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Scaling laws and effective dimension in latticeSU„2… Yang-Mills theory
with a compactified extra dimension
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Monte Carlo simulations are performed in a five-dimensional latticeSU(2) Yang-Mills theory with a
compactified extra dimension, and scaling laws are studied. Our simulations indicate that, as the compactifi-
cation radiusR decreases, the confining phase spreads more and more to the weak coupling regime, and the
effective dimension of the theory changes gradually from five to four. Our simulations also indicate that the
limit a4→0 with R/a4 kept fixed exists in both the confining and deconfining phases ifR/a4 is small enough,
wherea4 is the lattice spacing in the four-dimensional direction. We argue that there exists a maximal radius
above which the color degrees of freedom are not confined. Comments on deconstructing extra dimensions are
given.
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I. INTRODUCTION

Since Kaluza and Klein@1# found that the electromagneti
and gravitational forces can be unified by introducing a fi
dimension, their idea has attracted attention for many
cades. Recently, there has been a lot of renewed intere
field theories with extra dimensions, in which the leng
scale of the extra dimensions can be so large that they c
be experimentally observed@2–4#. It is assumed that, fo
distances larger than the compactification size, the mas
Kaluza-Klein excitations decouple so that these theories
have as a four-dimensional continuum theory at low en
gies. Since, however, Yang-Mills theories in more than fo
dimensions are nonrenormalizable, it is not at all clear t
the infinite tower of the Kaluza-Klein excitations decoupl
even if each massive excitation is suppressed: A naive ex
tation of their contribution would bè •0.

In four dimensions, the color degrees of freedom are c
fined even for a weak gauge coupling. How can a confin
four-dimensional Yang-Mills theory emerge from a highe
dimensional Yang-Mills theory which is deconfining in th
weak coupling regime@5–7#? Although the assumption o
the decoupling of the Kaluza-Klein excitations sounds phy
cally correct, it is by no means trivial to show that the
nonperturbatively decouple in such a way that the color c
finement takes place even at weak gauge coupling. Rece
we @8# started to address related problems in a concrete
ample, namely, the pure latticeSU(2) Yang-Mills theory in
five dimensions with one dimension compactified on a circ
We observed@8# that the compactification changes the natu
of the phase transition, and that a second order phase tr
tion, which does not exist in the uncompactified case, occ
thus confirming the long-standing expectation of Lang, Pil
and Skagerstam@6#. The phase is defined by the Polyako
loop that extends into the fifth dimension, and the ph
transition is expected to be of second order, because the c
pactifiedSU(2) lattice gauge theory in five dimensions b
longs to the universality class of theZ2 spin model in four
0556-2821/2002/66~3!/036002~7!/$20.00 66 0360
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dimensions. For the first time, we@8# computed the latticeb
function in a Yang-Mills theory in more than four dimen
sions, and verified nonperturbatively the power-law runn
of the gauge coupling constant@4,9–11#.

In this paper we would like to extend the analyses of@8#.
We first observe that if the compactification radius becom
smaller and smaller, the confining phase spreads more
more to the weak coupling regime. At the same time
compute the effective dimension@12,13#, and see that the
theory behaves more and more as a four-dimensional Ya
Mills theory. Based on this result, we argue that the co
degrees of freedom are confined only forR,Rmax. The con-
fining phase is defined by the string tension between
static quarks that are separated in the four-dimensional
space. This definition of phase should not be confused w
the definition by the Polyakov loop that extends into the fi
dimension, which was mentioned above.

Our calculations of the potential between two sta
quarks separated in the four-dimensional subspace show
the deconfining phase is a Coulomb phase. We then dis
the nature of the transition from the deconfining phase to
confining phase for fixed values ofR/a4, wherea4 is the
lattice spacing in the four-dimensional direction. We confi
that if R/a4 is small enough, it is consistent with a seco
order transition. Combined with the result of@8#, we there-
fore come to the conclusion that, as we decrease the valu
RL, the first order transition for large values ofRL changes
to a crossover transition, and finally becomes of second
der.

