for the energy spectrum dd (x)=0, which is
basically a relativistic version of the Landau theory for the
with m{) given by Eq.(7). HereC is a constant arising from diamagnetic properties of an electron gas. The solution for
the ad hocremoval of infrared singularities involving chro- the energy of a single Fourier mode becomes
momagnetic static modes. The appearance of the nonpertur-
bative logarithmic term questions the applicability of loop En k.5, \/k§+ 2eH(n+1/2+s;3). (13
calculations somewhat. Furthermore, whereas in QED the
self-energy tensofl ,, is gauge independent, this is not the |n addition, thex; space variable is shifted by k,/(eH).
case in QCD, which makes the very definition of a DebyeNote that the energy depends only on two quantum numbers.
mass conceptually difficult. Finally, due to the nonlinear cou-The third is “hidden” in the mentionec; shift. Heres;=
pling of the gluons, relatiof5) remains valid only within  +1 the z component of the spin. Thels; term clearly
certain gaugeslike the temporal axial gaug¢9]. An evalu-  shows the coupling of the spin to the external field, and
ation of the effective charge and its possible screening ndence, if the spin of the fermion is antiparallel to tdield,
relying on a Feynman graph expansion is therefore desirablghe energy is lowered. For QCD, there is also an implicit sum
over the color chargeg hidden ine=gq. Finally, for a vec-
Il. THE ZERO TEMPERATURE CASE tor gauge boson thd-independent energy is the same as for
a scalar field, except that there is an additional factor of 2
In this section, we define our notation and briefly reVieWCounting the transverse spin degrees of freedom:
the calculation of Refd.1,2]. To obtain a scale-dependemnt
let us look at the change in the enefg§pf the vacuum when

an external magnetic field is applied: E8=22k W (14)
1 The sum over color degrees of freedom yields an additional
AE=— Z[47x(H)]VH?—E, ., 10 9 y
2L4mx(H)] vae (10 multiplicative factor ofN2—1. In the presence of the mag-

netic field, we separate the fiehdl, into the classical back-
whereu(H)=1+4mx(H), andyx(H) is the field-dependent ground partAZ and the fluctuating quantum pa#f} . The
magnetic susceptibility. As soon as the energied at0 and  equations of motion becomie ,G*”"=0, whereG*” is the
finite H are known to some approximation, a field- or equiva-gluon field strength tensor. With a suitable choice of back-
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ground gauge, the energy for the two physical degrees of nA N nA
freedom ofA,, can be written as > =D >
n=0 n=0 n=N
Enicgisy= VK5+2eH(n+1/2+s3), (15)

Let us treats; formally as a continuous variable. Taylor ex-
the same as in the fermionic case, but now wafx+1.  panding ins; (sincen=N>s;), we are left with
Again, summation over the color charges is implicitly as-

sumed. _ nA

We want to extract the leading ldg) contribution to the AE'=(-1)*3 Z f(n+1/2)—s3f"(n+1/2)
energy shift induced by the external field. With the total spin s3 n=N
s of the particle considered ane-f,g: s2

+®(eH,N). (19

+E3f"(n+1/2)+.--
AE'=(-D1* > Ege—, > o, (16

M2 % K1K2:a.% Now @ (eH,N), which represents the contributions from soft

where modes only, does not depend An It is thus proportional to
(eH)? for dimensional reasons, a small nonleading log con-

iﬂ*sﬁsz \/k§+ 2eH(n+1/2+s,). a7 tribution, and may be safely neglected. The linear terrsgin

vanishes upon summation, and resubstitugrggq, we find
Introducing a quantization volum¥=L23, we replace the

sum overk, andk; by an integral weighted with the density i 1 ) q?(—1)% s% 1 A?
of states. Taking into account that the variable was ~ AE'=—3V(gH)"| ——— > >~ 24)199 551 |-
. . . 2w S3 eH
shifted, k; is restricted to 8<k,<LeH. Then, 20
L L \% .
2 —>—f dks=—(eH-L)= —2(eH)f dks. The sum over a SU(Y multiplet of the squared chargeg
ks 2T 2m am is N¢/2 for the fundamental representatidd(quark flavors

(18  and N./2 for the adjoint representatiotthe gluon$. For

To regularize the divergence, we will use a uv cutbdfsuch QCD, the susceptibility becomes

that 0<n<A?%2eH=n, andk3=<A?2. The first idea would
be to replace the sum ovarby an integral. However, if we
perform the shifin’=2eHn, we find that the integral would
be independent dfl to leading order. That is, we would have
recovered the vacuum result, in the absence of theflelso
what we need is theorrectionto the replacement of a sum
with an integral. Such a correction term suitable for our cas
here is provided by a specific Euler sum rule

4rry——g?

