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Local chirality of low-lying Dirac eigenmodes and the instanton liquid model
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The reasons for using low-lying Dirac eigenmodes to probe the local structure of topological charge fluc-
tuations in QCD are discussed, and it is pointed out that the qualitative double-peaked behavior of the local
chiral orientation probability distribution in these modes is necessary, but not sufficient, for dominance of
instantonlike fluctuations. The results with the overlap Dirac operator in Wilson gauge backgrounds at lattice
spacings ranging frora~0.04 fm toa~0.12 fm are reported, and it is found that the size and density of local
structures responsible for double peaking of the distribution are in disagreement with the assumptions of the
instanton liquid model. More generally, our results suggest that vacuum fluctuations of topological charge are
not effectively dominated by locally quantizéhteger-valuedllumps in QCD.
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[. INTRODUCTION “would-be” zero modes associated with individual
(anti-instantons mix, and supply the finite density of near-
It has been recently suggestdd that questions about the zero modes required by the Banks-Casher reld@nwWhile
dynamical nature of topological charge fluctuations in thethe ILM is a phenomenological model, this elegant mixing
QCD vacuum are worth reexamining. The notion that gaugeicture invokes the impression that instantons play an impor-
field topology is relevant for understanding QCD startedtant microscopicdynamical role in the QCD vacuum. A pri-
with the discovery of instantorfg], and their subsequent use mary aim of our investigation is to examine whether the
as a basis for, among other things, the qualitative resolutiomicroscopic relevance of the ILM picture can be justified.
of theU4(1) problem[3], and the discovery of th® depen- The support for the foundations of the ILM has frequently
dence of QCD physick4]. These successes were associatedeen drawn from lattice QCD simulations, using equilibrated
with the use of semiclassical methods and a condmstal  gauge configurations as typical representatives in the path
picture of the vacuum, the instanton gas pictisg charac- integral(see, e.g., Ref10]). Indeed, it is quite reasonable to
terized by formation of well-separatédnti-)self-dual lumps  expect that lattice QCD will eventually provide us with de-
of quantized topological charge. However, it was soon realtailed answers about the nature of topological charge fluctua-
ized that such a vacuum does not lead to confinement, thugons. However, finding a clean and satisfactory way to infer
putting the relevance of instantons immediately into questhis information from lattice QCD has proven to be a non-
tion. Reflecting upon this situation, Witten has argyédl trivial issue due to the fact that lattice gauge fields are found
that large quantum fluctuations associated with the confiningp be very rough at the scale of the lattice spacing. The
vacuum naturally generate large fluctuations of topologicabpparent necessity to eliminate the short-distance fluctua-
charge, and lead to qualitative effects similar to those usuallyions in some way resulted in manipulating the gauge fields
ascribed to instantons. In fact, he has conjectured that instaim various cooling or smoothing procedures. While useful for
tons are not important dynamically, arguing that the semiestimating the global topological charge, these techniques are
classical picture is invalidated by large quantum correctionssignificantly biased as to the local structure of the vacuum
and suggesting that topological charge fluctuates in a more dhey reveal, and there is always an inherent subjective ele-
less continuous manner. ment present.
Nevertheless, QCD instantons remained rather popular as The idea of using fermions to study global topology is
a frequently preferredand analytically accessiblavay of  relatively old[11], but was not exploited very much due to
thinking about vacuum topology. The instanton solution washoth computational demands and problems with chiral sym-
used as a basis for developing a rather successful semiclasetry. However, the suggestion to use low-lying fermionic
sically motivated phenomenology, the instanton liquid modeimodes to extract the information abdatal fluctuations of
(ILM) [7], where correlations among instantons were intro-topological charge is recept] (see also Ref[12]). In light
duced to suppress the infrared divergences present in thef the above remarks, the preference for using fermions in
instanton gas. Even though it is termed a “liquid,” the cor- this respect is quite reasonable, but there is also a good
responding vacuum is quite dilute witlanti-)instantons of  physical motivation for doing so. In particular, local fluctua-
radius p~3% fm and densityn~1 fm~* occupying a small tions of topological charge are of interest because they are
fraction of space-time volume and retaining their identity.believed to cause light quarks to generate femass[3,6]
This setup allows for an interesting mechanism of spontaneand the chiral condensaf8], for example. It is thus physi-
ous chiral symmetry breakingg8], in which the 't Hooft cally very natural to look for the imprint of these fluctuations
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in the low-lying Dirac eigenmodes which dominate thetinuum limit with value R~0.15 fm, while the density of
propagation of light quarks. structures at~0.04 fm isn~50 fm~4, and we cannot ex-
The concrete proposal of Reffl] is to investigate the clude the possibility that it diverges in the continuum limit.
behavior of local chirality in the low-lying modes. This ap- We then point out that this not only disagrees with the ILM,
proach uses the fact that the instantonlike gauge fluctuatiortsut also suggests that the bulk of topological charge in QCD
would leave a specific imprint in the individual modes, thusis not locally quantized in approximately integer units. We
offering an opportunity to examine the consistency of thegive several arguments supporting this interpretation. Need-
instanton picture. More precisely, it was argued that if therdess to say, if confirmed, this would have profound implica-
are extended regions @nti-self-duality in the gauge back- tions for the possible microscopic explanation of spontane-
ground, then the probability distribution of the chiral orien- ous chiral symmetry breaking. Finally, we give several
tation parameteX (X distribution over the regions of strong arguments that our data are not contaminated by lattice arti-
field should exhibit double-peaked behavior in the vicinity of facts usually referred to as “dislocations,” and support this
extremal chiralities. The initial study of thé distribution in ~ conclusion by presenting the data for the Iwasaki gauge ac-
Ref. [1] indicated a flat behavior and thusgaalitativedis-  tion. A preliminary version of this work is presented in com-
crepancy with the instanton picture. However, later studiegact form in Ref[15].
on finer lattices and/or with chirally symmetric fermionic
actions[13,14] revealed a visible degree of double peaking. Il. COOLING OR SMOOTHING VERSUS FERMIONS
This situation precludes any definite conclusions on purely
qualitative grounds since the double-peaked structuneds
essary but not sufficiefior instanton dominance. It is a main
purpose of this work to offer a morguantitative point of

The structure of equilibrium lattice Monte Carlo configu-
rations provides a unique window for examining the nature
of gauge fluctuations in the QCD vacuum. It also represents
. a distinctive way of thinking about how low-energy phenom-
view. ) 7

ena in QCD arise in terms of fundamental degrees of free-

In the first part of the papéSec. I), we explain in detail dom. For example. as we will examine in some detail belo
why we choose to rely on the information encoded in low-." Xample, as we will examine | ! W,

proaches for probing the gauge field topology on the lattlce“would-be” zero modes associated witantiself-dual

