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Lattice QCD at finite isospin density at zero and finite temperature
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We simulate lattice QCD with dynamical and d quarks at finite chemical potentigh,, for the third
component of isospinl§) at both zero and at finite temperature. At zero temperature there isgpme. say,
above whichl; and parity are spontaneously broken by a charged pion condensate. This is in qualitative
agreement with the prediction of effectigehiral) Lagrangians which also predigi.=m_. . This transition
appears to be second order, with scaling properties consistent with the mean-field predictions of such effective
Lagrangian models. We have also studied the restoratidn ®fmmetry at high temperature fon > .. For
w, sufficiently large, this finite temperature phase transition is very abrupt, suggesting that it is first order.
As u, is decreased it appears to become second order connecting continuously with the zero temperature
transition.
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[. INTRODUCTION | -breaking interaction needed to observe spontaneous sym-
metry breaking on a finite lattice. In addition to allowing us

Neutron stars are made of dense cold nuclear matter—,[0 observe spontaneous breaking gfand parity, this term

hadronic matter at high baryon-number density and low teM;ejerg the fermion determinant strictly positive. Our zero
perature. Large nuclei can be considered as droplets Qfmperature simulations were performed on &ragtice at
nuclear matter. The relativistic heavy-ion collisions now be-gp, intermediate value of the coupling constant. In the limit
ing observed at the BNL Relativistic Heavy lon Collider tpat our symmetry-breaking parameter vanishes, there is
(RHIC) and the CERN heavy-ion program can produce hadsome, = 1. above whichl ; and parity are broken sponta-
ronic matter at high temperature and finite baryon-numbepeously by a charged pion condensate. This is in accord with
density. Nuclear matter also has a finiteegative isospin  the predictions of Son and Stephanov using effedtieral)
(I3) density due to Coulomb interactions, and it has been agrangiang3]. We observe critical scaling consistent with
suggested that at very high densities it would have a finitthe mean-field predictions of these effectivehiral)
strangeness density. Hence it is of interest to study QCD dtagrangians. In drawing these conclusions, it is important to
finite quark/baryon-number density, finite isospin density andise equations of state of the forms predicted by such effec-
finite strangeness density at both zero and finite temperaturéive Lagrangians. Since we draw these conclusions from a
Finite density is customarily studied through the introduc-single lattice size, they should not be considered definitive.
tion of a chemical potential for the charge of interest in theThese results are similar to those obtained in studies of the
action. Introducing a finite chemical potential for quark num-quenched version of this theofg]. They are also similar to
ber leads to a complex fermion determinant with a real partvhat is observed for 2-color QCD at finite chemical potential
of indefinite sign, which precludes the use of standard simux for quark-numbef5-8]. This is not surprising since the
lation methods which rely on importance sampling. Methodseffective Lagrangian analysis of 2-color QCD at finjig[9]
have been developed recently for simulating the high temis similar to that for QCD at finiteu, .
perature, low quark-number chemical potential regime of Our finite temperature simulations were performed on
QCD [1]. However, as yet there is no method for studying83x4 lattices. At sufficiently high temperature and,
the low temperature, high chemical potential phases of QCD> u., we observe the evaporation of the symmetry-breaking
If we include a finite chemical potentialy,, for 13 in the  pion condensate. Faqx, sufficiently large, this transition is
absence of any quark-number chemical potential, the fervery abrupt, which suggests that it is first order. As
mion determinant remains non-negative, and simulations ares u . this transition softens and appears to become second
possible. Such simulations can determine the QCD phaserder. Such a transition from first to second order should
structure on one surface in the phase diagram for nucleasccur at a tricritical point. Again these results are similar to
matter. One can hope that this will identify phases which willwhat we observed for 2-color QCD at finite quark-number
persist to finite baryon or quark-number density, and deterehemical potential8,10].
mine their properties. Section Il gives details of the actions and their symme-
We have performed simulations of lattice QCD with 2 tries. In Sec. Il we present our zero temperature results and
flavors of light staggered quarks at finjig for both zero and  scaling analyses. The finite temperature results are presented
finite temperatures. Preliminary results of these simulationin Sec. IV. Discussions, conclusions and an outline of
were reported in Ref[2]. We included a small explicit planned extensions are given in Sec. V.
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Il. LATTICE ACTION AND SYMMETRIES metry breaking term in the direction defined by the conden-

