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Moments of nucleon light cone quark distributions calculated in full lattice QCD
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Moments of the quark density, helicity, and transversity distributions are calculated in unquenched lattice
QCD. Calculations of proton matrix elements of operators corresponding to these moments through operator
product expansion have been performed oRXi82 lattices for Wilson fermions g8=5.6 using configura-
tions from the SESAM Collaboration and gt=5.5 using configurations from SCRI. One-loop perturbative
renormalization corrections are included. At quark masses accessible in present calculations, there is no sta-
tistically significant difference between quenched and full QCD results, indicating that the contributions of
quark-antiquark excitations from the Dirac sea are small. The close agreement between calculations with
cooled configurations containing essentially only instantons and the full gluon configurations indicates that
quark zero modes associated with instantons play a dominant role. A naive linear extrapolation of the full QCD
calculation to the physical pion mass yields results inconsistent with experiment. An extrapolation to the chiral
limit including the physics of the pion cloud can resolve this discrepancy and the requirements for a definitive
chiral extrapolation are described.
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[. INTRODUCTION lattice QCD to understand the structure of the nucleon. This
understanding has two important but distinct aspects.

The quest to understand the matter of which our Universe One aspect of using lattice QCD to understand nucleon
is composed will remain fundamentally incomplete until we Structure is the quantitativeb initio calculation of experi-
understand how the quark and gluon structure of the nucleoff€ntal observables. Since the experimental discovery of
arises from QCD. The nucleon has many remarkable propefiu@rks in the nucleon over a quarter of a century ago, there
ties. Because of confinement, the quark-gluon structure OI?as been a huge Investment mtern_atlonally N using h!gh en-
hadrons differs essentially from that of any other known&ray scattering to measure the light cone distribution of

. . . ._quarks and gluons in the nucleon. As a result of several de-
composite systems. Gluqns In QCD are .essen.tlal dynamm&ades of experimental effort at SLAC, Fermilab, CERN, and
degrees of freedom, unlike the boson fields in atoms an

nuclei which may be subsumed into a two-body interaction ESY, we now have a detailed knowledge of the quark den-

. o sity and helicity distributions and of the gluon distribution
thereby reducing these systems to purely fermionic degreeta_S]_ In addition, major new experiments are being planned

of freedom. Almost all of the mass and approximately hah‘.ofat these facilities as well as at Jefferson Lab and the BNL
the momentum and angular momentum of & nucleon arisege|ativistic Heavy lon CollidefRHIC) to map out the quark
from gluons. Indeed, even the net spin 1/2 arises from a richng gluon structure of the nucleon in even more detail. Now
and complicated combination of orbital and intrinsic angularihat the techniques of lattice field theory and computer tech-
momentum of the quark and gluon fields. Since the usuahology have developed to the point that it will be possible to
analytic tools of theoretical physics have proven inadequateolve QCD with a precision comparable to experimental
to solve nonperturbative QCD, the only known way to solve,measurements, it is essential to complement this massive ex-
rather than model, QCD, is a numerical solution of latticeperimental investment with a commensurate theoretical ef-
field theory. Hence, the ultimate goal of this work is to usefort in lattice QCD. Because deep inelastic lepton scattering
measures correlation functions close to the light cone, struc-
ture functions are intrinsically Minkowski and cannot be cal-
*Present address: DESY, Platanenallee 6, Zeuthen 1573@ulated directly in lattice QCD. However, using operator
Germany. product expansion, it is possible to calculate their moments.
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In this work, we report the first calculations of these mo-the fact that in quenched QCD the coupling runs too fast,
ments in full QCD[9]. As will be emphasized below, these producing a potential that becomes too weak at the short
present calculations are subject to significant limitations duaistances probed by the relatively heavy strange quark. Al-
to current computer resources. though there is no simple argument suggesting the sign of the
The second aspect is understanding the basic mechanismesulting discrepancy in other specific observables, it is im-
underlying nucleon structure—that is, how QCD actuallyportant to see to what extent quenching causes the discrep-
works. Hence, we seek to use the lattice as a tool for insighéincy in the axial charge and the first moment of structure
as well as for numbers. There are several ways lattice calcifunctions. Thus, a primary goal of this work is to study the
lations can provide insight. One is to calculate the overlapole of the quenched approximation. Although the effects of
between a trial wave function and the exact nucleon waveéne lattice spacing and lattice volume are still significant po-
function to explore the role of various degrees of freedomential sources of error, it is meaningful to compare quenched
and variational parameters. Thus, this work will present aand unquenched calculations on comparable lattices in physi-
prototype variational calculation in which the rms radius of acg| ynits to explore the magnitude of errors due to quench-
trial _function is varied. A second is_to study the contributionsing_ Hence, we will compare full QCD calculations using
of different cllasses of Feynman diagrams that correspo_nd t@onfigurations produced by the SESAM Collaborat[ds]
separate lattice contributions to operators. An example is thﬁt,B:S.G with quenched calculations on comparable lattices.

class of connected diagrams considered in this work. Finally, .-« it has been conjectured that the discrepancy be-

since the Iattlce_ Monte Carlo (_:alculatlon StOCha.St'Ca”ytween lattice calculations and experimental moments of
samples gluons distributed according to the QCD action, one

can identify and study the dominant configurations. HencestrUCture functi.ons arisgs primarily from quenching, one ma-
this work will study the role of instantons and their associ—fOr result of this work is to show that at the quark masses

ated zero modes in calculating moments of structure func2tt@inable at present, this explanation is wrong.
tions. The final limitation is errors in calculating the large vol-
There have been several calculations of moments of strudlMe, small quark mass limit. Since the lattice volume must
ture functions in recent years, including contributions of con-P€ large enough that the pion Compton wavelength fits well
nected diagrams to low moments of the Spin_independeHﬂSide and inversion algorithms become less efficient for
and longitudinal spin-dependent structure functions inlight quarks, it is presently impossible to perform full QCD
quenched lattice QCIPL0—-12,9, disconnected contributions calculations with dynamical quark masses corresponding to
for the axial and tensor chard#3], and the axial charge in physical pions or even to pions sufficiently light that chiral
full as well as quenched QC[14]. Interestingly, in contrast perturbation theory gives reliable extrapolations. Thus, a ma-
to spectroscopy, there are significant discrepancies betwegor uncertainty is the extrapolation from the relatively heavy
these hadron structure calculations and experiment. Wheregsiark masses used in lattice calculations to the small quark
quenched masses for light hadrons are typically accurate atass required to produce the physical pion. This is particu-
the 5% level, the axial charge is typically 10—20 % Ipi5] larly worrisome for calculating hadron structure because of
and the first moment of the spin averaged structure functiothe major role played by the pion cloud in the nucleon. Since
is of the order of 50% highl10,11. By the variational prin- a small box and heavy quarks suppress the pion cloud, it is
ciple, we know that an error of orderin the wave function not surprising that the nucleon magnetic moment, much of
only produces an error of ordef in the expectation value of which comes from the pion current, is low or that the axial
the energy, or mass in this case, so it is consistent that thesiarge is too small. Indeed, model estimdtes,18 show
other observables should be much better diagnostics thahat both discrepancies plausibly arise from omission of the
masses of the errors in the lattice calculation of hadron strudull contribution of the pion cloud in present lattice calcula-
ture. Hence, we need to identify and correct the source ofions. Hence, a second major result of this work is to show
these substantial discrepancies. how an extrapolation incorporating the leading effects of chi-
There are three major limitations in structure calculationsral symmetry can simultaneously resolve the discrepancy in
imposed by limitations in computational resources. The firsthe lowest three moments of the spin averaged structure
limitation is errors in approximating the continuum limit. function.
The approach to the continuum limit has been studied sys- The outline of this paper is as follows. Section Il provides
tematically in quenched QCD by the QCDSF Collaborationthe background and defines the operators we evaluate. Per-
[10] using Wilson and clover improved actions and extrapo-turbative renormalization is discussed in Sec. Il and techni-
lating in inverse couplings. A particularly careful study was cal details of the lattice calculation are given in Sec. IV.
carried out for the axial charge which showed that, everSection V presents the results, including the overlap of trial
when theB dependence is included, there remains a 10%wvave functions with lattice hadron ground states, comparison
discrepancy with experimefi5]. of observables calculated with quenched and unquenched
The second limitation is the quenched approximationconfigurations to study quenching errors, comparison of ob-
which ignores the contribution of dynamical quark-antiquarkservables calculated with cooled and uncooled unquenched
excitations in the Dirac sea. It is now known that, whereasonfigurations to study the role of instantons and their asso-
full QCD gives a good description of the masses of the hadeiated zero modes, and comparison of linear and chiral ex-
rons containing strange quarks, quenching causes significatrapolations with phenomenology. A summary and conclu-
discrepancies in masses. Physically, this is consistent witkions are given in Sec. VI.
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Il. BACKGROUND The odd momentgx"), are obtained from the spin-
independent structure functios or F, measured in deep

_ ~inelastic electron or muon scattering
By operator product expansion, moments of the linear

combinations of quark and antiquark distributions in the pro-
ton

A. Moments of nucleon light cone quark distributions
1 1
fodxx”*&(x,QZ)=§cz<Q2/u2>Z ef(x" 1), (),
1 _
(X")q= fodxx’[q(x>+<—1>“+1q(x>], (1) ®)

1
1 _ -2 2\— V(02,2 2/ n—1
<X”>Aq:fodxx”[AQ(x)Jr(—l)”AQ(x)], fodxxn Falx, Q%) = CH(Q ) 2 e ")q, (),

. 1 = and even moments k"), are determined from the spin-
(X" 5q= fo dxxX"[8q(x)+(=1)""8q(x)], dependent structure functiany
where the quark density, helicity, and transver§it9] distri- 1 1
butions fo dxxgy(x,Q%) = ZCﬁ(Qz/Mz)Z e 2(x") aq, (1),
6
a=q;+qy, ) ©
Ag=q,—q,, wheree, is the quark’s electric charge ari@}, denotes the
Wilson coefficient. Note that the moments"), and(x") o4
5q=q-—q, are proportional to the quantities,, ; anda,, defined in Ref.
’ [10]:
are related to the following matrix elements of twist-2 opera-
tors: ny —, () 7
(X >q Untis (7)
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1
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3 In addition, the two spin-dependent structure functigns
andg, also determine the quantity,:

2
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m_N<Xn>5qu[MP{V] Pﬂl' o Pun}

which is a twist-3 operator and does not have a simple
P S> interpretation in terms of parton distribution functiof0].

However, since with Wilson fermion§y5y[UD{M]~ Dy
oL mixes  with  the lower  dimension operator
Here,D=D— D,_r deno_tes the quarkEl;avox,2 denotes the (1/a) Yo VoVing - _5%}, it is not possible to compare with
momentum fract!on parrled by the qualk=my, {} and[ ]. henomenological results using the perturbative renormaliza-
denote symmetrization and antisymmetrization, respectivel

d the mixed is fi od and ion constants and mixing coefficients calculated in this
and the mixe Sy'.“me“l‘/{ 13 term s first symmetrized and oy Either nonperturbative renormalization is requif2d]
then antisymmetrized so that it is written explicitly as

as has been carried out [@2], or the operators need to be
recalculated with overlap fermiori23] or some alternative
0[50'{ EL(O5 0" formulation for which mixing with lower dimension opera-
I R M) tors does not occur.
Even moments(x"), are obtained from deep inelastic
neutrino scattering, and, in addition, a variety of other pro-

<

i\n_ .
E<P%(§) V' rs0uDuy Dug¥f’

+05 -0° ). (@
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TABLE |. Operators used to measure moments of quark distributions. Different lattice operators corre-
sponding to the same continuum operator are denoted by superscr@ois b. Subscripts of irreducible
representations of ) distinguish different representations of the same dimensionality and superscripts
denote charge conjugatioB. In the operator mixing column, “N©’ indicates a case in which mixing
generically could exist but vanishes perturbatively for Wilson or overlap fermions and*“Nimdicates
perturbative mixing with lower dimension operators for Wilson fermions but no mixing for overlap fermions.
The entry in columrP denotes the number of spatial components of the nucleon momeétinat must be
chosen nonzero. Operators requiring one nonzero component have been writeein fitve 1 direction and
Sin the 3 direction.