We then concentrate on clarifying the possible implication : ) X )
of the X distribution and argue that a double-peaked structurilrjmps’ carrying approximately quantized topological charge.

is not uniquely associated with self-duality. For example, ifthh'sul'nefpf rea:§on:ng |;‘lhe.:ﬁnttrl]y assumeséhat th!s hlislppens at
the gauge fields form approximately quantizedolated € _configuration fevel: wi € vacuum dynamically gen-

: . .erating the gauge potentials with these properties. If this is
lumps of topological charge, then strong double peaking | he case, then the picture has a fundamental microscopic

expected as well, even when such lumps are not Self_dua'eanin Otherwise, it represents only a phenomenological
Also, some chiral peaking in the low eigenmodes may occuf” g. ' P yap 9

even for nonquantized topological charge excitations througrmOde“”g'

some as-yet-unknown mechanism. The observed behavior of Unfortunat_ely, examining Iaj[tice gauge fields diregtly
the X distribution is thus not necessarily associated with arreads to ambiguous results, mainly due to the fact that fields

instanton-dominated vacuum. We suggest that the tentativa' typi(_:ally rough even at the scale of_a single lattice spac-

conclusions of such nature be supplemented by quantitati\/t ?a.c\(/)vr?tl'lr? thme ﬁr':]qtatt'ﬁ.g Y;"” r'(gg%r&veng'?othi;pggﬁcgr-t,?

comparison of QCIX distributions to those for the existing inuum timit, this 1S pre y wr paring
the behavior at a fixed physical distance. It is thus perhaps

ILM ensembles. The material in Sec. Il extends and complei-n vitable that som it of filterina procedure b dt
ments the general discussion of Rf]. cvitable that some Sort ot Titering procedure be USea 1o

In the second part of this papéBec. I, we present new interpret the local structure of lattice gauge fields. In this

- . section, we examine various ways of approaching this issue.
reslts forx d|§tr|but|ons from eigenmodes of t.he overlgp Before proceeding to discuss}':his in Irawfore deta?l it is use-
operfs\tor in Wilson gauge backgrounds at lattice spacmgﬁ” to fix the language that will be used in what foilows In
Lz?%n%v;rgt?;%tgéotgrsnert\?e?j%t? é%]ivfignr. é'; nar;) : tfsrzﬁgé(()j ¢ 8articular, we will use the termisolated lump or simply
gauge structures with the parameters of the ILM, we deter: lump’ to denote a local structure in the gauge field that can

mine the size and density of fermionic structures that conpe enclosed by a hypersurtace on which the field is approxi-

tribute to the peaks of th¥ distribution. This is motivated by mately pure gauge. Consequently, the lump contains approxi-

the fact that for instantonlike excitations, there is a directmately integer-valued topological charge. A tendency to-

correspondence between gauge and fermionic structure. O\L'}Iﬁ"‘rdS 'Iocal lumpy §tructure. IS one O.f the. inherent
consistency check leads to significant disagreement with thgropelrnes of the ILM picture .Wh'Ch distinguishes 't. from the
ILM. In fact, the lattice spacing dependence of the averag@Ituatlon Whef‘ the gauge field flu_ctuates very |nh(_)moge-
radius (defined without reference to the 't Hooft zero-mode heously, forming peaks of topological charge density, but
profile, which does not fit reasonablindicates a finite con- Without any tendency for such quantization.

A. Cooling

when we refer to local quantization of topological charge, we One popular way of addressing the problem of short-
always imply quantization in units of 1. distance fluctuations is the cooling methdd]. We will be

034501-2



LOCAL CHIRALITY OF LOW-LYING DIRAC . .. PHYSICAL REVIEW D 66, 034501 (2002

rather generic when using this term, assuming just that it is gauge action as a basis for the procedure. This is not easily
local minimization procedure for the gauge action with thecurable by improvements. However, one can also attempt to
initial state being the Monte Carlo generated QCD configueliminate the unphysical short-distance fluctuations by some
ration. We will not be concerned with various implementa-gort of smoothingwithout reference to the action. Cooling

tions or variations on the original idea. itself is a smoothing procedure in the sense that it replaces

With the elementary step being local, it is naturally ex-y, o o iginal configuration with a smoother one. For the dis-
pected that if the original configuration can be assigned a

global topology in some way, then it will be preserved to acussion in this section, howevgr, we will be more specific in
large extent during such a procedure. One can thus turn tH8at respect, and call smoothing any procedure that can be
argument around and ttefine the global topological charge interpreted as an action-independent space-time averaging of
of the original configuration through field-theoretic defini- the fields. The prototype for this would be, for example, an
tion, let us say, on the corresponding cooled counterparAPE smearing18] that was actually used in this context

Such a definition may not be entirely satisfactéitye num-  [19].

ber of cooling sweeps is rather subjective and nonunigue While smoothing is a less invasive approach than cooling,
it can be made into a fairly well-motivated working schemethe subjective element in determining just how much
especially for the improved versiofh$7]. smoothing is enough remains. This is troublesome because

However, the situation is different if one is interested in
the local structureof topological charge fluctuations. In the
continuum, there are true local minima of the action for

smoothing, by its nature, is also biased towards lumpy struc-
ture and can qualitatively change the local behavior. To see
strictly self-dual or strictly anti-self-dual fields. The superpo- thaF, consider a Very rpugh, mhomogeneous gauge field .W'th
sitions of not overwhelmingly overlapping instantons andVa'ious structures in it. Upon smoothing, the field varying
anti-instantons, while not exact minima, correspond to pla®Ver short distances will be quickly removed or reduced to a
teaus(or shallow valleys in the action profile. After a few Smooth four-dimensional “bump” if there is an underlying
cooling sweeps when the gauge field undergoes |arg[9ng—d|stance structure present. Also, the lower-dimensional
changes, the local minimization can bring the configuratiorStructures, such as ridges, sheets, etc., will be eliminated
to the vicinity of such a plateau. Here the fields becomesoon by four-dimensional averaging. Thus, as the smoothing
naturally smooth, the field-theoretic definition of topological progresses, one naturally expects the stage when the configu-
charge leads to values that cluster around integers, and thiation will be considerably lumpy with physical fields con-
evolution in the configuration space slows down. Furthercentrated in the lumps. Further smoothing will cause the
cooling possibly leads the configuration into another plateauumps to grow in size, to overlap, and eventually to reach a
and eventually into the global minimum with nonperturba-homogeneous situation with all physical fields removed. An
tive fields completely removedBy the nature of the argu- unsettling question is where in this process one should stop
ment, in the vicinity of the plateau the configuration will and claim that the fields at the given stage represent the
necessarily resemble (anulti-)instanton—anti-instanton state filtered local structure of the original configuration.
regardless of the local properties of the original configura-
tion. In other words, a possible observation of lumpy struc-
ture and localanti-)self-duality in the cooled configuration
is to be expected, and cannot be used as an independent, Fortunately, there is a clean and meaningful strategy for
logically satisfactory input for making conclusions about lo- approaching the above issues, namely to rely on the fermi-
cal fluctuations of topological charge or about the dynamicabnic response to the corresponding gauge background. To
importance of instantonlike gauge fluctuations in the QCDexplain that, it is easiest to first think in terms of a theory in
vacuum. the continuum where a typical configuration is also expected
To illustrate this point, it is perhaps instructive to imagineto have a lot of ultraviolet fluctuations. Using fermions is
that we are interested in studying the local structure of gyite plausible since we know that, for sufficiently smooth
suff|C|en_tIy strongly_coupled lattice QCD vacuum, where iN-gauge fields, fermions reflect global topology exad@@]
stantonlike fluctuations are not expected to play any rolegnq for nondifferentiable gauge fields the index of the Dirac
Consequently, an unbiased approach should find no traces gfarator can actually serve as an extended definition of to-
them. However, cooling the corresponding equilibrium Con'pological charge. It is thus natural to expect that the local