The staggered fermion part of the action for lattice QCDsate' we choose to work with the fermion action

with degenerate andd quarks at a finite chemical potential

w, for isospin (3) is Sf:s;es X[ D (7a) +mx+ikexmox] (7)
Si= 2 XD (7o) +mly (1)  where the term proportional to thésmal) parameter
sites serves this purpose. The Dirac operator now has the determi-

whereD (u) is the standard stagger@dwith links in the +t nant
direction multiplied bye(** and those in the-t direction def D Amtiner,]=def AT A+ N2 8
multiplied by e~ “?# [4]. Whenu,=m=0, this action has a (D {7pn) erz]=det J ®
global U(2)xU(2) flavor symmetry under which where we have defined

x—exdi(0+ed).7]x A=D(p)+m. (9)

Y—xexg—i(0—ed).7] (2)  (Note that this is a X 1 matrix in the flavor space on which

the 7's act) We see that adding this symmetry breaking term
where 7':(1,;'), 6 and ¢ are site-independent 4-component has the effect of rendering the determinant strictly positive,
“vectors,” and e=e(x)=(—1)*"Y*#"t. Spontaneous sym- which enables us to use the hybrid molecular-dynamics
metry breaking can occur in any direction in this space. If we(HMD) algorithm to simulate this theory. Note that this
keepu,=0 and allowm=+0, the symmetry is broken down theory has 8 continuum flavors. We use the HMD method to
to U(2)y. On the other hand, if we keep=0 and allow take the required fourth root of the determinant reducing this
w#0, the symmetry is broken down tt(1)xU(1) to 2 continuum flavors. For the purpose of simulation, it is
X U(1)xU(1) generated by 173, € anders. Finally inthe ~ convenient to multiply the Dirac operator on the left by the
general case where neither nor m vanishes, the symmetry matrix diag(1;- €) and on the right by the matrix diag),
is reduced tdJ (1), X U(1), associated with 1 ands. The transformed matrix™ has the same determinant as the

In order to predict potential symmetry breaking patternsyriginal Dirac operator, and{" ™ is block diagonal, with

we make several simple modifications of the arguments ofhe ypper and lower blocks having the same determinant.

the form My, but only keep the upper components pfafter the
M=>T 3) inversion. Thus we still have only 8 flavors in the quadratic
XEX- formulation. This is completely analogous to the odd-even

The propagator for such a meson obeys the inequality lattice separation which prevents further species doubling in
staggered lattice QCD at zero chemical potential.

[{(M(x)MT(0))|=<constx (S(x,0)S'(x,0)). (4) Quantities we measure include the chiral condensate
Thus, meson operatorsl whose propagators are propor- (pye(xx), (10)
tional to (S(x,0)S'(x,0)) are potential Goldstone bosons.
Now we note that our Dirac operator obeys the charged pion condensate

7126 D(73pm) + M]eTy o= [D(73) +m]", 5 i(ysTo) =i xerax) (11

S0ixery x are Goldstone candidates. These are linear comand the isospin density
binations of7™ and#~ creation operators which means that

if spontaneous breaking of the remnant flavor symmetry 3 1/ 95
should occur, one linear combination of will become a o=y EPN e
Goldstone boson while the orthogonal linear combination

will develop a vacuum expectation value—a charged piorHere we have included both the lattice and continuum ver-
condensate. We note, in passing, that in the limit of masslessons of the condensates. To get this simple continuum form

(12

quarks for the charged pion condensate requires absorbing a factor
. of &5 (the flavor analogue ofs) into the definition of the
71D (73p1) T1 2= — D (73py), (6)  d-quark field.

and we have 2 additional Goldstone boson candidates,

XT12x, and if spontaneous symmetry breaking does occur

we will have 2 Goldstone bosons rather than 1. We have simulatedN;=2 lattice QCD at finitex, on an
Since, in order to observe spontaneous symmetry brealg? lattice at an intermediate coupling=6/g>=>5.2. This3

ing on a finite lattice, one needs to add a small explicit symwas chosen since it represents an approximate lower bound