Observable i) Mixing p Lattice operator

<X>£1a) 63 No 1 57{164#1

<X>51b) 3/ No 0 9740,49-3(9710:19+q7,0,0+qy3050)
(x*)q 8; Yes 1 57{15154}q— 304(v2D2D4+ 13030410
<X3>q 2 No* 1 57{1616464}(1+a’>’{2626353}q*(3H4)
(Daq 4 No 0 CRR2e

<X>(Aaf; 65 No 1 E?’S 7{163}(1

<X>gbc; 6; No 0 qy° ’}’{364}(1

(X*)aq 4; No 1 5757{16364}q

(1) sq 6, No 0 7% 03,0

(X)5q 8, No 1 a7503{461}q

d; 6, No** 0 5757[354](1

d 8 No** 1 97° D044

cesses have contributed to what is now a detailed empiricalentation that does not mix with lower dimension operators,
knowledge of the quark and antiquark distributions in thesince the coefficients would increase as"lin the con-
nucleon. Hence, we will subsequently compare our result§inuum limit. In addition, because of the possible inaccuracy
with moments calculated from the CTEQ, @kiReya-Vogt  of perturbative mixing coefficients and the difficulty of de-
(GRV), Martin-Roberts-Stirling (MRS),  Gluck-Reya-  termining mixing coefficients nonperturbatively, it is desir-
Stratma}nn-VegeIsangsRS\/), Gehrmann-StirlingGS) and  gple to avoid mixing with operators of the same dimension
global fits to the world supply of dafd—5]. The moments of 55 well. In choosing between operators with the same mixing
parton distributiongx”) (), (X")aq(#), and(x") 5(1) are  properties, it is desirable to use a nucleon source with as few

scheme and scale dependent, and we will convert our latticg§;nzero spatial momentum components as possible, since

matrix elements to the modified minimal suzbtractidVIS) each projection introduces substantial stochastic noise. In
scheme and evaluate them at the sgafe 1/a’~4 GeV’. fact, we will subsequently show that with available configu-
rations it is not possible to obtain adequate statistics in any
B. Lattice operators momentum sector other tham=0. Since any expectation

Our objective is to calculate matrix elements of tracelessyalue of an operator with tensor indgis proportional toP;
appropriately symmetrized and antisymmetrized operators dpr S; for spin-dependent quark distributionghe nucleon

the general form must have an additional momentum component projection
o . . for each new distinct tensor index that is added to an opera-
O=yI'y, D, Dy ¥ (9)  tor. Hence, the goal is to limit the number of distinct spatial

indices. Eventually, as one proceeds to higher moments of
where'=1, ys, or ysy,, on a hypercubic lattice to ap- quark distributions, all the space-time indices are exhausted
» Y5 o

proximate the corresponding continuum operators as acci@nd it becomes impossible to avoid mixing with lower di-

rately as possible. Hence we choose representations of tHBENSION operators.

hypercubic group k&) [24], to eliminate operator mixing as The representations we have chosen for our operators us-

much as possible, and after satisfying this objective, to mini{Nd thgse criteria are enumeratgd in Table_ [. To illustrate the

mize statistical errors by including as few nonzero compo-Selection process, we describe selection of the spin-

nents of the nucleon momentum as possible. ind_ependent operators and analogous analysis yields the re-
Since H4) is a subgroup of the Lorentz group, irreducible Maining operators.

representations of the Lorentz group are in general reducible TO measur&x), one needs to calculate matrix elements

under the H4) group, and we choose the representation toof the traceless part of the operatpy;,,D ,,q, which belongs

optimize the approximation. It is essential to choose a repreto the representatio(l,l) in the continuum decomposition
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Ill. PERTURBATIVE RENORMALIZATION

(11
®

2'2

1

2’ 2) (0.08(L0s(0.D&(LD. Since the phenomenological light cone quark distributions
with which we compare our lattice results are extracted from
On the lattice, the nine-dimensional representatidr)  experimental data using thdS renormalization scheme, we
splits into two irreducible representatioBs and6; , both  have converted our lattice calculations to 16 scheme in

of which are symmetric and traceless, where the notation fopne-loop perturbation theory using

representations is described in the caption of Table I. As a

consistency check, it is desirable to calculate operators from o 92 N2-1 __
each representation. For the first operator, den()tﬁg‘]) , we oi""S(QZ)zz ( Sij+ 02 2CN [yi'\J-"SIog(Qzaz)
select the basis vector 6f : J 167 c

(PlayuDyalP) =200 PPy, —(Bi*"T=B")] | 0" T(@?). (10

(b) i .
and for<x>q  we choose the basis vector f : The anomalous dimensiong; and the finite constants;;

are given in Table Il for Wilson fermions and the specific
operators considered. o

The Z factors that convert lattice results to thkS scheme
at scaleQ?=1/a® are equal to

. 11— o o .
<PQ’)’4D4q_§(Q71D1Q+Q7’2D2Q+Q3’3D3Q)P>

1.
:2<X>z(qb)'(P4P4— §P2 ,

4 _
Z(5=61B)=1-— > S (BAT-B™), (1
Note that sincéx)&b) involves y,D, it can be measured with 16

P=0 whereas sincéx)® involves y,0, it requires a state

proljzicrtffzfnt%é]no:i?ﬁg threésymmetrid representations the moments of quark distributions calculated in this work
g Y P will be presented at the scale p°= 4 GeV? in the MS

4, is appropriate, since they are not traceless and hence mX, cme.

with lower dimensional operators. The only representations Details of perturbative renormalization may by found in

with _tWO distinct indices are the _Or&'— , which is nf)t sym- Refs.[29,30,28. The results in Table Il are taken from Refs.
metric and must therefore be rejected, and the 8y/s, [30,23, in which the renormalization factors 6%) s, andd,
for Wilson fermions were calculated for the first time, and
oo 1 oo o oo the remaining operators were checked with earlier results in
E(V4D1Dl_ 5(7’4D2D2+7’4D3D3)>q Refs. [28,31,25,10,26,32 revealing a discrepancy in the
case of(x3),,.

and are tabulated for two typical values®fNote that all of

and
IV. LATTICE CALCULATIONS
#nfj“fjﬁ 715’15’4_ 3(725’45’# y25’25’4 In this section, we describe salient aspects of our lattice
2 calculation of proton matrix elements of the operators corre-
sponding to moments of parton distributions. Details may be
+ 30,05+ 735354))q, found in Ref.[33].

which mix as discussed in Ref@5—27. A. Connected diagrams

For <x3>q the following representations have positive Proton matrix elements of the operators in E8) are
charge conjugation and do not mix with lower dimensionalcalculated by evaluating the connected and disconnected dia-
operators2; , 2; , 35,3, ,3;, 6, , and6; . However, the ~grams shown in Fig. 1. Note that the term “disconnected”
only representations that require a single nonzero momentufigfers to diagrams in which the quarks are disconnected but
component are the tw@; 's, which generically could mix Of course, as shown in Fig. 1, the overall Feynman diagram
with each other but do not mix at the one-loop level foris still connected by gluons. It is important to recognize at
Wilson or overlap fermion$§26,23,2§. the outset that, although the connected diagrams involve

Note that in addition to the mixing discussed above, inthree propagators naively corresponding to the “valence”
full QCD there is also mixing between gluonic operators andduarks in a simple hadron model, the contributions of the
flavor-singlet fermion operators for moments of the quarkconnected diagrams do not necessarily correspond to the va-
density and helicity that will not be considered in this work lence parton distribution, ,;=q—q defined in phenomeno-
because we have not yet evaluated lattice matrix elements ¢dgical analyses of high energy scattering data. Rather, as
the relevant gluon operators. shown in Eq.(1), the odd moments dfx"), and(x") s, and
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TABLE Il. Renormalization constants.

Observable ¥ BLATT BMS Z(B=6.0) Z(B=5.6)
<x)§£‘> 8/3 —3.16486 —40/9 0.9892 0.9884
() 8/3 —1.88259 —40/9 0.9784 0.9768
ter 25/6 —-19.57184 —67/9 1.1024 1.1097
ter 157/30 —35.35192 —2216/225 1.2153 1.2307
(1)aq 0 15.79628 0 0.8666 0.8571
& 8/3 —4.09933 —40/9 0.9971 0.9969
00 8/3 —4.09933 —40/9 0.9971 0.9969
(X*aq 25/6 —19.56159 —-67/9 1.1023 1.1096
(1) sq 1 16.01808 -1 0.8563 0.8461
(X)sq 3 —4.47754 -5 0.9956 0.9953
d; 0 0.36500 0 0.9969 0.9967
d, 716 —15.67745 —35/18 1.1159 1.1242

even moments ofx"),q measured in deep inelastic lepton useful source-sink separation to less than half the total time

scattering correspond to the sum-q and only the even €xtent. Dirichlet boundary conditions prevent propagation

moments of(x"), and (x5, and odd moments ofx" from_ these image_ sources and allow utilization of a larger
. — fraction of the lattice volume for ground state operator mea-
correspond to the differenae—q.

surements. We note that the closely related Sdihger func-

It is technically much more difficult to evaluate discon- (5| houndary conditions used in a calculation of the aver-
necte_d diagrams than c_onnected. diagrams and results usigge quark momentum in the pion provide similar benefits
the eigenmode expansion technique that has recently beafg5]_

developed for this purpo4&4] are not yet available. There-
fore, in the present work, we will compare the contributions
of connected diagrams with flavor-nonsinglet combinations - )
of experimental results. Because the coupling of the discon- 10 facilitate measurement of proton matrix elements, we
nected loop to the rest of the diagram is flavor independenf}@ve optimized the overlap between a computationally effi-
the disconnected diagrams do not contribute to the differencgl€nt nucleon source and the proton ground state. The start-
between the moments for degenerate up and down quark&'d POt is the interpolating field for the proton

For example, the axial charge can be calculated directly from J= €T UAC ysdPuc, (12)

differences of connected contributiorgy=(Au+Au—Ad

B. Sources

where C denotes the charge conjugation matrix. This field

_Ad>C°”f?e°te°‘ Hence, we wil subsequently compare Ourcorresponds to the nonrelativistic quark model wave function
results with moments of flavor-nonsinglet combinations of ,po ab . aiby c : T
€ c[qul—ul t]uy in the nonrelativistic limit. Since trun-

the sums or differences of phenomenological quark and anc'ation of the lower components does not significantly reduce
tiquark distributions. p g y

One technical difference between our calculations an s overlap with the physical protdi86] we save an overall

those of other works is the fact that we use Dirichlet bound-"’lr(c:)toarl cgtgr;r}rg?nmtﬂitinolracnngtgLa:egnetsbgf (t:f?leCLS“OaLtjl:(]:% only
ary conditions for the valence fermions in the time direction.P AF\) gh wn below in psp Y it? in Eq. (12) i iﬁt
With periodic or antiperiodic boundary conditions, contribu- S sho €lo ec. V. q- S apo

tions from the images of the sources and sinks restrict thgoUree: the Qve”ap with the _nucleon_ ground state Is of .the
order of 10 %, so generalization to finite spatial extent is

desirable. Since the source must be factorizable in order for
matrix elements to be calculated from single quark propaga-
tors, we use distributed quark fields with adjustable spatial
extent. In Ref[37], it was shown that gauge fixed sources
with Gaussian wave functions and gauge invariant smeared
Wuppertal sourceg38,39 produced comparable results, and

for computational convenience we use the latter.
The smeared wave function is defined[46]