figurations will still lead to plateaus and locally lumpy, self- s{ructure can be inferred from fermionic response as well,

dual behavior. Can we use this as a basis to conclude th . : . ;
instantons play a significant role in the strongly coupled lat- -0., by studying the divergence of the flavor-singlet axial-

. : vector current.
2
tice QCD vacuum? Certainly not. The new idea which makes the fermionic approach attrac-

tive is to look for the imprints of topological charge fluctua-
tions in the low-lying eigenmodes of the Dirac operdtb}.
The inherent reason why cooling is a biased way of studyThis is physically well-motivated, practical, and, at the same
ing local properties of gauge fluctuations is that it uses thdime, has the potential to naturally solve the problem of ul-
traviolet fluctuations without the subjective element in-
volved. Indeed, the space-time structure of the low-lying
2For improved cooling, it is in principle possible that the configu- modes is naturally smoother than that of the gauge fields
ration remains indefinitely in the vicinity of the local self-dual mini- themselves. This fact has two origins. First, the analogous
mum (with instanton—anti-instanton pairs annihilated Schralinger-like eigenvalue problems typically yield smooth

C. Fermions

B. Smoothing
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stationary states even when the underlying potential has digies, but yet they carry approximately quantized topological
continuous jumps. Secondly, among the eigenstates, the iharge. A particular lump can thus be thought of as an indi-
frared modes are expected to be least sensitive to the shokfidual object and, in the absence of all the other lumps, it
distance features on top of the long-distance structure in th@ould induce zero modes of the Dirac operator with chirality
potential’ At the same time, it is necessary to realize that thegictated by the index theorem. For simplicity, consider a situ-
underlying physics we want to understand is the mechanisrgtion with just two lumps with topological charg€s= + 1.

of how gauge fluctuations cause the light quarks to propagatene residual interaction will cause these “would-be” zero

in such a way as to form a quark condensate and to give thg,des to mix and, to a first approximation, the true eigen-

!

g its _mass.dln Io'gher \r/]vords, the goal i? It_ohundersliand r:_h‘f'nodes would be the two linear combinations of the strictly
ynamics underlying the propagation of light quarks. ThiS.piq) «yyould-be” zero modes localized on the lumps. In the

physr:cs IS encott?qe(: in the Iotw—tlymg D'{ﬁc moc[g.z,g\d.thls resultingtopologicalnear-zero modes, thé¢distribution will

is why \,/,vel say that concentrating on these m mion be strongly peaked at1.

filtering”) is physically well motivated. . . . .
One possible approach is to infer the information about What we have described "?‘bove Is the same scenario thatis

topological charge fluctuations from the individual low-lying a basis for t_he ILM mecha_\ms_m of spontanequs_chlral sym-

modes[1]. This method is indirect and is motivated by the Metry breaking8]. The point is that self-duality is not es-

instanton picture of the vacuum. In other words, the properS€ntial for this argument since we did not need to invoke

ties of instantonlike gauge fluctuations imply a Speciﬁcinstantons at all. It is only the local quantization of topologi-

qualitative behavior of the individual modes, thus giving anc@! charge that matters, and yet the peakedistribution is

opportunity to check whether the observed structure is con€XPected, as well as spontaneous chiral symmetry breaking if

sistent with that scenario. The specific proposal of Rfis such configurations turned out to be dynamically important.

to study the probability distribution of the local chiral orien- W& emphasize this point to show that the qualitative
tation parameteX(n) defined by double-peaked behavior of thédistribution alone does not

in itself provide a basis for the verification of the instanton

picture. It is a necessary but certainly not a sufficient condi-

_ M (1) tion for such a conclusion. Apart from the above argument,
[ gl there can possibly be other mechanisms for producing the

peaked distributiorfas well as spontaneous chiral symmetry

over the points where the eigenmodeyy; 4,) is large. Here  preaking. In fact, we will argue later that there are reasons

24 =(1—ys)h,2pg=(1+ ys)  are the left and right com- to believe that topological charge is actually not locally

ponents of the eigenmodg X(n) is a local angle in the quantized in QCD. Nevertheless, the studyooiantitative

| |- |¢¥rl plane rescaled so th&i(n) = —1 for purely right-  characteristics of th& distribution can still be very useful

handed an&(n)=+1 for purely left-handed spinap,. For  for distinguishing various scenarios as well as for other pur-

¥, Yrgenerated in a random independent fashion, the locgloseq 14].

orientation parameter would be uniformly distributed be-

tween—1 and+1. E. Lattice fermions

o
tal'<z(1+)()

When considering the lattice-regularized theory, we have
the usual extra freedom in choosing the lattice action. Ac-

The usefulness of th¥ distribution was discussed in de- cording to the standard universality assumption, all local ac-
tail in Ref.[1], where it was argued that if the gauge back-tions with appropriate symmetries and correct classical be-
ground contains extended regions of strqagti-self-dual  havior should give consistent results sufficiently close to the
fields, then theX distribution should exhibit peaks near the continuum limit. However, comparing results from different
extremal values. This is a consequence of the fact that in theiscretizations at finite lattice spacing usually requires some
eigenvalue problem for the Dirac operator, ttanti-)self-  care. When asking questions about the nature of fluctuations
dual part of the gauge field enters as a potential term for thé the pure gauge vacuum, it is natural to fix a particular
(right) left component of the eigenmode. lattice gauge action and study the theory at different lattice