IIl. LATTICE SIMULATIONS AT ZERO TEMPERATURE
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FIG. 1. Charged pion condensate as a functionugffor \
=0.0025,A=0.005, and\— 0. The curves are fits of the finite
measurements to the scaling forms defined in the text.

to estimates of the finite temperature transition valueNpr
=4 in the chiral limit. This was used to keep finite volume
effects at acceptable levels. We performed simulations at
different quark massesn(=0.025 andm=0.05) to see that

varying the mass did not affect the qualitative behavior of the
theory and that we understood the effects of changing the

qguark mass.

At m=0.025, we performed runs, each of 2000
molecular-dynamics time units in length, at 17 different
values (G< u,=<2) for each of\ =0.0025 and\ =0.005. Us-
ing two N\ values, both chosen to be much less tharen-
abled us to extrapolate to the=0 limit, which is our ulti-
mate interest(We also ran afu,=3.0, A=0.005 to check
saturation).

The charged pion condensaté&)ystoiy) from these
simulations are presented in Fig. 1 as functiong.pf along
with a linear extrapolation toA=0. This extrapolation
strongly suggests that the—0 condensate vanishes fgj
<ue~0.3-0.45, above which it is finite. This would indi-
cate a phase transition to a phase in whigtsymmetry is

broken spontaneously by a charged pion condensate, with an

associated Goldstone mode.
This behavior is predicted by the effectiyehiral) La-

grangian analyses of Son and Stephanov, which also predict

PHYSICAL REVIEW D 66, 034505 (2002

However, as we have noted in our paper on the quenched
theory[4] such fits can be deceptive and can be because the
true scaling behavior of these theories is best described by
the scaling forms given by effective Lagrangian analyses.
When this form of scaling is described in terms of— w
rather than the natural scaling variables these forms imply,
the true scaling window is very narrow. Outside this window
these theories can appear to scale véthwhich is half the
true value when analyzed in terms of— u.. We now in-
troduce the scaling form&quations of stajesuggested by
such effective Lagrangians, both of which give mean-field
scaling behavior.

The form for the equation of state suggested by the lowest
order tree-level analysis of effective Lagrangians of the non-
linear sigma model typg3] is given in terms ofa which
minimizes the effective potential

E=—au’sirf(a)—bmcoga)—brsin(a) (14
in terms of which
) i(ysm2p)=bsin(a) (15)
() =bcoga) (16
and
j5=4au sif(a). (17)
b is given in terms ofu. anda, namely,
b= Eaﬂg. (18
m

The form for the equation of state which is derived from
an effective Lagrangian of the linear sigma model type is
obtained by extracting the values®fanda which minimize
the effective potential

that the transition should be second order with mean—fielqn terms of which

exponentd 3]. We fit our extrapolated “data” to the critical
scaling form

i(YrysToih)=cONSK () — ) Pm (13

for u,>u. close to the transition. Fitting to this form over
the range 0.4 w;<1.0, we find u.,=0.3941), Bn,
=0.230(9) and const1.23(2) at a 62% confidence level.

This appears inconsistent with mean field scaling for which

Bm=13%, and closer to the tricritical scaling for which,,
=3. Indeed, good fits to a tricritical scaling form over this
range ofu, and both\’s can be obtainedconfidence level
25%).

1 1 1
&= ZR4_ EaRZ— Eb,uzsinz(a) —cmRcoq @)
—CcARsin(a) (19
i(YrysTo)=CRsin(a) (20)
(yh)=cReog ) (21)
and
je=2buR?sir(a). (22)
c is given in terms ofu. by
bu?
c= m vatbug. (23
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FIG. 2. Chiral condensate as a functiorggffor A =0.0025 and FIG. 3. Isospin [3) density as a function of, for A =0.0025
A=0.005. and\=0.005.