N =(1+ aH)Ny°

3

FIG. 1. Connectedupper row and disconnectedlower row) where H:E (U, iJFUTJ )
diagrams contributing to hadron matrix elements. The left column i=1 ’ neht
shows typical contributions of quarks and the right column shows 0/
contributions of antiquarks. and  ¢7(n)= 6, (13
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and reliably fit the largé behavior of the correlation function
to extract the ground state contribution

B=C|(J|0)/?, (16)

£ the probability that the source contains the proton ground
g state is given by
.
- B 5
P(0)= 5 =KW,[0)P. an

The importance of maximizing the overlap of the source
with the proton is particularly clear when one considers the
three-point function used to calculate matrix elements:

" 0 0
Number of lterations Alpha

(J(ta) O(t2)d(t1))
FIG. 2. The rms radius of a gauge invariant smeared quark
source as a function of the coefficiemtand number of smearing _ —Ep(t3—ty) —Em(ta—ty)
stepsN defined in Eq(13). C;ﬂ (g n)(n|Olm)(m|¢;;)e .
with the spatial extent being controlled by the coefficient of (18)
the nearest neighbor hopping teran and the number of o _
smearing step. The distribution is approximately Gaussian  Although the contribution of a Contamlgam|n>~ €to
with an equilibrated gauge field producing a narrower dis- the two-point function Eq(14), is of ordere?, the contribu-

tribution than for the free case. A convenient measure of thdon to the three-point function Eq(18) is of order
smearing is the rms radius €(n|0]0)/{0]|©|0). Depending on the off-diagonal elements

of any particular operator, the error when the operator is
32 % 12 close to one of the sources may be substantial, and the sign
d*xrey*y of the contribution is undetermined. Specific examples will

Frms=(r%)"?= ) be seen in the plateau plots presented in Sec. V.

f d3xy*
C. Sequential propagators

and Fig. 2 shows howi, depends on the parametéisind There are two alternative strategies for calculating the

a. As one expects from the free case and from the'fact thatEonnected diagrams in Fig. 1 with sequential propagators.
smeanngis a random_ walk governed_ by the gauge fields, th5sing a propagator from a fixed source to all poixggimes
ms Tad'“S IS approxmately pr_oportlonal (. Note that the operatoiO(xy) as a new source to propagate to an arbi-
the. size Qf the source is nearly independer dor a>3’ at trary sink location allows one to calculate matrix elements of
which point the constant term in E(L3) becomes negligible the operator between all source-sink separat[dgsl4,41—
relative to the hopping term. In the calculations_de_scribed in44]. The matrix element is then obtained from the Iinéar term
Sec. V, we setr=3 and useN to adjustr s to optimize the i, ha fime separation between the source and sink. The
source. . . . SESAM Collaboration has used this variable time extent
The source is o_pt|m|zed by maximizing the oyerlap be-method to calculate the axial charfyed] for the configura-
tween the normalized state created by the action of thg,ng sed in this work, and we will compare our results with
source on the QCD vacuufi¥’ ;) =NJ|Q) and the normal-  theirs in Sec. V. However, the fact that a new set of propa-
ized ground state of the protg@). Denoting the momentum  gators must be calculated for each operator makes this alter-
projected normalized eigenstates of the proton|hy and  native too costly for the large set of operators of interest in
their energies byE,, the momentum projected two-point this present work.

correlation function may be expanded: The alternative we will use is to combine two forward
propagators from a fixed source, smear them, and momen-
(J(t)J_(O)):CE (5|n)y|2eEnt (14) tum p_roject on a specific time slice to create a sink, and use
n this sink as a new source for a backward going propagator

[45]. The matrix element for any operator can then be ob-
whereC is an unknown normalization constant. Since onetained by combining forward and backward propagators with
can directly measure the correlation function at zero timehat operator. Because the time separation between source
separation and sink is fixed in this approach, the effect of this separation

has been studied and optimized as described in Sec. V. The

A=<J(O)J_(O)>=CE |<J|n>|2 (15) details of calculating matrix_ elements with these sequential
n propagators are described in the Appendix.
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D. Lattice data analysis which overestimated the actual statistical fluctuations in the

To ensure that the systematic and statistical errors are wellateau region. This is the reason we selected the plateau fits
understood and Controlled, we have used several methods g% our primary ana'ysis and view the exponentia' fits as a
analyze the lattice measurements of matrix elements. secondary consistency check.
prelgecr)wltjer dpir:ntzrgleasnglr?/dszlr av;ulghv:/se udse?cg]éo; ?:”erﬁ?r?alrevz\ﬁr?gzw To further ensure that we understood our statistical errors,
for the location of the insertion of the measured operato e also exammeq bootstrap distributide] for all our ob-

servables at the lightest SESAM quark mass. An ensemble of

[tsourcet Ot,tsink— Ot] in which contamination from excited > . . .
states in the source or sink has negligible effect. We averag%zeM was created by randomly picking configurations from

the ratio of three-point to two-point functions over this win- the original sample with replicatiol?, and typical c_iistri_butions
dow and use the jackknife methd6] to estimate the aver- Of values of measurements ¢k){’ are shown in Fig. 3,
age value and variance. For smeared sources, we éised where M=2000 and the sample sizes in the left and right
=3 and for tests with unsmeared sources we have also uséigures are 25 and 204 configurations, respectively. Three
ot=5. error bars are shown in each case: the basic jackknife error
As a secondary analysis, to ensure that we have avoiddear which is calculated independently of the bootstrap pro-
systematic errors from excited state contaminants in the plesedure, the 68% confidence interval based on the bootstrap
teau region, we have also fitted the form distribution, and the statistical variance of the bootstrap mea-
surements. The three arrows correspond to the jackknife re-
sult, the median of the distribution, and the mean of the
distribution. This figure shows that for a sample size as small
as 25, the distribution is far from Gaussian, the three error
over the whole range between the source and the sink. Thears differ significantly, and even the arrows disagree
exponentials correcting for the contaminants are symmetriglightly. For the large sample size 204 used in our full data
because we have used the same smearing in the source lysis, everything is consistent: the distribution is nearly
sink, and the value for the matrix elementRs. Gaussian, the three errors are consistent, and the three arrows
From our data, it was only possible to determine one paigre equivalent. Thus, the bootstrap analysis gives added as-

of exponentials, and we used a jackknife estimate on theurance that the statistics are understood and under control.
fitted values ofR, to determine the error. For operators for

which the errors were small enough that the exponential con-

taminants were well determin.ed. and stablg, the plateau qnd V. LATTICE RESULTS

exponential fits produced statistically consistent results with

comparable errors. This ensures that our primary results do This section presents the results of our calculations of
not have statistically significant bias from excited states. Inmoments of quark distribution functions in full and quenched
some cases, the exponential contaminants were poorly detégCD, as well as relevant tests of the lattice technology and
mined and produced spurious fluctuations in the analysisonsistency checks.

R(t)=Ro+ >, (bje St+be () (19
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TABLE Ill. Parameters specifying the full QCD, quenched, and cooled gluon configurations used in
calculations of moments of quark distributions. For full QCD calculations, the number of hybird Monte Carlo
trajectories between measurements is given in the last column.

Data set QCD L;’;x L, B Ksea Kyal Approx. Trajectory
No. configs. separation
SESAM Full 16x 32 5.6 0.1560 0.1560 200 25
0.1565 0.1565 200 25
0.1570 0.1570 200 25
0.1575 0.1575 200 25
SCRI Full 16x 32 55 0.1596 0.1596 100 20
0.1600  0.1600 100 20
0.1604  0.1604 100 18
MIT Quenched  18x32 6.0 my=  0.1530 200
0.1540 200
0.1550 200
SESAM-cooled Cooled <32 5.6 0.1560 0.1235 100
0.1570 0.1246 100

A. Lattice gluon configurations determine the parameters of an extrapolation incorporating

The parameters specifying the full QCD, quenched, andhe behavior knpwn_ from chiral pertur.bati.on theory, most of
cooled configurations used in our calculations are tabulateU" data analysis will be based on naive linear extrapolation.
in Table IIl. The full QCD configurations were calculated Thls extrapolation is still useful because it cr|§ply framgs the
using the hybrid Monte Carlo algorithm by the SESAM Col- ISSues that need to be confronted in comparisoatofnitio
laboration[16] at 8= 5.6 and by the SCRI Collaboratigng] ~ attice calculations with experiment.
at B=5.5. The quenched configurations were calculated at
MIT at B=6.0 to be directly comparable in lattice spacing to
the unquenche@=5.6 configurations, and the cooled con- Due to limitations in presently available configurations
figurations were obtained by applying 50 cooling sweeps tdor Wilson fermions, extrapolation to the continuum limit is
the SESAM configurations as described later. even more problematic. Table IV summarizes the parameters

The practical limitations associated with these configuraand lattice spacings for configurations that are presently
tions pose significant problems in extrapolating to both theavailable for dynamical Wilson fermions. Since we are cal-
chiral and continuum limits as required to compare with phe-culating nucleon properties, we believe it is most consistent
nomenological data. to set the scale using the lattice spacing determined from the

nucleon massay . Unfortunately, there is a large discrep-
Chiral extrapolation ancy in determinations oy, and for qualitative purposes
A common criterion to keep the pion correlation length W& have assumed the behavior given by the LANL results,

significantly smaller than the physical size of the lattice and®iNce this is the only data set in which one group calculated
to avoid unphysical interactions with periodic images is toconsistently at three differer. _ _
require that the pion Compton wavelength be less than one- On€ goal has been to use a comparison of calculations of
fourth the spatial dimension of the lattice. Resources limit ugnoments of quark distributions using SCRI configurations at
to 168X 32 lattices. At 3=5.6 the lattice spacing i@ B=°> and SESAM configurations #=5.6 to obtain an
=0.091 fm and hence the lattice dimension is only 1.46 fmindication of the finite lattice size dependence, and we rgport
Thus, the pion mass must be greater than 540 MeV. HOW[gsults from'bothB’s bglovy. However, the problem of finite
ever, even for the lowest SESAM quark mass, which exceed¥%€ effezcts is shown in Fig. 4, where we present scaled val-
this criterion, there are significant discrepancies betweeH€S ofm7 at different values of3 for the data sets in Table
mass measurements on®¥®82 and 24x 48 lattices[49], V- The scaled mass squaredini,)’x (ase/a)?, converts
indicating serious finite volume effects. Hence, in our finalthe mass in different lattice units at eaafto fixed lattice
analysis, we have only included the heaviest three SESAMINits at3=5.6 for ease of comparison. Thus, the ordinate is
quark masses in our results. proportional tome in physical units, and 0.05 corresponds to
As discussed in detail in the final section, much of them?=0.24 Ge\f or m,=490 MeV. The dotted line shows
physics of the pion cloud of the nucleon is omitted on athe point at which the pion Compton wavelength equals one-
lattice of size 1.46 fm with pions heavier than 540 MeV, so itfourth of the spatial dimension. Given that the lowest
is unreasonable to expect naive linear extrapolation of calcUSESAM point has significant finite size errors, we expect
lations in this regime to accurately include the quantitativelythat the lowest two SCRI points have comparable contami-
important physics of the pion cloud. However, since we donation from finite size effects. Since there are no SCRI points
not presently have data in a regime in which we can fullycomparable to the highest SESAM points, there is no way to

Continuum extrapolation
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TABLE IV. Parameters and lattice spacing for published dynamical Wilson fermion calculations. This
table summarizes calculations or*¥632 lattices and the resulting determinations of the lattice spacing from
the masses of the nucleoay, and from thep meson,a,, .

B=6lg3 Kerit ay (fm) a, (fm) Ref.