Here we would like to emphasize that this is not a uniquespacings to be able to extrapolate to the continuum limit.
way for the double-peaked behavior to arise. To illustrateMoreover, if we choose to examine the nature of these fluc-
that, consider subjecting the fermion to a background contuations using a lattice fermion, then it is essential that the
figuration that is lumpy in the sense that we have defined ifermionic action be kept fixed as well, even though it only
here, i.e., consisting of relatively isolated lumps surroundedlays the role of a probe.
by approximately field-free regionéSuch configurations can To illustrate this point, consider some lattice Dirac opera-
be artificially prepared irrespective of whether or not theytor D(U) and the set of related operatdds(U)=D(U,),
resemble typical equilibrium configurations of Q@the  where U, is the gauge configuration obtained froch by
fields comprising the lumps have no definite duality proper{erforming n smearing stepsge.g., APE stepswith other

parameters of the smearing procedure fi%édD(U) is an

D. The implications of the X distribution

3Low-lying modes remain sensitive to thsolated small struc-
tures, as they should. 4See Ref[12] for example.
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acceptable lattice Dirac operator, thBr(U) is acceptable TABLE |. Ensembles of Wilson gauge configurations.
as well, assuming thatl,, exists. However, if we investigate :
the local properties in the equilibrium ensemplé} ., using B a (fm) v No. configs.
D,, then the answers we get will clearly depend ronin 585 0.123 18% 20 12
particular, D1gpo Will probably indicate much larger struc- g g 0.093 14 12
tures in the gauge field thad;. Nevertheless, one is al- 2o 0.068 26 8
lowed in principle to usd g9 as long as it is used consis-  g55 0.042 3% 5

tently in meaningfulextrapolations to the continuum limit,
which might be difficult. However, one can hardly conclude
anything meaningful about the behavior in the continuumwide range of lattice spacings. The massless overlap operator
limit by comparing the results fro; at one lattice spacing [23]
and fromD oo at a different lattice spacing.

Regarding the choice of the fermionic action, we would 1
like to point out one particular aspect illustrated by compar- D=p| 1+ (Dy—p) @)
ing the two extremes represented by the Wilson-Dirac opera- \/(Dw— p)+(Dyw—p)
tor and the overlap operator based on it. The overlap operator

has gxact Iatticg chirall symmetry at finite I'attic.e spacing,yith Dy the Wilson-Dirac operator ancp=1.368 (x
allow!ng for continuumlike theoretical analysis with resp_e(_:tzo_lg) is used throughout this paper. The rational approxi-
to chiral symmetry and topology. On the other hand, it iSmation for the matrix sign functiofi24,25 was utilized to
nonultralocal and, due to extended gauge connections, effegnplementD and a small number of eigenmodes Dy,
tively samples the gauge field potential over a nonzero physiyvere projected out both to increase the accuracy of the ap-
cal distancé€. This should not matter for the continuum limit, proximation and to speed up the convergence.

based on the expectation that the operator is local over equi- We used the Ritz variational methd@6] to obtain the
librium ensembles of Wilson pure gauge theory at suffi-low-lying eigenmodes oH?=D*D. As a consequence of
ciently weak coupling. The Wilson-Dirac operator, on thenormality (D,D*]=0) and vys Hermiticity (D"
other hand, has multilated chiral properties, and when using: ysD ys), the nonzero low-lying modes d2 are doubly

it in this context, one relies heavily on the assumption thatlegenerate and the eigenmodesDotan be constructed in
this problem will go away in the continuum limit. At the the corresponding subspaces sifie¥?,D]=0. Also, H? is
same time, the Wilson-Dirac operator has a perfect resolutioproportional to the chirally nonsymmetric part Bf imply-

in the sense that there is no additional smoothness beyoriagd that[ ys,H?]=0. This allows for diagonalization in sepa-
the fact that we end up inspecting the infrared eigenmodes. [&te chiral sectors in different runs, thus speeding up the
would be very interesting to know whether the two actionsProcess and easing the memory requirements for large lat-
provide for consistent continuum extrapolations for quanti-fices. The typical accuracy of calculated eigenvalias

ties related to topology. In this work, we use an overlapMéasured by differences of complex-conjugate paiss

operator which, even though expensive to implement, is verfi‘bout one part in fOor l:_)eftter. _
convenient for its theoretical advantages. To avoid confusion, it is useful to fix the language that

The above considerations also suggest that there may bevxgll be used when discussing the local properties of a given

more general complementarity between the degree of chir&li9enmodey of D. We will refer to

symmetry and the resolution for lattice fermionic actions.

Indeed, if we start with a maximally ultralocal operator, we _ g

can try to improve its chiral properties by including cou- d(=dn o, M= Y50 @
plings at larger distances and adding more complicated ! o !

gauge connections, but by doing so we worsen the resolSdensityandchirality, respectively, and t&(n) of Eq. (1)

tion. On the other hand, if one starts with the operator with@Schiral angle Sinced(n), c(n), andX(n) are identical for
exact lattice chiral symmetry, then this operator must be non€ig€nmodes corresponding to complex conjugate nonzero ei-
ultralocal[22], and an attempt to improve its resolution by 98Nvalues ¢y« = ysi,), we will treaty, i« as a pair.

dropping couplings at large distances will result in deterio-, 1€ parameters of the Wilson gauge ensembles used are
rated chiral properties. listed in Table I. Configurations for the three finest lattices

are separated by 20 000 sweeps. The quoted values of lattice
spacings were obtained from the Sommer parameter using
the interpolation formula given in Rdf27]. Our finest lattice
We have calculated and examined the low-lying modes ofpacing is outside the interpolation range and we linearly
the overlap operator in Wilson gauge backgrounds over &xtrapolate fromB=6.5. Note that the physical volumes
involved are such as to contain on average three to four
(anti-instantons if the ILM scenario is relevant, ensuring
®Because of this “chiral smoothing,” the features smaller thanthat the mixing of 't Hooft zero modes would take place. For
some physical threshold will not be resolved at finite lattice spacall the configurations we have calculated the eigenfunctions
ing. The results of Ref.21] are a manifestation of this fact. for the zero modes and at least two pairs of near-zero modes.

IIl. LOW-LYING MODES OF THE OVERLAP OPERATOR
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FIG. 1. X distribution for four Wilson gauge ensembles considered.
A. Results for the X distribution studied. To quantify this observation, we have calculated the

gAverage value ofX| with the histograms serving as a prob-

To make meaningful comparisons for the behavior of the*"= AU
ability profile, i.e.,

