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Moments of nucleon light cone quark distributions calculated in full lattice QCD

D. Dolgov, R. Brower, S. Capitani,* P. Dreher, J. W. Negele, A. Pochinsky, and D. B. Renner
Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology, 77 Massachusetts Av

Cambridge, Massachusetts 02139

N. Eicker, Th. Lippert, and K. Schilling
Department of Physics, University of Wuppertal, D-42097 Wuppertal, Germany

R. G. Edwards
Jefferson Lab, 12000 Jefferson Avenue, MS 12H2, Newport News, Virginia 23606

U. M. Heller
CSIT, Florida State University, Tallahassee, Florida 32306

~LHPC and SESAM Collaborations!
~Received 5 February 2002; published 26 August 2002!

Moments of the quark density, helicity, and transversity distributions are calculated in unquenched lattice
QCD. Calculations of proton matrix elements of operators corresponding to these moments through operator
product expansion have been performed on 163332 lattices for Wilson fermions atb55.6 using configura-
tions from the SESAM Collaboration and atb55.5 using configurations from SCRI. One-loop perturbative
renormalization corrections are included. At quark masses accessible in present calculations, there is no sta-
tistically significant difference between quenched and full QCD results, indicating that the contributions of
quark-antiquark excitations from the Dirac sea are small. The close agreement between calculations with
cooled configurations containing essentially only instantons and the full gluon configurations indicates that
quark zero modes associated with instantons play a dominant role. A naive linear extrapolation of the full QCD
calculation to the physical pion mass yields results inconsistent with experiment. An extrapolation to the chiral
limit including the physics of the pion cloud can resolve this discrepancy and the requirements for a definitive
chiral extrapolation are described.
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I. INTRODUCTION

The quest to understand the matter of which our Unive
is composed will remain fundamentally incomplete until w
understand how the quark and gluon structure of the nuc
arises from QCD. The nucleon has many remarkable pro
ties. Because of confinement, the quark-gluon structure
hadrons differs essentially from that of any other kno
composite systems. Gluons in QCD are essential dynam
degrees of freedom, unlike the boson fields in atoms
nuclei which may be subsumed into a two-body interacti
thereby reducing these systems to purely fermionic deg
of freedom. Almost all of the mass and approximately half
the momentum and angular momentum of a nucleon ar
from gluons. Indeed, even the net spin 1/2 arises from a
and complicated combination of orbital and intrinsic angu
momentum of the quark and gluon fields. Since the us
analytic tools of theoretical physics have proven inadequ
to solve nonperturbative QCD, the only known way to sol
rather than model, QCD, is a numerical solution of latt
field theory. Hence, the ultimate goal of this work is to u
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lattice QCD to understand the structure of the nucleon. T
understanding has two important but distinct aspects.

One aspect of using lattice QCD to understand nucle
structure is the quantitativeab initio calculation of experi-
mental observables. Since the experimental discovery
quarks in the nucleon over a quarter of a century ago, th
has been a huge investment internationally in using high
ergy scattering to measure the light cone distribution
quarks and gluons in the nucleon. As a result of several
cades of experimental effort at SLAC, Fermilab, CERN, a
DESY, we now have a detailed knowledge of the quark d
sity and helicity distributions and of the gluon distributio
@1–8#. In addition, major new experiments are being plann
at these facilities as well as at Jefferson Lab and the B
Relativistic Heavy Ion Collider~RHIC! to map out the quark
and gluon structure of the nucleon in even more detail. N
that the techniques of lattice field theory and computer te
nology have developed to the point that it will be possible
solve QCD with a precision comparable to experimen
measurements, it is essential to complement this massive
perimental investment with a commensurate theoretical
fort in lattice QCD. Because deep inelastic lepton scatter
measures correlation functions close to the light cone, st
ture functions are intrinsically Minkowski and cannot be c
culated directly in lattice QCD. However, using operat
product expansion, it is possible to calculate their mome
6,
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In this work, we report the first calculations of these m
ments in full QCD@9#. As will be emphasized below, thes
present calculations are subject to significant limitations
to current computer resources.

The second aspect is understanding the basic mechan
underlying nucleon structure—that is, how QCD actua
works. Hence, we seek to use the lattice as a tool for ins
as well as for numbers. There are several ways lattice ca
lations can provide insight. One is to calculate the over
between a trial wave function and the exact nucleon w
function to explore the role of various degrees of freed
and variational parameters. Thus, this work will presen
prototype variational calculation in which the rms radius o
trial function is varied. A second is to study the contributio
of different classes of Feynman diagrams that correspon
separate lattice contributions to operators. An example is
class of connected diagrams considered in this work. Fina
since the lattice Monte Carlo calculation stochastica
samples gluons distributed according to the QCD action,
can identify and study the dominant configurations. Hen
this work will study the role of instantons and their asso
ated zero modes in calculating moments of structure fu
tions.

There have been several calculations of moments of st
ture functions in recent years, including contributions of co
nected diagrams to low moments of the spin-independ
and longitudinal spin-dependent structure functions
quenched lattice QCD@10–12,9#, disconnected contribution
for the axial and tensor charge@13#, and the axial charge in
full as well as quenched QCD@14#. Interestingly, in contras
to spectroscopy, there are significant discrepancies betw
these hadron structure calculations and experiment. Whe
quenched masses for light hadrons are typically accurat
the 5% level, the axial charge is typically 10–20 % low@15#
and the first moment of the spin averaged structure func
is of the order of 50% high@10,11#. By the variational prin-
ciple, we know that an error of ordere in the wave function
only produces an error of ordere2 in the expectation value o
the energy, or mass in this case, so it is consistent that t
other observables should be much better diagnostics
masses of the errors in the lattice calculation of hadron st
ture. Hence, we need to identify and correct the source
these substantial discrepancies.

There are three major limitations in structure calculatio
imposed by limitations in computational resources. The fi
limitation is errors in approximating the continuum limi
The approach to the continuum limit has been studied s
tematically in quenched QCD by the QCDSF Collaborat
@10# using Wilson and clover improved actions and extrap
lating in inverse couplingb. A particularly careful study was
carried out for the axial charge which showed that, ev
when theb dependence is included, there remains a 1
discrepancy with experiment@15#.

The second limitation is the quenched approximati
which ignores the contribution of dynamical quark-antiqua
excitations in the Dirac sea. It is now known that, where
full QCD gives a good description of the masses of the h
rons containing strange quarks, quenching causes signifi
discrepancies in masses. Physically, this is consistent
03450
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the fact that in quenched QCD the coupling runs too fa
producing a potential that becomes too weak at the s
distances probed by the relatively heavy strange quark.
though there is no simple argument suggesting the sign of
resulting discrepancy in other specific observables, it is
portant to see to what extent quenching causes the disc
ancy in the axial charge and the first moment of struct
functions. Thus, a primary goal of this work is to study t
role of the quenched approximation. Although the effects
the lattice spacing and lattice volume are still significant p
tential sources of error, it is meaningful to compare quenc
and unquenched calculations on comparable lattices in ph
cal units to explore the magnitude of errors due to quen
ing. Hence, we will compare full QCD calculations usin
configurations produced by the SESAM Collaboration@16#
at b55.6 with quenched calculations on comparable lattic
Whereas it has been conjectured that the discrepancy
tween lattice calculations and experimental moments
structure functions arises primarily from quenching, one m
jor result of this work is to show that at the quark mass
attainable at present, this explanation is wrong.

The final limitation is errors in calculating the large vo
ume, small quark mass limit. Since the lattice volume m
be large enough that the pion Compton wavelength fits w
inside and inversion algorithms become less efficient
light quarks, it is presently impossible to perform full QC
calculations with dynamical quark masses corresponding
physical pions or even to pions sufficiently light that chir
perturbation theory gives reliable extrapolations. Thus, a m
jor uncertainty is the extrapolation from the relatively hea
quark masses used in lattice calculations to the small qu
mass required to produce the physical pion. This is parti
larly worrisome for calculating hadron structure because
the major role played by the pion cloud in the nucleon. Sin
a small box and heavy quarks suppress the pion cloud,
not surprising that the nucleon magnetic moment, much
which comes from the pion current, is low or that the ax
charge is too small. Indeed, model estimates@17,18# show
that both discrepancies plausibly arise from omission of
full contribution of the pion cloud in present lattice calcul
tions. Hence, a second major result of this work is to sh
how an extrapolation incorporating the leading effects of c
ral symmetry can simultaneously resolve the discrepanc
the lowest three moments of the spin averaged struc
function.

The outline of this paper is as follows. Section II provid
the background and defines the operators we evaluate.
turbative renormalization is discussed in Sec. III and tech
cal details of the lattice calculation are given in Sec.
Section V presents the results, including the overlap of t
wave functions with lattice hadron ground states, compari
of observables calculated with quenched and unquenc
configurations to study quenching errors, comparison of
servables calculated with cooled and uncooled unquenc
configurations to study the role of instantons and their as
ciated zero modes, and comparison of linear and chiral
trapolations with phenomenology. A summary and conc
sions are given in Sec. VI.
6-2
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II. BACKGROUND

A. Moments of nucleon light cone quark distributions

By operator product expansion, moments of the lin
combinations of quark and antiquark distributions in the p
ton

^xn&q5E
0

1

dxxn@q~x!1~21!n11q̄~x!#, ~1!

^xn&Dq5E
0

1

dxxn@Dq~x!1~21!nDq̄~x!#,

^xn&dq5E
0

1

dxxn@dq~x!1~21!n11dq̄~x!#,

where the quark density, helicity, and transversity@19# distri-
butions

q5q↑1q↓ , ~2!

Dq5q↑2q↓ ,

dq5qÁ2q' ,

are related to the following matrix elements of twist-2 ope
tors:

2^xn21&qr
Pm1

•••Pmn

[
1

2 (
S

K PSUS i

2D n21

c̄ rg$m1
DJ m2

•••DJ mn%c
rUPSL ,

~3!

2

n11
^xn&Dqr

S$sPm1
•••Pmn%

[2 K PSUS i

2D n

c̄ rg5g$sDJ m1
•••DJ mn%c

rUPSL ,

2

mN
^xn&dqr

S[mP$n] Pm1
•••Pmn%

[ K PSUS i

2D n

c̄ rg5sm$nDJ m1
•••DJ mn%c

rUPSL .

Here, DJ[DW 2DQ , r denotes the quark flavor,x denotes the
momentum fraction carried by the quark,S25mN

2 , $ % and@ #
denote symmetrization and antisymmetrization, respectiv
and the mixed symmetry@ $ # % term is first symmetrized and
then antisymmetrized so that it is written explicitly as

O[s$m1] •••mn%
5 [

1

n11
~Osm1m2 . . . mn

5 2Om1sm2•••mn

5

1Osm2m1•••mn

5 2Om1m2s•••mn

5 1••• !. ~4!
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The odd momentŝ xn&q are obtained from the spin
independent structure functionsF1 or F2 measured in deep
inelastic electron or muon scattering

E
0

1

dxxn21F1~x,Q2!5
1

2
Cn

v~Q2/m2!(
r

er
2^xn21&qr

~m!,

~5!

E
0

1

dxxn22F2~x,Q2!5Cn
v~Q2/m2!(

r
er

2^xn21&qr
~m!,

and even moments of^xn&Dq are determined from the spin
dependent structure functiong1

E
0

1

dxxng1~x,Q2!5
1

4
Cn

a~Q2/m2!(
r

er
22^xn&Dqr

~m!,

~6!

whereer is the quark’s electric charge andCn denotes the
Wilson coefficient. Note that the moments^xn&q and ^xn&Dq
are proportional to the quantitiesvn11 andan defined in Ref.
@10#:

^xn&q5vn11
(q) , ~7!

^xn&Dq5
1

2
an

(q) .

