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Local chirality of low-lying Dirac eigenmodes and the instanton liquid model
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The reasons for using low-lying Dirac eigenmodes to probe the local structure of topological charge fluc-
tuations in QCD are discussed, and it is pointed out that the qualitative double-peaked behavior of the local
chiral orientation probability distribution in these modes is necessary, but not sufficient, for dominance of
instantonlike fluctuations. The results with the overlap Dirac operator in Wilson gauge backgrounds at lattice
spacings ranging froma'0.04 fm toa'0.12 fm are reported, and it is found that the size and density of local
structures responsible for double peaking of the distribution are in disagreement with the assumptions of the
instanton liquid model. More generally, our results suggest that vacuum fluctuations of topological charge are
not effectively dominated by locally quantized~integer-valued! lumps in QCD.
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I. INTRODUCTION

It has been recently suggested@1# that questions about th
dynamical nature of topological charge fluctuations in
QCD vacuum are worth reexamining. The notion that gau
field topology is relevant for understanding QCD start
with the discovery of instantons@2#, and their subsequent us
as a basis for, among other things, the qualitative resolu
of theUA(1) problem@3#, and the discovery of theQ depen-
dence of QCD physics@4#. These successes were associa
with the use of semiclassical methods and a concretelocal
picture of the vacuum, the instanton gas picture@5#, charac-
terized by formation of well-separated~anti-!self-dual lumps
of quantized topological charge. However, it was soon re
ized that such a vacuum does not lead to confinement,
putting the relevance of instantons immediately into qu
tion. Reflecting upon this situation, Witten has argued@6#
that large quantum fluctuations associated with the confin
vacuum naturally generate large fluctuations of topolog
charge, and lead to qualitative effects similar to those usu
ascribed to instantons. In fact, he has conjectured that ins
tons are not important dynamically, arguing that the se
classical picture is invalidated by large quantum correctio
and suggesting that topological charge fluctuates in a mor
less continuous manner.

Nevertheless, QCD instantons remained rather popula
a frequently preferred~and analytically accessible! way of
thinking about vacuum topology. The instanton solution w
used as a basis for developing a rather successful semi
sically motivated phenomenology, the instanton liquid mo
~ILM ! @7#, where correlations among instantons were int
duced to suppress the infrared divergences present in
instanton gas. Even though it is termed a ‘‘liquid,’’ the co
responding vacuum is quite dilute with~anti-!instantons of
radius r' 1

3 fm and densityn'1 fm24 occupying a small
fraction of space-time volume and retaining their identi
This setup allows for an interesting mechanism of sponta
ous chiral symmetry breaking@8#, in which the ’t Hooft
0556-2821/2002/66~3!/034501~15!/$20.00 66 0345
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‘‘would-be’’ zero modes associated with individua
~anti-!instantons mix, and supply the finite density of ne
zero modes required by the Banks-Casher relation@9#. While
the ILM is a phenomenological model, this elegant mixi
picture invokes the impression that instantons play an imp
tant microscopicdynamical role in the QCD vacuum. A pri
mary aim of our investigation is to examine whether t
microscopic relevance of the ILM picture can be justified

The support for the foundations of the ILM has frequen
been drawn from lattice QCD simulations, using equilibrat
gauge configurations as typical representatives in the p
integral~see, e.g., Ref.@10#!. Indeed, it is quite reasonable t
expect that lattice QCD will eventually provide us with d
tailed answers about the nature of topological charge fluc
tions. However, finding a clean and satisfactory way to in
this information from lattice QCD has proven to be a no
trivial issue due to the fact that lattice gauge fields are fou
to be very rough at the scale of the lattice spacing. T
apparent necessity to eliminate the short-distance fluc
tions in some way resulted in manipulating the gauge fie
in various cooling or smoothing procedures. While useful
estimating the global topological charge, these techniques
significantly biased as to the local structure of the vacu
they reveal, and there is always an inherent subjective
ment present.

The idea of using fermions to study global topology
relatively old @11#, but was not exploited very much due t
both computational demands and problems with chiral sy
metry. However, the suggestion to use low-lying fermion
modes to extract the information aboutlocal fluctuations of
topological charge is recent@1# ~see also Ref.@12#!. In light
of the above remarks, the preference for using fermions
this respect is quite reasonable, but there is also a g
physical motivation for doing so. In particular, local fluctu
tions of topological charge are of interest because they
believed to cause light quarks to generate theh8 mass@3,6#
and the chiral condensate@8#, for example. It is thus physi-
cally very natural to look for the imprint of these fluctuation
©2002 The American Physical Society01-1
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in the low-lying Dirac eigenmodes which dominate t
propagation of light quarks.