LANL 5.6 0.1585 0.08614) 0.0769) [73]
55 0.16145 0.116) 0.1045) [73]

5.4 0.16450 0.1649 0.1369) [73]

HEMCGC 5.3 0.16794 0.124) 0.1082) [74]
SCRI 55 0.16116 0.109) 0.0903) [48]
SESAM 56 0.1585 0.0916) 0.07610) [16]

delete the lowest SCRI points and perform an extrapolatiomhat the overlap increases fronx@0 ° for a point source to
comparable to that for the SESAM extrapolation. Hence, wed.5 for an rms radius of the order of 4.5 lattice units. Clearly,
believe that the differences between the moments of quarthis four-order-of-magnitude increase is a dramatic aid in
distributions calculated with the SCRI and SESAM configu-improving the plateau for measurements. Based on these and
rations is an undetermined combination of lattice spacingnalogous calculations g8=5.5, the optimal Wuppertal
errors and finite volume effects. New dynamical Wilsonsmearing occurs at a physical rms radius of 0.4 fm, which
quark calculations are under way A&5.5 andB=5.3 to  corresponds tax=3 andN=50 at 3=5.6 anda=3 and
separate these finite volume and finite lattice spacing effecttN=30 at3=5.5.
Note that this overlap calculation opens the possibility of
B. Source optimization performing instructive variational studies of the nucleon

. . . round state. Already, a very simple quark and gluon wave
To obtain as much physics as possible from the SESA unction made up a product of three Gaussian single-particle

o . ; . . Riave functions smeared with surrounding links of glue has a
timized in the|r overla}p V\.”th the' grounq state and with €500 overlap with the full ground state and is measured with
spect to their separation In Euclidean tme. 2 good statistical accuracy. Hence, it should be straightforward

As discussed in Sec. IV B, the rms radi{rs)"* charac- nd practical to investigate variationally the extent to which

B _ 2 .
proton wave f_unctlor.P(O)—l(\PJ|0>| - Figure 5 shows the diquark correlations, or of changes in the gluon wave func-
overlap, with jackknife errors, between the smeared sourc on

and the proton ground state as a function of the source rms The optimal separation between source and sink is a com-

radius in lattice units, calculated #=5.6,«=0.1575, and promise between two competing effects. As the separation

smear(ijng paLameterz :fj.."lfher?umli)er of smea]\cring szten)a, hnereases, the size of the usable plateau increases, reducing
to produce the rms radii in this plot ranges from 20 at thegy tamatic error and in principle allowing for increased sta-

lowest nonzero point to 250 for the highest. It is interestingci| accuracy from averaging over an increasingly large

025 region. However, the propagators themselves are exponen-
° ASESAM - T T T T T T
OSCRI
L o OLANL
K OHEMCGC
0.20 o &, o HEMCGC
g o 4
A
o 015
S o ° ol
g ° A ©
§ o010 @ P(O) { { t ‘f H
8 <l _
A (=]
<
0.05 e &t + l
o B el 1
: §
0.00
5.20 5.30 5.40 5.50 5.60 5.70 5.80
B °© [} 1 2 3 4 5 [}
<12

FIG. 4. The scaled pion mass squaream{)’X (as ¢/a)?, for
the dynamical Wilson fermion calculations tabulated in Table IV. FIG. 5. Overlap between a smeared source and the proton

The dotted line shows the mass at which the pion Compton waveground state as a function of the source rms radius. The overlap for
length equals one-fourth of the spatial dimension. zero smearing is 81075,
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FIG. 6. Plateaus fo(x)éb) calculated with point sources separated by(l&ft) and 12(right) time steps using 100 configurationst
=5.6 andxk=0.1575.

tially decreasing with separation and the fractional error withupper right panel of Fig. 7. These well-defined plateaus are
which they can be measured increases exponenti@tys is  typical of all our measurements of operators in a zero mo-
analogous to the exponential error growth in the measureyentum ground state and show why we obtain consistent

ment of Wilson loops or Polyakov lines, but because the . its with plateau and exponential fits and satisfactory sta-
measurement of the three-point function is intrinsically non-

local, it is not amenable to the error reduction techniques Opsucs. In the case of projection °F“° nonzero momentum
Liischer and Weis50].) ground states, errors are substantially larger. Although we

To determine the optimal compromise between these tw@lso report these nonzero momentum resullt.s in this WOI‘k,. the
competing effects more quantitatively, plateaus were calcueTors are generally unsatisfactory and additional calculations
lated as a function of the source-sink separation for poinwill be carried out to improve their statistics.
sources, and the results f@()éb) using 100 configurations at One other optimization was investigated, but turned out to
B=5.6 andk=0.1575 are shown in Fig. 6 for time separa- produce minimal improvement. There is considerable free-
tionsAT=12 and 14. The errors faxT=14 are 50% larger dom in selecting lattice operators from the irreducible repre-
than forhAT=12, and becorr?ehprohib:tiveff%r[élfg]rgehr S?para-sentations tabulated in Table I. For example, instead of the
tions. This is consistent with the results o , that for ; N P N g
a 16'x 32 lattice in quenched QCD with= 6.0, which has a basis vectgrqyiD‘lq 3(471D10+072D2q+qy3D50) of
comparable lattice spacing, the error bars grow significantl;?egresf”tat'oml , one could equally well choosgy,D.q
for AT>13. Although the plateau region fakT=14 is —qvy;D;q for i=1, 2, or 3. Since the directioin=3 is in-
hardly present alT=12 for point sources, one may still equivalent to the other two spatial directions because the spin
extract the correct matrix element using the exponential fi{s polarized in the 3 direction, one can find numerically the
method described in Sec. IV D. Furthermore, using optimabptimal combination of the basis vectors that minimizes the
smeared sources to enhance the ground state overlap by fayriance in the measurement(o:f)gb) . However, in the end,
orders of magnitude decreases the excited state contaminag{s, reduction in the statistical error is only about 7%, so this

to the point that a well defined central plateau is recognizegafinement was not implemented in our production calcula-
for AT=12 as shown below. Hence, to reduce the overalljgns.

statistical errors in our calculations, it is optimal to use a
physical separation of approximately 1.1 fm in the time
direction, which corresponds tAT=12 for SESAM con-
figurations at3=5.6 and toA T= 10 for SCRI configurations This section summarizes a number of consistency checks
at B=5.5. that have been performed to ensure the reliability and accu-
The final quality of the plateaus used for measurements dficy of our calculations of moments of quark distributions.
operators in a zero momentum ground state are shown in Fig.
7, where we plot measurements of the operators
()P (1)2q.(x)8), and (1) 5 as a function of Euclidean  One potential pitfall of optimizing sources to increase the
time for an ensemble of 200 SESAM configurations wih size of the plateau region is the possibility that, although
=5.6 and«=0.1560. The improvement in the plateau for excited state contaminants appear to have been diminished,
(x)% produced by smearing is seen by comparing the rightinobserved systematic errors may have sneaked into the pla-
panel of Fig. 6 and the upper left panel of Fig. 7. Note alsofeau measurements. To ensure that such systematic errors
as emphasized in connection with H@8), that the sign of have not been introduced into our present calculations, we
the exponential contaminant near the source or sink may beave evaluated the operators of interest for various combina-
either positive or negative, with a small negative contributiontions of source and sink combinations. Figure 8 compares the
arising in the case of the axial charge),, shown in the  results for(x){, (1)5q, and(1) calculated using point-

C. Consistency checks

Sources

034506-11
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FIG. 7. Plateaus obtained using optimally smeared sourcesawitB andN=50 separated by 12 time steps on SESAM configurations
with 4=5.6 andx=0.1560. Measurements as a function of Euclidean time of the opexadf’, (1)aq. (X){), and(1) s, are shown in
panels(a), (b), (c), and(d), respectively. Circles and squares denote matrix elements for up and down quarks, respectively, the error bars are
smaller than the symbols and shown within them, and the solid lines denote fits within the plateau region.

point, point-smeared, smeared-point, and smeared-smearsdme as in the previous case. Again, the observables are con-
source-sink combinations, showing that in all cases the resistent for all three cases, although the error bars become
sults are statistically consistent. Forty configurationsBat substantially larger for the largest smearing because the size
=5.6 were used with a source-sink separation of 12, and thef the paths of link variables generated by the smearing in-
smeared sources hat=20 smearing steps. Each cluster of creases significantly.
four error bars corresponds to four different window sizes
over which the measurements were averaged, characterized
by the number of points omitted at the source and sink. The The Dirichlet boundary conditions in Euclidean time we
case shown in Fig. 7, denot¢8,3), corresponds to omission have used enable us to calculate the exponential decay of
of three points at the source and three points at the sink arivo-point functions far beyond the midpoint of the lattice
is shown at the left of each cluster. With a separation of 12vithout the usual contributions of the propagation of the par-
lattice spacings, there are 13 points in all, of which six argty partner of the nucleon from the first images in the time
deleted, leaving a measurement plateau of seven. The rdirection. Only within a few lattice points of the edge of the
maining error bars in each cluster correspond3®), (5,3, lattice do artifacts associated with reflection from the bound-
and(5,5) points omitted at the source and sink, respectivelyary (or, equivalently, negative image charydgcome sig-
Thin lines denote cases in which the window comes toadificant. To verify that the choice of boundary condition does
close to either a point sink or point source and overlaps witthot affect the measured values of hadronic matrix elements,
a region with contamination from excited states, and the erFig. 10 shows the results of measuring the operators
ror bars denote jackknife errors. (x)éb), (L)aqs (1)sq, and(x),q using Dirichlet and peri-
Figure 9 shows a related comparison of the measurementslic boundary conditions. Note that, although the results are
of the same three observables in which the source and sirdtatistically consistent, our choice of Dirichlet boundary con-
are smeared with=0, N=20, andN= 100 smearing steps. ditions significantly reduces the error bars for some opera-
The window sizes within each cluster of error bars are theors, such agx) and(1),q.(1) 5.

Boundary conditions
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FIG. 8. Comparison of operator measurements using combina- G. 9. Comparison of operator measurements using smeared

. . . . f different sizes. From left to right, the three clusters, each
tions of point and smeared sources and sinks. From left to right, thgourees o ' '
P g containing four error bars, correspond k=0, N=20, andN

four clusters, each containing four error bars, correspond to poin = 100. The windows within each cluster and the operators are the
point, point-smeared, smeared-point, and smeared-smeared source=_ " .~

sink combinations, respectively. Within each cluster, from left toSame asin Fig. 8.

right, the four error bars correspond to windows in which the num-

ber of lattice points omitted from the window at the source and sinkmize the possible effect of correlations, the physical location
are (3,3, (3,9, (5,39, and(5,5), respectively. All smeared sources of the source and sink was shifted by 16 time slices on all

and sinks haveN=20 anda=3. From top to bottom, the panels odd configurations relative to those on even configurations.

show measurements of the operators” , (1),q, and(1) . Autocorrelation functions for 200 SCRI configurationsxat
o =0.1600 yielded a result statistically inconsistent with zero
Precision only for separation by two configurations, in which case the

In our production calculations, the conjugate gradient incorrelation was approximately G:2.15. Thus for the de-
version to calculate quark propagators was performed igrees of freedom relevant to our proton matrix elem_ents,
single precisior(to increase performance on the ES-40 clus-configurations separated by ten hybrid Monte Carlo trajecto-
ten using a perturbative stopping residug,,=10 4 and  ries with sources and sinks displaced by 16 time slices are
four restarts[51]. To verify that single precision with the independent, whereas those separated by 20 hybrid Monte
restart procedure provided adequate precision, we show tHearlo trajectories with the sources and sinks at the same
discrepancy between calculations of the axial che(rg)aﬁq, location still have nonvanishing correlations. The relative in-
calculated in single and double precision as a function of thélependence of measurements at different source and sink

residualr?, in Fig. 11. We note that all discrepancies are POsitions provides an attractive means of extracting addi-

min . . . .
already negligible at residuqzn- =10"*2 providing a two- tional physics from the available full QCD configurations
o ' that will be exploited in subsequent calculations.

order-of-magnitude safety margin.