In addition, the two spin-dependent structure functionsg1
andg2 also determine the quantitydn :

1

n11
dn

r S[sP$m1]•••Pmn%

[2 K PSUS i

2D n

c̄ rg5g [sDJ $m1]•••DJ mn%c
rUPSL ~8!

which is a twist-3 operator and does not have a sim
interpretation in terms of parton distribution functions@20#.
However, since with Wilson fermionsg5g [sDJ $m1]•••DJ mn%

mixes with the lower dimension operato
(1/a)g5g [sg$m1]•••DJ mn% , it is not possible to compare with
phenomenological results using the perturbative renormal
tion constants and mixing coefficients calculated in t
work. Either nonperturbative renormalization is required@21#
as has been carried out in@22#, or the operators need to b
recalculated with overlap fermions@23# or some alternative
formulation for which mixing with lower dimension opera
tors does not occur.

Even momentŝ xn&q are obtained from deep inelast
neutrino scattering, and, in addition, a variety of other p
6-3
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TABLE I. Operators used to measure moments of quark distributions. Different lattice operators
sponding to the same continuum operator are denoted by superscriptsa and b. Subscripts of irreducible
representations of H~4! distinguish different representations of the same dimensionality and supers
denote charge conjugationC. In the operator mixing column, ‘‘No* ’’ indicates a case in which mixing
generically could exist but vanishes perturbatively for Wilson or overlap fermions and ‘‘No** ’’ indicates
perturbative mixing with lower dimension operators for Wilson fermions but no mixing for overlap ferm

The entry in columnPW denotes the number of spatial components of the nucleon momentumPW that must be

chosen nonzero. Operators requiring one nonzero component have been written forPW in the 1 direction and

SW in the 3 direction.

Observable H~4! Mixing PW Lattice operator

^x&q
(a) 63

1 No 1 q̄g$1DJ 4%q

^x&q
(b) 31

1 No 0 q̄g4DJ 4q2
1
3 (q̄g1DJ 1q1q̄g2DJ 2q1q̄g3DJ 3q)

^x2&q 81
2 Yes 1 q̄g$1DJ 1DJ 4%q2

1
2 q̄(g$2DJ 2DJ 4%1g$3DJ 3DJ 4%)q

^x3&q 21
1 No* 1 q̄g$1DJ 1DJ 4DJ 4%q1q̄g$2DJ 2DJ 3DJ 3%q2(3↔4)

^1&Dq 44
1 No 0 q̄g5g3q

^x&Dq
(a) 63

2 No 1 q̄g5g$1DJ 3%q

^x&Dq
(b) 63

2 No 0 q̄g5g$3DJ 4%q

^x2&Dq 42
1 No 1 q̄g5g$1DJ 3DJ 4%q

^1&dq 61
1 No 0 q̄g5s34q

^x&dq 81
2 No 1 q̄g5s3$4DJ 1%q

d1 61
1 No** 0 q̄g5g [3DJ 4]q

d2 81
2 No** 1 q̄g5g [1DJ $3]DJ 4%q
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cesses have contributed to what is now a detailed empi
knowledge of the quark and antiquark distributions in t
nucleon. Hence, we will subsequently compare our res
with moments calculated from the CTEQ, Glu¨ck-Reya-Vogt
~GRV!, Martin-Roberts-Stirling ~MRS!, Glück-Reya-
Stratmann-Vegelsang~GRSV!, Gehrmann-Stirling~GS! and
global fits to the world supply of data@1–5#. The moments of
parton distributionŝxn&q(m), ^xn&Dq(m), and^xn&dq(m) are
scheme and scale dependent, and we will convert our la
matrix elements to the modified minimal subtraction (MS)
scheme and evaluate them at the scalem251/a2;4 GeV2.

B. Lattice operators

Our objective is to calculate matrix elements of tracele
appropriately symmetrized and antisymmetrized operator
the general form

O[c̄Ggm1
DJ m2

•••DJ mn
c, ~9!

where G51, g5, or g5gs , on a hypercubic lattice to ap
proximate the corresponding continuum operators as a
rately as possible. Hence we choose representations o
hypercubic group H~4! @24#, to eliminate operator mixing a
much as possible, and after satisfying this objective, to m
mize statistical errors by including as few nonzero com
nents of the nucleon momentum as possible.

Since H~4! is a subgroup of the Lorentz group, irreducib
representations of the Lorentz group are in general reduc
under the H~4! group, and we choose the representation
optimize the approximation. It is essential to choose a rep
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sentation that does not mix with lower dimension operato
since the coefficients would increase as 1/an in the con-
tinuum limit. In addition, because of the possible inaccura
of perturbative mixing coefficients and the difficulty of de
termining mixing coefficients nonperturbatively, it is des
able to avoid mixing with operators of the same dimens
as well. In choosing between operators with the same mix
properties, it is desirable to use a nucleon source with as
nonzero spatial momentum components as possible, s
each projection introduces substantial stochastic noise
fact, we will subsequently show that with available config
rations it is not possible to obtain adequate statistics in

momentum sector other thanpW 50W . Since any expectation
value of an operator with tensor indexj is proportional toPj

~or Sj for spin-dependent quark distributions!, the nucleon
must have an additional momentum component projec
for each new distinct tensor index that is added to an op
tor. Hence, the goal is to limit the number of distinct spat
indices. Eventually, as one proceeds to higher moment
quark distributions, all the space-time indices are exhaus
and it becomes impossible to avoid mixing with lower d
mension operators.

The representations we have chosen for our operators
ing these criteria are enumerated in Table I. To illustrate
selection process, we describe selection of the sp
independent operators and analogous analysis yields th
maining operators.

To measurê x&q one needs to calculate matrix elemen
of the traceless part of the operatorq̄g$mDJ n%q, which belongs
to the representation~1,1! in the continuum decomposition
6-4
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S 1

2
,
1

2D ^ S 1

2
,
1

2D5~0,0! % ~1,0! % ~0,1! % ~1,1!.

On the lattice, the nine-dimensional representation~1,1!
splits into two irreducible representations31

1 and 63
1 , both

of which are symmetric and traceless, where the notation
representations is described in the caption of Table I. A
consistency check, it is desirable to calculate operators f
each representation. For the first operator, denoted^x&q

(a) , we
select the basis vector of63

1 :

^Puq̄g$1DJ 4%quP&52^x&q
(a)
•P$1P4% ,

and for ^x&q
(b) , we choose the basis vector of31

1 :

K PUq̄g4DJ 4q2
1

3
~ q̄g1DJ 1q1q̄g2DJ 2q1q̄g3DJ 3q!UPL

52^x&q
(b)
•S P4P42

1

3
PW 2D .

Note that sincêx&q
(b) involvesg4DJ 4 it can be measured with

PW 50W whereas sincêx&q
(a) involvesg1DJ 4 it requires a state

projected onto nonzeroP1.
For ^x2&q , none of the three~symmetric! representations

41
2 is appropriate, since they are not traceless and hence

with lower dimensional operators. The only representati
with two distinct indices are the one81

1 , which is not sym-
metric and must therefore be rejected, and the two81

2’s,

q̄S g4DJ 1DJ 12
1

2
~g4DJ 2DJ 21g4DJ 3DJ 3! Dq

and

q̄S g1DJ 4DJ 11g1DJ 1DJ 42
1

2
~g2DJ 4DJ 21g2DJ 2DJ 4

1g3DJ 4DJ 31g3DJ 3DJ 4! Dq,

which mix as discussed in Refs.@25–27#.
For ^x3&q the following representations have positiv

charge conjugation and do not mix with lower dimension
operators:21

1 , 22
1 , 32

1 , 32
1 , 33

1 , 62
1 , and64

1 . However, the
only representations that require a single nonzero momen
component are the two21

1’s, which generically could mix
with each other but do not mix at the one-loop level f
Wilson or overlap fermions@26,23,28#.

Note that in addition to the mixing discussed above,
full QCD there is also mixing between gluonic operators a
flavor-singlet fermion operators for moments of the qua
density and helicity that will not be considered in this wo
because we have not yet evaluated lattice matrix elemen
the relevant gluon operators.
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III. PERTURBATIVE RENORMALIZATION

Since the phenomenological light cone quark distributio
with which we compare our lattice results are extracted fr
experimental data using theMS renormalization scheme, w
have converted our lattice calculations to theMS scheme in
one-loop perturbation theory using

Oi
MS~Q2!5(

j
S d i j 1

g0
2

16p2

Nc
221

2Nc
@g i j

MSlog~Q2a2!

2~Bi j
LATT2Bi j

MS!# D •Oj
LATT~a2!. ~10!

The anomalous dimensionsg i j and the finite constantsBi j
are given in Table II for Wilson fermions and the speci
operators considered.

TheZ factors that convert lattice results to theMS scheme
at scaleQ251/a2 are equal to

Z~g0
256/b!512

g0
2

16p2

4

3
~BLATT2BMS!, ~11!

and are tabulated for two typical values ofb. Note that all of
the moments of quark distributions calculated in this wo
will be presented at the scale ofm25 4 GeV2 in the MS
scheme.

Details of perturbative renormalization may by found
Refs.@29,30,26#. The results in Table II are taken from Ref
@30,23#, in which the renormalization factors of^x&dq andd1
for Wilson fermions were calculated for the first time, an
the remaining operators were checked with earlier result
Refs. @28,31,25,10,26,32#, revealing a discrepancy in th
case of̂ x3&q .

IV. LATTICE CALCULATIONS

In this section, we describe salient aspects of our lat
calculation of proton matrix elements of the operators cor
sponding to moments of parton distributions. Details may
found in Ref.@33#.

A. Connected diagrams

Proton matrix elements of the operators in Eq.~3! are
calculated by evaluating the connected and disconnected
grams shown in Fig. 1. Note that the term ‘‘disconnecte
refers to diagrams in which the quarks are disconnected
of course, as shown in Fig. 1, the overall Feynman diagr
is still connected by gluons. It is important to recognize
the outset that, although the connected diagrams invo
three propagators naively corresponding to the ‘‘valenc
quarks in a simple hadron model, the contributions of
connected diagrams do not necessarily correspond to the
lence parton distributionqval[q2q̄ defined in phenomeno
logical analyses of high energy scattering data. Rather
shown in Eq.~1!, the odd moments of̂xn&q and^xn&dq and
6-5
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TABLE II. Renormalization constants.

Observable g BLATT BMS Z(b56.0) Z(b55.6)

^x&q
(a) 8/3 23.16486 240/9 0.9892 0.9884

^x&q
(b) 8/3 21.88259 240/9 0.9784 0.9768

^x2&q 25/6 219.57184 267/9 1.1024 1.1097
^x3&q 157/30 235.35192 22216/225 1.2153 1.2307
^1&Dq 0 15.79628 0 0.8666 0.8571

^x&Dq
(a) 8/3 24.09933 240/9 0.9971 0.9969

^x&Dq
(b) 8/3 24.09933 240/9 0.9971 0.9969

^x2&Dq 25/6 219.56159 267/9 1.1023 1.1096
^1&dq 1 16.01808 21 0.8563 0.8461
^x&dq 3 24.47754 25 0.9956 0.9953
d1 0 0.36500 0 0.9969 0.9967
d2 7/6 215.67745 235/18 1.1159 1.1242
n
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even moments of̂xn&Dq measured in deep inelastic lepto
scattering correspond to the sumq1q̄ and only the even
moments of^xn&q and ^xn&dq and odd moments of̂xn&Dq

correspond to the differenceq2q̄.
It is technically much more difficult to evaluate disco

nected diagrams than connected diagrams and results u
the eigenmode expansion technique that has recently
developed for this purpose@34# are not yet available. There
fore, in the present work, we will compare the contributio
of connected diagrams with flavor-nonsinglet combinatio
of experimental results. Because the coupling of the disc
nected loop to the rest of the diagram is flavor independ
the disconnected diagrams do not contribute to the differe
between the moments for degenerate up and down qua
For example, the axial charge can be calculated directly fr
differences of connected contributions,gA5^Du1Dū2Dd

2Dd̄&connected. Hence, we will subsequently compare o
results with moments of flavor-nonsinglet combinations
the sums or differences of phenomenological quark and
tiquark distributions.