The concrete proposal of Ref.@1# is to investigate the
behavior of local chirality in the low-lying modes. This ap
proach uses the fact that the instantonlike gauge fluctuat
would leave a specific imprint in the individual modes, th
offering an opportunity to examine the consistency of
instanton picture. More precisely, it was argued that if th
are extended regions of~anti-!self-duality in the gauge back
ground, then the probability distribution of the chiral orie
tation parameterX ~X distribution! over the regions of strong
field should exhibit double-peaked behavior in the vicinity
extremal chiralities. The initial study of theX distribution in
Ref. @1# indicated a flat behavior and thus aqualitativedis-
crepancy with the instanton picture. However, later stud
on finer lattices and/or with chirally symmetric fermion
actions@13,14# revealed a visible degree of double peakin
This situation precludes any definite conclusions on pur
qualitative grounds since the double-peaked structure isnec-
essary but not sufficientfor instanton dominance. It is a mai
purpose of this work to offer a morequantitativepoint of
view.

In the first part of the paper~Sec. II!, we explain in detail
why we choose to rely on the information encoded in lo
lying Dirac modes, rather than using the conventional
proaches for probing the gauge field topology on the latt
We then concentrate on clarifying the possible implicatio
of theX distribution and argue that a double-peaked struct
is not uniquely associated with self-duality. For example
the gauge fields form approximately quantized1 isolated
lumps of topological charge, then strong double peaking
expected as well, even when such lumps are not self-d
Also, some chiral peaking in the low eigenmodes may oc
even for nonquantized topological charge excitations thro
some as-yet-unknown mechanism. The observed behavi
the X distribution is thus not necessarily associated with
instanton-dominated vacuum. We suggest that the tenta
conclusions of such nature be supplemented by quantita
comparison of QCDX distributions to those for the existin
ILM ensembles. The material in Sec. II extends and comp
ments the general discussion of Ref.@1#.

In the second part of this paper~Sec. III!, we present new
results forX distributions from eigenmodes of the overla
operator in Wilson gauge backgrounds at lattice spaci
ranging froma'0.04 fm to a'0.12 fm. In an attempt to
verify whether the observed behavior can be ascribed
gauge structures with the parameters of the ILM, we de
mine the size and density of fermionic structures that c
tribute to the peaks of theX distribution. This is motivated by
the fact that for instantonlike excitations, there is a dir
correspondence between gauge and fermionic structure.
consistency check leads to significant disagreement with
ILM. In fact, the lattice spacing dependence of the aver
radius~defined without reference to the ’t Hooft zero-mo
profile, which does not fit reasonably! indicates a finite con-

1When we refer to local quantization of topological charge,
always imply quantization in units of61.
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tinuum limit with value R'0.15 fm, while the density of
structures ata'0.04 fm isn'50 fm24, and we cannot ex-
clude the possibility that it diverges in the continuum lim
We then point out that this not only disagrees with the ILM
but also suggests that the bulk of topological charge in Q
is not locally quantized in approximately integer units. W
give several arguments supporting this interpretation. Ne
less to say, if confirmed, this would have profound implic
tions for the possible microscopic explanation of sponta
ous chiral symmetry breaking. Finally, we give seve
arguments that our data are not contaminated by lattice
facts usually referred to as ‘‘dislocations,’’ and support th
conclusion by presenting the data for the Iwasaki gauge
tion. A preliminary version of this work is presented in com
pact form in Ref.@15#.

II. COOLING OR SMOOTHING VERSUS FERMIONS

The structure of equilibrium lattice Monte Carlo config
rations provides a unique window for examining the natu
of gauge fluctuations in the QCD vacuum. It also represe
a distinctive way of thinking about how low-energy phenom
ena in QCD arise in terms of fundamental degrees of fr
dom. For example, as we will examine in some detail belo
in the ILM mechanism of spontaneous chiral symme
breaking, the condensate arises due to mixing of ’t Hoo
‘‘would-be’’ zero modes associated with~anti-!self-dual
lumps, carrying approximately quantized topological char
This line of reasoning inherently assumes that this happen
the ‘‘configuration level’’ with the vacuum dynamically gen
erating the gauge potentials with these properties. If this
the case, then the picture has a fundamental microsc
meaning. Otherwise, it represents only a phenomenolog
modeling.

Unfortunately, examining lattice gauge fields direct
leads to ambiguous results, mainly due to the fact that fie
are typically rough even at the scale of a single lattice sp
ing. While the situation will improve with the approach t
the continuum limit, this is probably not so when compari
the behavior at a fixed physical distance. It is thus perh
inevitable that some sort of filtering procedure be used
interpret the local structure of lattice gauge fields. In th
section, we examine various ways of approaching this iss

Before proceeding to discuss this in more detail, it is u
ful to fix the language that will be used in what follows. I
particular, we will use the term ‘‘isolated lump’’ or simply
‘‘ lump’’ to denote a local structure in the gauge field that c
be enclosed by a hypersurface on which the field is appr
mately pure gauge. Consequently, the lump contains appr
mately integer-valued topological charge. A tendency
wards local ‘‘lumpy structure’’ is one of the inheren
properties of the ILM picture which distinguishes it from th
situation when the gauge field fluctuates very inhomo
neously, forming peaks of topological charge density,
without any tendency for such quantization.

A. Cooling

One popular way of addressing the problem of sho
distance fluctuations is the cooling method@16#. We will be
1-2
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LOCAL CHIRALITY OF LOW-LYING DIRA C . . . PHYSICAL REVIEW D 66, 034501 ~2002!
rather generic when using this term, assuming just that it
local minimization procedure for the gauge action with t
initial state being the Monte Carlo generated QCD confi
ration. We will not be concerned with various implemen
tions or variations on the original idea.

