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Lattice artifacts and the running of the coupling constant
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We study the running of the lseher-Weisz-WolffLWW) coupling constant in the two-dimensiora(3)
nonlinearo model. To investigate the continuum limit we refine the lattice spacing frorqlgtkralue used by
LWW up to 1—%50 We find larger lattice artifacts than those estimated by LWW and that most likely the coupling
constant runs slower than predicted by perturbation theory. A precise determination of the running in the
continuum limit would require a controlled ansatz of extrapolation, which, we argue, is not presently available.
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The hallmark of QCD is its alleged asymptotic freedom continuum limit of a free field theorg?(z) is a nontrivial
(AF), that property which expresses the fact that at shortefunction, running linearly withz. LWW argued in favor of
distances the interactions between quarks and gluons are beir choice by pointing out that in PT, to lowest order in the
coming weaker. This fact, however, has been establishedare (lattice) coupling constang?(L)~ 1/3. This argument
only in perturbation theoryPT), an approximation scheme is also problematic since even f.,=«, to construct the
without a mathematical basis and which, moreover, has beetontinuum limit one would have to lét—c and thus reach
shown to be plagued by ambiguiti¢sxpectation values of a regime where PT in the bare coupling would clearly not be
variables of compact support depend upon the boundary compplicable.
ditions (BC) used to reach the thermodynamic lijrit]. Neverthelesg?(L,8) is a renormalization group invari-

It is therefore most important to establish whether AF isant and if one would discover that for sone<, g2(L)
really a property of QCD in a nonperturbative framework. became independent bffor largeL, that would mean that at
The first step in this direction was taken in 1991 bysther, that 3 the model is critical, which, as we will explain below,
Weisz, and Wolff(LWW) [2], who proposed a method to would rule out the existence of AF in the massive continuum
investigate the presence of AF in the two-dimensid2&)  limit.

O(N) nonlinearc models, which, perturbatively, are also AF L WW claimed to be able to establish the continuum run-
for N=3. As a coupling constant they proposed the follow-ning of g2[L/£..(8)] up to physical distances as small as

ing renormalization group invariant: 0.033044) and to verify that it approached the perturbative
(AF) prediction for theO(3) model. To achieve this they

GAB.L)= 2L 2 employed a finite size scalingS9 technique: one measures
g(h (N=1)&(L) " &(L) at somepB and L, then leavingB unchanged, one

doublesL and measureg(2L). One thus obtains a scaling
Here&(L) is the correlation length of th@(N) model in an  curve givingg?(2L)/g?(L) versusg?(L). This step scaling
infinite strip of widthL with periodic BC. It is defined by the curve as LWW called it, allows one to connect small physi-
following double limit: consider a finite strip of siZeXT cal distances to large on¢&/&.(B)>7], where the con-
with periodic BC in the direction of size and arbitrary BC  tinuum limit of g[L/£..(8)] could be reached.

in the direction of sizel. Then Similar FSS approaches were used by K and Car-
accioloet al. [5] to predict the value of(B) up to é~10°,
. . X even though the largest lattices involved did not excked
§(L)=—lm,_.. I'mTHw|n[<5(o).s(x)>] : (@ —512. However, whereas these authors produced their scal-
ing curves simply by observing that the Monte CafiMC)
For the standar@®(N) action data coming from different values @f seemed to fall on the
same curve, which they took as their step scaling curve, the
Hij=—s(i)-s(}) (3 LWW paper claimed to have really controlled lattice artifacts

(the aproach to the continugnMore precisely the problem

at inverse coupling constag if in Eq. (1) one expresseld is this: of course if one knew the continuum value of the step
in units of the thermodynamic correlation length(3), then  scaling curve one could connect small physical distances to
in the limit L— and 8— B¢, holdingz=L/¢,, fixed, one large ones. But in a MC investigation, by necessity, one can
would obtain a unique functiog?(z) describing the running only gather data at finite cutoffl/é.(8) or alternatively
of g2 with the physical distance 1/L]. However, the continuum limit requires letting.(8)