Finally, the tricritical scaling form which we use for com-
parison, and which does not yield mean-field behavior, i
expressed in terms of the value @f which minimizes the
effective potentialsee for examplgl1l])

sno'[ a simple rotation, since the magnitude of the total con-
densate increases up until saturation effects take over. This
contrasts with the predictions of lowest order effective
Lagrangians of the non-linear sigma model type where it is a
1 1 1 simple rotation. However, in the case of 2-color QCD at
E= €¢6— 30N P> — 5 (i —uo)d?>—brng  (24)  finite quark-number chemical potential, whose effective La-
grangian is structurally very similar to that for the theory at
hand, the effective Lagrangian chiral perturbation theory cal-
culations have been extended to next-to-leading ofti2}.
o 1 Here, although mean field scaling survives, the rotation of
i(gysmp)y=bop+ §c¢3 (25  the condensate is accompanied by a rescaling. Such behavior
is reproduced at tree level by effective Lagrangians of the
linear sigma model variety which we use for our fits to the
pion condensate. The predictions these fits make for the be-
D2 havior of the chiral condensaf&q. (21)], have been super-
jo=a¢”. 200 :
imposed on the measurements of Fig. 2. Except for small
We fit our measurements of the charged pion condensag@epartures at smalt, , which we attribute to the fact that
for 0<pu,=<1 and both\s to the linear sigma model form of for the fit differs slightly from the truen=0.025, these pre-
Eq. (20). We obtained a fit with u,=0.403§5), a dictions are very good until the effects of saturation start to
=0.521), m=0.0253(1) withy*DOF=2.2 (where DOF dominate.
stands for degree of freedgnAlthough worse than the tric-  Figure 3 presents the isospit) density as a function of
ritical fit, we note that it allows a reasonable fit for<u.in 4. While the two condensates are normalized to 4 flavors
addition to u,;>pu, which the tricritical fit did not.u,  for comparison with previousy(;=0) simulationsjg is nor-
=0.426(3) for the tricritical fit, which is close to the value malized to 8 flavors, which is the natural normalization for
expected for the apparent tricritical scaling produced by suclstaggered quarks. Qualitatively, we note tljlgm's close to
sigma model scaling. One of the reasons the tricritical fizero for u;<u., rises slowly(in comparison with the pion
gives better results is that it includes a second symmetrgondensateup to u,~1, after which it starts to rise more
breaking interaction, cubic in the order parameter, whichrapidly reaching its saturation value of(3/2 for each of 3
rounds off the curve ag, approaches 1.0 allowing a better colors and 2 “flavors” per site due to Fermi statistics at
fit to the “data.” Such cubic terms could be incorporated in u,~ 2. (In fact measurements made at= 3.0 give a value
Eqg. (19). However, now there is not one such term but sev-consistent with 3.Saturation is clearly a finite lattice spac-
eral, which is why this possibility was not considered. Fi-ing effect and hence requires no further discussion. We also
nally, as we shall see below, this fit makes good predictionsiote that there is very little dependence. The predictions of
for the chiral condensate and the isospin density. Eqg. (22) using the parameters of our fit are superimposed on
In Fig. 2 we present the chiral condensate for the same sejur “data” and show good agreement out gg~0.8. Both
of Simulat_ions. The general characteristics of these graphgata and fit are approximately linear jin over this range.
are that(y¢) remains roughly constant fou,<u., after As also noted by Son and Stephanov, measu'r§1gs a
which it drops rapidly, approaching zero at large. Al- function of «; at T=0 and constant volumgsinceg is con-
though this can qualitatively be thought of as the condensatstan) yields the pressurg and energy density as functions
rotating from the chiral to the isospin-breaking direction, it isof x,, since

in terms of which

and
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i g SU(8) N,=2 g=5.2 m=0.05 8* lattice
p=| Jjodm (27) 1.0
He
S 0.8 =
GZJ M|d]0 (28) [
0 A [
> 06]
for u,>u. and zero foru;<puc. In the region wherg3 ';«3 r
~constX (u; — ue) these yield T 0af
1 ) i
p=500NSK (1~ ) (29) 0&f
L o.o:'"'“*‘7%"]"""""""'—
03 04 05 06 07 038
€=500NSK (uf— ) (30 ”
_ FIG. 4. Pion condensates as functionsqgf for A =0.005, A
P_m 'uc_ (31 =0.01 and a linear extrapolation x0=0.0. The lines are the mean-
€ Mt pe field fit described in the text.