One technical difference between our calculations a
those of other works is the fact that we use Dirichlet bou
ary conditions for the valence fermions in the time directio
With periodic or antiperiodic boundary conditions, contrib
tions from the images of the sources and sinks restrict

FIG. 1. Connected~upper row! and disconnected~lower row!
diagrams contributing to hadron matrix elements. The left colu
shows typical contributions of quarks and the right column sho
contributions of antiquarks.
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useful source-sink separation to less than half the total t
extent. Dirichlet boundary conditions prevent propagat
from these image sources and allow utilization of a larg
fraction of the lattice volume for ground state operator m
surements. We note that the closely related Schro¨dinger func-
tional boundary conditions used in a calculation of the av
age quark momentum in the pion provide similar bene
@35#.

B. Sources

To facilitate measurement of proton matrix elements,
have optimized the overlap between a computationally e
cient nucleon source and the proton ground state. The s
ing point is the interpolating field for the proton

J5eabc@uaCg5db#uc, ~12!

where C denotes the charge conjugation matrix. This fie
corresponds to the nonrelativistic quark model wave funct
eabc@u↑

ad↓
b2u↓

ad↑
b#u↑

c in the nonrelativistic limit. Since trun-
cation of the lower components does not significantly red
its overlap with the physical proton@36# we save an overal
factor of 2 in computation and storage by calculating on
propagators from the upper components of the source.

As shown below in Sec. V, ifJ in Eq. ~12! is a point
source, the overlap with the nucleon ground state is of
order of 1024, so generalization to finite spatial extent
desirable. Since the source must be factorizable in order
matrix elements to be calculated from single quark propa
tors, we use distributed quark fields with adjustable spa
extent. In Ref.@37#, it was shown that gauge fixed sourc
with Gaussian wave functions and gauge invariant smea
Wuppertal sources@38,39# produced comparable results, an
for computational convenience we use the latter.

The smeared wave function is defined as@40#

c (N,a)5~11aH !Nc0

where H5(
i 51

3

~Un,i1Un2 î ,i
†

!

and c0~n!5dnn0
, ~13!

n
s
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MOMENTS OF NUCLEON LIGHT CONE QUARK . . . PHYSICAL REVIEW D66, 034506 ~2002!
with the spatial extent being controlled by the coefficient
the nearest neighbor hopping terma and the number of
smearing stepsN. The distribution is approximately Gaussia
with an equilibrated gauge fieldU producing a narrower dis
tribution than for the free case. A convenient measure of
smearing is the rms radius

r rms5^r 2&1/25F E d3xr2c* c

E d3xc* c
G 1/2

,

and Fig. 2 shows howr rms depends on the parametersN and
a. As one expects from the free case and from the fact
smearing is a random walk governed by the gauge fields,
rms radius is approximately proportional toAN. Note that
the size of the source is nearly independent ofa for a.3, at
which point the constant term in Eq.~13! becomes negligible
relative to the hopping term. In the calculations described
Sec. V, we seta53 and useN to adjustr rms to optimize the
source.

The source is optimized by maximizing the overlap b
tween the normalized state created by the action of
source on the QCD vacuumuCJ&5N J̄uV& and the normal-
ized ground state of the protonu0&. Denoting the momentum
projected normalized eigenstates of the proton byun& and
their energies byEn , the momentum projected two-poin
correlation function may be expanded:

^J~ t !J̄~0!&5C(
n

z^cJun& z2e2Ent ~14!

where C is an unknown normalization constant. Since o
can directly measure the correlation function at zero ti
separation

A5^J~0!J̄~0!&5C(
n

z^Jun& z2 ~15!

FIG. 2. The rms radius of a gauge invariant smeared qu
source as a function of the coefficienta and number of smearing
stepsN defined in Eq.~13!.
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and reliably fit the larget behavior of the correlation function
to extract the ground state contribution

B5Cu^Ju0&u2, ~16!

the probability that the source contains the proton grou
state is given by

P~0!5
B

A
5 z^CJu0& z2. ~17!

The importance of maximizing the overlap of the sour
with the proton is particularly clear when one considers
three-point function used to calculate matrix elements:

^J~ t3!O~ t2!J~ t1!&

5C(
n,m

^cJun&^nuOum&^mucJ&e
2En(t32t2)2Em(t22t1).

~18!

Although the contribution of a contaminant^cJun&;e to
the two-point function Eq.~14!, is of ordere2, the contribu-
tion to the three-point function Eq.~18! is of order
e^nuOu0&/^0uOu0&. Depending on the off-diagonal elemen
of any particular operator, the error when the operator
close to one of the sources may be substantial, and the
of the contribution is undetermined. Specific examples w
be seen in the plateau plots presented in Sec. V.

C. Sequential propagators

There are two alternative strategies for calculating
connected diagrams in Fig. 1 with sequential propagat
Using a propagator from a fixed source to all pointsx0 times
the operatorO(x0) as a new source to propagate to an ar
trary sink location allows one to calculate matrix elements
the operator between all source-sink separations@13,14,41–
44#. The matrix element is then obtained from the linear te
in the time separation between the source and sink.
SESAM Collaboration has used this variable time ext
method to calculate the axial charge@14# for the configura-
tions used in this work, and we will compare our results w
theirs in Sec. V. However, the fact that a new set of pro
gators must be calculated for each operator makes this a
native too costly for the large set of operators of interest
this present work.

The alternative we will use is to combine two forwa
propagators from a fixed source, smear them, and mom
tum project on a specific time slice to create a sink, and
this sink as a new source for a backward going propag
@45#. The matrix element for any operator can then be o
tained by combining forward and backward propagators w
that operator. Because the time separation between so
and sink is fixed in this approach, the effect of this separat
has been studied and optimized as described in Sec. V.
details of calculating matrix elements with these sequen
propagators are described in the Appendix.

rk
6-7



D. DOLGOV et al. PHYSICAL REVIEW D 66, 034506 ~2002!
FIG. 3. Bootstrap distributions
of ^x&q

(b) for ensembles of 25~left
plot! and 204~right plot! SESAM
configurations atk50.1575.
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D. Lattice data analysis

To ensure that the systematic and statistical errors are
understood and controlled, we have used several metho
analyze the lattice measurements of matrix elements.

In our primary analysis, which is used for all the resu
presented in tables and graphs, we define a central win
for the location of the insertion of the measured opera
@ tsource1dt,tsink2dt# in which contamination from excited
states in the source or sink has negligible effect. We aver
the ratio of three-point to two-point functions over this wi
dow and use the jackknife method@46# to estimate the aver
age value and variance. For smeared sources, we usedt
53 and for tests with unsmeared sources we have also
dt55.

As a secondary analysis, to ensure that we have avo
systematic errors from excited state contaminants in the
teau region, we have also fitted the form

R~ t !5R01(
i

~bie
2ci t1bie

2ci (T2t)! ~19!

over the whole range between the source and the sink.
exponentials correcting for the contaminants are symme
because we have used the same smearing in the sourc
sink, and the value for the matrix element isR0.

From our data, it was only possible to determine one p
of exponentials, and we used a jackknife estimate on
fitted values ofR0 to determine the error. For operators f
which the errors were small enough that the exponential c
taminants were well determined and stable, the plateau
exponential fits produced statistically consistent results w
comparable errors. This ensures that our primary results
not have statistically significant bias from excited states
some cases, the exponential contaminants were poorly d
mined and produced spurious fluctuations in the anal
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which overestimated the actual statistical fluctuations in
plateau region. This is the reason we selected the plateau
as our primary analysis and view the exponential fits a
secondary consistency check.

To further ensure that we understood our statistical err
we also examined bootstrap distributions@47# for all our ob-
servables at the lightest SESAM quark mass. An ensemb
sizeM was created by randomly picking configurations fro
the original sample with replication, and typical distributio
of values of measurements of^x&q

(b) are shown in Fig. 3,
where M52000 and the sample sizes in the left and rig
figures are 25 and 204 configurations, respectively. Th
error bars are shown in each case: the basic jackknife e
bar which is calculated independently of the bootstrap p
cedure, the 68% confidence interval based on the boots
distribution, and the statistical variance of the bootstrap m
surements. The three arrows correspond to the jackknife
sult, the median of the distribution, and the mean of
distribution. This figure shows that for a sample size as sm
as 25, the distribution is far from Gaussian, the three e
bars differ significantly, and even the arrows disagr
slightly. For the large sample size 204 used in our full d
analysis, everything is consistent: the distribution is nea
Gaussian, the three errors are consistent, and the three a
are equivalent. Thus, the bootstrap analysis gives added
surance that the statistics are understood and under con

V. LATTICE RESULTS

This section presents the results of our calculations
moments of quark distribution functions in full and quench
QCD, as well as relevant tests of the lattice technology a
consistency checks.
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TABLE III. Parameters specifying the full QCD, quenched, and cooled gluon configurations us
calculations of moments of quark distributions. For full QCD calculations, the number of hybird Monte
trajectories between measurements is given in the last column.

Data set QCD Lx
33Lt b ksea kval Approx. Trajectory

No. configs. separation

SESAM Full 163332 5.6 0.1560 0.1560 200 25
0.1565 0.1565 200 25
0.1570 0.1570 200 25
0.1575 0.1575 200 25

SCRI Full 163332 5.5 0.1596 0.1596 100 20
0.1600 0.1600 100 20
0.1604 0.1604 100 18

MIT Quenched 163332 6.0 mq5` 0.1530 200
0.1540 200
0.1550 200

SESAM-cooled Cooled 163332 5.6 0.1560 0.1235 100
0.1570 0.1246 100
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A. Lattice gluon configurations

The parameters specifying the full QCD, quenched, a
cooled configurations used in our calculations are tabula
in Table III. The full QCD configurations were calculate
using the hybrid Monte Carlo algorithm by the SESAM Co
laboration@16# atb55.6 and by the SCRI Collaboration@48#
at b55.5. The quenched configurations were calculated
MIT at b56.0 to be directly comparable in lattice spacing
the unquenchedb55.6 configurations, and the cooled co
figurations were obtained by applying 50 cooling sweeps
the SESAM configurations as described later.

The practical limitations associated with these configu
tions pose significant problems in extrapolating to both
chiral and continuum limits as required to compare with p
nomenological data.

Chiral extrapolation

A common criterion to keep the pion correlation leng
significantly smaller than the physical size of the lattice a
to avoid unphysical interactions with periodic images is
require that the pion Compton wavelength be less than o
fourth the spatial dimension of the lattice. Resources limit
to 163332 lattices. At b55.6 the lattice spacing isa
50.091 fm and hence the lattice dimension is only 1.46
Thus, the pion mass must be greater than 540 MeV. H
ever, even for the lowest SESAM quark mass, which exce
this criterion, there are significant discrepancies betw
mass measurements on 163332 and 243348 lattices@49#,
indicating serious finite volume effects. Hence, in our fin
analysis, we have only included the heaviest three SES
quark masses in our results.

As discussed in detail in the final section, much of t
physics of the pion cloud of the nucleon is omitted on
lattice of size 1.46 fm with pions heavier than 540 MeV, so
is unreasonable to expect naive linear extrapolation of ca
lations in this regime to accurately include the quantitativ
important physics of the pion cloud. However, since we
not presently have data in a regime in which we can fu
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determine the parameters of an extrapolation incorpora
the behavior known from chiral perturbation theory, most
our data analysis will be based on naive linear extrapolat
This extrapolation is still useful because it crisply frames
issues that need to be confronted in comparison ofab initio
lattice calculations with experiment.

Continuum extrapolation

Due to limitations in presently available configuratio
for Wilson fermions, extrapolation to the continuum limit
even more problematic. Table IV summarizes the parame
and lattice spacings for configurations that are prese
available for dynamical Wilson fermions. Since we are c
culating nucleon properties, we believe it is most consist
to set the scale using the lattice spacing determined from
nucleon mass,aN . Unfortunately, there is a large discrep
ancy in determinations ofaN , and for qualitative purpose
we have assumed the behavior given by the LANL resu
since this is the only data set in which one group calcula
consistently at three differentb.