As we pointed out in Ref.3], the interpretation 02 asa — andL—o. Therefore one must in principle worry about
coupling constant is somewhat misleading since it does nagxtrapolating the results obtained for the step scaling func-
measure the strength of the interaction. Indeed in the massit®sn at finite cutoff to the continuum limit.
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This feat, which the other above quoted authors did not
even attempt, was achieved by LWW by assuming a
Symanzik-type approach to the continuum limit. Namely, at
fixed g2 they assumed that the step scaling function ap-
proaches its continuum limit value ad 2/[strictly speaking,
inspired by PT, the Symanzik fit involves ldg(L?, however,
for 6<L <16 the log can be approximated by a consftant
They backed this assumption with their MC data. However,
the values ofL they used ranged only froms6L<16. The
main point of our paper is to show numerical evidence that if
one goes to much larger values, the Symanzik fit has an
unacceptably large? and an entirely new picture for the
running ofg? with the physical distance is suggested.

Before showing our data, we would like to elaborate on a
subtlety having to do with the numerical determination of the
correlation length¢(L). Namely, while the definition in Eq.
(1) is mathematically well defined, one must adopt a compu-
tational procedure for implementing it. LWW used BiX T
lattice with free BC in theT direction, tookT=5L and as-
sumed a pure exponential decay forxx<T—L (see Ap-

cal estimate of the correlation length let P=(p,0), p
=2n7/T, n=0,1,2,..T—1, T=10L. Then

estimated continuum values. Figure 4 also contains our value
for the step scaling function obtained by doublihgirom
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FIG. 1. Step scaling functiom?(2L)/g?(L) versusg?(L) for
pendix B of Ref[2]). We used instead the following numeri- L=20, 40, 80 computed with our method of estimati{g.) (solid

lines) and with the LWW methoddotted ling.

§=mx/e(0)/e(1)—1, (4)
where
1 _
G(p)=F(I8(P)%); 8(P)=2 e™'s(x). (5

It is not clear whether the LWW prescription or the one

adopted by us provides an estimate closer to the true exp&:

nential correlation length. For finit€ the LWW procedure,

employing free BC, is likely to produce a value smaller than@"

160 to 320 afg?=1.05397(81). The error bars were esti-
mated as follows. For each value gfandL we started from

a randomly chosen configuration and ran the improved clus-
ter algorithm[7] using 100000 clusters for thermalization
and 1000000 clusters for measurements. We then repeated
this procedure a minimum of 157 times, except for the value
at L=320 which contains only 74 runs. We computed the
werage value over these samplesGi{f0) and G(1) and

from themé&(L). Since&(L) is a nonlinear function o&(0)
dG(1), weestimated the error fog(L) andg?(L) from

the trueé(L). In the procedure adopted by us, there are two

effects of opposite sign, which could bring the result closer

to the true exponential correlation length.

(1) The periodic BC in thedl direction increases the order
in the system compared to an infinite strip.

(2) Since our definition is sensitive to the multiparticle
states, forT—« it would produce a value smaller than the
true £(L). This effect was studied by Campostriti al. [6]

using the high-temperature expansion and found to be less

than 0.2%.

Since we want to compare our data with those of LWW,
we show in Fig. 1 the resulting step scaling functions com-

puted with the two procedures at the saphandL. As can
be seen, within numerical accuracy, at these valu@g dfie
two procedures produce similar results.

Our results for the step scaling function are shown in

Figs. 2, 3, and 4 folL=20, 40, and 80, respectively. The

values were obtained by measuring the correlation length at

given B first on a lattice of sizeL X 10L, then on 2
X 20L. The values of3 used(1.815, 1.94, 2.05, 2.16, 2.27,
2.38, and 2.4pwere chosen so thaj? took values in the

range covered by LWW. The figures contain also two bench-

marks taken from LWW?2]: the 3-loop PT curve; the LWW
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FIG. 2. Step scaling functiog?(2L)/g?(L) versusg?(L) for
L=20. Our MC data are connected by a spline.
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FIG. 3. Step scaling functiog2(2L)/g%(L) versusg(L) for FIG. 4. Step scaling functiog®(2L)/g*(L) versusg*(L) for
L=40. Our MC data are connected by a spline. L=80 and 160. Our MC data fdr=380 are connected by a spline.