The last of these equations is a form of the equation of Sta'[Snd to determine the nature of the phase transitions which
for this system in the neighborhood gaf . Clearly we could demarcate its boundaries

extgnd each.of these express.ions beyond the s_caling region The first of these simulations was performed at a fixed,
by interpolating the data of Fig. 3 and performing the reI—Iarge (but well below saturationvalue of . The value

evant integrals ana!yt!cally_or numerlcally. . chosen wagt;=0.8. At 8 low enough to approximate zero
We performed similar simulations at the same COUp“ngtemperature on ahl,=4 lattice, the system is in the phase

B=5.2 and massn=0.05 atA=0.005 and\=0.01. Here : : -
we concentrated on the neighborhood of the phase transitiovr\{herelg Is spontaneously broken by(Erge) pion conden

and used more closely spacéd w,) points with somewhat Sveﬁi'h'a‘tﬁslsc:)nncégﬁgg?evgaevsgyeaslIyﬁr;a;h \?V(\al a“ re 'Ii ¢ t?]te
lower statistics. Fomu,=u. we find acceptable fits of the P ' N

pion condensate to both the non-linear sigma model scalin nggk\ggef g‘ne ?;}?nv(;?l:'gehni%t%ggm\?vg?ﬁg da?(;jrl ?fr:Zse
form and to the tricritical scaling form (34% and 40%, re- runs ' 9 ' ' '

spectively. The fit to the non-linear sigma model effective N .

Lagrangian scalingEq. (15)] enables one to extend this to Figure 5 shows thg dependence of the pion condensate

low w, . Afit of the data over the complete range over Which?cor these simulations. We see that {+5.2 the condensate

is large. BetweerB=5.2 andB=5.3 the condensate drops
we have = measurements = at bothh  values— by an order of magnitude, and is small enough 5.3
0.4< u,<0.7—yields u.=0.5692), a=0.0868(9) andm Y 9 ' . gh AoF>.
= ’ 5 8 . . that we are safe to assume that it would vanish in Xhe
=0.05343), with y'/DOF=15 for the non-linear sigma —0 limit. This drop is so precipitous that we suspect that it
model form. Even though this fit is worse than those s first order aIthoE h wepreallp need a larger Iat'gce to con-
stricted tou, = u., we feel that the ability to fif, < ¢ in ' 9 y 9

" ; .. firm this.
addition tou, > u, makes the argument for this form of fit "y, .o\ 0 o150 measured the thermal Wilson (iRelyakov
more compelling. Not only do we see qualitative consistency
with the smaller mass results, but our measured valugs. of

are consistent with the expectation that,(m=0.05) SU(3) Ny=2 4=0.8 m=0.05 8°x4 lattice
=\2u1.(m=0.025) which would be true if, indeedy, L0 P
=m,., from PCAC (partial conservation of axial-vector cur- 188 [*Xxyx E
reny. This data for the pion condensate with the scaling fits [ Xxxg ]
superimposed is plotted in Fig. 4. We note that the fits appear 1.00 T 1
to have validity beyond the range @f, over which the fits % E % ]
were performed. ‘;,, 075 .
Tt |

IV. SIMULATIONS AT FINITE TEMPERATURE T o050 E

We have performed simulations of QCD at finjig and 025« __ » = 0005 3
finite temperature on ar’& 4 lattice, withm=0.05. Most of : x ]
these simulations were performediat 0.005 andh =0.01, popb o Lo b U

4.0 4.5 5.0 5.5 6.0

i.e. \<m, with the objective of obtaining information about 8

the A=0 limit. The goal of these simulations is to map out

the region of the g, 1) and hence theT|u,) plane where FIG. 5. Pion condensate as a function @ffor m=0.05, \
I; is spontaneously broken by a charged pion condensate;0.005, andu,;=0.8 on an §x4 lattice.