1IN.— 2N 2eH
log
481 A?

which reproduces the expression obtained by renormaliza-
tion group calculations if we identify @H=K?2. For QED,
®he sum over the char@® is simply 1, so we obtain

N2 ny 1 ) A . e’ I 2eH
— _ 2 mTX— ogl — |,
2%1 f(n+1/2) fnl FO0dx— ' (02, X—F 55100 5
We may now redefine the energy shift as again in accordance with EqR). Having outlined the calcu-

lation of[1,2], we now proceed to the main part of the paper

n .
3 and switch on temperature.

AE‘=(—1)2SSE [nzo f(n+1/2+s,)

Ill. THE TEMPERATURE-DEPENDENT PART

A
_fo dnf(n+1/2+s3)], At finite temperatureT, the occupation numben;" ap-

pearing in Eq(11) does not vanish any more for the thermal
where ground state; instead,=[exp(Bw)—1] '=nge, the usual
Bose-Einstein distribution function3= 1/T). For fermions,
vV A n=[expBw)+1] *=ng, the Fermi-Dirac distribution
f(x)= —Z(GH)f dks\ks+2eHx. function. Thus, when summing over the infinitely many de-
2m 0 grees of freedom, we find for the total vacuum energy of a

Since we are not interested in the soft modes of the order oq‘harged scalar field

eH (the leading log behavior is dominated by the uv behav-

ior of the theory, we split the sum into two piecesN _

o Y, we sp precesN( ES= oL+ 2n5e(wy). @1
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The result clearly separates into the divergent vacuum part
already treated and a finit€&;dependent part. In the case of a

finite magnetic fieldH, the higher energy moded?7) are

occupied with their respective thermal probabilities, and w

can write (=f,Q)

AE'=E'-E}, (22)
E'= n,k§3,s3 En,k3,s3
X[ (—1)%+ 2 (23
expl BEq, 5) — (— 1))
Ei — -1 2s .
0 k1’k§<3133 @ (ZDT eXFiﬁwk)_(_l)zsl
(24

Again, we need to extract the leading thermal contribution tooe

(k). However, at finite temperature, relati¢8) does not
hold any more. One could imagine starting with

p(k)e(k)=n(k)?, (29

PHYSICAL REVIEW D66, 036003 (2002

a

a —
ek, T) 1—4mx(kT)"

aer(k, T)= (27)

®rhe thermal piece of Eq23) can be compactly rewritten as

EN(T,b,s,s;)
b o0
=VT —
27T2 S3 ngo
VX?+b(n+1/2+s3)

xfdx
0

wherex is dimensionless and=2eH/T? is a measure for
the ratio of quantum and thermal effects. We consider the
high temperature limib<1 in the rest of the paper.

exp(\X2+b(n+1/2+s5)—(—1)%)’ (28

A. Afirst (incomplete) approximation

The sum appearing in expressi@@8) obviously cannot
evaluated exactly. It is instructive to work out the first
intuitive approximation to the sum although we will show in
the next section that it is too crude.

Consider the fermionic part. Note that the factofn
+1/2+s3) plays the role of a mass term in the integral in Eq.
(28), so the contribution of the terms in the sum becomes

wheren is the index of refraction. This quantity is related to exponentia”y Suppressed asincreases. In contrast to the

the photon or gluon phase velocity by= 1/n, andv,, could

T=0 case we are therefore interested in the behavior of the

be extracted from théu”) diSperSion relation of the corre- sum atsmall nwhere thes3 Spin component is not neg”-

sponding gauge boson sinog= wy/k. However, Eq.(25)

gible. Thus we cannot apply a Taylor expansionsiy as

holds only for “on-shell” propagating gauge bosons. Sincedone in Eq.(19), and need an exact summation owsr
Lorentz invariance is formally broken by the presence of thgsplating then the lowest lying Landau mode=(0,s;=

heat bath,u and e become functions ok® andk, and Eq.
(25) reads, more explicitlyu (oK) e(w, k) =n(k)?. Here,

—1/2) and combining the remaining expressions into a
single sum, we find

we consider an off-shell external field, so a relation between

©(0,k) ande(0k) is required.