. . 2 . . . .
our sample of independent values by the jackknife methoo‘.“z""‘I in 1A%, with the point atL=5 discardeyl whose
/Npg is 3.2. In fact, even with the Symanzik-type fit, our

The data forg?(L) that were used in the figures are given in X X :
Table 1. data atL =80 and 160 lie below the fit curve, although by

Our data cast doubt on the LWW predictif®] for the €SS than in Fig. 5. -
continuum limit of the step scaling function. The latter was Ve did not display the LWW values for6L <16 in Figs.

obtained by extrapolating the MC values foffrom 6 to 16 2, 3, and 4 because that wogld clutter the plots too much.
via a second order polynomial inl%. For illustration in ~ However, when combined with our values, they reveal a

Fig. 5 we show the original LWW data for the step SC‘,jl"ngrather gomplicated_approach to the continuum, espec_i_ally at
function atg?=1.0595 and the fit just described tkeolid Iow_er_g values. This is not an unexpected fac_t. Indgddl_sf

line) together with our data at largér (we used a spline to  Sufficiently small at giveng, the (asymmetri¢ lattice is
interpolate our data to extract our valuegjat 1.0595. We  Strongly ordered in the transvergghortey direction. On the
have arbitrarily changed the abscissa to 1/(#2.5) to bet- other hand, as we emphasized several yearg &lgsince in

ter separate the data points at latgborizontally. In the fit, "€ continuum limit one must let —c and the Mermin-
following the procedure described by LWW, we left out the YWagner theorem guarantees the restoration o0¥) sym-
point atL=5. Our fit (of the LWW data reproduces their metry in trlat limit for any finites, clearly forL sufficiently
continuum value pretty we[we obtain 1.264013), whereas large this pertur_batlye regime, of spins highly ordered in
they give 1.264(20)]. Note that while our data join the th€ transverse direction, cannot persist.

LWW data smoothly, our data at largerlie below their fit In fact we showed in Refl8] that even if Bp=2c, as
curve. predicted by PT, the spins would cease to be highly ordered

As already indicated above, LWW expected the data tdn the transverse direction fdr sufficiently large. Indeed
follow the PT inspired Symaﬁzik ansa&@/ L2+b In L/L2 bare PT itself provides a clue as to the distance over which

consequently we tried also a fit of this typeab the data. the spins remain well ordered since to lowest order one has

This is shown in Fig. 6. The quality of the fit is not excellent N_1
(x?/Npe=2.8), and it is only slightly better than the fit ob- . _a_
tained following the LWW prescriptioriquadratic polyno- (s(0)-s00)=1 D00 ©

TABLE I. Monte Carlo data fo§g?(8,L).

B 1.815 1.94 2.05 2.16 2.27 2.38
L=20 1.0618%79) 0.9111567) 0.8161670) 0.7417056)

L=40 1.2723085) 1.0433476) 0.9153069) 0.8190163) 0.7441957)

L=80 1.2417485) 1.0477872) 0.9190770) 0.8240460) 0.7481153)
L=160 1.24497100) 1.0539881) 0.9245769) 0.8256458)
L=320 1.253015)

034502-3



ADRIAN PATRASCIOIU AND ERHARD SEILER

PHYSICAL REVIEW D66, 034502 (2002

[ T 3 T T ] T T T T ] L T T T T T |7
1.29 . 1.29 - LT
L \/ B L \ _
1.28 / - 1.28 -
—_ L / N — L ]
X L / i = . i
T%n - . b oo F y . b
A i a T o " e 1
1.27 + y = 1.27 - -
©LWW -/ 1 FoLwwW $ 70 1
] __ : ] / |
L Ty | i 4 ]
. r ¥ B
1.26 — - — 1.26 I~ e _
L - . ’ 4
C | 1 L L 4 | L L ! | ] C | | L I 1 1 1 ! i l L L ]

0 0.1 0.2 0 0.1 0.2

1/(In L+2.5)

FIG. 5. Step scaling functioB =g2(2L) for g?=1.0595 versus

1/(In L+2.5)

