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Instantons and the(A?) condensate
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We argue that théA3,0 condensate found in the Landau gauge on lattices, when an operator product
expansion of Green’s functions is performed, might be explained by instantons. We use cooling to estimate the
instanton contribution and extrapolate back the result to the thermalized configuration. The rmﬂgm@;s
similar to (A2pp).
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[. INTRODUCTION by a unitary matrix proportional to the staple. @oling
sweeps performed after replacing all the links of the lattice.

Lattice calculations of the gluon propagator and three-This procedure introduces largely discussed biases, such as
point Green’s function in the Landau gauge indicate that thé&JV instanton disappearance and instanton—anti-instanton
expected perturbative behavior at large momenpuhas to  pair annihilations, that increase with the number of cooling
be corrected by @(1/p?) contribution sizeable up to 10 sweeps; alternative cooling methods have been propssed
GeV[1-5]. An understanding of this contribution as the ef- for example[8] and references thergirio cure these dis-
fect of anAZEAZAg condensatéin the Landau gauga? is  eases. We will try to reduce them by identifying the instan-
the only mass dimension-two operator liable to have dons after a few cooling sweeps and extrapolating back to the
vacuum expectation valu®/EV)] has been gained by veri- thermalized gauge configuration.
fying that two independent Green’s functions could be de-
scribed by the perturbative contribution corrected by the ef- B. Instantons

2
fect of one common value dfAgeg), as expected from the | 5tantons(anti-instantons are classical solutiong9] of
operator product expansiof©OPB. The physical origin of o equations of motion. We work in the Landau gauge
this condgn_sate is an important question, possibly 'n,VOIV'ng/vhich is defined on the lattice by minimizirE;xA#(x)z. For
the non-trivial topology of the QCD vacuum. In particular, 5 instanton solution this prescription leads to the singular

instantons provide an interesting insight into a wide range of 5qau gauge, where the gauge fieldds
low energy QCD propertieg[6] and references thergin ’

They have been put into evidence on the lattice using differ-
ent cooling procedures. In this paper we claim that instantons " TN
provide for(A?) a value close to what is needed for the OPE XA(X“+p%)

fit to Green’s functions. . . . .
p being the instanton radius. The instanton chosen has been

We propose a method to identify instantons from the S X : .
cooled gauge configuration, count them and measure the-ﬁ;entered at the origin with a conventional color orientation.

radii: we also check that these results are compatible with théN€se solutions hav@=*1 topological charge,
instanton number deduced from the two-point correlation 5

function of an instanton. We then estima#,.), the contri- Q= 9 d*xEMER = +
bution of the instantons t¢A?) in cooled configurations, 32m? AR T30
extrapolate back to the thermalized configuratiqasro _

cooling sweepsand, finally, compare the outcome with the whereF ,,= %eﬂ,,p(,Fp". From Eq.(1) the topological charge

275 X, 0
Ma_ _ TRy V7 (1)

2

4 v
,J d*FEFR L (2)

OPE estimate. density is
o2\
Il. COOLING AND INSTANTON COUNTING Q=== 53 ©)
mEpT\ X+ p
BY SHAPE RECOGNITION
A. Cooling On the lattice, the topological charge density will be com-

In order to study the influence of the underlying classicalpmed as

properties of a given lattice configuration, the first step will 1 =4
be to isolate these structures from UV modes. The method Qpu(X) = € oo I, ()T, (X) (4)
we use is due to Tepé7]; it consists of replacing each link at 2972 51 M [ (055 ()]
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- _ vyt ooyt )
with — T1,,(0 =U () U ,(x+ pa) U} (x+ ua+ va)Uj(x IIl. GLUON PROPAGATOR
+va), and€,,,, the antisymmetric tensor, with an extra A. The instanton gauge-field correlation function

minus sign for each negative index. The classical gauge-field two-point correlation function

verifies, for any position and color orientation,
C. Identification of instantons