The total energy density of the system can be written as
the sum of the field and the induced medium energy density:

1 1 )
f,’tot=§|42+v2i AE'. (26)

Introducing an effective fieldH ., we rewrite€ as

1 1 (eH)?
5tot=§H§ﬁ:§e—2
eff

In the last step we made use of the fact thét has to be
renormalization group invariant, sH=e.sH.¢. The effec-
tive coupling constant is now defined bg,3]

o = 2 2
e d(eH)

1
= g[l—4wx(2eH,T)],

using Eqs(10) and(26). Replacing 2H by k?, as atT=0,
our master formula hence reads

b b o fwd V+b(n+1)
= X .
24 7240 Jo  exp\x?+b(n+1))+1
(29

Sinceb<1, the terms in the sum vary slowly with so we
can again try to trade the sum for an integral omer

= b . 2 de r2\Jr’+b 30
=t — | dr———.
24 72)o  exp(\r?+b)+1

Neglecting terms of ordeb in the integral, we obtain as a
first approximation

PRy
415

e\2
1 {_ (mp) (31)

f __ Tyw2
Eo=" 2V~ Zen

for QED with the hard thermal loofHTL) Debye mass de-
fined in Eq.(6). The second term is simply the ener@&(T)
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of a thermally excited, noninteracting massless fermionAgain, the last term is the thermal energ§(T) of the un-
antifermion pair, i.e., the thermal energy of theperturbed  perturbed SU(I) gluon vacuum. The expression in square
vacuum that has to be subtracted. Eq. (22)]. This means  prackets exactly corresponds to the gluonic part of the
that we have recovered within our simple framework thesquared QCD Debye massn%vg=Nc/3ng2. Putting all the
perturbative one-loop HTL result from the lowest Landau i cag together, the effective coupling becomes

level contribution to the energy of the magnetically perturbe

thermal vacuum. The energy difference that enters in Eq.

(10) already yields 4 x(H,T) as the expression in square

brackets, and the effective coupling constant reads, following g ok, T) = %s
Eq (27), S,e ’ (m%)z,
1+
k2
KT)= o _ a
aeff( ’ )_G(k,T)_ (meD)Zl
1+ K2 very similar to the QED case. In our model, the hard thermal

loop (chromgelectric Debye masses therefore appear as the

lowest Landau level contribution to the energy difference

that arises when one probes the thermal vacuum {@hio-

mo)magnetic field. It is worth noting that, in this approxima-

22 tion, the alignment of an external field alway&reaseshe

+ NflVT“ (32) thermal energy of the vacuum, regardless of the non-Abelian
60 structure of the theory. Therefosgk, T) is always negative

and we conclude, using Ed27), that the static potential

with the fermionic part of the squared QCD Debye m&3s  would become screened by both fermions and gauge bosons.

m3 ;= N/6g°T2. For the total evaluation of the QCD sus-

ceptibility, we need to add the contribution from the gauge

bosons. At zero temperature, contributions from “unphysi- B. A better approximation

cal” gluon states in the calculation of the energy spectrum, However, additional contributions to Eq&1), (32), and

Eq. (15)' are gxactly cancelled by Fadeev—Pqpov ghost Con(34) of thesame order in @arise from two sources. First, the
tributions within the background gauge condition used here

Since we onl nsider excitations of eneray levels that w rexpansion of the integral80) and(33) in b is similar to the
ce we only consider excitations of energy levels that we igh temperature expansion of loop integrals with massive
evaluated aff=0, no ambiguity arises and we still work

. . . particles in the small quantityny/T. The Appendix contains
pnly with physical gluon degrees of freedom with two po'lar—_the relevant formula. Second, the correction to the replace-
ization states. We proceed in close analogy to the ferm|on|?nent of the sum by an integrai yields terms to ordendb?

case: first, we sum ove; = =1. A subllety arises since the y, . 5 provided by the Euler-MacLaurin formula
combinationn=0 andsz=—1 in Eq.(28) gives a negative
value under the square root for small This “tachyonic”
mode is related to a possible instability of the vacuur). N N 1

Its effect on the magnetic field over large distances, however, > f(n)= f f(x)dx+ =[f(N)+f(0)]
is negligible; the sum over for s;= — 1 therefore starts only n=0 0 2

at n=1. Isolating again the lowest lying physical Landau

as within HTL perturbation theory, E@5).
For QCD withN; flavors, we obtain

2
Mp ¢

~ 2eH

1
fo_ 2

1
level (n=1s3=—1) contribution to the sum, we are left + —[f"(N)=f"(0)]+---, (35)
with 12
g . o where the dots denote terms with higher derivative§(im).
E_Eﬁgzl X x"+b2) For our purposes, Eq35), taking N—«, is sufficient, as
VT 2m2Jo exp( X2+ b/2)—1 long asf(x) e C? for xe[0,N]. When calculating the ther-
. , mal contribution to the vacuum energy, we include these
N b D ® VX“+b(n+3/2) correction terms to the integral in the following and expand
; =y Jo Xexp( X2+b(n+3/2)-1 all integrals in the small parametéx, using the relations

presented in the Appendix. The summation of all terms to
(33 ordere? then alters the results in Eq82) and(34) qualita-
tively.
Replacing the sum by an integration, settibg-0 in the
integrals, and summing over color, the result becomes
C. Results for QED