We give some nonperturbative comments on deconstr
ing extra dimensions@14# in the Conclusion.

II. EFFECTIVE DIMENSION

In order to take into account the compactification effe
in this theory, it is crucial to use anisotropic lattices@15#
which have different lattice spacingsa4 anda5 in the four-
dimensional directions and in the fifth direction. For definit
©2002 The American Physical Society02-1
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ness we employ the Wilson action for pureSU(2) lattice
gauge theory:

S5
b

g (
P4

F12
1

2
Re TrUP4G1bg(

P5
F12

1

2
Re TrUP5G ,

~2.1!

where UP4
denote plaquette variables in the fou

dimensional sublattice, andUP5
are those that are extende

into the fifth dimension. The gauge coupling constantg5 has
the dimension ofAa4, which is related tob by

a4g5
225b/4 ~2.2!

at the tree level. Periodic boundary conditions are impose
all directions, and we use a lattice size of the formN4

43N5

~we mostly useN4512 andN554). The compactification
radius is defined asR5a5N5/2p if N4a4.N5a5 is satisfied,
and the correlation-anisotropy parameter is defined aj
5a4 /a5. The tree level relationg5j will be modified at the
quantum level@15#, and throughout this paper we assum
that thej-g relation obtained in@8# is satisfied in both the
confining and deconfining phases. Simulations are perform
for

g53.6,4.0,4.6,5.0, ~2.3!

which is equivalent to@8#

2pR

a4
5

N5a5

a4
5

4

j
'0.72,0.64,0.55,0.50, ~2.4!

where we have usedN554 above. We chose this range
2pR/a4 because we expect from the previous calculatio
@8# that the limit 2pR/a4→0 may exist, and we observ
some scaling behavior.

To define the physical scale in the confining phase, we
the string tensions between two static quarks that are sep
rated in the four-dimensional subspace. Since the string
sion is a physical quantity, the lattice string tensionsL

should behave likea4
2 asa4→0, wherea4 can be related by

the b function to the dimensionless bare gauge coupling

g25
8p

b
5Lg5

2 , ~2.5!

where we have identifiedL with 2p/a4 because 4
3(p/a4)25(2p/a4)2. Since we expect that the massiv
Kaluza-Klein excitations will decouple increasingly a
2pR/a4 decreases, the latticeb functionbL cannot assume a
purely five- or four-dimensional form. Instead, we expec
continuous change of its form. This is quantitatively e
pressed by the so-called effective dimensionDeff , which is a
function of 2pR/a4 @13#. So we assume thatbL can be writ-
ten as

bL52a4

dg2

da4
5@Deff~2pR/a4!24#g22

2b

16p2
g4,

~2.6!
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where b522/322/3520/3. Therefore, the evolution equa
tion for g2 can be easily integrated in the case that 2pR/a4
is kept fixed whilea4 changes. We obtain for this case

AsL;a4;S 2b

16p2

1

Deff24
2

b

8p D 1/(Deff24)

. ~2.7!

It is important to notice that asDeff→4 we obtain the loga-
rithmic form

g225b/8p5~2b/16p2!ln a41const. ~2.8!

That is, if we can show that the effective dimensionDeff in
the confining phase varies from 5 to 4 as 2pR/a4 decreases
from a larger value to a smaller value, we show the conti
ous decoupling of the Kaluza-Klein excitations, and the co
fining phase spreads more and more to the weak coup
regime asR decreases.