034505-5



J. B. KOGUT AND D. K. SINCLAIR PHYSICAL REVIEW D66, 034505 (2002

SU(3) N;=2 u=0.8 m=0.05 8°x4 lattice SU(3) N;=2 =4 m=0.05 8x4 lattice
A B B B C =
i 1 37 x —= A=0.005 N
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B
FIG. 6. Wilson line as a function g8 for m=0.05, A =0.005, FIG. 8. Isospin (3) density as a function ofy, for m=0.05,
andu,;=0.8 on an §x4 lattice. A=0.005 and\=0.01 on an 8x4 lattice at3=4.0.

loop) during these runs. These measurements are shown ghown in Fig. 7. Again an acceptable tricritical fit was pos-
Fig. 6. ForB=5.2, the Wilson line is small, indicating con- sible (confidence level 48%), but only for 0.55u,=<0.8,
finement. For3=5.3, the Wilson line becomes large, indi- yielding the expected larger estimate fog.
cating deconfinement. The jump betwe@+5.2 and B In Fig. 8 we present the isospin density from these runs.
=5.3 is again great enough to suggest a first order transitiorj3 rises from zero aju,~ u.. Again there is littlex depen-
This behavior of the Wilson line indicates that this is the dence. We have superimposed the form predicted from the fit
temperature-driven deconfinement transition. to pion condensate using EL7) on these plots. These
We have also run simulations on ari>84 lattice with  curves are in reasonable agreement with the measured values
B=4.0 which gives us the low temperature behavior. Weup to x,~0.7. This indicates that the scaling window fiGr
chosem=0.05 again and ran at=0.005 andA\=0.01 for s slightly less than that for the pion condensate. However, it
0.20< u,=<2.0 which covers both the transition from the  is clear that the linear or near-linear increase of this quantity
symmetric phase to the phase wheyés spontaneously bro- with «, continues beyond the point where the data and

ken, and the approach to saturation. Our measurements of th@rves diverge. This is born out by the fittifg to the form
pion condensate are shown in Fig. 7. Not surprisingly this

graph resembles those we obtained on 4raftice since at 3 8
B=4.0, this lattice is essentially at zero temperature. Jo=const< () — ue)™. (32
We fit the scaling behavior of these measurements to the

non-linear sigma model scaling form of EQ.5) for bothA  Fitting the\ = 0.005 data over the range &5, <1.1 gives
values and 0.2 1, <0.8. The fit yieldedu.=0.5191), a  , =0.467(13),5,=0.94(6) and const1.22(3) at a confi-
=0.1400(4) with the quark mass fixedrat=0.05 at a con-  gence level of 18% while fitting the.=0.01 data yields
fidence level of 41%, which is very good. These fits are;, —0.3839), 8,=1.093), const=1.20(1) at a confidence
level of 85%. These results are in excellent agreement with
SU(3) N,=2 =4.0 m=0.05 8°x4 lattice the effective Lagrangian predictiof,=1. This graph also
indicates a crossover to a more rapid increasg,at1.5.
Finally we have performedn=0.05 simulations on an
83x 4 lattice at3=5.0, which lies belowg. at high u,,
while being large enough that the effects of finite tempera-
ture should be apparent. Here again we ran with
=0.005,0.01. Here we used higher statis{2800 time units
per run but at feweru, values. Our measurements of the
charged pion condensate are presented in Fig. 9. The transi-
tion from low to high values of this condensate shows no
sign of a first order transition. The linear extrapolation\to
=0 gives values close to zero at Iquy, rising rapidly from
zero above somg .~ 0.5. Here we find good fits of the data
for both \ values and 0& u,<1.0 to the non-linear sigma
model form with u.=0.552%5), a=0.104@4), m
FIG. 7. Pion condensates as functionsgqf for A =0.005, \ 200523(1) at a confidence level of 31% and to the linear
=0.01 and a linear extrapolation 10=0.0 on an §x4 lattice at  Sigma model form withu.=0.55135), a=2.461), b
B=4.0. The lines are the mean-field fit described in the text. =0.08234), m=0.0518(1) at a confidence level of 48%.