X distribution at different lattice spacings and different lattice
sizes, it is necessary to fix the fractibof the points that are
examined on each lattice. In fact, it would be more appropri-
ate to always speak of; distributions. For a given low-lying <|X|>Ezi pxi|xi|’
mode we order the lattice sites by the magnitude of density
and consider the topV points, whereV is the lattice vol-
ume. It is assumed that the underlying gauge field is stronwherepy. is the value at the bin with centef;. For truly
gest in the regions so selectgtl]. For most of the results peaked distribution, this should reflect the approximate posi-
discussed here, we fixdd=0.1. This is mostly motivated by tion of the peak. The results are shown in Fig. 2 indicating a
the fact that we intend to relate our findings to the ILM. very flat behavior as a function of the lattice spacing. The
Diakonov and Petroy7] use the packing fractiog in their ~ underlying dynamics thus does not appear to generate more
theoretical arguments. On the other hand, if one naively calehiral peaking closer to the continuum limit, nor do the po-
culates the packing fraction ds=nV,, wheren is the den-  sitions of the peaks move appreciably closerttb.
sity in fm* andV, the volume of a four-dimensional sphere  As we have emphasized in Sec. I, the qualitative obser-
of radiusp, then one obtains approximatelyif ILM values  vation that theX distribution exhibits peaked maxima at non-
are used. We thus vie= 75 as a reasonable compromise. zeroX is not sufficient for concluding that the instanton pic-
The qualitative and even quantitative conclusions that weure of topological charge fluctuations in the QCD vacuum is
will make do not depend on the precise value from the rangeorrect. However, the study of quantitative characteristics of
guoted above as long as it is fixed. the distribution might still be very illuminating. We illustrate
Our results for theX distribution from the lowest two this by comparing in Fig. 3 th& distributions for the near-
nonzero pairs of modes included for each configuration argero modes and for the exact zero modes. The latter is the
shown in Fig. 1. The histograms are normalized so that theame distribution that would be expected in the limit of a
sum of the values in all bins adds up to unity. There arevery dilute instanton gaéor a dilute gas of arbitrary topo-
visible peaked maxima &t~ +0.65, but there appears to be logically nontrivial lump$. It is clear that, even at our small-
very little change across the wide range of lattice spacingsst lattice spacing, th¥ distribution of the near-zero modes

(4)
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FIG. 2. Dependence ¢fX|), Eq.(4), on the lattice spacing. The FIG. 3. Comparison oK distributions at3=6.55 for near-zero
quoted uncertainty r?presents a rOUgh estimate using the asymmetbdes(solid line) and exact zero modeslashed ling using the
|pXi* p_xil as a basis for the calculation. overlap Dirac operator.

is far less chirally peaked than that of the exact zero m8desmum is retained only itl, .(r) decays monotonically from
confirming the prevalent view that the dilute instanton gas Y 1n.p Y y

picture is not realisti¢7]. This also suggests that one reliable origin over the distance3 for all directionsg.

vy o vrty whether atice QDX dtuons are con- 01 1% 1e MO0Vl 1 Shoosne? o 2 eterenee
sistent with the ILM prediction is a direct comparison to P

distributions from existing ILM ensembles. distance for_ WhiCh the accidental occurrence of a structure
can be statistically excluded for the largest lattice volumes
we are working with. In other words, if we were to generate
the density on sites of a 32attice using random numbers,
Our next goal is to verify whether the observEdlistri-  no structures would typically be found using the above pre-
bution can be attributed to the underlying local structuresscription. Conversely, if a structure is identified in a low-
with properties similar to those assumed in the ILM. If the lying mode, we take it as a signal that a nontrivial fluctuation
low-lying mode arises from mixing of 't Hooft “would-be” of the gauge field is causing its occurrence.
zero modes associated with ILM instantons, then this mode Finally, from the structures identified in this way, only
inherits the lumpy structure of the underlying gauge field,those were selected that have a chance of contributing to the
with lumps being of a prescribed size, shape, and abundancpeaks of theX distribution. To make this final cut, we only
We identify suchpossiblestructures by finding the local retain structures for which the corresponding cermteis
maxima of densityd(n), in the mode, and requiring that the among the 10% of points with highest densffy=0.1 was
profile of density around them resembles a four-dimensionalised to generatX distributiong, and for which the chiral
peak at least in some average sense. To be more precise, amgle satisfie$X(n)|=0.5 as suggested by the position of
start by locating the maxima over the distane i.e., find-  the maxima in Fig. 1. The resulting density of structures as a
ing the set function of lattice spacing is shown in Fig. 4, indicating a
large disagreement with the ILM assumption at smaller lat-

B. Structures in the gauge field

M={n:d(n)>d(m),|n—m|<v3}. (5)
Density of Structures, Lowest Nonzero Mode
For these candidates, specified by their positipnve then 60 —
compute the functions { LM ——
50 |
On (1) =(AmDE-0 2o
gaf
u==1,...,+%4, r>0 (6) 8
B
(2]

. . 20 |
representing the average @fm) over the spherical shell of °

radiusr centered an, restricted to the points for whichn( 10l
—m) has a component in the direction. The local maxi-

0 2
0 002 004 006 008 01 012 0.4 0.16
affm]

5This is equally well reflected in the fact that we found typical
values(|X|)~0.52(see Fig. 2 while at the same timgX|)=1 for FIG. 4. Density of structuregin fm~%) as a function of the
distribution strictly peaked aX=*+1. lattice spacing.
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FIG. 5. The sample behavior df,(r)/d,(0) (upper curvg¢ andc,(r)/c,(0) (lower curve for typical structures aB=6.55. The radius
R, of the corresponding region of coherent local chirality is shown as a vertical line. The figures are ordered so that the intensity of the peaks
decreases vertically and the qualigegree of isolationof peaks decreases horizontally.

tice spacings. We will return to the interpretation of this be- da(N)=(d(M))jn—m=r, Ca(H)=(C(M)jn_m=r (8
havior later.

representing the average density and chirality over the
spherical shell of radius centered ah. In Fig. 5, we show

To study the typical sizes of the structures, we first use thghe sample behavior of functionsd,(r)/d,(0) and
definition that is motivated only by the assumed lumpy be,(r)/c,(0) for typical structures, and how this relates to the
havior of the gauge field rather than the specific profile of arradius assigned by our definitiguertical line in Fig. 5. The
instanton. The mixing of “would-be” zero modes in the examples of structures with high, medium, and low intensity
lumpy background would produce regions of coherent localdensity are put in the top, middle, and bottom row, respec-
chirality in the near-zero modes, concentrated around thévely. Note that the level of “background” increases for
maximum of the lump. We thus define the radius of the struclower intensities. Also, the structures with cleaner peaked
ture at pointn as the radius of the largest hypersphere cenbehavior (typically more isolated ongsare put on the left
tered atn, containing points with the same sign of local and quality is decreasing to the right. The examples on the

C. Sizes from coherent regions of local chirality

chirality: namely, right represent the “worst” cases we have identified. From
these examples it can be seen that the peaks of density and
R,=maxr:c(n)c(m)>0|n—m|<r}. (7)  chirality are well contained within the determined radius.

Using the definitiorn(7), we have studied the average sizes
To assess the feasibility of this definition, we compute func-of structures as a function of the lattice spacing with results

tions shown in Fig. 6. The straight line is a fit using the three
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FIG. 6. Average radiugR,) of structures from regions of co-
herent local chirality. The lowest nonzero mode was used for cal-
culation. Data for the three smallest lattice spacings were used to
obtain the fit. The horizontal line represents the radius of an ILM
instanton.