Autocorrelation functions Two- and three-point functions

Autocorrelation functions were calculated for lattice mea- The nucleon two-point function may be calculated in two
surements ofx){” and(x),q using the SESAM ensemble at ways: by combining at the sink three forward propagators
x=0.1575 consisting of 200 configurations separated by 2%alculated from the source, or by combining a backward
hybrid Monte Carlo trajectories. Correlations for all nonzeropropagator with the sequential source. The agreement within
configuration separations were statistically consistent witlroundoff error of these two results was used not only as a
zero, and all indications suggest that the 200 configurationsheck on source methodology, but also at run time as a test to
are indeed independent for all the degrees of freedom relerify that stored forward and backward propagators had not
evant for the present measurements. been corrupted.

In contrast to the SESAM configurations, the SCRI con- Another check is to verify that the spatial integral of the
figurations are only separated by ten trajectories. To minimatrix element of the conserved nonlocal vector curfére
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FIG. 10. Comparison of operator measurements using Dirichlet ¥*
boundary conditiongleft cluste) and periodic boundary conditions
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Te14

Noether current for the discrete Wilson lattice ac}jon
(P|fd3x I N PY/(P|P), equals 2 and 1 for up and down
quarks, respectively. This relation must be satisfied configu- FIG. 11. Discrepancy between the axial chafljg, calculated
ration by configuration and is also used as a runtime test afi single precisior(solid curve and double precisio(dotted curve
the configurations. as a function of ¢ log;r2,,,) wherer?2,, is the conjugate gradient
An additional test of the source and sink construction is tostopping residue. From the top panel to the bottom panel, the
project the sink onto a fixed position in the sink time slice,source-sink separation increases from 9 to 14 lattice spacings.
rather than momentum projecting it, and to replace all link
variables by their mirror images. We have verified that thetion. In addition, we have verified that our measurements of
resulting three-point function is the mirror image of the the axial charge using the fixed source-sink separation
original result configuration by configuration. method for the three largest valuessohgree quantitatively
Finally, as discussed previously, matrix elements of operawith those calculated by the Wuppertal group using the vari-
tors may be calculated either with the variable time extentble time extent methofdL4].
method, in which one sums over all times at which the op- On the basis of these and other consistency checks, we are
erator insertion could occur and determines the slope of theonfident that the calculations of moments of quark distribu-
dependence oty;.,, or by measuring the plateau using the tions reported in this work are both reliable and accurate.
fixed source-sink separation as is done in this work. A con-
sistency check that is satisfied configuration by configuration
is that the sum of the three-point function over the interme-
diate time at which the operator is measured for a fixed In order to investigate the effects of quenching quantita-
source-sink separation should be equal to the variable timgvely, it is essential to compare quenched and unquenched
extent three-point function for the fixed source-sink separaealculations at equal lattice spacing using precisely the same

098 099
T

D. Quenched results
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| S fo--go--gf---== 4= O gt e—————]
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o~ L3 —f hed = 4= = * =

° o_ 012 024 o:e o:a ; . $ o Oj2 0:4 0:6 028 ;
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FIG. 12. Linear extrapolation of quenched calculations of the ~FIG. 14. Linear extrapolation of quenched calculations of the
momentum fraction(x)’ . The solid squares denote the results of axial charge(1),q, where the symbols are as in Fig. 12.
the present calculation, and for comparison QCDSF results are
shown by the open points. Here and in subsequent figures, the upp@ﬂd<X>,(Ab3 are shown in Figs. 14 and 15. The complete nu-
and lower curves correspond to up and down quarks, respectivelynerical data for these and other moments of quark distribu-

tions are tabulated in Table V. All results are presented in the

computational methodology. Hence, we have calculated maviS scheme withu?=4 Ge\? and extrapolated linearly
ments of polarized and unpolarized parton distributions inwith a least squares fit to the chiral limit. In these figures, the
quenched lattice QCD @ = 6.0, which is comparable to full measured values oh? at eachx were converted to physical
QCD atpB=5.6. These calculations also afford the opportu-units using 12=2 GeV.
nity to check our results with the extensive calculations by  Our results for all operators agree within statistics with
the QCDSF CollaboratiofiL0,15,22,52—5} For Wilson fer-  those of QCDSF, and Figs. 12—15 show typical comparisons.
mions atB=6.0, the criticalx is k,=0.1572, and we have Note that, for the three operators that can be evaluated in a
performed our calculations at=0.1550,0.1540,0.1530. TWO zero momentum proton ground Sta(eg)éb), (1)aq, and
of these values ok coincide with values used by QCDSF, (x){) | the statistical errors in the extrapolated results are
facilitating direct comparison of unextrapolated as well assmall and allow for meaningful comparison with full QCD
extrapolated results. In addition, the pion masses correspongssyits and with phenomenology. In contrast, the errors asso-
ing to these values of overlap the range of pion masses for gjated with the operatofx?),, which requires projection
the SESAM configurations, providing a meaningful compari-gntg a state with nonzero momentum, are so large that mean-
son of quenched and unquenched QCD. ingful comparison will require higher statistics. Since

Linear extrapolations of the quenched moments of UNPOQCDSF used on the order of 1000 configurations whereas
larized up and down quark distributiofis)’ and(x*)q are e used only 200 configurations, it is consistent that our
shown in Figs. 12 and 13. Corresponding results for thexrror bars on individual points are twice as large as theirs for
quenched moments of polarized quark distributidd$,,  this operator. The fact that the QCDSF error bars are not half

n T T T T T 7] <
[

N
<

2y sl —+-Quenched EMIT) T (b)
<X™>
i o (80 | <o H Quenctus ()
ot Lo - - o
0 0j2 014 Ojs 018 ; g' 0 012 Or4 015 018 ;
mﬂz, GeV? mﬂz, GeV?

FIG. 13. Linear extrapolation of quenched calculations of FIG. 15. Linear extrapolation of quenched calculations of the
p q p q
(x?)q, where the symbols are as in Fig. 12. moment(x){) , where the symbols are as in Fig. 12.
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TABLE V. Moments of quark distributions in quenched QCD calculated at three valuesod extrapo-

lated linearly tox. .

ke=0.1571 0.1550 0.1540 0.1530
()P 0.45429) 0.45817) 0.46410) 0.4657)
(x)P 0.20314) 0.20998) 0.2135) 0.2163)
(x)@ 0.308125 0.37564) 0.40247) 0.43741)
(x)@ 0.15957) 0.17929) 0.17821) 0.19219)
(), 0.11961) 0.13532) 0.12923 0.14220)
tor 0.0286324) 0.041G167) 0.0464118) 0.0527108)
3y, 0.0364357) 0.0441192) 0.0504126) 0.0532107)
(3)g —0.00893(1842)  0.0009%70126  0.00917638) 0.013253)
(L) au 0.88880) 0.91546) 0.92629) 0.93920)
(1) ad —0.241(58) —0.244(38) —0.250(18) —0.251(12)
(x)® 0.21525) 0.22814) 0.2389) 0.2437)
x)® —0.0535(164) —0.0564(97) —0.0561(56)  —0.0578(39)
(x)@ 0.141123 0.19965) 0.22045) 0.25137)
(x@) —0.00144(7536)  —0.0200(407)  —0.0338(283) —0.0415(215)
(®)au 0.0269428) 0.0514236) 0.0639152) 0.0758121)
(x*)ad 0.002742530 —0.00555(1431)  —0.0107(90)  —0.0145(66)
(1) su 1.01482) 1.03549) 1.04528) 1.05520)
(1) sa —0.199(46) —0.222(27) —0.241(16) —0.251(11)
(X su 0.337209 0.422111) 0.47479) 0.51263)
(%) 5a —0.0694(689) —-0.0723(371)  —0.0638(253) —0.0682(201)
dv —1.354(75) —1.079(50) —0.914(24) —0.779(14)
d¢ 0.28342) 0.23028) 0.20813) 0.1838)
dy —0.233(86) —0.189(52) —0.172(29) —0.150(19)
dg 0.0396311) 0.0313193 0.023G104) 0.019365)

the size of ours for three matrix elements calculated in a zer&igs. 16, 17, 18, and 19, respectively. Hence, the present
momentum state as well is explained by the fact that thevork strongly rules out the conjecture that the serious dis-
errors they reported for these matrix elements are somewhatepancies between quenched calculations and phenomenol-
larger than jackknife errors because their original analysi®gy arose from the omission of the effect of dynamical
used a full error correlation matrix from which low eigen- quarks. As noted previously, the magnitude of the errors in
modes were removeld5]. observables measured in nucleons with nonzero momentum
is qualitatively larger, and no strong conclusions can be
reached for these observables until higher statistics calcula-
tions are carried out.
In addition to the calculations g8=5.6, which corre-

A central result of this work is the fact that, for the range ) _
of quark masses accessible in the present calculationgPd to the same lattice spacing as our quenched calcula-

quenched and full QCD calculations at comparable latticd!ONS: We have also calculated the same operatofs=c.5

E. Full QCD results

spacing agree within statistical errors. The moments of quarkSing the SCRI configurations in an attempt to study the
distributions in full QCD ai3=5.6 calculated using SESAM approach to the continuum limit. The re_sult§ are tabulgted in
configurations are shown in Table VI. Note that to avoid Table VII. Note that by Eq(10) the shifts ina and 3 in
finite volume effects, moments at the lightest quark mass arg0ing from 8=5.6 to §=5.5 produce changes in the renor-
not included in the extrapolation. Detailed comparison withmalization constants that are negligible on the scale of the
Table V shows that in the case of all the operators we haveresent statistical errors, so these changes in renormalization
calculated the full QCD results g8=5.6 are statistically factors have been omitted. Unfortunately, as pointed out in
consistent with those calculated in quenched QCDgBat connection with Fig. 4, the two lightest quark masses lie in a
=6.0. Furthermore, in the case of operators that can besgime in which we expect significant errors due to finite
evaluated in zero-momentum nucleon states, the statisticablume effects, so the chiral extrapolations are physically
errors are sufficiently small that any differences between thsuspect. Even so, the bulk of the operators evaluate@l at
linearly extrapolated quenched and unquenched results are5.5 and 3=5.6 agree within statistics. The only excep-
small compared with the discrepancies with experiment distions, which are only slightly beyond one standard deviation,
cussed below. The level of agreement between quenched aade (x?),,, (1) 4y, (X)¢), (1) 5, and(x) ;5. Because of the
full QCD of (x?)q, (1)aq. (X)§4, and(1) 5 is also shown in  uncertainty in finite volume effects and the small lever arm,
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TABLE VI. Moments of quark distributions in full QCD g8=5.6 using SESAM configurations. Lattice
measurements are shown at four valuescpbut to avoid finite volume effects at the lightest quark mass
(k=0.1575), only values at the three lowass are extrapolated linearly te. .

