
PHYSICAL REVIEW D 66, 034502 ~2002!
Lattice artifacts and the running of the coupling constant
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We study the running of the Lu¨scher-Weisz-Wolff~LWW! coupling constant in the two-dimensionalO(3)
nonlinears model. To investigate the continuum limit we refine the lattice spacing from the1

16 value used by
LWW up to 1

160. We find larger lattice artifacts than those estimated by LWW and that most likely the coupling
constant runs slower than predicted by perturbation theory. A precise determination of the running in the
continuum limit would require a controlled ansatz of extrapolation, which, we argue, is not presently available.
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The hallmark of QCD is its alleged asymptotic freedo
~AF!, that property which expresses the fact that at sho
distances the interactions between quarks and gluons ar
coming weaker. This fact, however, has been establis
only in perturbation theory~PT!, an approximation schem
without a mathematical basis and which, moreover, has b
shown to be plagued by ambiguities~expectation values o
variables of compact support depend upon the boundary
ditions ~BC! used to reach the thermodynamic limit! @1#.

It is therefore most important to establish whether AF
really a property of QCD in a nonperturbative framewo
The first step in this direction was taken in 1991 by Lu¨scher,
Weisz, and Wolff~LWW! @2#, who proposed a method t
investigate the presence of AF in the two-dimensional~2D!
O(N) nonlinears models, which, perturbatively, are also A
for N>3. As a coupling constant they proposed the follo
ing renormalization group invariant:

g̃2~b,L !5
2L

~N21!j~L !
. ~1!

Herej(L) is the correlation length of theO(N) model in an
infinite strip of widthL with periodic BC. It is defined by the
following double limit: consider a finite strip of sizeL3T
with periodic BC in the direction of sizeL and arbitrary BC
in the direction of sizeT. Then

j~L !52 limx→` limT→`

x

ln@^s~0!•s~x!&#
. ~2!

For the standardO(N) action

Hi , j52s~ i !•s~ j ! ~3!

at inverse coupling constantb, if in Eq. ~1! one expressedL
in units of the thermodynamic correlation lengthj`(b), then
in the limit L→` andb→bcrt , holdingz5L/j` fixed, one
would obtain a unique functionḡ2(z) describing the running
of ḡ2 with the physical distancez.

As we pointed out in Ref.@3#, the interpretation ofḡ2 as a
coupling constant is somewhat misleading since it does
measure the strength of the interaction. Indeed in the mas
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continuum limit of a free field theoryḡ2(z) is a nontrivial
function, running linearly withz. LWW argued in favor of
their choice by pointing out that in PT, to lowest order in t
bare~lattice! coupling constantḡ2(L);1/b. This argument
is also problematic since even ifbcrt5`, to construct the
continuum limit one would have to letL→` and thus reach
a regime where PT in the bare coupling would clearly not
applicable.

Neverthelessḡ2(L,b) is a renormalization group invari
ant and if one would discover that for someb,`, ḡ2(L)
became independent ofL for largeL, that would mean that a
thatb the model is critical, which, as we will explain below
would rule out the existence of AF in the massive continu
limit.

LWW claimed to be able to establish the continuum ru
ning of ḡ2@L/j`(b)# up to physical distances as small
0.03304~4! and to verify that it approached the perturbati
~AF! prediction for theO(3) model. To achieve this they
employed a finite size scaling~FSS! technique: one measure
j(L) at someb and L, then leavingb unchanged, one
doublesL and measuresj(2L). One thus obtains a scalin
curve givingḡ2(2L)/ḡ2(L) versusḡ2(L). This step scaling
curve, as LWW called it, allows one to connect small phys
cal distances to large ones@L/j`(b).7#, where the con-
tinuum limit of ḡ2@L/j`(b)# could be reached.