1.5

1.0

i<PysTay>

0.5
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SU(3) Ny=2 B=5.0 m=0.05 8°x4 lattice appears to be linear close tq , as is predicted by effective
1.857] ] Lagrangian analysel3] and well described by the predic-
il tions given by the fits to the pion condensate, within the
1.00f scaling window. For largep, values it starts to increase
r considerably faster than linear. This is in qualitative agree-
L owsf ment with the expectation th&g density should increase as
< | ,u,3 at largew, . We have not been able to determine if our
I§ 050 F observations are consistent with thi§ increase because of
- L the effects of saturation which cause the isospin density to
0'253 approach 3 at highy,. Here we have indicated how the
[ measurement q'f30 enables one to obtain the press(wgand
0.00 TR T the energy densitye) as functions ofu;, and given explicit
00 02 04 06 08 1.0 expressions for these quantities in the scaling regime.
My The chiral condensate remains approximately constant for

m<u. Above . it starts to fall approaching zero for large

w. Again this is in agreement with expectations, and the
predictions from the fits to the pion condensate. However,
the expectation from the lowest-order effective Lagrangian
tree-level analyses, that the chiral condensate simply rotates

. . into the direction of the charged pion condensate, is not true.
sible for 0.55<,=<0.8 and has a confidence level of 28%. However, in closely related 2-color QCD at finite quark-

Thus the line of phase transitions which bound the regioh umber chemical potential, chiral perturbation theory calcu-

n th? (1 'T)I ptI)ane, t\]/wthlndw_hlch 'S%Spm l%) IS brokeg Clations through next-to-leading order show that, while scal-
spontaneously by a charged pion condensate, IS second or remains mean field, the condensate does not merely

for low temperatures and becomes first order at highThe

d ord t of this l o h . tate, but also rescald4?2]. Since the structure of chiral
second order segment ot this fin€ appears to have mean- 'e[gerturbation theoryeffective Lagrangiansfor the two theo-
critical exponents.

ries is so similar, we expect a similar result for QCD at finite
My -
V. DISCUSSION AND CONCLUSIONS _ We _h_ave per_fqrmed simulati_ons at finite temperat(re
in addition to finite ;. In particular we have heated the
We have simulated QCD with 2 quark flavons,{) at a  system at fixedu,=0.8> u.(T=0) (in lattice unit3 by in-
finite chemical potential 4,) for isospin,|;. At zero tem-  creasingB. On ourN,=4 lattice there is som@= 3. (5.2
perature and intermediate coupling=< 6/g°=5.2) we found < B.<5.3) at which the charged pion condensate evaporates.
strong evidence for a second order transition to a phase ihis transition appears to be first order. This conclusion,
which |3 is spontaneously broken by a charged pion condenbased on the abruptness of the transition, needs validation on
sate which also breaks parity, at= .. The observed be- larger lattices, where we hope to observe evidence of meta-
havior is what is predicted by effective Lagrangian methodsstability (as we have for 2-color QCD8]), which would
for w, appreciably less than the value at which saturation, dndicate a first-order rather than a second-order transition.
lattice artifact, takes over. These effective Lagrangian analySuch first-order behavior was predicted for large enough
ses predict thatt.=m, . Since we have not measured, on by Son and StephandB] who argued that at high, the
these small lattices, all we have checked is that m for  fermions would effectively decouple, and the phase transi-
the 2 quark masses which we use=0.025,m=0.05) and tion would be that for pure glue, which is known to be first
found that this is true within the uncertainties of our mea-order. We note from our observations that the situation is not
surements. The critical scaling appears to be well describequite this simple. The pure glue transition onNyx4 lattice
by an equation of state suggested by these effective Lagrangecurs at8~5.7 [13,14]. Since our observations plage.
ian analyses, which means that the critical point has mearsomewhat lower than this, and close to the value of ghe
field critical exponents. However, tricritical behavior cannot=0 finite temperature transition, the quarkse having an
be completely excluded. Such behavior was discussed in deffect. We also note that Son and Stephanov suggest that the
tail in our paper on the quenched thedd. first order deconfinement transition at high temperature is
Although we consider our ability to fit to standard mean-distinct from thel ; symmetry restoring transition. Our evi-
field scaling forms to be strong evidence for our claim thatdence is that these 2 transitions are coincident. This means
the transition is second order with mean field exponents, &at the second-order segment of the phase boundary can be
word of caution is in order. These measurements were madsonsidered as driven purely by the chemical potential, which
on a single, relatively small, lattice {B Further simulations makes their argument fa(2) universality less compelling.
on larger lattices will be needed to validate these claims an@lve note that, in our paper on 2-color QCD at finiteand T
allow finite size scaling analyses. [10], we present an alternative argument for the first-order
We also measured the isospin densitgf)(and found that finite-temperature transition which that theory exhibits for
it increases from zero, at or near.. The scaling behavior large u.