k.=0.1585 (0.1575 0.1570 0.1565 0.1560
(x)(P 0.45929) 0.50314) 0.47013) 0.44909) 0.4615)
()P 0.19417) 0.2229) 0.20798) 0.2074) 0.2144)
(x)@ 0.462174) 0.41293) 0.41169) 0.43970) 0.39445)
()@ 0.17883 0.16837) 0.16133) 0.21637) 0.17020)
(x3), 0.17663) 0.131(34) 0.13424) 0.131(24) 0.11018)
(x%)q 0.0314303 0.0328151)  0.0414109  0.0503102  0.0496101)
(%), 0.068%392) 0.0443168  0.0521152  0.0594121)  0.0466113
(x%y  —0.00989(1529)  0.02328  0.00789549  0.025963) 0.022550)
(L)au 0.86069) 0.74137) 0.88029) 0.97524) 0.93616)
(1) ad —0.171(43) —0.214(25) —0.214(18) —0.248(15)  —0.254(9)
Q) 0.24222) 0.24115) 0.2379) 0.2317) 0.2356)
) —0.0290(129) —0.0484(63) —0.0460(52) —0.0605(38) —0.0621(34)
)@ 0.254111) 0.20583) 0.19643) 0.21741) 0.17431)
()@ —0.0546(863) —0.0611(418) —0.0849(377) —0.0473(246) —0.0745(194)
(®)au 0.11642) 0.0859330  0.0673161)  0.0924166)  0.0483114)
(x?)ag 0.001422515 —0.0179(169) —0.0149(101) —0.0157(95) —0.0239(61)
(Lsu 0.96359) 0.91940) 1.02326) 1.06218) 1.075(13)
(L) sa —0.202(36) —-0.239(27) —0.238(15) —0.225(14)  —0.250(7)
(%) su 0.477196) 0.424109 0.41879) 0.46575) 0.40548)
(X) s —0.144(68)  —0.0828(385) —0.115(28) —0.0565(248) —0.0739(167)
dv —1.318(55) —1.036(44) —1.032(26) —0.957(15) —0.854(11)
dd 0.27835) 0.26930) 0.23915) 0.20013) 0.1976)
dy —0.228(81) -0.191(50) —0.179(34) —0.164(29) —0.147(17)
dd 0.076%310 0.0392181)  0.0462134)  0.0172112) 0.015459)

we have not attempted to extrapolate the present data to the F. Cooled results

continuum limit. Higher statistics calculations at smaller ) L . .
quark masses for several coupling constants are presently A fruitful strategy to obtain insight into hadronic physics

under way to more seriously address the behavior in the corf® 1 Use the numerical evaluation of the sum over all quark
and gluon configurations contributing to the path integral to

tinuum limit. ; . )
isolate those paths that dominate the action. In recent years,
' . . . this approach has provided strong evidence that in QCD with
g -[L ; B B _ 4 T T T T
F= S E— af ]
St . 1 P —o s .
<x>{) —+Full QCD St y
anl —+-Quenched QCD ]
<1 1> St +FU|| QCD 1
N%it ______ e — gl — — = — B — g Aq _qJ_QUenChed QCD
=l ] . Fah- & 3 -
0 0:2 0:4 016 0:8 ? I ]
m1\'2’ GeV2 ' N L 1
0 0.2 0.4 0.6 0.8
FIG. 16. Comparison of linear extrapolations of quenched and mﬂz, GeV2

full QCD calculations of the momentum fractigw),. The open
symbols denote quenched calculationsgat 6.0 and the closed
symbols denote full QCD calculations gt=5.6. The upper and
lower curves correspond to up and down quarks, respectively.

FIG. 17. Comparison of linear extrapolations of quenched and
full QCD calculations of the axial chardé),, where the symbols
are as in Fig. 16.
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' ' ' ' lated in full QCD and including only the contributions of
instantons. The role of instantons is particularly interesting in
considering the spin structure of the proton, since the 't
S —— EE S B b -5 Hooft instanton interaction is the only vertex in QCD that
directly removes helicity from valence quarks and transfers it
to gluons and quark-antiquark pairs and is therefore a natural

0.2
T
1

<x> O35l —~+4-Full QCD 1 mechanism to explain the so-called “spin crisig83—65.
fa -$-Quenched QCD Our calculation of the contributions of instantons to matrix
ol ] elements of operators related by the operator product expan-
L N . _ sion to deep inelastic scattering also closely parallels the di-

rect calculation of instanton contributions to deep inelastic
scattering in Refs[66—69. The present work extends and
substantiates earlier exploratory investigatiph2).
0 0z o 06 08 To remove the essential noninstanton related gluon fluc-
2 2 . . . .-
m,~, GeV tuations without producing unnecessary annihilation of
instanton—anti-instanton pairs, we have cooled the full QCD
FIG. 18. Comparison of linear extrapolations of quenched and/SESAM configurations apB=5.6 using 50 cooling steps.
full QCD calculations of the first moment of the quark spin distri- This amount of cooling corresponds to roughly 25 cooling
bution (x){}) , where the symbols are as in Fig. 16. steps for3=5.7, which was an effective amount of cooling
in Ref.[60]. Furthermore, calculations of nucleon two-point
light quarks, topological excitations of the gluon field, which functions using the SESAM configurations have shown that
in the semiclassical limit correspond to instantons, play dhe results with 25 and 50 cooling steps differ negligibly
major role in hadron structure. By minimizing the action [51].
locally in a process known as coolif&6], the instanton Because of the smoothness of cooled configurations,
content of the quenched and full QCD vacuum has beesmall statistical errors are obtained using an ensemble of 100
extracted 57-59. Comparison of hadronic observables cal- configurations, and previous investigations have shown that
culated with all gluons and those obtained using only théhe chiral dependence on quark mass is quite linear in the
instantons remaining after cooling has demonstrated qualitaegion of interest. Hence, we cooled 100 configurations at
tive agreement for hadron masses, quark distributions, angses=0.1570 and ak.,=0.1560 for our comparison with
vacuum correlation functions of hadron curref88]. Calcu-  full QCD. To make the cooled chiral extrapolation compa-
lation of the lowest quark eigenmodes has revealed zertable to the uncooled case, for eagh.,, we selected the
modes correlated spatially with the instantons and truncationooled valence quark mass,, such that the ration, /my
of the quark propagators to the zero mode zone has producedhs the same as the ratio in full QCD. The resulting cooled
the full strength of thep and = contributions to vacuum values arex,,=0.1246 for k4e,=0.1570, wherem_ /my
correlation function$61,62. =0.523, and k,;=0.1235 for k¢e,=0.1560, where
Hence, to obtain further insight into the structure of them,/my=0.476, and the full QCD masses were taken from
proton, we have used cooling to remove essentially all the
gluon fluctuations except for instantons from the full QCD . . . .
configurations, and compared the quark distributions calcu-

ol : : : — g
| F o] (b)s
i} @—7 <X>q ol “+Full QCD )
st 1 “$-Cooled QCD
<1 1> xl +Fu|l QCD ]l M- L-=--"" - - T
6q —-Quenched QCD gé . v - —
ol i
-é_ ________ - . 2 - — N N " 1
; | i 0 0.2 02.4 2 0.6 0.8
[]
m,”, GeV
g C 1 1 1 1 hn
Yo 0.2 0.4 0.6 0.8 FIG. 20. Comparison of the quark momentum fracti((xjgb)
mﬂz, GeV2 calculated in full QCD and using configurations cooled to eliminate

essentially all contributions except those of instantons. Solid sym-

FIG. 19. Comparison of linear extrapolations of quenched andols connected by solid curves denote full QCD and open symbols
full QCD calculations of the tensor charg) 5,, where the sym-  connected by dashed curves denote results after cooling. The upper

bols are as in Fig. 16. and lower curves correspond to up and down quarks, respectively.
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TABLE VII. Moments of quark distributions in full QCD g8=5.5 using SCRI configurations extrapo-

lated linearly tox. .

ke=0.16116 0.1604 0.1600 0.1596
)P 0.41641) 0.45925) 0.45116) 0.48Q9)
()P 0.181(20) 0.19710) 0.20511) 0.2137)
()@ 0.289132 0.37268) 0.42064) 0.46247)
(x)@ 0.0430523 0.11926) 0.18229) 0.20920)
(), 0.0191429) 0.0753210 0.15030) 0.14617)
(x%)g 0.029G311) 0.0435171) 0.0513134) 0.059094)
3y, 0.0341365 0.0401201) 0.050G152) 0.0509112
(x3)g 0.0232228) 0.02249139 0.00746827) 0.0097%583)
(L) au 0.63594) 0.71352) 0.83840) 0.85227)
(Lad —0.279(48) —0.263(25) —0.280(22) —0.259(16)
)0 0.18034) 0.20420) 0.20913) 0.2239)
)0 —0.0597(168)  —0.0597(94) —0.0597(70) —0.0597(48)
)@ 0.278123 0.21766) 0.25557) 0.19239)
()@ 0.11961) 0.0419316) —0.0147(365)  —0.0459(201)
(*)au 0.15650) 0.0987265) 0.11729) 0.0598153)
(x*)ad 0.006113014  —0.0214(159) 0.023062) —0.0223(93)
(1) 54 0.67575) 0.86842) 0.98031) 1.08022)
(1) 54 —0.214(55) —0.225(30) —0.277(25) —0.265(14)
(%) su 0.25X138) 0.37671) 0.42176) 0.501(46)
(%) 50 0.009127595 0.0204412) —0.106(31) —0.0527(253)
dy —1.261(89) —1.197(56) —1.068(32) —1.046(21)
dd 0.37467) 0.30241) 0.30127) 0.25613)

dy —0.264(77) —0.236(42) —0.203(40) —0.196(21)
dg 0.0191402) 0.003942320 0.0501172) 0.0266100)

Ref.[16]. Note that, because we are comparing two theoretstrongly dominated by the instanton content of the gluon
ical calculations in the same physical volume, we have notonfigurations. It is interesting that in the case$3f,” and
discarded the lightest quark mass case for full QCD out o(x)ﬁ the cooled and uncooled results agree best in the re-
concern for finite volume effects, but rather have included itgion of light quark masses, where we expect zero mode
to enable comparison in the regime of the lightest quarklominance to be most pronounced, and differ much more
masses where dominance by the zero modes associated witignificantly at heavy quark masses where they have no rea-
instantons should be most pronounced. son to agree in detail.

Since the high frequency quantum fluctuations are re- Having observed consistency between cooled and full
moved by cooling, we set all the renormalization constants QCD results in the cases above where one expects agreement
to 1 in order to compare cooled results with the full QCD ON the basis of instanton phy_S|cs, it is also interesting that
results. Although we are aware of no rigorous argument as t6°0!€d and full QCD results differ by an order of magnitude
formulating renormalization in the presence of cooling, this©" the twist-3 operatord, andd,, where we expect them to
approximation appears the most physical and, for example, glsagree dramat_|cally because of_operator mixing. Re_call that
quite sensible for tadpoles, where we expett, in cgnnecuon with Eq(8), we pomteed out that for. Wilson
—(1TrU)Yé=1. fermions the operatotysy;,Dy, 1- - - D, mixes with the

P

The moments of quark distributions calculated in cooledlower dimension operator (&) ¥s¥(, Y., - - D, - Hence,
configurations are tabulated in Table VIII. In addition, ex- one expects that our lattice measurements,oandd, are
trapolations in full and cooled QCD for the operators thatcontaminated to a large extent by operator mixing, and in-
can be calculated with high statistics in a nucleon state ajeed a calculation of the nonperturbative mix[i5g] yields
zero momentum(x){?, (1)aq, (X)), (1)5q. anddy, are  alarge change in the extracted valuedef As argued above,
compared in Figs. 20, 21, 22, 23, and 24, respectively. cooling removes the short wavelength fluctuations respon-