Similar FSS approaches were used by Kim@4# and Car-
acciolo et al. @5# to predict the value ofj~b! up to j;105,
even though the largest lattices involved did not exceedL
5512. However, whereas these authors produced their s
ing curves simply by observing that the Monte Carlo~MC!
data coming from different values ofb seemed to fall on the
same curve, which they took as their step scaling curve,
LWW paper claimed to have really controlled lattice artifac
~the aproach to the continuum!. More precisely the problem
is this: of course if one knew the continuum value of the s
scaling curve one could connect small physical distance
large ones. But in a MC investigation, by necessity, one
only gather data at finite cutoff@1/j`(b) or alternatively
1/L#. However, the continuum limit requires lettingj`(b)
→` andL→`. Therefore one must in principle worry abou
extrapolating the results obtained for the step scaling fu
tion at finite cutoff to the continuum limit.
©2002 The American Physical Society02-1
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This feat, which the other above quoted authors did
even attempt, was achieved by LWW by assuming
Symanzik-type approach to the continuum limit. Namely,
fixed ḡ2 they assumed that the step scaling function
proaches its continuum limit value as 1/L2 @strictly speaking,
inspired by PT, the Symanzik fit involves log(L)/L2, however,
for 6<L<16 the log can be approximated by a constan#.
They backed this assumption with their MC data. Howev
the values ofL they used ranged only from 6<L<16. The
main point of our paper is to show numerical evidence tha
one goes to much largerL values, the Symanzik fit has a
unacceptably largex2 and an entirely new picture for th
running of ḡ2 with the physical distance is suggested.

Before showing our data, we would like to elaborate o
subtlety having to do with the numerical determination of t
correlation lengthj(L). Namely, while the definition in Eq
~1! is mathematically well defined, one must adopt a com
tational procedure for implementing it. LWW used anL3T
lattice with free BC in theT direction, tookT55L and as-
sumed a pure exponential decay forL,x,T2L ~see Ap-
pendix B of Ref.@2#!. We used instead the following numer
cal estimate of the correlation lengthj: let P5(p,0), p
52np/T, n50,1,2,...,T21, T510L. Then

j5
1

2 sin~p/T!
AG~0!/G~1!21, ~4!

where

G~p!5
1

LT
^uŝ~P!u2&; ŝ~P!5(

x
eiPxs~x!. ~5!

It is not clear whether the LWW prescription or the o
adopted by us provides an estimate closer to the true e
nential correlation length. For finiteT the LWW procedure,
employing free BC, is likely to produce a value smaller th
the truej(L). In the procedure adopted by us, there are t
effects of opposite sign, which could bring the result clo
to the true exponential correlation length.

~1! The periodic BC in theT direction increases the orde
in the system compared to an infinite strip.

~2! Since our definition is sensitive to the multipartic
states, forT→` it would produce a value smaller than th
true j(L). This effect was studied by Campostriniet al. @6#
using the high-temperature expansion and found to be
than 0.2%.

Since we want to compare our data with those of LW
we show in Fig. 1 the resulting step scaling functions co
puted with the two procedures at the sameb andL. As can
be seen, within numerical accuracy, at these values ofḡ2 the
two procedures produce similar results.

Our results for the step scaling function are shown
Figs. 2, 3, and 4 forL520, 40, and 80, respectively. Th
values were obtained by measuring the correlation lengt
given b first on a lattice of sizeL310L, then on 2L
320L. The values ofb used~1.815, 1.94, 2.05, 2.16, 2.27
2.38, and 2.49! were chosen so thatḡ2 took values in the
range covered by LWW. The figures contain also two ben
marks taken from LWW@2#: the 3-loop PT curve; the LWW
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estimated continuum values. Figure 4 also contains our va
for the step scaling function obtained by doublingL from
160 to 320 atḡ251.05397(81). The error bars were es
mated as follows. For each value ofb andL we started from
a randomly chosen configuration and ran the improved c
ter algorithm @7# using 100 000 clusters for thermalizatio
and 1 000 000 clusters for measurements. We then repe
this procedure a minimum of 157 times, except for the va
at L5320 which contains only 74 runs. We computed t
average value over these samples ofG(0) and G(1) and
from themj(L). Sincej(L) is a nonlinear function ofG(0)
andG(1), we estimated the error forj(L) and ḡ2(L) from

FIG. 1. Step scaling functionḡ2(2L)/ḡ2(L) versusḡ2(L) for
L520, 40, 80 computed with our method of estimatingj(L) ~solid
lines! and with the LWW method~dotted line!.