One goal has been to use a comparison of calculation
moments of quark distributions using SCRI configurations
b55.5 and SESAM configurations atb55.6 to obtain an
indication of the finite lattice size dependence, and we rep
results from bothb ’s below. However, the problem of finite
size effects is shown in Fig. 4, where we present scaled
ues ofmp

2 at different values ofb for the data sets in Table
IV. The scaled mass squared, (amp)23(a5.6/a)2, converts
the mass in different lattice units at eacha to fixed lattice
units atb55.6 for ease of comparison. Thus, the ordinate
proportional tomp

2 in physical units, and 0.05 corresponds
mp

2 50.24 GeV2 or mp5490 MeV. The dotted line shows
the point at which the pion Compton wavelength equals o
fourth of the spatial dimension. Given that the lowe
SESAM point has significant finite size errors, we expe
that the lowest two SCRI points have comparable conta
nation from finite size effects. Since there are no SCRI po
comparable to the highest SESAM points, there is no way
6-9
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TABLE IV. Parameters and lattice spacing for published dynamical Wilson fermion calculations.
table summarizes calculations on 163332 lattices and the resulting determinations of the lattice spacing f
the masses of the nucleon,aN , and from ther meson,ar .

b56/g0
2 kcrit aN ~fm! ar ~fm! Ref.

LANL 5.6 0.1585 0.086~14! 0.076~9! @73#

5.5 0.16145 0.116~7! 0.104~5! @73#

5.4 0.16450 0.164~13! 0.136~9! @73#

HEMCGC 5.3 0.16794 0.124~4! 0.108~2! @74#

SCRI 5.5 0.16116 0.109~4! 0.090~3! @48#

SESAM 5.6 0.1585 0.091~16! 0.076~10! @16#
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delete the lowest SCRI points and perform an extrapola
comparable to that for the SESAM extrapolation. Hence,
believe that the differences between the moments of qu
distributions calculated with the SCRI and SESAM config
rations is an undetermined combination of lattice spac
errors and finite volume effects. New dynamical Wils
quark calculations are under way atb55.5 andb55.3 to
separate these finite volume and finite lattice spacing effe

B. Source optimization

To obtain as much physics as possible from the SES
and SCRI configurations, the nucleon sources have been
timized in their overlap with the ground state and with r
spect to their separation in Euclidean time.

As discussed in Sec. IV B, the rms radius^r 2&1/2 charac-
terizing the spatial extent of a Wuppertal source was va
to maximize the overlap of the source with the ground st
proton wave functionP(0)5 z^CJu0& z2. Figure 5 shows the
overlap, with jackknife errors, between the smeared sou
and the proton ground state as a function of the source
radius in lattice units, calculated atb55.6,k50.1575, and
smearing parametera53. The number of smearing steps,N,
to produce the rms radii in this plot ranges from 20 at
lowest nonzero point to 250 for the highest. It is interest

FIG. 4. The scaled pion mass squared, (amp)23(a5.6/a)2, for
the dynamical Wilson fermion calculations tabulated in Table
The dotted line shows the mass at which the pion Compton wa
length equals one-fourth of the spatial dimension.
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that the overlap increases from 631025 for a point source to
0.5 for an rms radius of the order of 4.5 lattice units. Clea
this four-order-of-magnitude increase is a dramatic aid
improving the plateau for measurements. Based on these
analogous calculations atb55.5, the optimal Wupperta
smearing occurs at a physical rms radius of 0.4 fm, wh
corresponds toa53 and N550 at b55.6 anda53 and
N530 atb55.5.

Note that this overlap calculation opens the possibility
performing instructive variational studies of the nucle
ground state. Already, a very simple quark and gluon wa
function made up a product of three Gaussian single-part
wave functions smeared with surrounding links of glue ha
50% overlap with the full ground state and is measured w
good statistical accuracy. Hence, it should be straightforw
and practical to investigate variationally the extent to wh
the wave function can be improved by the addition
changes in the quark wave function, such as the addition
diquark correlations, or of changes in the gluon wave fu
tion.

The optimal separation between source and sink is a c
promise between two competing effects. As the separa
increases, the size of the usable plateau increases, red
systematic error and in principle allowing for increased s
tistical accuracy from averaging over an increasingly la
region. However, the propagators themselves are expo

.
e-

FIG. 5. Overlap between a smeared source and the pr
ground state as a function of the source rms radius. The overlap
zero smearing is 631025.
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FIG. 6. Plateaus for̂x&q
(b) calculated with point sources separated by 14~left! and 12~right! time steps using 100 configurations atb

55.6 andk50.1575.
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tially decreasing with separation and the fractional error w
which they can be measured increases exponentially.~This is
analogous to the exponential error growth in the meas
ment of Wilson loops or Polyakov lines, but because
measurement of the three-point function is intrinsically no
local, it is not amenable to the error reduction techniques
Lüscher and Weisz@50#.!

To determine the optimal compromise between these
competing effects more quantitatively, plateaus were ca
lated as a function of the source-sink separation for po
sources, and the results for^x&q

(b) using 100 configurations a
b55.6 andk50.1575 are shown in Fig. 6 for time separ
tionsDT512 and 14. The errors forDT514 are 50% larger
than forDT512, and become prohibitive for larger separ
tions. This is consistent with the results of Ref.@10#, that for
a 163332 lattice in quenched QCD withb56.0, which has a
comparable lattice spacing, the error bars grow significa
for DT.13. Although the plateau region forDT514 is
hardly present atDT512 for point sources, one may sti
extract the correct matrix element using the exponentia
method described in Sec. IV D. Furthermore, using optim
smeared sources to enhance the ground state overlap by
orders of magnitude decreases the excited state contami
to the point that a well defined central plateau is recogni
for DT512 as shown below. Hence, to reduce the ove
statistical errors in our calculations, it is optimal to use
physical separation of approximately 1.1 fm in the tim
direction, which corresponds toDT512 for SESAM con-
figurations atb55.6 and toDT510 for SCRI configurations
at b55.5.

The final quality of the plateaus used for measurement
operators in a zero momentum ground state are shown in
7, where we plot measurements of the operat
^x&q

(b) ,^1&Dq ,^x&Dq
(b) , and ^1&dq as a function of Euclidean

time for an ensemble of 200 SESAM configurations withb
55.6 andk50.1560. The improvement in the plateau f
^x&q

(b) produced by smearing is seen by comparing the ri
panel of Fig. 6 and the upper left panel of Fig. 7. Note al
as emphasized in connection with Eq.~18!, that the sign of
the exponential contaminant near the source or sink ma
either positive or negative, with a small negative contribut
arising in the case of the axial charge^1&Dq shown in the
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upper right panel of Fig. 7. These well-defined plateaus
typical of all our measurements of operators in a zero m
mentum ground state and show why we obtain consis
results with plateau and exponential fits and satisfactory
tistics. In the case of projection onto nonzero moment
ground states, errors are substantially larger. Although
also report these nonzero momentum results in this work,
errors are generally unsatisfactory and additional calculati
will be carried out to improve their statistics.

One other optimization was investigated, but turned ou
produce minimal improvement. There is considerable fr
dom in selecting lattice operators from the irreducible rep
sentations tabulated in Table I. For example, instead of

basis vectorq̄g4DJ 4q2 1
3 (q̄g1DJ 1q1q̄g2DJ 2q1q̄g3DJ 3q) of

representation31
1 , one could equally well chooseq̄g4DJ 4q

2q̄g iDJ iq for i 51, 2, or 3. Since the directioni 53 is in-
equivalent to the other two spatial directions because the
is polarized in the 3 direction, one can find numerically t
optimal combination of the basis vectors that minimizes
variance in the measurement of^x&q

(b) . However, in the end,
the reduction in the statistical error is only about 7%, so t
refinement was not implemented in our production calcu
tions.

C. Consistency checks

This section summarizes a number of consistency che
that have been performed to ensure the reliability and ac
racy of our calculations of moments of quark distribution

Sources

One potential pitfall of optimizing sources to increase t
size of the plateau region is the possibility that, althou
excited state contaminants appear to have been diminis
unobserved systematic errors may have sneaked into the
teau measurements. To ensure that such systematic e
have not been introduced into our present calculations,
have evaluated the operators of interest for various comb
tions of source and sink combinations. Figure 8 compares
results for^x&q

(b) , ^1&Dq , and ^1&dq calculated using point-
6-11
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FIG. 7. Plateaus obtained using optimally smeared sources witha53 andN550 separated by 12 time steps on SESAM configurati
with b55.6 andk50.1560. Measurements as a function of Euclidean time of the operators^x&q

(b) , ^1&Dq , ^x&Dq
(b) , and^1&dq are shown in

panels~a!, ~b!, ~c!, and~d!, respectively. Circles and squares denote matrix elements for up and down quarks, respectively, the error
smaller than the symbols and shown within them, and the solid lines denote fits within the plateau region.
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point, point-smeared, smeared-point, and smeared-sme
source-sink combinations, showing that in all cases the
sults are statistically consistent. Forty configurations ab
55.6 were used with a source-sink separation of 12, and
smeared sources hadN520 smearing steps. Each cluster
four error bars corresponds to four different window siz
over which the measurements were averaged, characte
by the number of points omitted at the source and sink. T
case shown in Fig. 7, denoted~3,3!, corresponds to omissio
of three points at the source and three points at the sink
is shown at the left of each cluster. With a separation of
lattice spacings, there are 13 points in all, of which six
deleted, leaving a measurement plateau of seven. The
maining error bars in each cluster correspond to~3,5!, ~5,3!,
and~5,5! points omitted at the source and sink, respective
Thin lines denote cases in which the window comes
close to either a point sink or point source and overlaps w
a region with contamination from excited states, and the
ror bars denote jackknife errors.

Figure 9 shows a related comparison of the measurem
of the same three observables in which the source and
are smeared withN50, N520, andN5100 smearing steps
The window sizes within each cluster of error bars are
03450
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same as in the previous case. Again, the observables are
sistent for all three cases, although the error bars bec
substantially larger for the largest smearing because the
of the paths of link variables generated by the smearing
creases significantly.

Boundary conditions

The Dirichlet boundary conditions in Euclidean time w
have used enable us to calculate the exponential deca
two-point functions far beyond the midpoint of the lattic
without the usual contributions of the propagation of the p
ity partner of the nucleon from the first images in the tim
direction. Only within a few lattice points of the edge of th
lattice do artifacts associated with reflection from the bou
ary ~or, equivalently, negative image charges! become sig-
nificant. To verify that the choice of boundary condition do
not affect the measured values of hadronic matrix eleme
Fig. 10 shows the results of measuring the operat
^x&q

(b) , ^1&Dq , ^1&dq , and ^x&Dq using Dirichlet and peri-
odic boundary conditions. Note that, although the results
statistically consistent, our choice of Dirichlet boundary co
ditions significantly reduces the error bars for some ope
tors, such aŝx&q

(b) and ^1&Dq ,^1&dq .
6-12
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Precision

In our production calculations, the conjugate gradient
version to calculate quark propagators was performed
single precision~to increase performance on the ES-40 clu
ter! using a perturbative stopping residuer min

2 510214 and
four restarts@51#. To verify that single precision with the
restart procedure provided adequate precision, we show
discrepancy between calculations of the axial charge,^1&Dq ,
calculated in single and double precision as a function of
residualr min

2 in Fig. 11. We note that all discrepancies a
already negligible at residuer min

2 510212, providing a two-
order-of-magnitude safety margin.

Autocorrelation functions

Autocorrelation functions were calculated for lattice me
surements of̂x&q

(b) and^x&Dq using the SESAM ensemble a
k50.1575 consisting of 200 configurations separated by
hybrid Monte Carlo trajectories. Correlations for all nonze
configuration separations were statistically consistent w
zero, and all indications suggest that the 200 configurati
are indeed independent for all the degrees of freedom
evant for the present measurements.