It is striking that the extrapolated cooled and full QCD sible for renormalization and mixing, so as a result we would
results agree so closely for all the twist-2 operators that corexpect the mixing to be reduced essentially to zero. This is
respond to moments of quark distributions. This detailedprecisely what is observed in Fig. 24 and in Table VIl where
agreement, generally within error bars but always within twothe cooled measurements extrapolate to values close to zero
standard deviations, provides strong support for the physicaind the full QCD measurements are an order of magnitude
picture that the propagation of light quarks in the nucleon idarger.
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TABLE VIII. Moments of quark distributions calculated with ' T T T
cooled configurations, as described in the text, to eliminate most ol .
the gluon degrees of freedom except instantons. Lattice measure sT i
ments atc=0.1235 and 0.1246 are extrapolated linearlyco [ g —— - g ——-———
ko=0.1266 0.1235 0.1246 o ? : : —]
(0P  05686)  0.58189) 0.57521) <x> ) +Full QCD
0P 0.23829) 0.2655) 0.25510) +-Cooled QCD
(x)@ 0.314189 0.55574) 0.46849) °Ie 1
()@ 0.11989) 0.24733) 0.20124) - - m- o=
(x?), 0.14679) 0.16929) 0.16121)
(x®)q 0.0316334  0.0716123 0.057291) 3t 1
(x%, 00517337  0.0761130 0.067388) g = - = =
(x®¢  0.009111390  0.030955) 0.023135) m, 2, GeV?
(1) au 0.58582) 0.81817) 0.73428)
(1) ag —0.298(46) —0.210(8) —0.242(16) FIG. 22. Comparison of the first moment of the quark spin dis-
)P 0.11846) 0.11417) 0.11513) tribution, (x){) , calculated in full QCD and using cooled configu-
() —-0.0120(242) —0.0230(57) —0.0191(79) rations, as in Fig. 20.
()@ 0.27930) 0.3168) 0.3039)
)@ —0.0763(188) —0.0650(46) —0.0691(61) it is useful to first compare our calculations with three other
(X®) a0 0.236117) 0.27440) 0.26134) lattice calculations. Hence, the quenched and full QCD cal-
(x®),q —0.0650(782) —0.0534(200) —0.0576(251) culations of this work are compared with other related lattice
(1) 54 0.76865) 0.95113 0.88522) calculations and with phenomenology in Table IX.
(1) sq —0.289(49)  —0.234(7) —0.254(17) We have already commented on the comparison of our
(X) s 0.451265) 0.70296) 0.61173 quenched calculations with those of the QCDSF Collabora-
(X) s 0.0153936) ~0.137(27)  —0.0820(288) tion, and their results from Refg10,22,52—54are tabulated
qy ~0.101(7) 0.15B) 0.062822) in the first column to be compared with our quenched results
d¢ 0.00915595  —0.0398(12) —0.0221(20) in the fourth column. Here, complementing the plots in Figs.
d —0.0462(220) 0.06195) 0.022951) 12-15, one sees detailed agreement of results calculated at
dd 0.006731288 —0.0164(34) - 0.00808(409) the sameB and k, strongly supporting the accuracy and con-

G. Comparison with phenomenology

sistency of both calculations.

The second column shows the extrapolation to the con-
tinuum limit by the QCDSF Collaboration of several mo-
ments[15]. The agreement of these extrapolations with the

This section presents the evidence that linear chiral €Xfirst column C|ear|y shows that in the case of quenched QCD
trapolation of full lattice QCD results in the regime of quark finite lattice spacing effects are small compared with the dis-
masses accessible in this work is seriously inconsistent Witbrepancies with experiment. Given the close agreement be-
experimental measurements of light cone quark distributiongyeen full QCD and quenched calculations in this regime of
in the nucleon. To make the argument as strong as possiblguark masses, there is no reason to believe that finite lattice

N

@
-

<1>p8 “+Full QCD <1>45t +Full QCD 1
“$-Cooled QCD “$-Cooled QCD
sH-----7 7 =g . S|— g~ T T ] \s_'ﬁ ________ = e .=
i r 1
' 0‘2 014 OIS 0‘8 - l ] 0‘2 0:4 0‘6 0‘8
m._2, GeV? m 2 GeV2

T ?

T

FIG. 23. Comparison of the tensor chard® 5, calculated in

FIG. 21. Comparison of the axial chargf) . calculated in full

QCD and using cooled configurations, as in Fig. 20. full QCD and using cooled configurations, as in Fig. 20.
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spacing effects are substantially larger in our full QCD cal-are available only over part of the necessary range of mo-
culations than in the quenched case, so it would be unreanentum fractionx, and model assumptions are invoked to
sonable to attribute discrepancies with experiment to finitgparametrize parton distributions at largeconsistent with
lattice spacing effects. known sum rules and physical constraints. In addition, no

The third column shows the contributions to the axial€rror correlation matrix is provided, so it is not even possible
charge by the SESAM Collaboration using the same gluorio calculate the error in a moment that arises from the known
configurations but completely different measurement techstatistical errors in the measurements. In order to get some
nology[14] to be compared with our results in the fifth col- indication of the possible errors, we have calculated the mo-
umn. As in the case of the quenched comparisons, we beliey@ents using each of the unpolarized or polarized data sets. In
this provides additional confirmation of the accuracy andthe table, we tabulate the average value and give the maxi-
consistency of the present measurements. mum difference between values for all the relevant data sets

The final column shows the moments that were calculated? parentheses. Note that these differences are small com-
numerically from phenomenological fits to the world supply Pared to the statistical errors in the corresponding lattice
of deep inelastic lepton scattering data and other high energji€asurements, so we believe the phenomenological uncer-
scattering data. Data are conveniently accessible on the wéginties are small compared to the discrepancies with lattice
from each of the major collaborations, and we have calcuextrapolations discussed below. Since, as argued previously,
lated unpolarized moments using each of the unpolarizethe disconnected diagrams do not contribute to the flavor-
data sets CTEQ1], GRV [2], and MRS[3] and calculated nonsinglet combinatioj®),_4, we have tabulated the dif-
polarized moments using both of the sets GR8Vand GS  ferences between the up and down quark contributions for
[5]. Unfortunately, it is difficult to provide quantitative esti- the relevant combination af+q for comparison with the
mates of systematic or statistical errors. Experimental datkattice calculations.

TABLE IX. Comparison of linear extrapolations of full QCD and quenched results with other lattice
calculations and phenomenology at 4 Gel the MS scheme. The first column shows quenched results by
the QCDSF Collaboration g8=6.0[10,22,52—-54 and the second column shows extrapolation of several
moments to the continuum limftL5]. The third column shows full QCD results calculated using a different
method with the same SESAM configurations we have Uded. The quenched and full QCD results
calculated in this work are shown in the fourth and fifth columns. Flavor-nonsinglet moxétsf q(x)
+(—1)"1q(x), Ag(x)+(—1)"Aq(x), andsq(x)+ (—1)""18q(x) are tabulated in the final column. Phe-
nomenological unpolarized distributions are calculated from Rdfs3| and polarized distributions are
calculated from Refd.4,5] with error estimates as described in the text.

Connected QCDSF QCDSF Wuppertal Quenched Full QCD Phenomenology
M. E. (a=0) (3 pts (9=q)
(X)y 0.452(26) 0.454(29) 0.459(29)

(X)q 0.189(12) 0.203(14) 0.190(17)

(X)u_g 0.263(17) 0.251(18) 0.269(23) 0.154(3)
(x?), 0.104(20) 0.119(61) 0.176(63)

(x%)q 0.037(10) 0.029(32) 0.031(30)

(X% u_q 0.067(22) 0.090(68) 0.145(69) 0.055(1)
(x3), 0.022(11) 0.037(36) 0.069(39)

(x3)q —0.001(7) 0.009(18) —0.010(15)

(X3 u_q 0.023(13) 0.028(49) 0.078(41) 0.023(1)
(L)au 0.830(70) 0.889(29)  0.816(20)  0.888(80) 0.860(69)

(1)ad —0.244(22) —0.236(27) —0.237(9) —0.241(58) —0.171(43)

(1) au—ad 1.074(90) 1.14(3) 1.053(27)  1.129(98) 1.031(81) 1.248(2)
(X au 0.198(8) 0.215(25) 0.242(22)

(X)aq —0.048(3) —0.054(16) —0.029(13)

(X)au—nad 0.246(9) 0.269(29) 0.271(25) 0.196(9)
(X au 0.04(2) 0.027(60)  0.116(42)

(X®) pq —0.012 —0.003(25)  0.001(25)

(X au- ad 0.05(2) 0.030(65) 0.115(49) 0.061(6)
Sug 0.93(3) 0.980(30) 1.01(8) 0.963(59)

od, —0.20(2) —0.234(17) —0.20(5)  —0.202(36)

dj —0.206(18) —0.233(86) —0.228(81)

dg —0.035(6) 0.040(31) 0.077(31)
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' ' ' ' quark mass omf,, the behavior becomes highly nonlinear at
quark masses sufficiently light that a substantial pion cloud is

08
—
1

<l ] produced.
° e 2 . . R Complementary to the linear heavy quark regime, there is
ofsmm -~ === B-" " =" ] a second regime near the chiral limit in which the behavior is
- T T T TT T again simple and is specified by chiral perturbation theory.
3L -+Full QCD ] Here, the physics is described by an effective chiral theory
dy " -$-Cooled QCD based on the would-be Goldstone bosons, and the leading

nonanalytic behavior can be calculated uniquely. For ex-
i 3 ample, of direct relevance to this work, the leading nonana-
L y lytic behavior of(x"), 4 is [70,71

: ] (3ga+1)m’

. ' . . <X >ufd~an (477_](”)2

0 0.2 02.4 2 0.6 0.8
m.", GeV

-1.2 -0.8
T
I

-1.6

Inm?|. (20)

m

Unfortunately, at present, there is no full analytical theory

FIG. 24. Comparison of the twist-3 operatdy from Eq. (8) joining the chiral regime with the heavy quark regime of the

calculated in full QCD and using cooled configurations, as in Fig_present_ lattice Ca_lculation. Hence, _to explore the Chiral ex-
20. trapolation of lattice QCD calculations to the physical re-

gion, it is useful to use a physically motivated extrapolation
_ _ formula incorporating the correct behavior in the chiral limit.
Table IX reveals a clear discrepancy between linearly exye therefore fit the lattice data with the extrapolation for-
trapolated lattice calculations and phenomenology. The moma of Ref.[18], in which a phenomenological cutoff is
mentum fraction(x) is a fundamental property specifying introduced in the nonanalytic term to specify the size of the

the fraction of the total momentum carried by a particularsource generating the pion cloud and the usual analytic term
quark flavor. The nonsinglet momentum fraction is overestiip mZ is included:

mated by more than 50%, with full QCD yielding 0.25-0.29
compared with the phenomenological result 0.15. The sec- ) )
ond and third moments are similarly overestimated by linear (X g~ B (3ga+1)m7
extrapolation. u=d ~<n (47f )2 m2 + 2
Another important quantity is the nucleon axial charge (21)
(1)au-aq governingB decay. Here again, one finds major
discrepancies with linear chiral extrapolation, with quenched

: o - Physically, it is reasonable that momenta in the pion loop
or unqueqched calculations yielding 1'0_.1'15 compared Wltr%hould not become infinitely large as they would in the pres-
the experimental value 1.26, corresponding to a discrepan

of 10—25 % Cé{nce_of_ a point source, but rather be cut off at a scale char-
Since thése and other comparisons in Table IX show actenstl_c of the size (_)f th_e val_ence quark core of the nucl_eon.
; . . Alternative parametrizations in terms of a form factor give
clear discrepancy between phenomenology and linear Ch'r%quivalent results
extrapolations and because of the evidence summarized pré- The result of uéing this extrapolation formula for the dif-
viously for the consistency and accuracy of the lattice calcu;

lations at heavy quark masses, we believe that the fault "eference between the up and down quark momentum fractions

) . g ' ) . X"u_q is shown in Fig. 25. Although this extrapolation is
\;V:Chtig:]e linear chiral extrapolation as discussed in the nexgnly valid in full QCD, since full QCD and quenched results

are equivalent in the regime of our calculations, to improve
statistics, we have also included our quenched results. The
heavy solid curve is the result of a least-squares fé;0nd
Superficially, one could imagine that, since deep inelastid; in Eq. (21) with fixed =550 MeV and the light solid
scattering involves larg€?, it might be dominated by the lines indicate the jackknife error band. Here we see clearly
short distance behavior of the nucleon wave function and ndhat the extrapolation formula containing the leading chiral
be strongly influenced by the long distance pion cloud. How-behavior is consistent with both the lattice measurements and
ever, as we have seen, the operator product expansion relatée experimental data. The fact that the effect of the chiral
moments of structure functions to a tower of local operatordogarithm is much larger in this matrix element than in more
to be evaluated in the nucleon ground state. Physically, it ifamiliar mass measurements is again a manifestation of the
clear that the pion cloud should play a major role in thevariational theorem. Making an order error in the pion
nucleon matrix elements of these operators, and that thesstoud of the wave function makes an ordeerror in matrix
contributions are strongly suppressed by the heavy quarklements of general operators but only an orefeerror in
masses and small spatial volumes with which we have beethe mass. The obvious problem with the present argument is
forced to work. Whereas there is clearly a heavy quark rethat, although a 550 MeV cutoff, corresponding to 0.3 fm, is
gime in which matrix elements vary nearly linearly with the physically reasonable, it has not been calculated from first

m2

m

2
+b,ms.