FIG. 2. Step scaling functionḡ2(2L)/ḡ2(L) versusḡ2(L) for
L520. Our MC data are connected by a spline.
2-2
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our sample of independent values by the jackknife meth
The data forḡ2(L) that were used in the figures are given
Table I.

Our data cast doubt on the LWW prediction@2# for the
continuum limit of the step scaling function. The latter w
obtained by extrapolating the MC values forL from 6 to 16
via a second order polynomial in 1/L2. For illustration in
Fig. 5 we show the original LWW data for the step scali
function atg251.0595 and the fit just described the~solid
line! together with our data at largerL ~we used a spline to
interpolate our data to extract our values atg251.0595!. We
have arbitrarily changed the abscissa to 1/(lnL12.5) to bet-
ter separate the data points at largeL horizontally. In the fit,
following the procedure described by LWW, we left out th
point at L55. Our fit ~of the LWW data! reproduces their
continuum value pretty well@we obtain 1.2642~13!, whereas
they give 1.2641~20!#. Note that while our data join the
LWW data smoothly, our data at largerL lie below their fit
curve.

As already indicated above, LWW expected the data
follow the PT inspired Symanzik ansatza/L21b ln L/L2,
consequently we tried also a fit of this type toall the data.
This is shown in Fig. 6. The quality of the fit is not excelle
(x2/NDF52.8), and it is only slightly better than the fit ob
tained following the LWW prescription~quadratic polyno-

FIG. 3. Step scaling functionḡ2(2L)/ḡ2(L) versusḡ2(L) for
L540. Our MC data are connected by a spline.
03450
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mial in 1/L2, with the point atL55 discarded!, whose
x2/NDF is 3.2. In fact, even with the Symanzik-type fit, ou
data atL580 and 160 lie below the fit curve, although b
less than in Fig. 5.

We did not display the LWW values for 6<L<16 in Figs.
2, 3, and 4 because that would clutter the plots too mu
However, when combined with our values, they revea
rather complicated approach to the continuum, especiall
lower g2 values. This is not an unexpected fact. Indeed ifL is
sufficiently small at givenb, the ~asymmetric! lattice is
strongly ordered in the transverse~shorter! direction. On the
other hand, as we emphasized several years ago@8#, since in
the continuum limit one must letL→` and the Mermin-
Wagner theorem guarantees the restoration of theO(N) sym-
metry in that limit for any finiteb, clearly forL sufficiently
large this ‘‘perturbative’’ regime, of spins highly ordered
the transverse direction, cannot persist.

In fact we showed in Ref.@8# that even ifbcrt5`, as
predicted by PT, the spins would cease to be highly orde
in the transverse direction forL sufficiently large. Indeed
bare PT itself provides a clue as to the distance over wh
the spins remain well ordered since to lowest order one

^s~0!•s~x!&512
N21

b
D~x! ~6!

FIG. 4. Step scaling functionḡ2(2L)/ḡ2(L) versusḡ2(L) for
L580 and 160. Our MC data forL580 are connected by a spline
TABLE I. Monte Carlo data forg̃2(b,L).

b 1.815 1.94 2.05 2.16 2.27 2.38

L520 1.06185~78! 0.91115~67! 0.81616~70! 0.74170~56!

L540 1.27230~85! 1.04334~76! 0.91530~68! 0.81901~63! 0.74419~57!

L580 1.24174~85! 1.04778~72! 0.91907~70! 0.82404~60! 0.74811~53!

L5160 1.24497~100! 1.05398~81! 0.92457~69! 0.82564~58!

L5320 1.2530~15!
2-3
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and to a good approximationD(x)5 1
4 1(1/2p)ln(x). Thus

bare PT suggests that spins are well ordered over dista
O$exp(@2pb/(N21)#%). On the other hand, the AF formul
predictsj5O$exp@2pb/(N22)#%. Thus at fixed physical dis
tance @L/j(L)#, in taking the continuum limit one would
surely leave the regime in which PT in the bare coupling
applicable.