III. CONFINING PHASE

Now we come to the results of our Monte Carlo simu
tions on a 12434 lattice. We use the Creutz ratiox(I ,J)
obtained from the rectangular Wilson loopsW(I ,J) with
lengths ofI andJ in the four-dimensional subspace. We a
sume that the Creutz ratio takes the form

x~ I ,J!5x02x1S 1

I ~ I 21!
1

1

J~J21! D
1x2S 1

I ~ I 21!J~J21! D , ~3.1!

and we identifyx0 with the lattice string tensionsL . We
generated 2500 configurations for each simulation point a
thermalization, and the Wilson loops were measured ev
five configurations for the calculation of a Creutz ratio. E
rors were estimated by the jackknife method. The filled sy
bols in Fig. 1 are the result obtained from the Monte Ca
simulations withg55.0, where the vertical axis stands fo

FIG. 1. Ax05AsL versusb at g55.0. The filled symbols are
obtained from the Creutz ratio~3.1! and the open ones are obtaine
from the static potential~3.2!.
2-2
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Ax05AsL and the horizontal axis stands forb. We have
also calculatedsL from the static potential to make sure th
sL obtained from the Creutz ratios is reliable.1 The static
potential we have assumed has the form

V~X!5C02C1

1

X
1C2S 1

X
2F 1

XG D1C3X, ~3.2!

where@1/X# is the three-dimensional Coulomb potential on
lattice, and is given by

F 1

XG54pE
2p

p d3p

~2p!3

expH i(
i

Xisin~pi /2!J
(
i 51

4

sin2~pi /2!

. ~3.3!

The open symbols in Fig. 1 correspond to the result obtai
from the static potential. Comparing the two results in Fig
we see that the lattice string tensions obtained from
Creutz ratios agree with those obtained from the static
tential. We made the same comparison for different value
g, and found the same result. So in the following analy
we use only the lattice string tensions from the Creutz ra
because we have more data for this case and we do not
to mix data obtained by two different methods.

We see from Fig. 1 that aboveb*3.0 the square root o
the lattice string tensionAsL first decreases linearly untilb
;3.3, and then its slope becomes milder. The tail for largb
is certainly due to the finite lattice size effects, but t
change from the linear decrease ofAsL to a milder one
aroundb;3.3 may indicate that the theoretical expectati
~2.7! is correct. Although it is in principle possible to chec
by increasing the lattice size how much finite lattice s
effects may be contained in the tail ofAsL, it is impossible
to do this at the moment because of the limitations of

1We give more details of calculating the static potential in Sec
when calculating the potential in the Coulomb phase.

FIG. 2. The scaling behavior ofsL
1/2 for different values ofg.

The solid lines are drawn by using Eq.~2.7!, whereDeff is taken
from Table I. The data with a filled symbol are used for the fit.
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computing facility given to us. Below we sketch how w
confirm Eq.~2.7! and computeDeff .

The effective dimension can be obtained by fitting t
function ~2.7! to the data. To this end, we first choose fo
neighboring data points that lie around the middle of the d
set for a giveng, and using these points, we fit the functio
~2.7! to obtain the effective dimension.~In the case ofg
55.0, for instance, we use the data points atb
53.20,3.22,3.24, and 3.26.! Then we increase the number o
the data points to be used by 2 by including the next nei
boring data point on both sides. In doing so, we obtain
effective dimension and alsox2 per degree of freedom
~DOF! as a function of numbern of the data points that are
used for the fit. We repeat the same analysis for the differ
values of 2pR/a4 given in Eq.~2.4!. The results are shown
in Figs. 2 and 3 and in Table I. In Fig. 3, the vertical ax
stand for (Deff24)21 and the error bar is computed from
x2/DOF. We see that asn increases the error bar decreas
and the central values converge. The results are summa
in Table I, and we see that the effective dimensionDeff de-
creases gradually from 4.7057~55! to 4.5230~82! as g in-
creases from 3.6 to 5.0, which means as 2pR/a4 decreases
from 0.72 to 0.5@see Eq.~2.4!#.

The b* in Table I is the value at whichsL and hencea4
should vanish if the theoretical assumption~2.7! is correct
and is extrapolated for larger values ofb ~see also Fig. 2!.
We emphasize that our results indicate that the limita4→0
with R/a4 kept fixed exists in the confining phase at finiteb.

FIG. 3. The effective dimension as a function of the numbern of
data points that are used for a fit. We increasen starting from 4 until
the value of (Deff24)21 becomes stabilized.