In contrast to the SESAM configurations, the SCRI co
figurations are only separated by ten trajectories. To m

FIG. 8. Comparison of operator measurements using comb
tions of point and smeared sources and sinks. From left to right
four clusters, each containing four error bars, correspond to po
point, point-smeared, smeared-point, and smeared-smeared so
sink combinations, respectively. Within each cluster, from left
right, the four error bars correspond to windows in which the nu
ber of lattice points omitted from the window at the source and s
are ~3,3!, ~3,5!, ~5,3!, and ~5,5!, respectively. All smeared source
and sinks haveN520 anda53. From top to bottom, the panel
show measurements of the operators^x&q

(b) , ^1&Dq , and^1&dq .
03450
-
in
-

he

e

-

5

h
s
l-

-
i-

mize the possible effect of correlations, the physical locat
of the source and sink was shifted by 16 time slices on
odd configurations relative to those on even configuratio
Autocorrelation functions for 200 SCRI configurations atk
50.1600 yielded a result statistically inconsistent with ze
only for separation by two configurations, in which case t
correlation was approximately 0.260.15. Thus for the de-
grees of freedom relevant to our proton matrix elemen
configurations separated by ten hybrid Monte Carlo trajec
ries with sources and sinks displaced by 16 time slices
independent, whereas those separated by 20 hybrid M
Carlo trajectories with the sources and sinks at the sa
location still have nonvanishing correlations. The relative
dependence of measurements at different source and
positions provides an attractive means of extracting ad
tional physics from the available full QCD configuration
that will be exploited in subsequent calculations.

Two- and three-point functions

The nucleon two-point function may be calculated in tw
ways: by combining at the sink three forward propagat
calculated from the source, or by combining a backwa
propagator with the sequential source. The agreement wi
roundoff error of these two results was used not only a
check on source methodology, but also at run time as a te
verify that stored forward and backward propagators had
been corrupted.

Another check is to verify that the spatial integral of th
matrix element of the conserved nonlocal vector current~the

a-
e
t-
rce-

-
k

FIG. 9. Comparison of operator measurements using sme
sources of different sizes. From left to right, the three clusters, e
containing four error bars, correspond toN50, N520, and N
5100. The windows within each cluster and the operators are
same as in Fig. 8.
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Noether current for the discrete Wilson lattice actio!,
^Pu*d3xJ0

(u),NLuP&/^PuP&, equals 2 and 1 for up and dow
quarks, respectively. This relation must be satisfied confi
ration by configuration and is also used as a runtime tes
the configurations.

An additional test of the source and sink construction is
project the sink onto a fixed position in the sink time slic
rather than momentum projecting it, and to replace all l
variables by their mirror images. We have verified that
resulting three-point function is the mirror image of th
original result configuration by configuration.

Finally, as discussed previously, matrix elements of ope
tors may be calculated either with the variable time ext
method, in which one sums over all times at which the o
erator insertion could occur and determines the slope of
dependence ontsink , or by measuring the plateau using th
fixed source-sink separation as is done in this work. A c
sistency check that is satisfied configuration by configura
is that the sum of the three-point function over the interm
diate time at which the operator is measured for a fix
source-sink separation should be equal to the variable
extent three-point function for the fixed source-sink sepa

FIG. 10. Comparison of operator measurements using Diric
boundary conditions~left cluster! and periodic boundary condition
~right cluster!. The windows within each cluster and the operato
for the top three panels are the same as in Fig. 8, and the bo
panel corresponds to the operator^x&Dq .
03450
-
of

o
,
k
e

-
t
-
e

-
n
-
d
e
-

tion. In addition, we have verified that our measurements
the axial charge using the fixed source-sink separa
method for the three largest values ofk agree quantitatively
with those calculated by the Wuppertal group using the v
able time extent method@14#.

On the basis of these and other consistency checks, we
confident that the calculations of moments of quark distrib
tions reported in this work are both reliable and accurate

D. Quenched results

In order to investigate the effects of quenching quant
tively, it is essential to compare quenched and unquenc
calculations at equal lattice spacing using precisely the s

et

m

FIG. 11. Discrepancy between the axial charge^1&Dq calculated
in single precision~solid curve! and double precision~dotted curve!
as a function of (2 log10r min

2 ) wherer min
2 is the conjugate gradien

stopping residue. From the top panel to the bottom panel,
source-sink separation increases from 9 to 14 lattice spacings.
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computational methodology. Hence, we have calculated
ments of polarized and unpolarized parton distributions
quenched lattice QCD atb56.0, which is comparable to ful
QCD atb55.6. These calculations also afford the oppor
nity to check our results with the extensive calculations
the QCDSF Collaboration@10,15,22,52–54#. For Wilson fer-
mions atb56.0, the criticalk is kc50.1572, and we have
performed our calculations atk50.1550,0.1540,0.1530. Tw
of these values ofk coincide with values used by QCDS
facilitating direct comparison of unextrapolated as well
extrapolated results. In addition, the pion masses corresp
ing to these values ofk overlap the range of pion masses f
the SESAM configurations, providing a meaningful compa
son of quenched and unquenched QCD.

Linear extrapolations of the quenched moments of un
larized up and down quark distributions^x&q

(b) and^x2&q are
shown in Figs. 12 and 13. Corresponding results for
quenched moments of polarized quark distributions^1&Dq

FIG. 12. Linear extrapolation of quenched calculations of
momentum fraction̂ x&q

(b) . The solid squares denote the results
the present calculation, and for comparison QCDSF results
shown by the open points. Here and in subsequent figures, the u
and lower curves correspond to up and down quarks, respectiv

FIG. 13. Linear extrapolation of quenched calculations
^x2&q , where the symbols are as in Fig. 12.
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and ^x&Dq
(b) are shown in Figs. 14 and 15. The complete n

merical data for these and other moments of quark distri
tions are tabulated in Table V. All results are presented in
MS scheme withm254 GeV2 and extrapolated linearly
with a least squares fit to the chiral limit. In these figures,
measured values ofmp

2 at eachk were converted to physica
units using 1/a52 GeV.

Our results for all operators agree within statistics w
those of QCDSF, and Figs. 12–15 show typical compariso
Note that, for the three operators that can be evaluated
zero momentum proton ground state,^x&q

(b) , ^1&Dq , and
^x&Dq

(b) , the statistical errors in the extrapolated results
small and allow for meaningful comparison with full QC
results and with phenomenology. In contrast, the errors a
ciated with the operator̂x2&q , which requires projection
onto a state with nonzero momentum, are so large that m
ingful comparison will require higher statistics. Sinc
QCDSF used on the order of 1000 configurations wher
we used only 200 configurations, it is consistent that o
error bars on individual points are twice as large as theirs
this operator. The fact that the QCDSF error bars are not

e
f
re
per
ly.

f

FIG. 14. Linear extrapolation of quenched calculations of
axial chargê 1&Dq , where the symbols are as in Fig. 12.

FIG. 15. Linear extrapolation of quenched calculations of
moment^x&Dq

(b) , where the symbols are as in Fig. 12.
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TABLE V. Moments of quark distributions in quenched QCD calculated at three values ofk and extrapo-
lated linearly tokc .

kc50.1571 0.1550 0.1540 0.1530

^x&u
(b) 0.454~29! 0.458~17! 0.464~10! 0.465~7!

^x&d
(b) 0.203~14! 0.209~8! 0.213~5! 0.216~3!

^x&u
(a) 0.308~125! 0.375~64! 0.402~47! 0.437~41!

^x&d
(a) 0.159~57! 0.179~29! 0.178~21! 0.192~19!

^x2&u 0.119~61! 0.135~32! 0.129~23! 0.142~20!

^x2&d 0.0286~324! 0.0410~167! 0.0464~118! 0.0527~108!
^x3&u 0.0369~357! 0.0441~192! 0.0504~126! 0.0532~107!
^x3&d 20.00893(1842) 0.000957~10126! 0.00917~638! 0.0132~53!

^1&Du 0.888~80! 0.915~46! 0.926~28! 0.939~20!

^1&Dd 20.241(58) 20.244(38) 20.250(18) 20.251(12)

^x&Du
(b) 0.215~25! 0.228~14! 0.238~9! 0.243~7!

^x&Dd
(b) 20.0535(164) 20.0564(97) 20.0561(56) 20.0578(39)

^x&Du
(a) 0.141~123! 0.199~65! 0.220~45! 0.251~37!

^x&Dd
(a) 20.00144(7536) 20.0200(407) 20.0338(283) 20.0415(215)

^x2&Du 0.0269~428! 0.0514~236! 0.0639~152! 0.0758~121!
^x2&Dd 0.00274~2530! 20.00555(1431) 20.0107(90) 20.0145(66)
^1&du 1.014~82! 1.035~49! 1.045~28! 1.055~20!

^1&dd 20.199(46) 20.222(27) 20.241(16) 20.251(11)
^x&du 0.337~209! 0.422~111! 0.474~79! 0.512~63!

^x&dd 20.0694(689) 20.0723(371) 20.0638(253) 20.0682(201)
d1

u 21.354(75) 21.079(50) 20.914(24) 20.779(14)
d1

d 0.282~42! 0.230~28! 0.208~13! 0.183~8!

d2
u 20.233(86) 20.189(52) 20.172(29) 20.150(19)

d2
d 0.0396~311! 0.0313~193! 0.0230~104! 0.0193~65!
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the size of ours for three matrix elements calculated in a z
momentum state as well is explained by the fact that
errors they reported for these matrix elements are somew
larger than jackknife errors because their original analy
used a full error correlation matrix from which low eige
modes were removed@55#.

E. Full QCD results

A central result of this work is the fact that, for the ran
of quark masses accessible in the present calculati
quenched and full QCD calculations at comparable lat
spacing agree within statistical errors. The moments of qu
distributions in full QCD atb55.6 calculated using SESAM
configurations are shown in Table VI. Note that to avo
finite volume effects, moments at the lightest quark mass
not included in the extrapolation. Detailed comparison w
Table V shows that in the case of all the operators we h
calculated the full QCD results atb55.6 are statistically
consistent with those calculated in quenched QCD ab
56.0. Furthermore, in the case of operators that can
evaluated in zero-momentum nucleon states, the statis
errors are sufficiently small that any differences between
linearly extrapolated quenched and unquenched results
small compared with the discrepancies with experiment
cussed below. The level of agreement between quenched
full QCD of ^x2&q , ^1&Dq , ^x&Dq

(b) , and^1&dq is also shown in
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Figs. 16, 17, 18, and 19, respectively. Hence, the pres
work strongly rules out the conjecture that the serious d
crepancies between quenched calculations and phenom
ogy arose from the omission of the effect of dynamic
quarks. As noted previously, the magnitude of the errors
observables measured in nucleons with nonzero momen
is qualitatively larger, and no strong conclusions can
reached for these observables until higher statistics calc
tions are carried out.

In addition to the calculations atb55.6, which corre-
spond to the same lattice spacing as our quenched calc
tions, we have also calculated the same operators atb55.5
using the SCRI configurations in an attempt to study
approach to the continuum limit. The results are tabulated
Table VII. Note that by Eq.~10! the shifts ina and b in
going fromb55.6 to b55.5 produce changes in the reno
malization constants that are negligible on the scale of
present statistical errors, so these changes in renormaliza
factors have been omitted. Unfortunately, as pointed ou
connection with Fig. 4, the two lightest quark masses lie i
regime in which we expect significant errors due to fin
volume effects, so the chiral extrapolations are physica
suspect. Even so, the bulk of the operators evaluated ab
55.5 andb55.6 agree within statistics. The only exce
tions, which are only slightly beyond one standard deviati
are^x2&u , ^1&Du , ^x&Du

(b) , ^1&du , and^x&dd . Because of the
uncertainty in finite volume effects and the small lever ar
6-16
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TABLE VI. Moments of quark distributions in full QCD atb55.6 using SESAM configurations. Lattic
measurements are shown at four values ofk, but to avoid finite volume effects at the lightest quark ma
(k50.1575), only values at the three lowestk ’s are extrapolated linearly tokc .

kc50.1585 ~0.1575! 0.1570 0.1565 0.1560

^x&u
(b) 0.459~29! 0.503~14! 0.470~13! 0.449~9! 0.461~5!

^x&d
(b) 0.190~17! 0.222~9! 0.207~8! 0.207~4! 0.214~4!

^x&u
(a) 0.462~174! 0.412~93! 0.411~69! 0.439~70! 0.394~45!

^x&d
(a) 0.178~83! 0.168~37! 0.161~33! 0.216~37! 0.170~20!

^x2&u 0.176~63! 0.131~34! 0.134~24! 0.131~24! 0.110~18!