Returning now to the pattern of lattice artifacts, initially,
b is large enough, at small enoughL, they should follow the
Symanzik pattern used by LWW because the system is
sentially in a PT regime. This regime has nothing to do w

FIG. 5. Step scaling functionS5ḡ2(2L) for ḡ251.0595 versus
1/(ln L12.5). Crosses are the LWW data, solid squares our n
data. The solid line is the LWW-type fit and the point labeled LW
is the LWW continuum value.

FIG. 6. Step scaling functionS5ḡ2(2L) for ḡ251.0595 versus
1/(ln L12.5) as before. The solid line is now the Symanzik type
03450
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the true approach to the continuum, which occurs only wh
L is sufficiently large~for given b! so that theO(N) sym-
metry becomes approximately true. How the true continu
limit is approached can be model dependent. For instanc
the Ising model there are good reasons to expect a 1/L2 lead-
ing behavior@9#. On the other hand, in theO(2) model there
are both theoretical@10# and numerical reasons@11,12# to
expect a 1/ln(L) approach.

It is reasonable to expect that theO(3) model, enjoying a
continuous symmetry, behaves similar to theO(2) one and
not the Ising model. We have attempted a 1/ln(L) fit to our
data atg251.0595. This is shown in Fig. 7. We show th
results of fitting only the data withL>12 to the ansatz

a1
b

ln L1c
~7!

with a51.2410(3), b50.1567(187),c52.5, andx2/NDF
55.3/3. We have no theoretical basis for this ansatz, wh
was inspired by the behavior ofg2(L) in the critical O(2)
model, and present it only as an illustration. Since it is s
posed to represent asymptotic behavior forL→` and it in-
volves 1/lnL rather than 1/L2, obviously it should apply only
for largerL. Our decision to being withL512 is arbitrary. It
leads to a fit with a reasonablex2/NDF and a much lower
prediction~1.24 instead of 1.26! for the continuum value of
the step scaling function.

Even though we do not have a firm prediction for t
continuum step scaling function, our results do not corro
rate the original prediction of LWW and suggest that mo
likely the nonperturbative running ofḡ2 is slower than pre-
dicted by PT. This situation is consistent with, though in
way proving, the existence of a transition to a massless ph
at finitebcrt , as argued by us recently@13#. In that paper we
also proved rigorously that for the standard action, the m

w

.

FIG. 7. Step scaling functionS5ḡ2(2L) for ḡ251.0595 versus
1/(ln L12.5) as before. The solid line is the fit Eq.~7!.
2-4
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sive continuum limit cannot be AF ifbcrt,`. The result
follows from a Ward identity and the reflection positivity o
the standard action.

Finally, regarding the running ofas(Q) in QCD4, all we
can say is that the Symanzik-type fit for the approach to
continuum has no justification there either. Indeed, that fi
inspired by PT. If in fact lattice QCD4 does undergo a de
confining zero temperature transition at nonzero~bare! cou-
pling, so that the running ofas(Q) does not follow PT, there
is no reason to expect the lattice artifacts to follow the S
manzik ansatz. Therefore it would be very useful if the l
tice community employed its resources to establish first
true cutoff effects and the true running ofas in the pure
a

ys
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Yang-Mills theory by going to largerL, before attempting to
handle dynamical fermions; the latter unavoidably can o
be done on minuscule lattices, and using the Symanzik fi
extrapolate to the continuum can be misleading, as we h
found. As we said many years ago@14#, we expect that in the
four dimensional Yang-Mills theory as well as in QCD4 there
exists a nontrivial fixed point and thatas(Q) runs slower
than predicted by PT, with the effect becoming pronounc
by 1 TeV or less.

We benefitted from numerous discussions with Pe
Weisz regarding the LWW paper. A.P. is grateful to t
Werner-Heisenberg-Institut for its hospitality.
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