TABLE I. Effective dimension for different values ofg (L
52p/a4).

g RL De f f (bmin :bmax) x2/DOF b*

3.6 0.72 4.7057~55! ~2.30 : 2.76! 0.525 3.007~23!

4.0 0.64 4.6456~54! ~2.50 : 2.96! 0.438 3.286~22!

4.6 0.55 4.5695~55! ~2.80 : 3.26! 0.778 3.726~36!

5.0 0.50 4.5230~82! ~3.00 : 3.46! 0.598 4.057~43!
2-3
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IV. THE MAXIMAL RADIUS

The same analysis in real QCD in Sec. III would constr
the size of the compactification radius in QCD, which w
would like to estimate without detailed calculations. Our e
timate below is based on many assumptions that canno
justified at present, and so the number we obtain should
be taken seriously. But it is worthwhile to do this to see wh
kinds of problems are involved if one would like to do
more reliable estimate.

To see that there exists a maximal radius for color c
finement in the four-dimensional subspace, we recall the
sults obtained in the previous section and those from the
section:

g2*~& !~Deff24!~16p2/2b! ~4.1!

for the ~de!confining phase. Therefore, for a given value
Deff , there should exist a smallest value ofg2 for color con-
finement to occur, which is;(Deff24)(16p2/2b). The
question is howg2 can be related to the gauge couplinggkk

2

of Kaluza-Klein theory, the four-dimensional theory with
Kaluza-Klein tower. At the tree level, it is gkk

2

5g2(2pRL)21, but in higher orders this relation will re
ceive quantum corrections, where we have usedL2

5(p/a4)234. To answer the question, we first assume t
Deff(RL)→4 ~5! asRL→0 (`), and we consider a redefi
nition of g2 according to@12,13#:

gkk
2 5h21~RL!g2, h~ t !5expE

0

tdt8

t8
@Deff~ t8!24#.

~4.2!

Note that theb function of gkk
2 becomes

bkk52~2b/16p2!h~RL!gkk
4 . ~4.3!

Since the functionh(RL) becomes proportional toRL as
RL→`,2 the new gauge coupling describes a power-l
behavior@4,9–11#. Furthermore, we see from Eq.~4.2! that
gkk

2 approachesg2 as RL approaches 0. Recalling now th
assumption thatDeff approaches 4 asRL approaches 0 and
Eq. ~2.8!, we see that the renormalization group flow of t
new gauge couplinggkk

2 for smallRL takes exactly the sam
form as the one for the effective, four-dimensional theo
without the Kaluza-Klein tower. Therefore, we assume t
gkk

2 is the gauge coupling of the four-dimensional theory w
the Kaluza-Klein tower.

Now, suppose that QCD results from a five-dimensio
QCD. As we have argued above,g2 becomesgkk

2 at low
energies, and we then identify 2p/a4 with the physical scale
L of the effective theory, rather than with the ultraviol
cutoff. SincegR

2(MZ)/4p.0.12 in QCD andb57, the con-

2The proportionality constant depends onDeff as a function oft,
which, however, depends on the regularization used@13#. Therefore,
the lattice regularization does not reproduce the same coefficien@8#
obtained in@4#.
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straint ~4.1! can be converted to that of an effective dime
sion, i.e.,Deff(RMZ)&4.13. Therefore, if we know the func
tion Deff(t) exactly, we can calculate the range oft for which
the inequality~4.1! is satisfied. From the results given i
Table I we find that the effective dimension as a function
t can be written asDeff(t).41t. Assuming that this function
can be used even for smallt, we then obtainRL&0.13,
which would imply that 1/R*O(1). TeV should be satis-
fied for the color degrees of freedom in QCD to be confin