FIG. 7. The distribution of sizeR, at 3=6.55.

D. Sizes from instanton-assumed profiles of density

If the near-zero mode of the Dirac operator is a mixture of
“would-be” zero modes associated with instantons, then
smallest lattice spacings considered. The average radius péaks of the wave function should resemble the profile of a
a~0.12 fm is close to the ILM value and consistent with a’t Hooft zero mode. In particular, in the ideal case we should
recent estimate at a similar lattice spacfig]. However, it  have[3]
would be erroneous to conclude agreement with the ILM

based on the data at single lattice spacing; the average value 2 \3

innifi ; i ; dn(r) Pn 3
decreases significantly for finer lattices and the continuum- = ——=| =[ya(n)3 9)
extrapolated estimate is in striking disagreement with the da(0)  \pptr

ILM. There appears to be a positive curvature in our data and

a well-defined finite valugwith a rough estimate of about

0.15 fm) in the continuum limit. The fact that our procedure Wherep,, is the radius of the instanton locatednatThus the
leads to a finite size in physical units is significant because itunction r2y,/(1—y,) is a constant ;éﬁ) independent of
characterizes the physical size of regions of coherent locdbr an instanton profile, and should be approximately con-
chirality that are necessary to develop the largehairpin  stant for our structures if they represent the response to an
correlator required to solve tHed(1) problem[1]. We also instantonlike fluctuation. However, we find that this is not
emphasize that while our definition of size was motivated bythe case and the shapes of the peaks in our low eigenmodes
assuming the lumpy structure of topological charge fluctuado not resemble the instanton ansatz. To illustrate this, we
tions, it makes very good sense even if the structures do nalisplay the situation for a typical structure in Fig. 8. Shown
carry the quantized values of topological charge, and are natre also fits to the instanton profile over the distances 0.00—
related to instantons. The distribution of sizesBat6.55is  0.06 fm, 0.06—0.12 fm, and 0.12—-0.18 fm. These fits are
shown in Fig. 7. inconsistent with both the profile of the peak and with each

beta=6.55 config 1 struct 8 beta=6.55 config 1 struct 8

50 T T T T T T T T T T T T T T
45 o
o o0

40t ot
) .
E L
5 e’
8 35 . o §
& L 2
s =
~ 30 o 5
) [ 34
£ )

25 | *

..
L]
20 .
.
15 .. 1 1 1 1 1 1 1 o 1 1 1 1 n
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A2 [lattice units] fifm]

FIG. 8. Left: The functiorr?y, /(1—Yy,) for a typical more intense structure. The data should be constant for an instanton profile. Right:
The profile of the structure and attempted fits in the region 0.00—0.0@ftmost curve, 0.06—0.12 fm(middle curve, and 0.12—0.18 fm
(rightmost curve
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Size from Assumed Instanton Shape Chirality Correlation in the Lowest Near-Zero Mode
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affm]

r [fm]
FIG. 9. Average radiugp,) of structures determined from the FIG. 10. AverageC.(r)/C.(0) from the lowest near-zero
assumed instanton shape of the peak at different reference dis: o © e
tances. Lowest nonzero mode was used for calculation. ’

other. Note that the shapes of the peaks are already averagdce-time distribution of(n) in a configuration predomi-
over all the directions, and should exhibit a robust behaviornantly appears localized on spherical structures of ragius
To see the inconsistency with the instanton profile on av©r if it comes in one of the infinitely many other forms lead-
erage, we choose a reference paigt (in lattice unitg and  ing to the same average correlation.
assign a radius to each structure through The averageC.((r)/C.(0) from the lowest nonzero
modes for our four ensembles is shown in Fig. 10. While

12 larger statistics would be desirable, we have estimated the
o (rref)Erref( Yn(T re) ) (10  ‘size” of the correlators by evaluating) and (r2)2 with
1=Yn(Trer) C.{r) used as a probability distribution. In every case we
have cut off the integration at the distance where the cor-
All'of our structures are guaranteed to have a peaked behaye|ator first turns negative. The resulting values are collected
ior over the distancgZ=3 in lattice units, but the vast in Table II. Note that values fofr2)Y? are systematically
majority of them decays over much larger lattice distanceshigher than sizes obtained from coherent local chiraliy
To treat all the structures on the same footing, we computgig. 6), which is to be expected for an inhomogeneous space-
average radii from the above prescription fars;  time distribution of fluctuations with various shapes. Never-
=1,2,...,5 andplot the resulting dependence on lattice theless, the sizes of correlators we have obtained are still
spacing in Fig. 9. Wide vertical bands at every lattice spacingystematically lower than the ILM value for an instanton
reflect the fact that our structures cannot be fit reasonably bgadius.
the 't Hooft profile. Nevertheless, the tendency towards sizes
substantially smaller than the ILM value in the continuum
limit is still obvious, thus showing that the overall conclu- F. Interpretation of the results

sion from Fig. 6 remains valid even for this definition of the  The data in Figs. 4 and 6 represent rather interesting new
radius. results and we would now like to elaborate on their interpre-
We emphasize that contrary to the results in Fig. 6, we dqation. We have started from the assumption that the vacuum
not assign much physical significance to the precise behaviq{as |ocal properties identifiable with the ILM scenario,
of data in Fig. 9. The main purpose of showing these resultge  that it typically fluctuates in such a way as to form
is to reveal the marked inconsistencies with the instantonanti-)self-dual lumps of approximately quantized topologi-

picture of the vacuum. cal charge. However, the identification of such presumed
lumps resulted in quantitative characteristics that are in
E. Correlation functions of local chirality marked disagreement with the ILM on fine lattices. We ob-

serve many more structures of much smaller physical size
(although this size remainfnite even in the continuum
limit). Given that the parameters of the ILM are rather tightly

We have also computed the chirality-chirality correlation
function in the lowest Dirac nonzero modeg namely

Ccc(r)E<C(n)c(m)>|n—m\:rvz- (11)

This correlator has been studied in Rgf2]. While the av-

TABLE Il. Estimates of the size of the correlatGr(r).

erage information encoded in the correlator may be useful, it a (fm) 0.123 0.093 0.068 0.042
will not provide us with a detailed view of the space-time  (r2)12 (fm) 0.33 0.24 0.22 0.24
distribution ofc(n). The point is that if thiC.(r) has char- (ry (fm) 0.26 0.19 0.17 0.19

acteristic sizep, one still cannot infer whether the typical
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fixed [7], the true microscopic picture as seen by the lattice Packing Fractions (Size from Coherent Chirality)
fermion appears to be very different from that envisioned by ' ' ' ' ' ' '
the ILM.