1 — 1
A common belief is that an instanton liquid gives a fair 3 ; GL=gv é (AD2()AD(—k))
description of important features of the QCD vacuum. Along
this line we will try a description of our cooled gauge con- _
figuration as an ensemble of non-interacting instantons with =G@(k?
random positions and color orientations. We hence also ne-
glect the interaction-induced instanton deformations and cor- . . . . .
relations. Although the instanton ensemble for the QCDWherev 'S (tlr;ae vo!ume n thg Euclidean four-dimensional
vacuum cannot be considered as a dilute sl this ~SPace anty, (k) is the Fourier transform of Eq1). The
crude assumption allows a qualitatively reasonable picturd€Sulting scalar form factor is
especially near the instanton center. 4
Many enlightening works have studied the instanton prop- 6(2)(k2) _ 32_77
erties from lattice gauge configuratiohgmong which are VK®
[13-14. As for us, we start by searching regions where the
topological charge density looks like that of E§). Starting K, being a Bessel functiofl7]. Equation(8) equally applies
from each local maximum or minimum @,,(x) we inte-  to instantons and anti-instantohs.
grate over all neighboring points with|Qu(X)| In a perfect gas approximation for an ensemble,ofn,)
= a|Qia(Xmay |, for different values ofx ranging from 0.8  (anti-)instantons of radiug, the classical gauge-field corre-
to 0.4. A local extremum is accepted to be(anti-)instanton lation function is simply given by E¢8) times the number
if the ratio e between the lattice integral and its theoretical of instantons and anti-instantons,+n,. This correlation
counterpartQ,(x), function is the contribution of the background field to the
gluon propagator. We expect this formula to describe the
4 12 3/a —1 4 behavior of the lattice gluon propagator once the effect of
imSarzaty fX/Q(X)|>aQ(o)d X Qualx) quantum UV fluctuations is removed by the cooling proce-
(5 dure [7]. The effect of instanton interactions is known
[10,11] to modify the instanton shape far from its center, in
the IR region. But the largk? behavior should be appropri-
shows a plateau whea is varied. Indeed for a theoretical ately given by Eq(8) i.e. «1/k®. This is shown in Fig. (&)

(anti-instantone=1 (e=—1) for anya [0,1]. As a cross-  for one generic lattice gauge field configuration.

K.k,
8 ’liz ) @

k 2 2
- g> Kz(kp)) , ®

check of self-duality, this instanton shape recognitit$R) The theoretical lines in that pfbare generated by E¢g)
procedure is applied on the lattice to both expression®for using the average radiys and n,+n, computed from the
introduced in Eq(2). ISR method. Note that the matching improves with the num-

ber of cooling sweeps. This agrees with the expectation that
decreasing the instanton density reduces the instanton defor-
mation and that quantum fluctuations are damped by cooling.
The ISR method resolves the semiclassical structure oReversely, if we know the average radius from the ISR
the lattice with only~5 cooling sweeps. This early recogni- method, we can computg +n, from the fit to the measured
tion reduces the possible cooling-induced bias. propagator.
Whenever this method succeeds, we measure the radius of
the accepted instanton in two separate ways: from the maxi- B. The hard gluon propagator
mum value ofQ, written Q¢", at the center of the instanton,
and from the numbeN, of lattice points in the volume
T Qe 1= alo(oyd”x. We find

D. Instanton numbers and radii

Let us now consider a hard gluon of moment
propagating in an instanton gas background. The gluon inter-
acts with the instanton gauge field. This can be computed

4 6 1 4 [on with Feynman graphs and it is easy to see that when the
pla= / = By iy (6)  Instanton modesk, verifies k,~1/p<p,, the dominant
m2QI o A1 N 72 contribution is anO(1/p?) correction to the perturbative

latt
gluon. This correction is equal to the standard OPE Wilson

These two measures of the radius agree within 10%.

2A similar analysis is being performed parallel, in other context,
by Broniowski and Dorokhoy18].
IA detailed comparison of our results to theirs will appear in a We multiply by k? to compute a dimensionless object and per-
forthcoming extensive work. form the matching.
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FIG. 1. In Fig. 1a) (left) we present the lattice gluon propagators after several number of cooling s{pears and the corresponding
theoretical instanton gauge-field correlation functiditees) in the perfect instanton gas approximation, E), plotted as a function af?

(n,=L/(2m)k,, L being the lattice lengdhIn Fig. 1(b) (right), we show the extrapolation at zero cooling(df(n.)) in physical unitgfor
three different trial functions

coefficient [2,3] times <Aﬁ]st(0)>51Nfd4x(A('))2(x). We into physical units using, for all values af., the n,=0
will now proceed to estimate this instanton-induced condeninverse lattice spacinga™'(n.=0)=1.996 GeV (at g
sate. =6.0). This simple recipe overlooks the effect of cooling on
the lattice spacingsee Ref[15] and references thergibut
IV. (A2) CONDENSATE this simplification becomes harmless after extrapolating back

our results ton.=0.
A. (A?) in instantons

From Eg.(1) we get B. (A2,(n.)) at zero cooling
N +na The instanton number depends on the number of cooling
(Aﬁ1S neg))= v Jd“xz Aﬂ)aAEL')a sweeps. This result may imply that the cooling procedure
pa destroys not only quantum UV fluctuations but something
N +na else from the semiclassical background of gauge fields. To
=12772p2T, 9 lessen this problem we take advantage of the early recogni-

tion of the instanton content in a gauge configuration ensured

] ) o ] by the ISR method and perform an extrapolatidf] to n
where p is the average instanton radius in the conS|dered:0 of the ISR results fo(A-z (ny) in the table. We then
NS "

cooled configuration and. is the number of cooling sweeps. btai Fi .