With the elementary step being local, it is naturally e
pected that if the original configuration can be assigne
global topology in some way, then it will be preserved to
large extent during such a procedure. One can thus turn
argument around and todefine the global topological charg
of the original configuration through field-theoretic defin
tion, let us say, on the corresponding cooled counterp
Such a definition may not be entirely satisfactory~the num-
ber of cooling sweeps is rather subjective and nonunique! but
it can be made into a fairly well-motivated working schem
especially for the improved versions@17#.

However, the situation is different if one is interested
the local structureof topological charge fluctuations. In th
continuum, there are true local minima of the action
strictly self-dual or strictly anti-self-dual fields. The superp
sitions of not overwhelmingly overlapping instantons a
anti-instantons, while not exact minima, correspond to p
teaus~or shallow valleys! in the action profile. After a few
cooling sweeps when the gauge field undergoes la
changes, the local minimization can bring the configurat
to the vicinity of such a plateau. Here the fields beco
naturally smooth, the field-theoretic definition of topologic
charge leads to values that cluster around integers, and
evolution in the configuration space slows down. Furth
cooling possibly leads the configuration into another plate
and eventually into the global minimum with nonperturb
tive fields completely removed.2 By the nature of the argu
ment, in the vicinity of the plateau the configuration w
necessarily resemble a~multi-!instanton–anti-instanton stat
regardless of the local properties of the original configu
tion. In other words, a possible observation of lumpy str
ture and local~anti-!self-duality in the cooled configuratio
is to be expected, and cannot be used as an indepen
logically satisfactory input for making conclusions about
cal fluctuations of topological charge or about the dynam
importance of instantonlike gauge fluctuations in the QC
vacuum.

To illustrate this point, it is perhaps instructive to imagi
that we are interested in studying the local structure o
sufficiently strongly coupled lattice QCD vacuum, where
stantonlike fluctuations are not expected to play any ro
Consequently, an unbiased approach should find no trace
them. However, cooling the corresponding equilibrium co
figurations will still lead to plateaus and locally lumpy, se
dual behavior. Can we use this as a basis to conclude
instantons play a significant role in the strongly coupled
tice QCD vacuum? Certainly not.

B. Smoothing

The inherent reason why cooling is a biased way of stu
ing local properties of gauge fluctuations is that it uses

2For improved cooling, it is in principle possible that the config
ration remains indefinitely in the vicinity of the local self-dual min
mum ~with instanton–anti-instanton pairs annihilated!.
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gauge action as a basis for the procedure. This is not ea
curable by improvements. However, one can also attemp
eliminate the unphysical short-distance fluctuations by so
sort of smoothingwithout reference to the action. Coolin
itself is a smoothing procedure in the sense that it repla
the original configuration with a smoother one. For the d
cussion in this section, however, we will be more specific
that respect, and call smoothing any procedure that can
interpreted as an action-independent space-time averagin
the fields. The prototype for this would be, for example,
APE smearing@18# that was actually used in this conte
@19#.

While smoothing is a less invasive approach than cooli
the subjective element in determining just how mu
smoothing is enough remains. This is troublesome beca
smoothing, by its nature, is also biased towards lumpy str
ture and can qualitatively change the local behavior. To
that, consider a very rough, inhomogeneous gauge field w
various structures in it. Upon smoothing, the field varyi
over short distances will be quickly removed or reduced t
smooth four-dimensional ‘‘bump’’ if there is an underlyin
long-distance structure present. Also, the lower-dimensio
structures, such as ridges, sheets, etc., will be elimina
soon by four-dimensional averaging. Thus, as the smooth
progresses, one naturally expects the stage when the con
ration will be considerably lumpy with physical fields con
centrated in the lumps. Further smoothing will cause
lumps to grow in size, to overlap, and eventually to reac
homogeneous situation with all physical fields removed.
unsettling question is where in this process one should s
and claim that the fields at the given stage represent
filtered local structure of the original configuration.

C. Fermions

Fortunately, there is a clean and meaningful strategy
approaching the above issues, namely to rely on the fer
onic response to the corresponding gauge background
explain that, it is easiest to first think in terms of a theory
the continuum where a typical configuration is also expec
to have a lot of ultraviolet fluctuations. Using fermions
quite plausible since we know that, for sufficiently smoo
gauge fields, fermions reflect global topology exactly@20#
and for nondifferentiable gauge fields the index of the Dir
operator can actually serve as an extended definition of
pological charge. It is thus natural to expect that the lo
structure can be inferred from fermionic response as w
e.g., by studying the divergence of the flavor-singlet axi
vector current.