H. Chiral extrapolation
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FIG. 25. Chiral extrapolation of the momentum fractiof),_4 el N ——
using Eq.(21). Full QCD and quenched data calculated in this | + !

present work are denoted by squares and circles, respectively, an<x2>u_d
the phenomenological result is indicated by the star. The least-
squares fit and jackknife error bars are denoted by the heavy solic

line and surrounding light lines.

0.06

0.03
T
1

principles and may be regarded as a single free paramete
introduced to fit a single experimental measurement.

To see that this single cutoff parameter resolves the dis-
crepancy with experiment for a number of observables, the
results of using Eq(21) for the first three moments of the
difference between the up and down quark density distribu-
tions (x"),_4 are shown in Fig. 26. Because of the larger A
error bars in the higher moments, we have also included the™ Zu-a | T
guenched QCDSF resulf40] to provide a larger lever arm ; 1
in the least-squares fit. As seen in the figure, the single value
of u provides simultaneous agreement with experiment for
all three moments. As shown in R¢f.8], this strong chiral L:
behavior of the three lowest moments is also observed ir e . - o L ,
chiral bag models. Furthermore, similar extrapolation with a m,2, GeV?
comparable cutoff also reconciles the strong discrepancy be-
e e o quak Gvio, « vy £0(20. il GCD and

emeraind concernina the importance of large effects of thequenched data calculated in this present work are denoted by dia-
ging 9 P 9 monds and squares, respectively, QCDSF quenched|tiéeare

0.06 0
L
1

0.04
1

I

0.02

FIG. 26. Chiral extrapolation of the first three moments of the

L
4

pion cloud in chiral extrapolathns. UnforFunater, .be‘?"?‘use enoted by triangles, and the phenomenological results are indi-
spln-(_jepfendent structure functl.ons also myolve S|gn|f|qan ated by stars. The least-squares fit and jackknife error bars are
contributions from Delta excitations and chiral perturbationooted by the heavy solid line and surrounding light lines.
theory becomes less well controlled, we do not presently
have a corresponding physical interpolation formula for 45500872 0.3 127
(X au-ad- Nzo.osf{ T— T ' } .

The curves in Fig. 26 suggest that precision measure- a m./m,
ments down tom>=0.05 Ge\f are required to determine
the parameters of the chiral extrapolation and thereby proBecause the spatial derivatives and nonzero momentum pro-
vide reliable extrapolation of moments of quark distribu- jections required to calculate moments of structure functions
tions. The computational resources required for such calcuequire high Monte Carlo statistics, it is necessary to calcu-
lations may be estimated using the cost functiof2] late of the order of 400 independent configurations. Includ-
obtained by the SESAM Collaboration. For present purposesng equilibration and calculation at higher quark masses, the
the number of floating point operations per independentotal computer time is approximately twice that required for
gluon configuration,N in teraflops years, may be conve- 400 configurations at the lowest quark mass. Hence, a calcu-
niently written lation with a lattice spacinga=0.1 fm andm,/m,=0.3
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would require approximately 8 teraflops years, i.e., dedicateture functions arising from systematic errors, as well as the
use of a computer that sustains 8 teraflops on QCD for onerror correlation matrix describing statistical errors. Finally,
year. Such resources should become available in the nextith the advent of multiterascale computers, the promise of
generation of lattice QCD computers. full QCD calculations with light pion masses will finally be
within our grasp.
We note that subsequent to the completion of this work, a
VI. SUMMARY AND CONCLUSIONS thorough analysis of the error correlations in the experimen-

This work has presented the first calculation of the mo-tal measurements of polarized parton distributions was per-
ments of light cone quark distributions in full QCD. The formed in Ref._[78], with the result that the errors in the
methodology has been presented in detail and validated HR€nomenological values of moments & —Ad in Table
numerous consistency checks and comparison with other relX are of the order of 10%.
evant lattice calculations.

One major result of this work is the close agreement of ACKNOWLEDGMENTS
full QCD and quenched calculations for quark masses corre- The authors wish to thank R. Horsley, W. Melnitchouk,
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tion, we have shown that extrapolation including the 'eadingacknowledge the EU Network HPRN-CT-2000-00145 “Had-
nonanalytic behavior of chiral perturbation theory has thegp Phenomenology from Lattice QCD” for support. We
potential to yield results consistent with phenomenology. Wegratefully acknowledge use of computer resources provided
have explicitly shown that an extrapolation formula with apy the MIT and Jefferson Lab LHPC clusters, the SCRI
single phenomenological cutoff simultaneously fits the firstCM_Z’ and the Jlab QCDSP. We thank the John von Neu-
three moments of the quark momentum fraction. mann Institute for Computing for providing the Cray T3E

Finally, we have shown qualitative agreement betweennq APE100 facilities and the staff of the computer centers

full Q'CD'and copled lattice configgration§ retaining only the zam at FZ-Jlich and DESY/Zeuthen for their enormous
contributions of instantons, providing additional evidence forsupport.
the role of instantons in light hadron structure and of zero
mode dominance. . APPENDIX: CALCULATION OF SEQUENTIAL
. This wor_k points the way for a number of promising steps PROPAGATORS
in our continued quest to understand hadron structure from
first principles using lattice QCD. One should clearly under-  This appendix describes the explicit calculation of the se-
take a systematic program of using a partially quenched chiguential nucleon sources used in the calculations in this
ral expansion for extrapolation and measure the relevant pavork.
rameters of the effective chiral theory. To complement the Denote the smeared field by, the original unsmeared
flavor-nonsinglet matrix elements of this work, we need tofield by ¢, and the gauge invariant smearing function defined
calculate the disconnected diagrams required to compaigy Eq.(13) by F so that
flavor-singlet matrix elements with phenomenology. The
continuum I|_m|t of the _SE_SAM results should _be exp_lored by ‘I’z(io,to):f d3xFZZ/,(>ZO,>_<)) lﬂzr/(;'to)- (A1)
supplementing the existing SCRI configurations with addi-
tional quark masses so that calculationg3at5.6, 5.5, and .

) . The forward propagator from a smeared source to a point
5.3 may be compared and extrapolated. It is desirable tcs’ink denoted
undertake nonperturbative renormalization without Gribov™
ambiguities associated with gauge fixing, and to this end we N - def o — -
note that the Schrbnger functional method has now been S (WX, X0, t0) = (Y5(X, D) P, (Xo,t0)),
used to calculate the average quark momentum in the pio
[35,75—71. Quenched calculations with chiral fermions in a
spatial volume of 3.2 fm should be carried out to extend the PR yo) R R
pion mass down to 250 MeV and to remove the problem of | dt’ d®’ Dy.2, (%, t:X',t) S5, (p¥[x’ ,t';Xg,to)
operator mixing in the twist-3 matrix elements. Finite vol-
ume formulas for operator matrix elements should be derived — 5(t_t0)|:aa’/()2,§0), (A2)
to correct residual finite volume effects. As lattice results o
come closer to phenomenology, it will be important to havewhereD,y, denotes the Wilson Dirac operator and the smear-
quantitative understanding of the errors in moments of strucing function is the source term. The propagator from a

fd the solution to the linear system
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smeared source to a smeared sink is obtained by an addi-

tional smearing,
S22 (WX, t;X0,to)

def — ., .
=(TAX,H)T?,(Xp,t0)) (A3)

PHYSICAL REVIEW D56, 034506 (2002
:J A3 F2 (X, X ) S52 (Y WX, t:Xo, to).

The three-point function specifying quark operator ma-
trix elements, using the proton current Efj2) with smeared
quark fields may be written

<Ja0?1,>(u)(ti ,tf ,to 1)_()i): f d3Xo J’ d3Xfei5§f€abC€a,b’C’I‘BYFBr,y/

X(UA(Xe t)UB(Xe ,t) DXyt UN(Xo 1) OS0 U (X5, 1) U, (X;  t) U, (i 1) DS, (X 1)

wheret;, t;, andt, are time coordinates of the source, sink, Ble
and operator insertiony and U denote point and smeared ~”
fields for theu quark,d and D denote point and smeared
fields for thed quark, and™= Cys. The three-point function

for a d quark operator has the same form with the operator

insertiond’(Xo ,to) 9% d? (X, ,t}).

After performing the connected diagram contractions, the

u andd operator matrix elements may be written
<'Jana,>(UYd)(ti 1tf !to)

= J‘ d3XO j d3Xfe|6)sz E:L‘:jr)[aa/]aa/()zf ltf 1)Z| ltl)

- > dd’ ~d’a’ >, ;) =
X SE(W {X b X 1) 000, S0 (WX, 1) X 1)
(A5)
where
M99 5 )
def b b ,
_ _abc_a’'b’c’CC
=¢e?C€ Sw’
S{ES0 N R W U
bb' + Tv ] —
+ S0 T 5L 8at o U Uy 8,008,000 ],
(A6)

d CKCY/ A
M (5 14,1)
def

_ _abc_a’b’c'tobb’ qcc’ bb’ occ’
= 2PC¢ [Saa’sﬁﬁ’+Saﬁ’sﬁa’]rl3ﬂrﬁ’ﬂ" (A7)

andS2%, =S (WW[%; by X ).
We now define the backward propagator

(Ad)
[
”a’r]da’()zo oo ts ,)Zi 1)
m
def .
= f d3Xfe_|prS?}S}Lu(¢\I’|X0 1to ;Xf 1Xi 1tf)
5 ’ ! -
X yﬂ//ﬂM :L{Z[K(I Jaa (Xf ,tf vti)' (A8)

Since it propagates from the sink to the operator, we use
the relationy®S(x,y) y°=S'(y,x) to obtain

[ [ deianlos 1 % % )

*

XSES (W YIX1 1 %o o)
=2 BUEI (X o b X ) (A9)
so that Eq.(A5) becomes
(J*03) (1, ,t,)
_ f 0307, B 1 (X, o X 1)
X O ST2 (YW [Xo o X ). (A10)

As in Eq. (A2), the backward propagatd?'**'! defined
by Eqg.(A8) may be calculated by solving the linear system

d - = "da’, =
f At d3X Dy, o(X,1iXo 1) B & 1% (X5 g 1)

= 6(t—tf)e“pr d3x’FZ‘;’}p(x,x’)y§#

"o

XML (), (A11)

Finally, in the same notation, the momentum projected
two-point function with smeared sources is
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(393 (1,4 aii):J dxselPX1eaP%ed e T 5y (US(Xs :tf)UZ(if -tf)D(;/()Zf DU (X 1ti)Ug’()zi 1ti)5(;/’()2i 1))

_ 3 ipx; _abc_a’b’c’ = cc’ a' obb’  ab’
—f d Xfe fe € Fﬁyrﬁryrs y,[Sza,S Sa

Y

(A12)

ba’
BB’ aﬁ’sﬁa’]'
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