Particularly puzzling from the instanton perspective is a 08
large number of peaks that we observe in the lowest near-
zero modes, implying that a propagating light quark feels
many more “kicks” from the regions of strong gauge field
than one would expect based on the ILM. Indeed, assuming
that the underlying gauge structures represent elementary in-
stanton tunneling events between classical vacua leads to
clear contradictions. For example, from our resultsgat ;
=6.55 one would estimate that the gluon condensate should : .
be of the order (0|G?0)~327?n~327%50 fm * 0
~25Ge\, where 327 is a contribution of a single T am
instanton’ This is to be compared with the accepted value
(0|G?|0)~0.5-1.0 GeV. A similar inconsistency arises FIG. 11. Packing fractions. The sites contained in a given struc-
from considering topological susceptibility under eventure are bound by the largest hypersphere with the same sign of
weaker assumptions: Assuming that gauge structures af@cal chirality as in the center of the structure.
general lumps of quantized and approximately uncorrelated
topological charge leads to the estimate of topologicahypothetical possibility that the density increases indefi-
susceptibility (Q%)/V~n~50 fm~*~50(200 MeVy, i.e., nitely, because this might suggest something unphysical even
about 50 times the accepted value. At the same time, thg topological charge is not locally quantized, as we argued
topological charges of our latticédetermined as a byprod- ahove. Indeed, how should one interpret a diverging density
uct of the overlap calculatiorare in very good agreement ¢ gty ctures in the continuum limit, especially if their aver-
with the expected value of topological susceptibility in theage size(cf. Fig. 6 remains finite? The point is that contrary

pure gauge vacuufh. to quantized topological charges, where the finite topological
The above considerations strongly suggest that the topq- 9 polog ges, polog

. . o ; ibility f h i finite physical
logical charge contained within the structure is probably not uscepubl Ity orees the .de.nsny to assume a finite physica
value in the continuum limit, the peaks of nonquantized to-

guantized. One is led to the same conclusion from consider- . : o .
ation of radii of regions of coherent local chirality. Our data pologlcal ch_ar_ge might yvell Ios_e th_elr |d_ent|ty closer to th_e
indicate the valug(R,)~0.15fm in the continuum limit. continuum limit and their density might indeed be unphysi-

However, the 't Hooft instanton formula for the density of gal. (prever, the regions of coherent local _chirality identi—_
quantized charges valid at short distances, n€p) = p®, is fied Wlth the hglp of these peaks gnd _the|r sizes are still
frequently invoked as a basis for concluding that the occurPhysical) The picture that we have in mind is that of rela-
rence of instantons of this size should be essentially neglitively isolated mountain peaks belonging to a larger moun-
gible (certainly relative tgp~0.3 fm instantons for which the tain range and coalescing as the continuum limit is ap-
formula is still expected to be valid28,7]. We interpret this  Proached. Our algorithm to measure the size of regions of
marked mismatch as a manifestation of the fact that the urcoherent local chirality would then sample the size of the
derlying assumption for the 't Hooft formula, namely the mountain range rather than individual peaks. A more dy-
local quantization of topological charge, is probably notnamical analogy is to imagine disturbing a calm surface of
valid. Indeed, the suppression of small instantons is a consavater. The regions where the water is above the original
guence of their quantized topological charge: it is difficult tolevel (positive topological charge densjtyhave various
squeeze an entire unit of topological charge inside a smaBhapes and volumes, but on average have some typical size.
radius. However, without quantization, there is no reason toret, within such regions there could be many local maxima
expect a suppression of smaller-scale fluctuations, whicht all length scales. While the sizes of individual maxima do
would simply contain proportionally less topological charge.not define the scale and may not be physically meaningful,
Finally, we would like to return to Fig. 4 and discuss the the average radius measured relative to these maxima probes
rapidly increasing density of the structures with decreasinghe typical finite size of these coherent regions. It is easy to
lattice spacing. While the density &=6.55 is very large, imagine that in the continuum, the fluctuations of topological
the fraction of sites contained in the structures is still rela-<charge resemble violently disturbed surface of water. In such
tively small, as shown by the packing fractions plotted ina hypothetical scenario, the diverging density of structures
Fig. 11. The peaks thus retain their identity, as can be seewould actually be very natural.
from Fig. 5. However, let us elaborate for the moment on the We emphasize that in this paper we do not attempt to put
forward any specific low-energy scenario for the behavior of
topological charge fluctuations in the continuum limit. The

"The estimates of this type are usually used to justify the ILMPpurpose of the discussion in the previous paragraph is to

06 |

04

Packing Fraction

02} t

parameter$7]. argue that as soon as one abandons the local quantization of
8For example, from our small ensemble @& 6.55 we estimate  topological charge, then the data in Fig. 4 do not represent
the topological susceptibility=0.92+0.50 fm 4. anything unexpected.
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FIG. 12. Upper: X distributions for two Iwasaki gauge ensembles considered. Lower left: Density of structures for lwasaki and
Wilson actions. Lower right: Average size from coherent regions of local chirality for Iwasaki and Wilson actions.

G. The question of dislocations charge of the dislocation is concentrated on its core. Indeed,

In the lattice discussions of gauge field topology, one hashe idea_that dislocations are.important rglies rather heavily
to face the possible problem of “dislocations.” While this ©n the picture of locally quantized topological charge. If the
notion is frequently used as an unspecified synonym for “lattopological charge does not come in unit lumps, as we sug-
tice artifact,” in the original discussion of Ref29,30 it has ~ gest here, then the issue simply does not arise.

a rather well-defined meaning which we will adopt. In par-  Secondly, it is important to realize that dislocation is a
ticular, for a given lattice gauge action and given topologicalconcept assigned to the pair gauge-action—topological-
charge operator, it is the local structure in the gauge fiel&harge-operator. While we work with the Wilson gauge ac-
with action smaller than the continuum action of an instantion which is supposedly susceptible to the possibility of
ton, and with unit topological chargdn the loose sense, this dislocations, we use chiral fermions to measure topological
is frequently pictured as a small instanton that is almost fallcharge. It has frequently been notexzte, e.g., Ref.7]) that

ing through the lattice and lives on one to two lattice spacfermions should not be sensitive to dislocations. This is in-
ings. Invoking entropy arguments, it was suggested in Refdeed very plausible. As we have argued in Sec. IIC, one
[30] that for the action—topological-charge combinationnaturally expects that infrared fermionic modes will be quite
where this happens, it is possible that dislocations dominatemooth and will not inherit the singular behavior of the un-
the topological-charge fluctuations, and can lead to unphysiderlying gauge fields.

cally large(possibly diverging susceptibility. This raises the Finally, there is no hint of behavior symptomatic of dis-
qguestion of whether the large density of structures that wéocations in our data. For example, even the smallest of our
see is caused by unphysical dislocatidhs. structures are extended objects in physical units and span at