The new idea which makes the fermionic approach attr
tive is to look for the imprints of topological charge fluctu
tions in the low-lying eigenmodes of the Dirac operator@1#.
This is physically well-motivated, practical, and, at the sa
time, has the potential to naturally solve the problem of
traviolet fluctuations without the subjective element i
volved. Indeed, the space-time structure of the low-lyi
modes is naturally smoother than that of the gauge fie
themselves. This fact has two origins. First, the analog
Schrödinger-like eigenvalue problems typically yield smoo
1-3
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stationary states even when the underlying potential has
continuous jumps. Secondly, among the eigenstates, the
frared modes are expected to be least sensitive to the s
distance features on top of the long-distance structure in
potential.3 At the same time, it is necessary to realize that
underlying physics we want to understand is the mechan
of how gauge fluctuations cause the light quarks to propa
in such a way as to form a quark condensate and to give
h8 its mass. In other words, the goal is to understand
dynamics underlying the propagation of light quarks. T
physics is encoded in the low-lying Dirac modes@1#, and this
is why we say that concentrating on these modes~‘‘fermion
filtering’’ ! is physically well motivated.

One possible approach is to infer the information ab
topological charge fluctuations from the individual low-lyin
modes@1#. This method is indirect and is motivated by th
instanton picture of the vacuum. In other words, the prop
ties of instantonlike gauge fluctuations imply a spec
qualitative behavior of the individual modes, thus giving
opportunity to check whether the observed structure is c
sistent with that scenario. The specific proposal of Ref.@1# is
to study the probability distribution of the local chiral orie
tation parameterX(n) defined by

tanS p

4
~11X! D5

ucLu
ucRu

, ~1!

over the pointsn where the eigenmode (cn
1cn) is large. Here

2cL5(12g5)c,2cR5(11g5)c are the left and right com
ponents of the eigenmodec. X(n) is a local angle in the
ucLu-ucRu plane rescaled so thatX(n)521 for purely right-
handed andX(n)511 for purely left-handed spinorcn . For
cL , cR generated in a random independent fashion, the lo
orientation parameter would be uniformly distributed b
tween21 and11.

D. The implications of the X distribution

The usefulness of theX distribution was discussed in de
tail in Ref. @1#, where it was argued that if the gauge bac
ground contains extended regions of strong~anti-!self-dual
fields, then theX distribution should exhibit peaks near th
extremal values. This is a consequence of the fact that in
eigenvalue problem for the Dirac operator, the~anti-!self-
dual part of the gauge field enters as a potential term for
~right! left component of the eigenmode.

Here we would like to emphasize that this is not a uniq
way for the double-peaked behavior to arise. To illustr
that, consider subjecting the fermion to a background c
figuration that is lumpy in the sense that we have define
here, i.e., consisting of relatively isolated lumps surround
by approximately field-free regions.~Such configurations can
be artificially prepared irrespective of whether or not th
resemble typical equilibrium configurations of QCD.! The
fields comprising the lumps have no definite duality prop

3Low-lying modes remain sensitive to theisolated small struc-
tures, as they should.
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ties, but yet they carry approximately quantized topologi
charge. A particular lump can thus be thought of as an in
vidual object and, in the absence of all the other lumps
would induce zero modes of the Dirac operator with chiral
dictated by the index theorem. For simplicity, consider a s
ation with just two lumps with topological chargesQ561.
The residual interaction will cause these ‘‘would-be’’ ze
modes to mix and, to a first approximation, the true eig
modes would be the two linear combinations of the stric
chiral ‘‘would-be’’ zero modes localized on the lumps. In th
resultingtopologicalnear-zero modes, theX distribution will
be strongly peaked at61.

What we have described above is the same scenario th
a basis for the ILM mechanism of spontaneous chiral sy
metry breaking@8#. The point is that self-duality is not es
sential for this argument since we did not need to invo
instantons at all. It is only the local quantization of topolog
cal charge that matters, and yet the peakedX distribution is
expected, as well as spontaneous chiral symmetry breaki
such configurations turned out to be dynamically importa

We emphasize this point to show that the qualitat
double-peaked behavior of theX distribution alone does no
in itself provide a basis for the verification of the instant
picture. It is a necessary but certainly not a sufficient con
tion for such a conclusion. Apart from the above argume
there can possibly be other mechanisms for producing
peaked distribution~as well as spontaneous chiral symme
breaking!. In fact, we will argue later that there are reaso
to believe that topological charge is actually not loca
quantized in QCD. Nevertheless, the study ofquantitative
characteristics of theX distribution can still be very usefu
for distinguishing various scenarios as well as for other p
poses@14#.

E. Lattice fermions

When considering the lattice-regularized theory, we ha
the usual extra freedom in choosing the lattice action. A
cording to the standard universality assumption, all local
tions with appropriate symmetries and correct classical
havior should give consistent results sufficiently close to
continuum limit. However, comparing results from differe
discretizations at finite lattice spacing usually requires so
care. When asking questions about the nature of fluctuat
in the pure gauge vacuum, it is natural to fix a particu
lattice gauge action and study the theory at different latt
spacings to be able to extrapolate to the continuum lim
Moreover, if we choose to examine the nature of these fl
tuations using a lattice fermion, then it is essential that
fermionic action be kept fixed as well, even though it on
plays the role of a probe.