There are various problems involved in our estima
above, apart from the main assumptions that Eq.~2.6! is
correct in QCD, the effective dimensionDeff(t) can be ex-
trapolated for smaller values oft although we know it only
for 0.5<t<0.72, and the formDeff(t).41t remains the
same in QCD. One is the identification 2p/a4.L, and the
other isg(L).gR(m52p/a4), wheregR(m) is a renormal-
ized gauge coupling with the renormalization scalem in a
certain renormalization scheme. The first one comes from
assumption that we are very close to a continuum theory
possesses a four-dimensional rotational invariance. The
ond one comes from the fact thatL lattice and LMS are not
very much different in QCD so that the value of the ba
lattice gauge couplingg(L) is approximately equal to that o
the renormalized gauge couplinggR(m5L). In order to jus-
tify these assumptions and obtain more reliable relati
among them, we first of all have to refine and extend theg-j
relation given in Eqs.~2.3! and ~2.4!, which were obtained
only for b,1.8 for theSU(2) theory in@8#. More important
is that, apart from the fact that we have to do the calculati
in the case ofSU(3), we should consider the continuum
limit with the compactifcation radiusR kept fixed. This will
be necessary to introduce a real physical scale and to re
the string tension toR.

Therefore, our estimate ofRmax above should not be take
seriously. However, simulations on five-dimensional, co
pactifiedSU(3) lattice gauge theory would go beyond th
scope of the present paper, and we would like to leave
problem to future work. The crucial point is that there exis
a maximal radius.

V. COULOMB PHASE

The confining phase shrinks asR decreases, which we
have already seen above. Next we would like to show t
the deconfining phase is a Coulomb phase. To begin with,
consider the Wilson loopW(xW ,t) at the tree level in con-
tinuum perturbation theory. The static potential can be
tained from

V~x!5 lim
t→`

@ ln W~xW ,t !#/t

52
3

4
g5

2 1

2pR

1

4px
cothS x

2RD

52
3

4
g5

235
1

4p2x2 S x

2R
!1D ,

1

2pR

1

4px S x

2R
@1D .

~5.1!
2-4
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We have the usual Coulomb potential forx/2R@1, and we
see that the dimensionless gauge couplingĝ, normalized for
four-dimensional Yang-Mills theory at the tree level, is giv
by ĝ5g5 /A2pR, as is well known@3,4#. The corresponding
expression on a lattice is

VL~X!5 lim
T→`

ln W~X,T!/W~X,T11!, ~5.2!

whereW(X,T) is a lattice Wilson loop. The lattice distance
X andT are made dimensionless by dividing bya4. We are
interested in the potential between two static quarks that
separated in four dimensions, and thereforeX andT are sup-
posed to be in the four-dimensional sublattice. Since in
actual calculations we cannot take the limitT→`, we con-
sider also off-axis loops and use the standard smearing t
niques @16# to improve the convergence of approximan
with increasingT. Our smearing procedure consists of iter
tively replacing each spatial~three-dimensional! link by the
sum of itself and the neighboring four spatial staples wit
weight parametere:

Ui~x,y!→Ui8~x,y!

5PSU(2)S Ui~x,y!1e (
j (Þ i )51

3

Fi j ~x,y!D , ~5.3!

Fi j ~x,y!5U j~x,y!Ui~x1 ĵ ,y!U j
†~x1 î ,y!

1U j
†~x2 î ,y!Ui~x2 î ,y!U j~x2 î 1 ĵ ,y!,

where PSU(2) denotes a projection operator back onto t
SU(2) manifold.

We generated 10000 configurations for each simula
point after thermalization, and the smeared Wilson loo
were measured every 100 configurations for the calcula
of the static potential. We iterated Eq.~5.3! 60 times with
e50.1 in the case of the confining phase, 100 times wite
50.2 in the case of the Coulomb phase. In Fig. 4 we sh

FIG. 4. The Coulomb potential~5.2!. The filled symbols are the
raw data points, and the dotted line isV(X) of Eq. ~5.5! with C0

50.3230(14) andC150.1086(30). The open symbols stand for t
rotationally invariant data points.
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the result~filled symbols! for the lattice potentialVL(X) as a
function of X at b55.0 andg55.0 ~which is equivalent to
2pR/a450.5). The conditionx/2R@1 to obtain a 1/X po-
tential becomesX@1/2p in this case, and we assume that t
lattice potentialVL(X) takes the form