FIG. 7. Step scaling functioB =g2(2L) for g?=1.0595 versus

1/(InL+2.5). Crosses are the LWW data, solid squares our new/(InL+2.5) as before. The solid line is the fit E(T).
data. The solid line is the LWW-type fit and the point labeled LWW

is the LWW continuum value.

and to a good approximatioB (x) =%+ (1/27)In(X). Thus
bare PT suggests that spins are well ordered over distanc
O{exp(2wB/(N—1)]}). On the other hand, the AF formula

the true approach to the continuum, which occurs only when
L is sufficiently large(for given B) so that theO(N) sym-
metry becomes approximately true. How the true continuum
fithit is approached can be model dependent. For instance, in
the Ising model there are good reasons to expedt algAd-

predicts¢ = O{exf2mpB/(N—2)]}. Thus at fixed physical dis- ;4 hehaviof9]. On the other hand, in th@(2) model there

tance[L/&(L)], in taking the continuum limit one would
surely leave the regime in which PT in the bare coupling i

applicable.

Returning now to the pattern of lattice artifacts, initially, if
B is large enough, at small enougihthey should follow the
Symanzik pattern used by LWW because the system is e
sentially in a PT regime. This regime has nothing to do with

. are both theoretical10] and numerical reasond1,12 to
Sexpect a 1/In¢) approach.

It is reasonable to expect that th&3) model, enjoying a
continuous symmetry, behaves similar to 8é2) one and
not the Ising model. We have attempted a 1)nfit to our
Yata atg?=1.0595. This is shown in Fig. 7. We show the
results of fitting only the data with=12 to the ansatz

L T ' T I
1.29 —
1.28 —
é |
T:t'm -
L
1.27
I LWW
%
1.26 —
C_ | ! ! ! L |

b

— at InL+c @)

with a=1.241G3), b=0.1567(187),c=2.5, and y%/Npg

| =5.3/3. We have no theoretical basis for this ansatz, which
— was inspired by the behavior @f(L) in the critical O(2)
1 model, and present it only as an illustration. Since it is sup-

posed to represent asymptotic behavior lferc and it in-
volves 1/InL rather than 1/2, obviously it should apply only
for largerL. Our decision to being with =12 is arbitrary. It

4 leads to a fit with a reasonab)g’/Npr and a much lower
. prediction(1.24 instead of 1.26for the continuum value of
1 the step scaling function.

Even though we do not have a firm prediction for the
continuum step scaling function, our results do not corrobo-
rate the original prediction of LWW and suggest that most

0 0.1 0.2
1/(In L+2.5)

likely the nonperturbative running @? is slower than pre-
dicted by PT. This situation is consistent with, though in no
way proving, the existence of a transition to a massless phase

FIG. 6. Step scaling functioB =g2(2L) for g?=1.0595 versus at finite B, as argued by us recenfl§3]. In that paper we
1/(InL+2.5) as before. The solid line is now the Symanzik type fit. also proved rigorously that for the standard action, the mas-
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sive continuum limit cannot be AF iB.4<. The result Yang-Mills theory by going to largel, before attempting to
follows from a Ward identity and the reflection positivity of handle dynamical fermions; the latter unavoidably can only
the standard action. be done on minuscule lattices, and using the Symanzik fit to
Finally, regarding the running af,(Q) in QCD,, all we  extrapolate to the continuum can be misleading, as we have
can say is that the Symanzik-type fit for the approach to théound. As we said many years afd], we expect that in the
continuum has no justification there either. Indeed, that fit iour dimensional Yang-Mills theory as well as in Q¢ here
inspired by PT. If in fact lattice QCPdoes undergo a de- exists a nontrivial fixed point and thais(Q) runs slower
confining zero temperature transition at nonzésare cou-  than predicted by PT, with the effect becoming pronounced
pling, so that the running at(Q) does not follow PT, there py 1 TeV or less.
iS no reason to expect the lattice artifacts to follow the Sy-
manzik ansatz. Therefore it would be very useful if the lat- We benefitted from numerous discussions with Peter
tice community employed its resources to establish first th&\Veisz regarding the LWW paper. A.P. is grateful to the
true cutoff effects and the true running ef in the pure  Werner-Heisenberg-Institut for its hospitality.
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