To illustrate this point, consider some lattice Dirac ope
tor D(U) and the set of related operatorsDn(U)[D(Un),
where Un is the gauge configuration obtained fromU by
performing n smearing steps~e.g., APE steps! with other
parameters of the smearing procedure fixed.4 If D(U) is an

4See Ref.@12# for example.
1-4
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acceptable lattice Dirac operator, thenDn(U) is acceptable
as well, assuming thatUn exists. However, if we investigat
the local properties in the equilibrium ensemble$U%eq using
Dn , then the answers we get will clearly depend onn. In
particular, D1000 will probably indicate much larger struc
tures in the gauge field thanD1 . Nevertheless, one is a
lowed in principle to useD1000 as long as it is used consis
tently in meaningfulextrapolations to the continuum limit
which might be difficult. However, one can hardly conclu
anything meaningful about the behavior in the continu
limit by comparing the results fromD1 at one lattice spacing
and fromD1000 at a different lattice spacing.

Regarding the choice of the fermionic action, we wou
like to point out one particular aspect illustrated by comp
ing the two extremes represented by the Wilson-Dirac op
tor and the overlap operator based on it. The overlap oper
has exact lattice chiral symmetry at finite lattice spaci
allowing for continuumlike theoretical analysis with respe
to chiral symmetry and topology. On the other hand, it
nonultralocal and, due to extended gauge connections, e
tively samples the gauge field potential over a nonzero ph
cal distance.5 This should not matter for the continuum limi
based on the expectation that the operator is local over e
librium ensembles of Wilson pure gauge theory at su
ciently weak coupling. The Wilson-Dirac operator, on t
other hand, has multilated chiral properties, and when us
it in this context, one relies heavily on the assumption t
this problem will go away in the continuum limit. At th
same time, the Wilson-Dirac operator has a perfect resolu
in the sense that there is no additional smoothness bey
the fact that we end up inspecting the infrared eigenmode
would be very interesting to know whether the two actio
provide for consistent continuum extrapolations for quan
ties related to topology. In this work, we use an over
operator which, even though expensive to implement, is v
convenient for its theoretical advantages.

The above considerations also suggest that there may
more general complementarity between the degree of ch
symmetry and the resolution for lattice fermionic action
Indeed, if we start with a maximally ultralocal operator, w
can try to improve its chiral properties by including co
plings at larger distances and adding more complica
gauge connections, but by doing so we worsen the res
tion. On the other hand, if one starts with the operator w
exact lattice chiral symmetry, then this operator must be n
ultralocal @22#, and an attempt to improve its resolution b
dropping couplings at large distances will result in deter
rated chiral properties.

III. LOW-LYING MODES OF THE OVERLAP OPERATOR

We have calculated and examined the low-lying modes
the overlap operator in Wilson gauge backgrounds ove

5Because of this ‘‘chiral smoothing,’’ the features smaller th
some physical threshold will not be resolved at finite lattice sp
ing. The results of Ref.@21# are a manifestation of this fact.
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wide range of lattice spacings. The massless overlap ope
@23#

D5rF11~DW2r!
1

A~DW2r!1~DW2r!
G ~2!

with DW the Wilson-Dirac operator andr51.368 (k
50.19) is used throughout this paper. The rational appro
mation for the matrix sign function@24,25# was utilized to
implementD and a small number of eigenmodes ofg5DW
were projected out both to increase the accuracy of the
proximation and to speed up the convergence.

We used the Ritz variational method@26# to obtain the
low-lying eigenmodes ofH2[D1D. As a consequence o
normality (@D,D1#50) and g5 Hermiticity (D1

5g5Dg5), the nonzero low-lying modes ofH2 are doubly
degenerate and the eigenmodes ofD can be constructed in
the corresponding subspaces since@H2,D#50. Also, H2 is
proportional to the chirally nonsymmetric part ofD, imply-
ing that@g5 ,H2#50. This allows for diagonalization in sepa
rate chiral sectors in different runs, thus speeding up
process and easing the memory requirements for large
tices. The typical accuracy of calculated eigenvalues~as
measured by differences of complex-conjugate pairs! is
about one part in 105 or better.

To avoid confusion, it is useful to fix the language th
will be used when discussing the local properties of a giv
eigenmodec of D. We will refer to

d~n![cn
1cn , c~n![cn

1g5cn ~3!

asdensityandchirality, respectively, and toX(n) of Eq. ~1!
aschiral angle. Sinced(n), c(n), andX(n) are identical for
eigenmodes corresponding to complex conjugate nonzer
genvalues (cl* 5g5cl), we will treatcl ,cl* as a pair.

The parameters of the Wilson gauge ensembles used
listed in Table I. Configurations for the three finest lattic
are separated by 20 000 sweeps. The quoted values of la
spacings were obtained from the Sommer parameter u
the interpolation formula given in Ref.@27#. Our finest lattice
spacing is outside the interpolation range and we linea
extrapolate fromb56.5. Note that the physical volume
involved are such as to contain on average three to f
~anti-!instantons if the ILM scenario is relevant, ensurin
that the mixing of ’t Hooft zero modes would take place. F
all the configurations we have calculated the eigenfuncti
for the zero modes and at least two pairs of near-zero mo
-

TABLE I. Ensembles of Wilson gauge configurations.

b a ~fm! V No. configs.