FIG. 9. Pion condensates as functionsgqf for A =0.005, A
=0.01 and a linear extrapolation 10=0.0 on an §x 4 lattice, at
B=5.0. The lines are the mean-field fit described in the text.

This second fit is included in Fig. 9. A tricritical fit is pos-
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In addition, we have simulated otl;=4 system at fixed us a more definitive scale for these phenomena, in addition to
B, varying i, . In particular we have performed simulations a value form_ with which to compareu.. Configurations
at B=4.0 which is at near-zero temperature, afie-5.0  will be stored so that we can make other spectroscopy mea-
where the system is clearly at a finite temperature. Both ofurements at finite:, . We will also extend the finite tem-
these simulations showed evidence for a second order traperature simulations to a 12 6 lattice since it is difficult to
sition. Once again these conclusions are based on simuldetermine the order of the continuum transitions from 8
tions on a single small lattice & 4) and simulations on x4 lattices. In addition we will study the instantons at large
larger lattices will be needed to confirm these observationsu, since it is believed that instantons and their interactions
Again the scaling was well described by the scaling formshave a relatively simple structure at large isospin density,
suggested by effective Lagrangian analyses which indicatesnalogous to what has been predicted for large quark-number
that they have mean-field critical exponents. density[15].

We have noted throughout this paper the similarity be- We are also starting lattice QCD simulations, including
tween 3-color QCD at finitew; and 2-color QCD at finite both a chemical potentiat, for isospin and a chemical po-
quark-number chemical potentiat, The correspondence is tential us for strangeness. Here effective Lagrangian analy-
seen by identifying «, with u, the charged pion condensate ses have indicated that there is a competition between the
with the diquark condensate and the isospin density with théormation of pion and kaon condensates gsand g are
quark number density. This similarity is seen both in simu-varied independently and that the boundary between the re-
lations and in effective Lagrangian analyses. The expectedion with a pion condensate and that with a kaon condensate
position of the zero temperature transition is the same is a line of first-order transitiongl6].
=m, (u=3m,). Its nature—second order with mean-field  Although our simulations have been limited to zero
exponents—is the same as predict&d] and observefl6,8] baryon number density, it is interesting to know how much
for 2-color QCD. In both systems the spontaneous symmetrgf this analysis is relevant to systems with finite baryon num-
breaking is in the Goldstone mo@guperfluid. At finite tem-  ber density and isospin density. If it does have relevance,
perature the condensate evaporates at a transition which éharged pion condensates could contribute to the equation-
first order foru, (u) large enough. This line of first-order of-state of nuclear matter and thus be important in under-
transitions softens to second order and the line of secondtanding the physics of neutron stars and perhaps large nu-
order transitions connects to the zero temperature transitiowlei.
Thus, we can use 2-color QCD results at finiteas a guide
as to QCD at finitew, .

We are extending these simulations to a larger lattice
(12°x24) and weaker coupling where we hope to observe D.K.S. was supported by DOE contract W-31-109-ENG-
the expected mean-field transition more clearly distinguishe®8. J.B.K. was supported in part by an NSF grant NSF PHY-
from the tricritical alternative and rule out ti@(2) alterna- 0102409. J.B.K. wishes to thank D. Toublan for many useful
tive. This lattice will also enable us to measure the spectrundiscussions. D.K.S. would like to thank R. Pisarski for em-
of Goldstone and pseudo-Goldstone excitations as functionghasizing the importance of extracting pressure and energy
of u,. More extensive spectrum analysesuat=0 will give  density.
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