We use an ensemble of 10 independent gaugg ain[see Fig. 1):
configuration$ at 3=6.0 on a 24 lattice. Each configuration <A§]3t(nczo)>: 1.7623) Ge\~. (10)
has been cooled and after 5, 7, 10, 15, 30 and 100 cooling

sweeps transformed into the Landau gauge. Using the ISR have used a forra/(b+ny) to fit and extrapolate. We

method on each gauge configuration, we obtain the results ¢f;ye also varied a little this functional form to check the

Table 1. In this table we also present the number Ofgiapijity of the extrapolation. We take this result as indicative
(anti-)instantons and the corresponding value 8¢(n.))

) ! ¢ X of the non-perturbative instanton contribution to tH&?)
computed by a correlation function ficFF) i.e. a fit of the
lattice propagators to the instanton correlation function, Eg.

TABLE I. Estimates of AZ.(n,)).
(8). The CFF method is expected to be affected differently. stimates of Ais(Nc))

from the ISR method by systematic uncertainties: instanton p (fm) N+ Na (A2) (GeV?)
interactions, deformations and quantum fluctuatifes we ISR ISR CFF ISR CFF
can see in Fig. (), at low momenturh and we therefore ¢
consider as quite encouraging the qualitative agreement, bé- 0.3292) 87(2) 93(10 1.393) 0.98)
coming quantitative at larga;, between ISR and CFF re- 7 0.3612) T4(2) 59(1) 1.425) 1.122)
sults. We have, for simplicity, translated our lattice results10 0.3944) 60(1) 38(1) 1.364) 0.862)
15 0.4175) 43(1) 28(1) 1.1(4) 0.722)
30 0.4529) 26(1) 19(1) 0.80(6) 0.57%3)
4Considering the present size of our systematic uncertainties wgQ0 0.531) 10(1) 9(1) 0.433) 0.373)

did not consider it worthwhile to further increase the statistics.
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condensate. If we applied other lattice estimates of instantowhere the first quoted error just propagates the uncertainty
gas parameters taken from the available literature to®g. from the OPE determination ofA?) and the second one
the value of AM*) would rangé from 1 to 2 Ge\?. Onthe  takes into account, in the way proposed in Hef, higher
other hand, parameters from instanton liquid based phenonﬁ’-rderg in a for running.
enology[6] yie.Id estimatgs of the ord_erl of 0.5.Gé\As the V. DISCUSSION AND CONCLUSIONS
quoted error in Eq(10) is only statistical, this last range
somehow estimates a certain systematic uncertainty. We are aware that our method of comparison of
(A2(n,=0)) and(A2,p suffers from a lot of arbitrariness
and approximationgsuch as the perfect gas approximation,
possible errors in the instanton identification, the uncertainty
Our instanton estimate ¢A\?) is a semiclassical one, de- in the extrapolation to zero cooling sweeps, etéVe have
prived of the necessary UV fluctuations, and therefore notaken care to cross check our estimates by comparing differ-
directly  comparable  with [2] <A(2)PE>(10 GeV) entmethods at each step of the computation, in particular the
=2.4(5) Ge\?. There is of course no exact recipe to com- ISR and CFHsee Fig. 1a) and Table ). A comparison with
pare both estimates, since the separation between the serflitéct “measurements” of th¢A?) condensate from cooled
classical nonperturbative domain and the perturbative onkttice configurations could be thought of as an additional
cannot be exact. We may appeal to the fact that at the renoffosscheck. Qualitative agreement is found for a large
malization pointw, the radiative corrections are minimized; enou_gh number of cooling SWEEPS, but this agreement is
therefore a semiclassical estimate must best correspond anifestly destrqyed by UV f]uctuahons already erv 39'
<A(2)PE> at some reasonabje. In the example ofp? vacuum f course, by using ISR and instanton gas approximation we

expectation in the spontaneously brokef model given in sharply separate UV fluctuations from the semiclassical
P P y 9 background. All these imprecisions seem inherent to the sub-

[21], one finds indeed that it equals the classical estimate faf
around the spontaneously generated mass. In our roblelﬁlCt anyway.
gne could esg that the co)r/rgs ondin scale.sho Id? ical ' With this in mind, we nevertheless take the fair agreement
uld gu ponding uld typi %’etvveen EQgs(10) and (12) as a convincing indication that
be around ¥=0.7 GeV, or some gluonic mass, a very low

the A? condensate receives a significant instantonic contribu-
2
scale anyway. We cannot rgAoeg (10 GeV) down to such tion. In other words, the instanton liquid picture might yield

C. Comparison with (A?) from OPE

a low scale{2], the explanation for the pf corrections to the perturbative
35 u P behavior of Green functions computed with thermalized con-
2 —A2 —In— figurations on the lattice.
AR 1= AR, 1+44InM0/ InAMOM). (11) g
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