For fermions, we start with Eq29). Defining 6°=b, we
obtain to orders*

2
~_Mpg

2eH

1
Ef)=— 5 VH?

2
+2(N2—1)7T—VT4 (34)
2 R T-
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= 52+ 2 jwd r2yré+s° 1 52focd Vré+ s
=—+— r P s r
W24" 22)0 7 expg\rZ+ 69 +1 2| w2Jo exp\rZ+ 69 +1
1 ot (= 1 1 1
el N j dx - : (36)
120 272)0 | X3+ 62 Ll+exp— X2+ 8°) ) exp(Vx2+ 8% +1

Using the functiond,;(y) andg™(y) defined in the Appen- So the common practice used in perturbation theory of sim-

dix, we rewrite ply taking the running of the coupling at zero temperature
and setting as the scale the thermally averaged momentum
scale(k)=3T does indeed find support from our calculation

- & 2 56 st for QED.
Ely=g4+ s+ S5 fs(d+ - —1(0)
D. Results for QCD
— gt (9). (37) For QCD, the fermionic contribution takes a form similar
2472 to the QED result,
Expanding ins and keeping all terms up t©(5%), surpris- 2N 2eH
ingly all terms of orders? cance| and we are left with 4mx(H,T)=~ ” 5109 Af? : (43
T
¢ 72 >
En=%0 " PIOQ(AH(; ) (38)  Note that the prefactor of the logarithm is again the same as
T

at zero temperature. The calculation of the gluonic part of

; _ _ _ long the same lines. Starting with E8B) and setting
with y=0.572... and theconstantA;=exp(2y—1)/=* 'Unsa _ _ €
=0.12. The first term is the well-known thermal part of the 6°=b/2, we obtain by use of the functioi(y) andg- (y)

vacuum energy in the absence of the fieldSince 5°<1,

the alignment of a magnetic field hendecreaseshe energy

of the vacuum at finite temperature, in contrast to the result ~ 2 52

of the previous section. The susceptibility in QED therefore Eg:ﬁhs( \/§5)+?[7h3( V38)+h3(9)]
becomes

2eH +§h 8)+3h ﬁ&—l ~(\36 44
47TX(H1T):_%|OQ(.Af?>. (39) 71_2 1( ) 1( ) 69 ( ) . ( )

Note that the prefactor of the logarithm is the same as in th&xpanding, we find that all terms of ordé? cancel and the
zero-temperature case. Including this pure quantum corre¢esult becomes

tion for the QED running coupling, Ed2), all momentum

dependence drops out, and we finally obtain with &7) 27 b 5p?

with the constant4dy=exd2y—13/10+ (11/5)log3/(3272)
=0.03. As for the fermionic part, the alignment of a chro-
momagnetic field hence alwal@versthe energy of the glu-
with onic vacuum; however, this time the difference goes linearly
in b and not only logarithmically. Finally summing over
Ar=m, ~ (40) color, the gluonic susceptibility reads

. . . 2 N 2T2
which is valid to ordere and for momenta Amy(H,T)= c9 5N, g log| A
3 2eH 4872 9
Me<k<T. (41 (46)

Using the zero-temperature couplirgg(k) from Eq. (2), ) . o
the effective coupling can, to this order, be rewritten as In this expression the sign is reversed as compared to Eq.
(43), and 4y is always positive. The total thermal result for

(K, T) = aen(T) = aer((k)=3T). (420  QCD, excluding theT=0 contribution, becomes
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. 4
Agk? Ak? @0
= —2N¢log -

Since the gluon contribution dominates by far over the loga- Using a high temperature expansibiiT2<1, the gluon
rithmic fermionic, there isantiscreeningat high temperature and photon Debye masses appearing in the HTL calculation
and long distances. This result is in contrast to expectatiomere recovered in a first, though incomplete approximation,
and lattice results on the interquark potenfi@l Extrapolat-  originating from the lowest lying Landau level contribution
ing Eq. (47) beyond the kinematical regiog<<k/T<1  to the thermal energy. Taking into account all contributions
where our approximations are valid, a Landau pole appear® ordere? in QED, the final expression in the kinematic
in the infrared regionk/T=g. Figure 1 shows the ratio region (41 shows a logarithmic, momentum-independent
as et s @s a function ok/T for a weak couplingg=0.1,  running of @ with temperature, as expected from simply in-
compared to the usual HTL result. A similar behavior is alsoserting the average thermal momentiky=3T in the zero-
found in more sophisticated renormalization group analysesemperature running coupling.