5.85 0.123 103320 12
6.00 0.093 144 12
6.20 0.068 204 8
6.55 0.042 324 5
1-5
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FIG. 1. X distribution for four Wilson gauge ensembles considered.
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A. Results for the X distribution

To make meaningful comparisons for the behavior of
X distribution at different lattice spacings and different latti
sizes, it is necessary to fix the fractionf of the points that are
examined on each lattice. In fact, it would be more appro
ate to always speak ofXf distributions. For a given low-lying
mode we order the lattice sites by the magnitude of den
and consider the topf V points, whereV is the lattice vol-
ume. It is assumed that the underlying gauge field is str
gest in the regions so selected@1#. For most of the results
discussed here, we fixedf 50.1. This is mostly motivated by
the fact that we intend to relate our findings to the ILM
Diakonov and Petrov@7# use the packing fraction18 in their
theoretical arguments. On the other hand, if one naively
culates the packing fraction asf 5nVr , wheren is the den-
sity in fm4 andVr the volume of a four-dimensional sphe
of radiusr, then one obtains approximately120 if ILM values
are used. We thus viewf 5 1

10 as a reasonable compromis
The qualitative and even quantitative conclusions that
will make do not depend on the precise value from the ra
quoted above as long as it is fixed.

Our results for theX distribution from the lowest two
nonzero pairs of modes included for each configuration
shown in Fig. 1. The histograms are normalized so that
sum of the values in all bins adds up to unity. There
visible peaked maxima atX'60.65, but there appears to b
very little change across the wide range of lattice spaci
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studied. To quantify this observation, we have calculated
average value ofuXu with the histograms serving as a pro
ability profile, i.e.,

^uXu&[(
i

pXi
uXi u, ~4!

wherepXi
is the value at the bin with centerXi . For truly

peaked distribution, this should reflect the approximate po
tion of the peak. The results are shown in Fig. 2 indicatin
very flat behavior as a function of the lattice spacing. T
underlying dynamics thus does not appear to generate m
chiral peaking closer to the continuum limit, nor do the p
sitions of the peaks move appreciably closer to61.

As we have emphasized in Sec. II, the qualitative obs
vation that theX distribution exhibits peaked maxima at no
zeroX is not sufficient for concluding that the instanton pi
ture of topological charge fluctuations in the QCD vacuum
correct. However, the study of quantitative characteristics
the distribution might still be very illuminating. We illustrat
this by comparing in Fig. 3 theX distributions for the near-
zero modes and for the exact zero modes. The latter is
same distribution that would be expected in the limit of
very dilute instanton gas~or a dilute gas of arbitrary topo
logically nontrivial lumps!. It is clear that, even at our smal
est lattice spacing, theX distribution of the near-zero mode
1-6
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LOCAL CHIRALITY OF LOW-LYING DIRA C . . . PHYSICAL REVIEW D 66, 034501 ~2002!
is far less chirally peaked than that of the exact zero mod6

confirming the prevalent view that the dilute instanton g
picture is not realistic@7#. This also suggests that one reliab
way to verify whether lattice QCDX distributions are con-
sistent with the ILM prediction is a direct comparison
distributions from existing ILM ensembles.

B. Structures in the gauge field

Our next goal is to verify whether the observedX distri-
bution can be attributed to the underlying local structu
with properties similar to those assumed in the ILM. If t
low-lying mode arises from mixing of ’t Hooft ‘‘would-be’’
zero modes associated with ILM instantons, then this m
inherits the lumpy structure of the underlying gauge fie
with lumps being of a prescribed size, shape, and abunda

We identify suchpossiblestructures by finding the loca
maxima of density,d(n), in the mode, and requiring that th
profile of density around them resembles a four-dimensio
peak at least in some average sense. To be more precis
start by locating the maxima over the distance), i.e., find-
ing the set

M[$n:d~n!.d~m!,un2mu<)%. ~5!

For these candidates, specified by their positionn, we then
compute the functions

dn,m~r ![^d~m!&
~n2m!•m̂.0
un2mu5r ,

m561, . . . ,64, r .0 ~6!

representing the average ofd(m) over the spherical shell o
radiusr centered atn, restricted to the points for which (n
2m) has a component in them direction. The local maxi-

6This is equally well reflected in the fact that we found typic
values^uXu&'0.52~see Fig. 2!, while at the same timêuXu&51 for
distribution strictly peaked atX561.

FIG. 2. Dependence of^uXu&, Eq.~4!, on the lattice spacing. The
quoted uncertainty represents a rough estimate using the asymm
upXi

2p2Xi
u as a basis for the calculation.
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mum is retained only ifdn,m(r ) decays monotonically from
origin over the distance) for all directionsm.

Note that the motivation for choosing) as a reference
lattice distance in the above procedure is that it is a minim
distance for which the accidental occurrence of a struct
can be statistically excluded for the largest lattice volum
we are working with. In other words, if we were to genera
the density on sites of a 324 lattice using random numbers
no structures would typically be found using the above p
scription. Conversely, if a structure is identified in a low
lying mode, we take it as a signal that a nontrivial fluctuati
of the gauge field is causing its occurrence.