VL~X!5C02C1

1

X
1C2S 1

X
2F 1

XG D , ~5.4!

where@1/X# ~the three-dimensional Coulomb potential on
lattice! is given in Eq.~3.3!. The first term of Eq.~5.4! is the
unphysical self-energy, the second term is the rotation
invariant part of the Coulomb potential, and the third term
the most dominant part of its breaking. From ax2 fit we find
thatC050.3230(14),C150.1086(30), andC250.0776(27).
The fitted lattice potential with theC2 term in Eq.~5.4! sup-
pressed, i.e.,

V~X!5C02C1

1

X
, ~5.5!

is the dotted curve in Fig. 4, while the open symbols sta
for the rotationally invariant data points. We see that the d
justify the assumption that the deconfining phase is a C
lomb phase.

VI. NATURE OF THE PHASE TRANSITION

As the next task we consider the nature of the transit
from the confining phase to the Coulomb phase. In the c
fining phase our data indicate that the limita4→0 with R/a4
kept fixed exists at finiteb. If we can show thata4 also
vanishes at the same value ofb in the Coulomb phase, the
transition from the confining phase to the Coulomb phas
of second order.

To this end, we have to define the scale in the Coulo
phase. In the naive continuum theory there are two dim
sional quantities, the gauge couplingg5 and the compactifi-
cation radiusR. Therefore, we assume thatR and the low-
energy value ofg5 are independent physical quantities at t
quantum level, too. We then consider the limita4→0 with
2pR/a4 kept fixed, which is the same limiting process w
have considered in the confining phase. In this limit, t
quantity g5

2/2pR @the coefficientC1 of the tree level Cou-
lomb potential~5.4!# has to diverge becauseR→0 while g5
should remain finite by assumption. So naively one expe
the scaling lawC1

21;R;a4;(b2b* ), where b* is the
critical value ofb at whichsL

1/2;a4 vanishes. In Fig. 5 we
plot C1

21 versusb for different values ofg @or 2pR/a4 of
Eq. ~2.4!#. We see thatC1

21 linearly decreases, and mak
therefore a theoretical ansatz for the scaling law:

C1
215D02D1b. ~6.1!

For g54.6, for instance, ax2 fit yields thatD059.16(36)
andD153.894(77). If the tree level equation~5.1! were cor-
rect at the quantum level, too, then it would mean thata4
vanishes atb5D0 /D152.35(14) in the deconfining phase
This would contradict the assumption that in the confini
2-5
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phase the lattice spacinga4 approaches zero asb approaches
;3.7 for g54.6 ~see Table I!. This does not necessaril
mean that the transition from the deconfining phase to
confining one is a first order transition or a crossover tran
tion. It may be well possible that the tree-level form~5.1!
receives quantum corrections in such a way that the tra
tion is indeed of second order. Therefore, we consider p
sible quantum corrections toC1

21 that are consistent with th
scaling law in Fig. 5 and the value ofb* in the confining
phase~given Table I!. SinceC1

21, being dimensionless, ca
depend only on the combinationR/g5

2, the correction can
only be a constant, i.e.,

C1
21;2pR/g5

21a or C1;
g5

2

2pR1ag5
2

. ~6.2!

In Table III we give the results of the fits, from which w
find that the ansatz for the nonperturbative quantum cor
tion to the coefficient of the Coulomb potential~5.4! is con-
sistent with our data, and we conclude that

a55.160.7, ~6.3!

where we have not included the data forg55.0 in Eq.~6.3!,
because the error for this case is very large compared
others. This indicates that the assumption that the trans
from the confining to the deconfining phase is a second o
transition is consistent with the data. Note that the transit

FIG. 5. C1
21 versusb for differentg ’s, whereC1

21 is defined in
Eq. ~5.4!. The graph shows the scaling behavior in the Coulo
phase. The lines correspond to the linear function~6.1!, whereD0

andD1 are given in Table II.