of the running coupling at finite temperatufsee, e.g., In QCD, we found indications for a Landau pole at small
[3,11-13). We note that our results compare quite well with k/T that arises, as in more sophisticated thermal renormal-
the numerical solutions obtained in REE2]. Since Eq(47)  ization group calculations, from the sign of the gluon contri-
depends only on the dimensionless quarkity, taking the  bution, despite well controlled approximations and a com-
limit T—oo at largek is in a sense equivalent to probing the pletely different approach as compared to conventional
infrared regionk— 0 at smallerT, indicating that nonpertur- perturbation theory. Our calculation may serve as yet another
bative physics plays an important role even at highThe  indication that an expansion in a presumably small coupling
necessity for a soft magnetic masg?T as an infrared regu- g at high temperatures ceases to yield sensible results for
lator in loop calculationgsee Eq.(9)] supports this line of some quantities, and that this failure is not specific to a Feyn-

reasoning. man graph expansion. Truly nonperturbative input that is
probably linked to the understanding of confinement is then
IV. CONCLUSIONS called for.

We presented an alternative way to calculate the screening
of the static potential between two chargegnion-)Abelian
gauge theories at finite temperature by looking at the mag- This work was supported in part by BMBF and GSI.
netic properties of the vacuum. Instead of a loop expansion,
we calculated the energy shift of the vacuum at finite tem- APPENDIX
perature to ordee? after applying an externéghromomag-
netic fieldH as a probe. Magnetic permeability and dielectric  Here we present the formulas used to evaluate the
permittivity were connected by a renormalization group ar-6-dependent integrals appearing in E¢#4) and (37). Fer-
gument. mionic integrals of the form

ACKNOWLEDGMENTS

. Xr‘l—l 1
f zf dx
n(Y) 0 XPHy? exp(Vx2+y?)+1

can be expanded for small(note our slightly different con-
vention compared tf9]). In particular,

1 y
— T4y
fa(y)=—3|log W) yE (A1)
f():—2+y—2Io X+ —E+-~- (A2)
T RV s P A '
0 Vi N 1 L | N 1 L 1 N
9002 02 06 08 10 Tt @ 3, y 3
kIT S Z — |+ ..
=10 Y 16/ |7 A"
FIG. 1. The ratioas ¢/ a5 of Eq. (47) as a function ok/T for a (A3)

couplingg=0.1 andN;=0 (solid line). For comparison, the corre-

sponding ratio in the HTL calculation, using the Debye mass of Eqwherey=0.5772 . . . is theEuler-Mascheroni constant. For

(7), is also plotteddashed ling bosons,
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xn—1 1

WE+y2 expx2+y3) -1

)= | “ax

The corresponding expansions read

T 1 y
hl(Y)=2—y+§ log| 7|+ 7|+ (Ad)
w o y? y 1
hs(Y)= 5 —5Y~ 7 IOQ(E +7—§}+~-,
(A5)
’77'4 772 2 7T 3
hs(Y)=15 -7V *+ 3V
> 4 1og| 2 A6
t3eY|logl |ty gt (AG)

For the evaluation of derivative terms, we need the leading

log(y) behavior of integrals such as

9" (Y)=9r (Y)+gx(y)
1 B 1
Xty 1texp(—\/x7+y2)

=fdx
0
1

X :
exp(Vx°+y?)*1

(A7)

The expansion of the first term in parenthesgs, is known
sinceg; =f, andg; =h;,. For the evaluation of the second a

trick is convenient. Introduce a parameteito write

PHYSICAL REVIEW D66, 036003 (2002

- (yia) J'wd explaVx*+y?)
S (Y;a)=— X .
92y 0 [explax®+y?)+1]?

Obviously, g, (y;1) is the sought quantity. Now, (y;«)
can also be written as

(A8)

1

* 1
dx
Jo \/x7+yz exp(a\/x7+y7)t1

d .
=d—agl‘(ay)-
(A9)

J
da
Expanding Eq(A8) for smally hence yields

.17
gz(y,a)——;—+z+"'

2y for bosons (A10)

and

1
+ . __ = L .
05 (Y, )= ' for fermions.

(A1)

Settinga=1 and putting the pieces together, the leading-log

behavior of Eq(A7) is

1
9+(y)=—§ log %)4—7—0—1 +... for fermions
(A12)
and
(y)= ! | y 1 forb
g (Y)—+§ 09| 4|+ y+1|+--- forbosons,
(A13)
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