Finally, from the structures identified in this way, on
those were selected that have a chance of contributing to
peaks of theX distribution. To make this final cut, we onl
retain structures for which the corresponding centern is
among the 10% of points with highest density~f 50.1 was
used to generateX distributions!, and for which the chiral
angle satisfiesuX(n)u>0.5 as suggested by the position
the maxima in Fig. 1. The resulting density of structures a
function of lattice spacing is shown in Fig. 4, indicating
large disagreement with the ILM assumption at smaller

try
FIG. 3. Comparison ofX distributions atb56.55 for near-zero

modes~solid line! and exact zero modes~dashed line! using the
overlap Dirac operator.

FIG. 4. Density of structures~in fm24! as a function of the
lattice spacing.
1-7
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FIG. 5. The sample behavior ofdn(r )/dn(0) ~upper curve! andcn(r )/cn(0) ~lower curve! for typical structures atb56.55. The radius
Rn of the corresponding region of coherent local chirality is shown as a vertical line. The figures are ordered so that the intensity of t
decreases vertically and the quality~degree of isolation! of peaks decreases horizontally.
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tice spacings. We will return to the interpretation of this b
havior later.

C. Sizes from coherent regions of local chirality

To study the typical sizes of the structures, we first use
definition that is motivated only by the assumed lumpy b
havior of the gauge field rather than the specific profile of
instanton. The mixing of ‘‘would-be’’ zero modes in th
lumpy background would produce regions of coherent lo
chirality in the near-zero modes, concentrated around
maximum of the lump. We thus define the radius of the str
ture at pointn as the radius of the largest hypersphere c
tered atn, containing points with the same sign of loc
chirality: namely,

Rn[max$r :c~n!c~m!.0,un2mu<r %. ~7!

To assess the feasibility of this definition, we compute fu
tions
03450
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e
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n

l
e
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-

dn~r ![^d~m!& un2mu5r , cn~r ![^c~m!& un2mu5r ~8!

representing the average density and chirality over
spherical shell of radiusr centered atn. In Fig. 5, we show
the sample behavior of functionsdn(r )/dn(0) and
cn(r )/cn(0) for typical structures, and how this relates to t
radius assigned by our definition~vertical line in Fig. 5!. The
examples of structures with high, medium, and low intens
~density! are put in the top, middle, and bottom row, respe
tively. Note that the level of ‘‘background’’ increases fo
lower intensities. Also, the structures with cleaner peak
behavior~typically more isolated ones! are put on the left
and quality is decreasing to the right. The examples on
right represent the ‘‘worst’’ cases we have identified. Fro
these examples it can be seen that the peaks of density
chirality are well contained within the determined radius.

Using the definition~7!, we have studied the average siz
of structures as a function of the lattice spacing with resu
shown in Fig. 6. The straight line is a fit using the thr
1-8
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LOCAL CHIRALITY OF LOW-LYING DIRA C . . . PHYSICAL REVIEW D 66, 034501 ~2002!
smallest lattice spacings considered. The average radiu
a'0.12 fm is close to the ILM value and consistent with
recent estimate at a similar lattice spacing@12#. However, it
would be erroneous to conclude agreement with the I
based on the data at single lattice spacing; the average v
decreases significantly for finer lattices and the continuu
extrapolated estimate is in striking disagreement with
ILM. There appears to be a positive curvature in our data
a well-defined finite value~with a rough estimate of abou
0.15 fm! in the continuum limit. The fact that our procedu
leads to a finite size in physical units is significant becaus
characterizes the physical size of regions of coherent lo
chirality that are necessary to develop the largeh8 hairpin
correlator required to solve theU(1) problem@1#. We also
emphasize that while our definition of size was motivated
assuming the lumpy structure of topological charge fluct
tions, it makes very good sense even if the structures do
carry the quantized values of topological charge, and are
related to instantons. The distribution of sizes atb56.55 is
shown in Fig. 7.

FIG. 6. Average radiuŝRn& of structures from regions of co
herent local chirality. The lowest nonzero mode was used for
culation. Data for the three smallest lattice spacings were use
obtain the fit. The horizontal line represents the radius of an I
instanton.
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D. Sizes from instanton-assumed profiles of density

If the near-zero mode of the Dirac operator is a mixture
‘‘would-be’’ zero modes associated with instantons, th
peaks of the wave function should resemble the profile o
’t Hooft zero mode. In particular, in the ideal case we sho
have@3#

dn~r !

dn~0!
5S rn

2

rn
21r 2D 3

[@yn~r !#3, ~9!

wherern is the radius of the instanton located atn. Thus the
function r 2yn /(12yn) is a constant (rn