This question can be addressed at several levels. First édast four lattice spacings. Moreover, the estimates of topo-
all, the arguments of Ref30] assume that the topological logical susceptibility from topological charge measured by

the overlap Dirac operator are in very good agreement with

the accepted value of about 1 Tfh(see footnote B If the
We thank Tama Kovacs for clarifying this. underlying structures were dislocatiof@nd hence carried
19we thank Thomas Scker for pointing this out. topological charge close to unjfythen this value should be
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FIG. 13. TheX distributions for the first 20 near-zero modes of configuration 8a6.2.

substantially larger. This is one of the arguments that actuallgifferent lattice spacings. In the standard normalization for
suggests that topological charge is not locally quantized, alsvasaki action (see Refs.[31,32), we considered a
we stressed in Sec. IlI F. 10°x 12 lattice at3=2.384 and a 1#x16 lattice atp
Nevertheless, to eliminate any concern that dislocations=2.592. This corresponds to lattice spacirays0.14 and
may be a problem, we have performed a comparative stud9.10 fm, respectively, as determined from string tension by
with a renormalization-group improved gauge action. In thisusing the data of Ref32] and the two-loop beta function fit.
case, the possibility of dislocation dominance should be sub- The summary of our results is shown in Fig. 12. The
stantially reduced. In particular, we have employed thestructure of the resultink distributions is very similar to the
Iwasaki action[31], and studied overlap eigenmodes at twostructure for Wilson gauge ensembles, as can be seen by
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comparing to Fig. 1. We thus applied identical proceduresapproximately be viewed as mixtures of 't Hooft “would-
(with identical cut$ for finding the structures and determin- be” zero modes generated by gauge structures resembling
ing their size as we did for Wilson gauge ensembles. Al-approximatelyp=3 fm instantons of density=1fm~*. To
though the behavior of density for Wilson gauge actisee the contrary, we have found local characteristics indicating
Fig. 49 might have suggested the possibility of dislocations that the true nature of topological charge fluctuations is very
this is not the case because a similar pattern appears to lkiéferent from that envisioned in the ILM.

followed in the case of Iwasaki action as well. Similarly, the  We emphasize in this context that the underlying issue
sizes of structures are systematically lower than the ILMhere is to determine whether one should view the ILM pic-
values. It would obviously be interesting to investigate ature as a fundamental one, or as an effective description with
larger window of lattice spacings with lwasaki action, to be phenomenological meaning only. For example, claims that
able to study the issues of continuum extrapolation. How+the bulk of spontaneous chiral symmetry breaking is due to
ever, the purpose of this comparative study was to demormixing of “would-be” zero modes associated with instantons
strate that our conclusions are not sensitive to the choice dfave only well-defined microscopic meaning if the corre-
gauge action and that there is no problem of dislocationssponding low-lying modes have the local structure predicted

Our results clearly indicate that this is indeed the case. by this microscopic mechanism. To verify this proposition,
we have no other choice but to examine these modes. This

IV. CONCLUSIONS appears to be a well-defined problem with a well-defined

answer. Our results indicate that the ILM scenario does not

Uncovering the local structure of topological charge fluc-provide for accurate microscopic description of these modes

tuations promises to have profound implications for our un-and thus remains at the phenomenological level. It is this
derstanding of low-energy QCD. This expectation is born ouimportant distinction that we wish to stress in this paper.

of the fact that possible microscopic explanations for impor- While the detailed arguments are summarized in Sec.

tant phenomena such as spontaneous chiral symmetry bredk-F, our main conclusion can be verified in an independent

ing, the resolution of the J(1) problem, and th&® depen- manner. To make this point qualitatively, we have calculated

dence of QCD are based on the picture of the vacuun?O near-zero modes for configuration 8 from g8 6.2

wherein self-dual lumps of locally quantized topological ©nsemblé’ This configuration ha®=0, and the physical

charge(instantoni play a major role. It is consequently quite volume is such tha_t according to the _II__M it should contain
essential to determine whether such a piciige., ILM) is about three or four instantons and anti-instantons. Hence, the

indeed fundamental, or if there is in fact a different micro-SUPSPace spanned by 't Hooft would-be zero modes should
scopic mechanism driving these important effects. have a dimension of that order. Consequently, it is the ILM
Expanding upon the ideas of RéL], we have explained prediction that chirally peakeX distributions should be ob-

here in detail why studying low-lying Dirac eigenmodes ro_served for three or four near-zero modaad possibly a few
. y ying ying gen P ore but the rest of the modes should resemble approximate
vides a natural and reliable approach for exploring the loc

nature of topological charge fluctuatiofa least as implied ree-field behavior with local chirality peaked around the ori-

A . gin. In Fig. 13, we plot theX distribution atf = 0.1 for all 10
by the ILM). The study of theX distribution in low-lying airs of near-zero modes computétie histogram is the

modes has been designed as a tool for probing the loc@yme for hoth modes in a pailnspecting these results re-
vacuum structure indirectly. While the available results,eg)s that there are at least 14 modes with significant double-
[13,14 on the qualitative behavior of th& distribution tpeaked structure and none of them is peaked at the origin. As
could in principle be viewed as confirming the consistency ofy matter of fact, af =0.02, all 20 calculated modes exhibit
the instanton picture, we have pointed out here that the asne double-peaked behavior and this most likely persists
sociation with instantons is not unique. In other words, thegsyen for higher modes. While this fact can hardly be ex-
double-peaked qualitative structureXotlistribution is anec-  pjained by the ILM, it is not very surprising in view of the

essary condition for instanton dominance, but not sufficient;ggits presented here. On this particular configuration, we
As a step towards resolving these issues, we have conygyve identified 32 local structuré’.

puted and analyzed low-lying modes of the overlap Dirac Eyen though we have concentrated on the ILM in this

operator in Wilson gauge backgrounds over a wide range faper, we believe that our results suggest a more general

lattice spacings d~0.04-0.12 fm). The double-peaked conclusion. In particular, as we have argued in Sec. Il F, it is

structure of theX distribution has been observed with very difficult (if not impossiblé to reconcile the topological

maxima atX~+0.65 (using a fractionf=0.1 of lattice  gysceptibility of the pure gauge vacuum and the assumption
pointg. The position of maxima shows very little change

with lattice spacing without a visible tendency to move to-

ward the extremal values of=+ 1, even though an exactly  1iNeegdless to say, this was rather demanding on computer re-
chiral lattice fermion is used. Our main initial aim in this gy ces.

study was to verify whether the characteristics of local struc- 12\ote that this observation also makes very unlikely the possibil-
tures contributing to the peaks of thedistribution are con- ity that one could interpret several structures as forming a severely
sistent with quantitative chara_cterlsucs of the gauge featuregeformed quantized lump of topological charge which one could
in the backgrounds proposed in the ILM. In other words, wesomehow still associate with the ILM instanton. In this case, the
attempted to verify whether low-lying modes céat least subspace of would-be zero modes should still be of size 3 or 4.
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