^x2&d 0.0314~303! 0.0328~151! 0.0414~109! 0.0503~102! 0.0496~101!
^x3&u 0.0685~392! 0.0443~168! 0.0521~152! 0.0594~121! 0.0466~113!
^x3&d 20.00989(1529) 0.0232~98! 0.00789~549! 0.0259~63! 0.0225~50!

^1&Du 0.860~69! 0.741~37! 0.880~28! 0.975~24! 0.936~16!

^1&Dd 20.171(43) 20.214(25) 20.214(18) 20.248(15) 20.254(9)

^x&Du
(b) 0.242~22! 0.241~15! 0.237~9! 0.237~7! 0.235~6!

^x&Dd
(b) 20.0290(129) 20.0484(63) 20.0460(52) 20.0605(38) 20.0621(34)

^x&Du
(a) 0.254~111! 0.205~83! 0.196~43! 0.217~41! 0.171~31!

^x&Dd
(a) 20.0546(863) 20.0611(418) 20.0849(377) 20.0473(246) 20.0745(194)

^x2&Du 0.116~42! 0.0859~330! 0.0673~161! 0.0920~166! 0.0483~114!
^x2&Dd 0.00142~2515! 20.0179(169) 20.0149(101) 20.0157(95) 20.0239(61)
^1&du 0.963~59! 0.919~40! 1.023~26! 1.062~18! 1.075~13!

^1&dd 20.202(36) 20.239(27) 20.238(15) 20.225(14) 20.250(7)
^x&du 0.477~196! 0.424~109! 0.418~79! 0.465~75! 0.405~48!

^x&dd 20.144(68) 20.0828(385) 20.115(28) 20.0565(248) 20.0739(167)
d1

u 21.318(55) 21.036(44) 21.032(26) 20.957(15) 20.854(11)
d1

d 0.278~35! 0.269~30! 0.239~15! 0.200~13! 0.197~6!

d2
u 20.228(81) 20.191(50) 20.179(34) 20.164(29) 20.147(17)

d2
d 0.0765~310! 0.0392~181! 0.0462~134! 0.0172~112! 0.0154~59!
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we have not attempted to extrapolate the present data to
continuum limit. Higher statistics calculations at smal
quark masses for several coupling constants are pres
under way to more seriously address the behavior in the c
tinuum limit.

FIG. 16. Comparison of linear extrapolations of quenched
full QCD calculations of the momentum fraction^x&q . The open
symbols denote quenched calculations atb56.0 and the closed
symbols denote full QCD calculations atb55.6. The upper and
lower curves correspond to up and down quarks, respectively.
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F. Cooled results

A fruitful strategy to obtain insight into hadronic physic
is to use the numerical evaluation of the sum over all qu
and gluon configurations contributing to the path integral
isolate those paths that dominate the action. In recent ye
this approach has provided strong evidence that in QCD w

d

FIG. 17. Comparison of linear extrapolations of quenched a
full QCD calculations of the axial charge^1&Dq , where the symbols
are as in Fig. 16.
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light quarks, topological excitations of the gluon field, whi
in the semiclassical limit correspond to instantons, pla
major role in hadron structure. By minimizing the actio
locally in a process known as cooling@56#, the instanton
content of the quenched and full QCD vacuum has b
extracted@57–59#. Comparison of hadronic observables c
culated with all gluons and those obtained using only
instantons remaining after cooling has demonstrated qua
tive agreement for hadron masses, quark distributions,
vacuum correlation functions of hadron currents@60#. Calcu-
lation of the lowest quark eigenmodes has revealed z
modes correlated spatially with the instantons and trunca
of the quark propagators to the zero mode zone has prod
the full strength of ther and p contributions to vacuum
correlation functions@61,62#.

Hence, to obtain further insight into the structure of t
proton, we have used cooling to remove essentially all
gluon fluctuations except for instantons from the full QC
configurations, and compared the quark distributions ca

FIG. 18. Comparison of linear extrapolations of quenched
full QCD calculations of the first moment of the quark spin dist
bution ^x&Dq

(b) , where the symbols are as in Fig. 16.

FIG. 19. Comparison of linear extrapolations of quenched
full QCD calculations of the tensor charge^1&dq , where the sym-
bols are as in Fig. 16.
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lated in full QCD and including only the contributions o
instantons. The role of instantons is particularly interesting
considering the spin structure of the proton, since the
Hooft instanton interaction is the only vertex in QCD th
directly removes helicity from valence quarks and transfer
to gluons and quark-antiquark pairs and is therefore a nat
mechanism to explain the so-called ‘‘spin crisis’’@63–65#.
Our calculation of the contributions of instantons to mat
elements of operators related by the operator product ex
sion to deep inelastic scattering also closely parallels the
rect calculation of instanton contributions to deep inelas
scattering in Refs.@66–69#. The present work extends an
substantiates earlier exploratory investigations@12#.

To remove the essential noninstanton related gluon fl
tuations without producing unnecessary annihilation
instanton–anti-instanton pairs, we have cooled the full Q
SESAM configurations atb55.6 using 50 cooling steps
This amount of cooling corresponds to roughly 25 cooli
steps forb55.7, which was an effective amount of coolin
in Ref. @60#. Furthermore, calculations of nucleon two-poi
functions using the SESAM configurations have shown t
the results with 25 and 50 cooling steps differ negligib
@51#.

Because of the smoothness of cooled configuratio
small statistical errors are obtained using an ensemble of
configurations, and previous investigations have shown
the chiral dependence on quark mass is quite linear in
region of interest. Hence, we cooled 100 configurations
ksea50.1570 and atksea50.1560 for our comparison with
full QCD. To make the cooled chiral extrapolation comp
rable to the uncooled case, for eachksea, we selected the
cooled valence quark masskval such that the ratiomp /mN
was the same as the ratio in full QCD. The resulting coo
values arekval50.1246 for ksea50.1570, wheremp /mN
50.523, and kval50.1235 for ksea50.1560, where
mp /mN50.476, and the full QCD masses were taken fro

d

d

FIG. 20. Comparison of the quark momentum fraction^x&q
(b)

calculated in full QCD and using configurations cooled to elimin
essentially all contributions except those of instantons. Solid s
bols connected by solid curves denote full QCD and open sym
connected by dashed curves denote results after cooling. The u
and lower curves correspond to up and down quarks, respectiv
6-18
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TABLE VII. Moments of quark distributions in full QCD atb55.5 using SCRI configurations extrapo
lated linearly tokc .

kc50.16116 0.1604 0.1600 0.1596

^x&u
(b) 0.416~41! 0.459~25! 0.451~16! 0.480~9!

^x&d
(b) 0.181~20! 0.197~10! 0.205~11! 0.213~7!

^x&u
(a) 0.289~132! 0.372~68! 0.420~64! 0.462~47!

^x&d
(a) 0.0430~523! 0.119~26! 0.182~29! 0.209~20!

^x2&u 0.0191~429! 0.0753~210! 0.150~30! 0.146~17!

^x2&d 0.0290~311! 0.0435~171! 0.0513~134! 0.0590~94!

^x3&u 0.0341~365! 0.0401~201! 0.0500~152! 0.0509~112!
^x3&d 0.0232~228! 0.0229~138! 0.00746~827! 0.00975~583!
^1&Du 0.635~94! 0.713~52! 0.838~40! 0.852~27!

^1&Dd 20.279(48) 20.263(25) 20.280(22) 20.259(16)

^x&Du
(b) 0.180~34! 0.204~20! 0.209~13! 0.223~9!

^x&Dd
(b) 20.0597(168) 20.0597(94) 20.0597(70) 20.0597(48)

^x&Du
(a) 0.278~123! 0.217~66! 0.255~57! 0.192~39!

^x&Dd
(a) 0.119~61! 0.0419~316! 20.0147(365) 20.0459(201)

^x2&Du 0.156~50! 0.0987~265! 0.117~28! 0.0598~153!
^x2&Dd 0.00611~3014! 20.0214(159) 0.0230~162! 20.0223(93)
^1&du 0.675~75! 0.868~42! 0.980~31! 1.080~22!

^1&dd 20.214(55) 20.225(30) 20.277(25) 20.265(14)
^x&du 0.251~138! 0.376~71! 0.421~76! 0.501~46!

^x&dd 0.00912~7595! 0.0204~412! 20.106(31) 20.0527(253)
d1

u 21.261(89) 21.197(56) 21.068(32) 21.046(21)
d1

d 0.374~67! 0.302~41! 0.301~27! 0.256~13!

d2
u 20.264(77) 20.236(42) 20.203(40) 20.196(21)

d2
d 0.0191~402! 0.00394~2320! 0.0501~172! 0.0266~100!
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Ref. @16#. Note that, because we are comparing two theo
ical calculations in the same physical volume, we have
discarded the lightest quark mass case for full QCD ou
concern for finite volume effects, but rather have include
to enable comparison in the regime of the lightest qu
masses where dominance by the zero modes associated
instantons should be most pronounced.

Since the high frequency quantum fluctuations are
moved by cooling, we set all the renormalization constantZ
to 1 in order to compare cooled results with the full QC
results. Although we are aware of no rigorous argument a
formulating renormalization in the presence of cooling, t
approximation appears the most physical and, for exampl
quite sensible for tadpoles, where we expectU0

5^ 1
3 TrU&1/4.1.
The moments of quark distributions calculated in coo

configurations are tabulated in Table VIII. In addition, e
trapolations in full and cooled QCD for the operators th
can be calculated with high statistics in a nucleon state
zero momentum,̂x&q

(b) , ^1&Dq , ^x&Dq
(a) , ^1&dq , andd1, are

compared in Figs. 20, 21, 22, 23, and 24, respectively.
It is striking that the extrapolated cooled and full QC

results agree so closely for all the twist-2 operators that c
respond to moments of quark distributions. This detai
agreement, generally within error bars but always within t
standard deviations, provides strong support for the phys
picture that the propagation of light quarks in the nucleon
03450
t-
t
f

it
k
ith

-

to
s
is

d

t
at

r-
d
o
al
s

strongly dominated by the instanton content of the glu
configurations. It is interesting that in the cases of^x&q

(b) and
^x&Dq

(a) the cooled and uncooled results agree best in the
gion of light quark masses, where we expect zero mo
dominance to be most pronounced, and differ much m
significantly at heavy quark masses where they have no
son to agree in detail.

Having observed consistency between cooled and
QCD results in the cases above where one expects agree
on the basis of instanton physics, it is also interesting t
cooled and full QCD results differ by an order of magnitu
for the twist-3 operatorsd1 andd2, where we expect them to
disagree dramatically because of operator mixing. Recall
in connection with Eq.~8!, we pointed out that for Wilson
fermions the operatorg5g [sDJ $m1]•••DJ mn% mixes with the

lower dimension operator (1/a)g5g [sg$m1]•••DJ mn% . Hence,

one expects that our lattice measurements ofd1 and d2 are
contaminated to a large extent by operator mixing, and
deed a calculation of the nonperturbative mixing@54# yields
a large change in the extracted value ofd2. As argued above
cooling removes the short wavelength fluctuations resp
sible for renormalization and mixing, so as a result we wo
expect the mixing to be reduced essentially to zero. Thi
precisely what is observed in Fig. 24 and in Table VIII whe
the cooled measurements extrapolate to values close to
and the full QCD measurements are an order of magnit
larger.
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G. Comparison with phenomenology

This section presents the evidence that linear chiral
trapolation of full lattice QCD results in the regime of qua
masses accessible in this work is seriously inconsistent
experimental measurements of light cone quark distributi
in the nucleon. To make the argument as strong as poss

TABLE VIII. Moments of quark distributions calculated with
cooled configurations, as described in the text, to eliminate mos
the gluon degrees of freedom except instantons. Lattice mea
ments atk50.1235 and 0.1246 are extrapolated linearly tokc .

kc50.1266 0.1235 0.1246

^x&u
(b) 0.565~61! 0.581~8! 0.575~21!

^x&d
(b) 0.238~29! 0.265~5! 0.255~10!

^x&u
(a) 0.314~189! 0.555~74! 0.468~49!

^x&d
(a) 0.119~89! 0.247~33! 0.201~24!