TABLE II. Fit for C1 defined in Eq.~6.1!. The fitted lines in Fig.
5 intersect with theb axis atb5D0 /D1.

g D0 D1 (bmin :bmax) x2/DOF D0 /D1

3.6 9.48~31! 4.827~80! ~3.20 : 4.60! 0.103 1.965~97!

4.0 10.08~30! 4.603~74! ~3.40 : 4.80! 0.0957 2.19~10!

4.6 9.16~36! 3.894~77! ~4.00 : 5.40! 0.0998 2.35~14!

5.0 8.39~57! 3.47~11! ~4.20 : 5.80! 0.175 2.41~24!
03600
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i-
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th
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er
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for small values ofg, or large values ofRL, is of first order
@6,8#. We expect that the first order transition for large valu
of RL changes to a crossover transition, and finally to
second order transition, as we decrease the value of3 RL.

The nonperturbative correction~6.2! means that the tree
level relationĝ25g5

2/2pR should be modified to

ĝ25
g5

2

2pR S 11a
g5

2

2pRD 21

. ~6.4!

Sincea is large, the correction is not small. The Coulom
phase may be of phenomenological importance, because
color degrees of freedom do not need to be always confin
The SU(2) part of the standard model, for instance, cou
result from a higher-dimensional Yang-Mills theory in th
Coulomb phase. Then an equation such as Eq.~6.4! defines
the matching condition.

VII. CONCLUSION

In this paper we performed Monte Carlo simulations in
five-dimensional latticeSU(2) Yang-Mills theory, where we
compactified one extra dimension. We found that, as
compactification radiusR decreases, the confining pha
spreads more and more to the weak coupling regime, and
effective dimension of the theory gradually changes fro
five to four. Our data indicate that there exists a maxim
radius above which the color degrees of freedom are
confined. An actual computation of the maximal radius
QCD will give an important phenomenological constraint f
model building based on Kaluza-Klein theories. Our da
also indicate that for fixedR/a4 the transition from the de-
confining phase to the Coulomb phase is of second orde
R/a4 is small enough.

The parameter regime we have considered in the pre
work corresponds to the regime in which the Kaluza-Kle
idea is expected to be realized: At short distances we h
the five-dimensional rotational invariance, and at long d
tances, the Kaluza-Klein excitations decouple so that
low-energy effective theory is a four-dimensional Yang-Mi
theory. We found no indication that would contradict th
picture. Moreover, the compactified five-dimensional theo
which is perturbatively nonrenormalizable, has predict
power~unless examined at very short distances!, as we con-

3In the case of the phase transition measured by the Polyakov
that extends into the fifth dimension, the change from first to sec
order happens at a certain value ofg @8#.

b

TABLE III. g independence ofa.

g a

3.6 5.03~66!

4.0 5.05~64!

4.6 5.35~78!

5.0 5.7~11!
2-6
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clude from the scaling laws we observe.~Readers are also
invited to see@17#.!

The parameter regime that corresponds to deconstruc
extra dimensions@14# is not the same as above@18#; the two
phases are nonperturbatively separated@8,18#. In the phase
for the conventional Kaluza-Klein theory, the vacuum exp
tation value of the Polyakov loop~which extends into the
fifth dimension! is nonzero@8#, while it vanishes@18# in the
phase for deconstructing extra dimensions.~The phase for
deconstructing extra dimensions is the one in which the la
structure in five-dimensional gauge theories can be real
@19#.! Although it is not at all clear that the five-dimension
rotational invariance at short distances is recovered, it lo
at the moment as if two different confining four-dimension
Yang-Mills theories could result from two different phas
th

B

ys

os

03600
ng

-

er
d

s
l

~one from each! of a five-dimensional theory. The differenc
is purely nonperturbative. It will be very exiting to invest
gate this difference in more detail, especially in supersy
metric cases, where one already has analytic results, and
shown that the five-dimensional Lorentz invariance is rec
ered@20#.
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