^x2&u 0.146~78! 0.169~29! 0.161~21!

^x2&d 0.0316~334! 0.0716~123! 0.0572~91!

^x3&u 0.0517~337! 0.0761~130! 0.0673~88!

^x3&d 0.00911~1390! 0.0309~55! 0.0231~35!

^1&Du 0.585~82! 0.818~17! 0.734~28!

^1&Dd 20.298(46) 20.210(8) 20.242(16)

^x&Du
(b) 0.118~46! 0.114~17! 0.115~13!

^x&Dd
(b) 20.0120(242) 20.0230(57) 20.0191(79)

^x&Du
(a) 0.279~30! 0.316~8! 0.303~9!

^x&Dd
(a) 20.0763(188) 20.0650(46) 20.0691(61)

^x2&Du 0.236~117! 0.274~40! 0.261~34!

^x2&Dd 20.0650(782) 20.0534(200) 20.0576(251)
^1&du 0.768~65! 0.951~13! 0.885~22!

^1&dd 20.289(49) 20.234(7) 20.254(17)
^x&du 0.451~265! 0.702~96! 0.611~73!

^x&dd 0.0153~936! 20.137(27) 20.0820(288)
d1

u 20.101(7) 0.155~2! 0.0628~22!

d1
d 0.00915~595! 20.0398(12) 20.0221(20)

d2
u 20.0462(220) 0.0619~95! 0.0229~51!

d2
d 0.00673~1288! 20.0164(34) 20.00808(409)

FIG. 21. Comparison of the axial charge^1&Dq calculated in full
QCD and using cooled configurations, as in Fig. 20.
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it is useful to first compare our calculations with three oth
lattice calculations. Hence, the quenched and full QCD c
culations of this work are compared with other related latt
calculations and with phenomenology in Table IX.

We have already commented on the comparison of
quenched calculations with those of the QCDSF Collabo
tion, and their results from Refs.@10,22,52–54# are tabulated
in the first column to be compared with our quenched res
in the fourth column. Here, complementing the plots in Fig
12–15, one sees detailed agreement of results calculate
the sameb andk, strongly supporting the accuracy and co
sistency of both calculations.

The second column shows the extrapolation to the c
tinuum limit by the QCDSF Collaboration of several m
ments@15#. The agreement of these extrapolations with t
first column clearly shows that in the case of quenched Q
finite lattice spacing effects are small compared with the d
crepancies with experiment. Given the close agreement
tween full QCD and quenched calculations in this regime
quark masses, there is no reason to believe that finite la

of
re-

FIG. 22. Comparison of the first moment of the quark spin d
tribution, ^x&Dq

(b) , calculated in full QCD and using cooled configu
rations, as in Fig. 20.

FIG. 23. Comparison of the tensor charge^1&dq calculated in
full QCD and using cooled configurations, as in Fig. 20.
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spacing effects are substantially larger in our full QCD c
culations than in the quenched case, so it would be un
sonable to attribute discrepancies with experiment to fin
lattice spacing effects.

The third column shows the contributions to the ax
charge by the SESAM Collaboration using the same glu
configurations but completely different measurement te
nology @14# to be compared with our results in the fifth co
umn. As in the case of the quenched comparisons, we be
this provides additional confirmation of the accuracy a
consistency of the present measurements.

The final column shows the moments that were calcula
numerically from phenomenological fits to the world supp
of deep inelastic lepton scattering data and other high en
scattering data. Data are conveniently accessible on the
from each of the major collaborations, and we have cal
lated unpolarized moments using each of the unpolari
data sets CTEQ@1#, GRV @2#, and MRS@3# and calculated
polarized moments using both of the sets GRSV@4# and GS
@5#. Unfortunately, it is difficult to provide quantitative est
mates of systematic or statistical errors. Experimental d
03450
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are available only over part of the necessary range of m
mentum fractionx, and model assumptions are invoked
parametrize parton distributions at largex consistent with
known sum rules and physical constraints. In addition,
error correlation matrix is provided, so it is not even possi
to calculate the error in a moment that arises from the kno
statistical errors in the measurements. In order to get so
indication of the possible errors, we have calculated the m
ments using each of the unpolarized or polarized data set
the table, we tabulate the average value and give the m
mum difference between values for all the relevant data
in parentheses. Note that these differences are small c
pared to the statistical errors in the corresponding lat
measurements, so we believe the phenomenological un
tainties are small compared to the discrepancies with lat
extrapolations discussed below. Since, as argued previo
the disconnected diagrams do not contribute to the flav
nonsinglet combination̂O&u2d , we have tabulated the dif
ferences between the up and down quark contributions
the relevant combination ofq6q̄ for comparison with the
lattice calculations.
ttice
by
ral

ent
s

-

logy
TABLE IX. Comparison of linear extrapolations of full QCD and quenched results with other la
calculations and phenomenology at 4 GeV2 in the MS scheme. The first column shows quenched results
the QCDSF Collaboration atb56.0 @10,22,52–54# and the second column shows extrapolation of seve
moments to the continuum limit@15#. The third column shows full QCD results calculated using a differ
method with the same SESAM configurations we have used@14#. The quenched and full QCD result
calculated in this work are shown in the fourth and fifth columns. Flavor-nonsinglet moments^xn& of q(x)

1(21)n11q̄(x), Dq(x)1(21)nDq̄(x), anddq(x)1(21)n11dq̄(x) are tabulated in the final column. Phe
nomenological unpolarized distributions are calculated from Refs.@1–3# and polarized distributions are
calculated from Refs.@4,5# with error estimates as described in the text.

Connected QCDSF QCDSF Wuppertal Quenched Full QCD Phenomeno
M. E. (a50) ~3 pts! (q6q̄)

^x&u 0.452(26) 0.454(29) 0.459(29)
^x&d 0.189(12) 0.203(14) 0.190(17)
^x&u2d 0.263(17) 0.251(18) 0.269(23) 0.154(3)
^x2&u 0.104(20) 0.119(61) 0.176(63)
^x2&d 0.037(10) 0.029(32) 0.031(30)
^x2&u2d 0.067(22) 0.090(68) 0.145(69) 0.055(1)
^x3&u 0.022(11) 0.037(36) 0.069(39)
^x3&d 20.001(7) 0.009(18) 20.010(15)
^x3&u2d 0.023(13) 0.028(49) 0.078(41) 0.023(1)
^1&Du 0.830(70) 0.889(29) 0.816(20) 0.888(80) 0.860(69)
^1&Dd 20.244(22) 20.236(27) 20.237(9) 20.241(58) 20.171(43)
^1&Du2Dd 1.074(90) 1.14(3) 1.053(27) 1.129(98) 1.031(81) 1.248(2)
^x&Du 0.198(8) 0.215(25) 0.242(22)
^x&Dd 20.048(3) 20.054(16) 20.029(13)
^x&Du2Dd 0.246(9) 0.269(29) 0.271(25) 0.196(9)
^x2&Du 0.04(2) 0.027(60) 0.116(42)
^x2&Dd 20.012 20.003(25) 0.001(25)
^x2&Du2Dd 0.05(2) 0.030(65) 0.115(49) 0.061(6)
duc 0.93(3) 0.980(30) 1.01(8) 0.963(59)
ddc 20.20(2) 20.234(17) 20.20(5) 20.202(36)
d2

u 20.206(18) 20.233(86) 20.228(81)
d2

d 20.035(6) 0.040(31) 0.077(31)
6-21



ex
m
g
la
st
9
e

ea

ge
or
e
i
n

hi
p

cu
li
ex

st

n
w
la
or
it
he
e
a
e
re
e

at
d is

e is
r is
ry.

ory
ding
ex-
na-

ry
he
ex-
e-
on
it.
r-

the
erm

op
es-
har-
on.
ve

if-
ions
is
ts
ve
The

rly
ral
and
iral
re
the

nt is
is
rst

ig

D. DOLGOV et al. PHYSICAL REVIEW D 66, 034506 ~2002!
Table IX reveals a clear discrepancy between linearly
trapolated lattice calculations and phenomenology. The
mentum fraction̂ x&q is a fundamental property specifyin
the fraction of the total momentum carried by a particu
quark flavor. The nonsinglet momentum fraction is overe
mated by more than 50%, with full QCD yielding 0.25–0.2
compared with the phenomenological result 0.15. The s
ond and third moments are similarly overestimated by lin
extrapolation.

Another important quantity is the nucleon axial char
^1&Du2Dd governingb decay. Here again, one finds maj
discrepancies with linear chiral extrapolation, with quench
or unquenched calculations yielding 1.0–1.15 compared w
the experimental value 1.26, corresponding to a discrepa
of 10–25 %.

Since these and other comparisons in Table IX show
clear discrepancy between phenomenology and linear c
extrapolations and because of the evidence summarized
viously for the consistency and accuracy of the lattice cal
lations at heavy quark masses, we believe that the fault
with the linear chiral extrapolation as discussed in the n
section.

H. Chiral extrapolation

Superficially, one could imagine that, since deep inela
scattering involves largeQ2, it might be dominated by the
short distance behavior of the nucleon wave function and
be strongly influenced by the long distance pion cloud. Ho
ever, as we have seen, the operator product expansion re
moments of structure functions to a tower of local operat
to be evaluated in the nucleon ground state. Physically,
clear that the pion cloud should play a major role in t
nucleon matrix elements of these operators, and that th
contributions are strongly suppressed by the heavy qu
masses and small spatial volumes with which we have b
forced to work. Whereas there is clearly a heavy quark
gime in which matrix elements vary nearly linearly with th

FIG. 24. Comparison of the twist-3 operatord1 from Eq. ~8!
calculated in full QCD and using cooled configurations, as in F
20.
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quark mass ormp
2 , the behavior becomes highly nonlinear

quark masses sufficiently light that a substantial pion clou
produced.

Complementary to the linear heavy quark regime, ther
a second regime near the chiral limit in which the behavio
again simple and is specified by chiral perturbation theo
Here, the physics is described by an effective chiral the
based on the would-be Goldstone bosons, and the lea
nonanalytic behavior can be calculated uniquely. For
ample, of direct relevance to this work, the leading nona
lytic behavior of^xn&u2d is @70,71#

^xn&u2d;anF12
~3gA

211!mp
2

~4p f p!2
lnmp

2 G . ~20!

Unfortunately, at present, there is no full analytical theo
joining the chiral regime with the heavy quark regime of t
present lattice calculation. Hence, to explore the chiral
trapolation of lattice QCD calculations to the physical r
gion, it is useful to use a physically motivated extrapolati
formula incorporating the correct behavior in the chiral lim
We therefore fit the lattice data with the extrapolation fo
mula of Ref.@18#, in which a phenomenological cutoffm is
introduced in the nonanalytic term to specify the size of
source generating the pion cloud and the usual analytic t
in mp

2 is included:

^xn&u2d;anF12
~3gA

211!mp
2

~4p f p!2
lnS mp

2

mp
2 1m2D G1bnmp

2 .

~21!

Physically, it is reasonable that momenta in the pion lo
should not become infinitely large as they would in the pr
ence of a point source, but rather be cut off at a scale c
acteristic of the size of the valence quark core of the nucle
Alternative parametrizations in terms of a form factor gi
equivalent results.

The result of using this extrapolation formula for the d
ference between the up and down quark momentum fract
^xn&u2d is shown in Fig. 25. Although this extrapolation
only valid in full QCD, since full QCD and quenched resul
are equivalent in the regime of our calculations, to impro
statistics, we have also included our quenched results.
heavy solid curve is the result of a least-squares fit ofa1 and
b1 in Eq. ~21! with fixed m5550 MeV and the light solid
lines indicate the jackknife error band. Here we see clea
that the extrapolation formula containing the leading chi
behavior is consistent with both the lattice measurements
the experimental data. The fact that the effect of the ch
logarithm is much larger in this matrix element than in mo
familiar mass measurements is again a manifestation of
variational theorem. Making an ordere error in the pion
cloud of the wave function makes an ordere error in matrix
elements of general operators but only an ordere2 error in
the mass. The obvious problem with the present argume
that, although a 550 MeV cutoff, corresponding to 0.3 fm,
physically reasonable, it has not been calculated from fi

.

6-22



e

di
th
e
bu
e
th

alu
fo

b
nt
s
th
s
an
on
nt
fo

r
e
r

u-
lc

se
en
-

pro-
ons
cu-
d-
the

for
lcu-

is
, a
as
so

he

dia-

indi-
are
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principles and may be regarded as a single free param
introduced to fit a single experimental measurement.

To see that this single cutoff parameter resolves the
crepancy with experiment for a number of observables,
results of using Eq.~21! for the first three moments of th
difference between the up and down quark density distri
tions ^xn&u2d are shown in Fig. 26. Because of the larg
error bars in the higher moments, we have also included
quenched QCDSF results@10# to provide a larger lever arm
in the least-squares fit. As seen in the figure, the single v
of m provides simultaneous agreement with experiment
all three moments. As shown in Ref.@18#, this strong chiral
behavior of the three lowest moments is also observed
chiral bag models. Furthermore, similar extrapolation with
comparable cutoff also reconciles the strong discrepancy
tween linear extrapolation of lattice results and experime
nucleon magnetic moments@17#. Thus, a consistent picture i
emerging concerning the importance of large effects of
pion cloud in chiral extrapolations. Unfortunately, becau
spin-dependent structure functions also involve signific
contributions from Delta excitations and chiral perturbati
theory becomes less well controlled, we do not prese
have a corresponding physical interpolation formula
^xn&Du2Dd .

The curves in Fig. 26 suggest that precision measu
ments down tomp

2 50.05 GeV2 are required to determin
the parameters of the chiral extrapolation and thereby p
vide reliable extrapolation of moments of quark distrib
tions. The computational resources required for such ca
lations may be estimated using the cost function@72#
obtained by the SESAM Collaboration. For present purpo
the number of floating point operations per independ
gluon configuration,N in teraflops years, may be conve
niently written

FIG. 25. Chiral extrapolation of the momentum fraction^x&u2d

using Eq. ~21!. Full QCD and quenched data calculated in th
present work are denoted by squares and circles, respectively
the phenomenological result is indicated by the star. The le
squares fit and jackknife error bars are denoted by the heavy
line and surrounding light lines.
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N.0.038FL

4G4.55F0.08

a G7.25F 0.3

mp /mr
G2.7

.

Because the spatial derivatives and nonzero momentum
jections required to calculate moments of structure functi
require high Monte Carlo statistics, it is necessary to cal
late of the order of 400 independent configurations. Inclu
ing equilibration and calculation at higher quark masses,
total computer time is approximately twice that required
400 configurations at the lowest quark mass. Hence, a ca
lation with a lattice spacinga50.1 fm andmp /mr50.3

nd
t-
lid

FIG. 26. Chiral extrapolation of the first three moments of t
proton quark distribution̂ xn&u2d using Eq.~21!. Full QCD and
quenched data calculated in this present work are denoted by
monds and squares, respectively, QCDSF quenched data@10# are
denoted by triangles, and the phenomenological results are
cated by stars. The least-squares fit and jackknife error bars
denoted by the heavy solid line and surrounding light lines.
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would require approximately 8 teraflops years, i.e., dedica
use of a computer that sustains 8 teraflops on QCD for
year. Such resources should become available in the
generation of lattice QCD computers.

VI. SUMMARY AND CONCLUSIONS

This work has presented the first calculation of the m
ments of light cone quark distributions in full QCD. Th
methodology has been presented in detail and validated
numerous consistency checks and comparison with other
evant lattice calculations.

One major result of this work is the close agreement
full QCD and quenched calculations for quark masses co
sponding tomp above 500 MeV. This agreement rules o
the conjecture that discrepancies with experiment could
attributed to quenching effects.

A second salient result is clear evidence that linear
trapolation of full QCD lattice results from pion mass
above 500 MeV is in serious disagreement with experime
ranging from the order of 50% for the quark momentu
fraction to 10–25 % for the axial charge.

Motivated by the inadequacy of linear chiral extrapo
tion, we have shown that extrapolation including the lead
nonanalytic behavior of chiral perturbation theory has
potential to yield results consistent with phenomenology.
have explicitly shown that an extrapolation formula with
single phenomenological cutoff simultaneously fits the fi
three moments of the quark momentum fraction.

Finally, we have shown qualitative agreement betwe
full QCD and cooled lattice configurations retaining only t
contributions of instantons, providing additional evidence
the role of instantons in light hadron structure and of z
mode dominance.

This work points the way for a number of promising ste
in our continued quest to understand hadron structure f
first principles using lattice QCD. One should clearly und
take a systematic program of using a partially quenched
ral expansion for extrapolation and measure the relevant
rameters of the effective chiral theory. To complement
flavor-nonsinglet matrix elements of this work, we need
calculate the disconnected diagrams required to com
flavor-singlet matrix elements with phenomenology. T
continuum limit of the SESAM results should be explored
supplementing the existing SCRI configurations with ad
tional quark masses so that calculations atb55.6, 5.5, and
5.3 may be compared and extrapolated. It is desirable
undertake nonperturbative renormalization without Grib
ambiguities associated with gauge fixing, and to this end
note that the Schro¨dinger functional method has now bee
used to calculate the average quark momentum in the
@35,75–77#. Quenched calculations with chiral fermions in
spatial volume of 3.2 fm should be carried out to extend
pion mass down to 250 MeV and to remove the problem
operator mixing in the twist-3 matrix elements. Finite vo
ume formulas for operator matrix elements should be deri
to correct residual finite volume effects. As lattice resu
come closer to phenomenology, it will be important to ha
quantitative understanding of the errors in moments of str
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ture functions arising from systematic errors, as well as
error correlation matrix describing statistical errors. Fina
with the advent of multiterascale computers, the promise
full QCD calculations with light pion masses will finally b
within our grasp.

We note that subsequent to the completion of this work
thorough analysis of the error correlations in the experim
tal measurements of polarized parton distributions was p
formed in Ref.@78#, with the result that the errors in th
phenomenological values of moments ofDu2Dd in Table
IX are of the order of 10%.
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APPENDIX: CALCULATION OF SEQUENTIAL
PROPAGATORS

This appendix describes the explicit calculation of the
quential nucleon sources used in the calculations in
work.

Denote the smeared field byC, the original unsmeared
field by c, and the gauge invariant smearing function defin
by Eq. ~13! by F so that

Ca
a~xW0 ,t0!5E d3xFaa8

aa8 ~xW0 ,xW !ca8
a8 ~xW ,t0!. ~A1!

The forward propagator from a smeared source to a p
sink, denoted

Saa8
aa8 ~cCuxW ,t;xW0 ,t0!5

def

^ca
a~xW ,t !C̄a8

a8 ~xW0 ,t0!&,

is the solution to the linear system

E dt8 d3x8 DWaa9
aa9 ~xW ,t;xW8,t8!Sa9a8

a9a8 ~cCuxW8,t8;xW0 ,t0!

5d~ t2t0!Faa8
aa8 ~xW ,xW0!, ~A2!

whereDW denotes the Wilson Dirac operator and the sme
ing function is the source term. The propagator from
6-24
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smeared source to a smeared sink is obtained by an a
tional smearing,

Saa8
aa8 ~CCuxW ,t;xW0 ,t0!

5
def

^Ca
a~xW ,t !C̄a8

a8 ~xW0 ,t0!& ~A3!
k
d
d

to

th

03450
di-
5E d3x8Faa9

aa9 ~xW ,xW8!Sa9a8
a9a8 ~cCuxW8,t;xW0 ,t0!.

The three-point function specifyingu quark operator ma-
trix elements, using the proton current Eq.~12! with smeared
quark fields may be written
^JaOJ̄a8& (u)~ t i ,t f ,to ,xW i !5E d3xo E d3xfe
ipW xW feabcea8b8c8GbgḠb8g8

3^Ua
a~xW f ,t f !Ub

b~xW f ,t f !Dg
c~xW f ,t f !ūn

d~xWo ,to!Onn8
dd8un8

d8~xWo8 ,to8! Ūa8
a8 ~xW i ,t i !Ūb8

b8 ~xW i ,t i !D̄g8
c8 ~xW i ,t i !&

~A4!
use

m

ted
wheret i , t f , andto are time coordinates of the source, sin
and operator insertion,u and U denote point and smeare
fields for theu quark, d and D denote point and smeare
fields for thed quark, andG5Cg5. The three-point function
for a d quark operator has the same form with the opera

insertiond̄n
d(xWo ,to)Onn8

dd8dn8
d8(xWo8 ,to8).

After performing the connected diagram contractions,
u andd operator matrix elements may be written

^JaOJ̄a8& (u,d)~ t i ,t f ,to!

5E d3xo E d3xfe
ipW xW fM mm8

(u,d)[aa8]aa8~xW f ,t f ,xW i ,t i !

3Smn
ad~CcuxW f ,t f ;xWo ,to!Onn8

dd8Sn8m8
d8a8 ~cCuxWo8 ,to8 ,xW i ,t i !

~A5!

where

M mm8
(u)[aa8]aa8~xW f ,t f ,t i !

5
def

eabcea8b8c8Sgg8
cc8

3@Saa8
bb8 GmgḠm8g81Sab8

bb8 GmgḠb8g8dm8a8

1Sba8
bb8 GbgḠm8g8dma1Sbb8

bb8 GbgḠb8g8dmadm8a8#,

~A6!

M mm8
(d)[aa8]aa8~xW f ,t f ,t i !

5
def

eabcea8b8c8@Saa8
bb8 Sbb8

cc8 1Sab8
bb8 Sba8

cc8 #GbmGb8m8 , ~A7!

andSmm8
aa8 [Smm8

aa8 (CCuxW f ,t f ,xW i ,t i).
We now define the backward propagator
,

r

e

B n9m8
[aa8]da8~xWo ,to ,t f ,xW i ,t i !

5
defE d3xfe

2 ipW xW fSn9m9
da

~cCuxWo ,to ;xW f ,xW i ,t f !

3gm9m
5 M mm8

* [aa8]aa8~xW f ,t f ,t i !. ~A8!

Since it propagates from the sink to the operator, we
the relationg5S(x,y)g55S†(y,x) to obtain

F E d3xfe
ipW xW fM mm8

[aa8]aa8~xW f ,t f ,xW i ,t i !

3Smn
ad~CcuxW f ,t f ;xWo ,to!G*

5gnn9
5 B n9m8

[aa8]da8~xWo ,to ,t f ,xW i ,t i ! ~A9!

so that Eq.~A5! becomes

^JaOJa8&~ t i ,t f ,to!

5E d3xognn9
5 B n9m8

* [aa8]da8~xWo ,to ,t f ,xW i ,t i !

3Onn8
dd8Sn8m8

d8a8 ~cCuxWo ,to ,xW i ,t i !. ~A10!

As in Eq. ~A2!, the backward propagatorB [aa8] defined
by Eq. ~A8! may be calculated by solving the linear syste

E dt8d3x8DWm9n9
ad

~xW ,t;xWo ,to!B n9m8
[aa8]da8~xWo ,to ,t f !

5d~ t2t f !e
2 ipW xWE d3x8Fm9r

aa9 ~xW ,xW8!grm
5

3M mm8
* [aa8]a9a9~xW8,t f !. ~A11!

Finally, in the same notation, the momentum projec
two-point function with smeared sources is
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^JaJ̄a8&~ t i ,t f ,xW i !5E d3xfe
ipW xW feabcea8b8c8GbgḠb8g8^Ua

a~xW f ,t f !Ub
b~xW f ,t f !Dg

c~xW f ,t f !Ūa8
a8 ~xW i ,t i !Ūb8

b8 ~xW i ,t i !D̄g8
c8 ~xW i ,t i !&

~A12!

5E d3xfe
ipW xW feabcea8b8c8GbgḠb8g8Sgg8

cc8 @Saa8
aa8 Sbb8

bb8 2Sab8
ab8 Sba8

ba8 #.
tm
ur

ys

,

cl.

nd

cl.

,

,

w

B.

ol-

,

nol-

nol-

.

s.

D

.

in
y’’

ing

ry,

y,

ch-
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