2) independent ofr
for an instanton profile, and should be approximately co
stant for our structures if they represent the response to
instantonlike fluctuation. However, we find that this is n
the case and the shapes of the peaks in our low eigenm
do not resemble the instanton ansatz. To illustrate this,
display the situation for a typical structure in Fig. 8. Show
are also fits to the instanton profile over the distances 0.
0.06 fm, 0.06–0.12 fm, and 0.12–0.18 fm. These fits
inconsistent with both the profile of the peak and with ea

l-
to

FIG. 7. The distribution of sizesRn at b56.55.
Right:
FIG. 8. Left: The functionr 2yn /(12yn) for a typical more intense structure. The data should be constant for an instanton profile.
The profile of the structure and attempted fits in the region 0.00–0.06 fm~leftmost curve!, 0.06–0.12 fm~middle curve!, and 0.12–0.18 fm
~rightmost curve!.
1-9
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I. HORVÁTH et al. PHYSICAL REVIEW D 66, 034501 ~2002!
other. Note that the shapes of the peaks are already aver
over all the directions, and should exhibit a robust behav

To see the inconsistency with the instanton profile on
erage, we choose a reference pointr ref ~in lattice units! and
assign a radius to each structure through

rn~r ref![r refS yn~r ref!

12yn~r ref!
D 1/2

. ~10!

All of our structures are guaranteed to have a peaked be
ior over the distancer ref

2 53 in lattice units, but the vas
majority of them decays over much larger lattice distanc
To treat all the structures on the same footing, we comp
average radii from the above prescription forr ref

2

51,2, . . . ,5 andplot the resulting dependence on latti
spacing in Fig. 9. Wide vertical bands at every lattice spac
reflect the fact that our structures cannot be fit reasonabl
the ’t Hooft profile. Nevertheless, the tendency towards si
substantially smaller than the ILM value in the continuu
limit is still obvious, thus showing that the overall concl
sion from Fig. 6 remains valid even for this definition of th
radius.

We emphasize that contrary to the results in Fig. 6, we
not assign much physical significance to the precise beha
of data in Fig. 9. The main purpose of showing these res
is to reveal the marked inconsistencies with the instan
picture of the vacuum.

E. Correlation functions of local chirality

We have also computed the chirality-chirality correlati
function in the lowest Dirac nonzero modec, namely

Ccc~r ![^c~n!c~m!& un2mu5rV
2. ~11!

This correlator has been studied in Ref.@12#. While the av-
erage information encoded in the correlator may be usefu
will not provide us with a detailed view of the space-tim
distribution ofc(n). The point is that if thisCcc(r ) has char-
acteristic sizer, one still cannot infer whether the typica

FIG. 9. Average radiuŝrn& of structures determined from th
assumed instanton shape of the peak at different reference
tances. Lowest nonzero mode was used for calculation.
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space-time distribution ofc(n) in a configuration predomi-
nantly appears localized on spherical structures of radiur,
or if it comes in one of the infinitely many other forms lea
ing to the same average correlation.

The averageCcc(r )/Ccc(0) from the lowest nonzero
modes for our four ensembles is shown in Fig. 10. Wh
larger statistics would be desirable, we have estimated
‘‘size’’ of the correlators by evaluatinĝr& and ^r 2&1/2 with
Ccc(r ) used as a probability distribution. In every case w
have cut off the integration at the distance where the c
relator first turns negative. The resulting values are collec
in Table II. Note that values for̂r 2&1/2 are systematically
higher than sizes obtained from coherent local chirality~cf.
Fig. 6!, which is to be expected for an inhomogeneous spa
time distribution of fluctuations with various shapes. Nev
theless, the sizes of correlators we have obtained are
systematically lower than the ILM value for an instanto
radius.

F. Interpretation of the results

The data in Figs. 4 and 6 represent rather interesting n
results and we would now like to elaborate on their interp
tation. We have started from the assumption that the vacu
has local properties identifiable with the ILM scenari
i.e., that it typically fluctuates in such a way as to for
~anti-!self-dual lumps of approximately quantized topolog
cal charge. However, the identification of such presum
lumps resulted in quantitative characteristics that are
marked disagreement with the ILM on fine lattices. We o
serve many more structures of much smaller physical s
~although this size remainsfinite even in the continuum
limit !. Given that the parameters of the ILM are rather tigh

is-
FIG. 10. AverageCcc(r )/Ccc(0) from the lowest near-zero

mode.

TABLE II. Estimates of the size of the correlatorCcc(r ).

a ~fm! 0.123 0.093 0.068 0.042

^r 2&1/2 ~fm! 0.33 0.24 0.22 0.24
^r& ~fm! 0.26 0.19 0.17 0.19
1-10
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LOCAL CHIRALITY OF LOW-LYING DIRA C . . . PHYSICAL REVIEW D 66, 034501 ~2002!
fixed @7#, the true microscopic picture as seen by the latt
fermion appears to be very different from that envisioned
the ILM.

Particularly puzzling from the instanton perspective is
large number of peaks that we observe in the lowest n
zero modes, implying that a propagating light quark fe
many more ‘‘kicks’’ from the regions of strong gauge fie
than one would expect based on the ILM. Indeed, assum
that the underlying gauge structures represent elementar
stanton tunneling events between classical vacua lead
clear contradictions. For example, from our results atb
56.55 one would estimate that the gluon condensate sh
be of the order ^0uG2u0&'32p2n'32p250 fm24

'25 GeV4, where 32p2 is a contribution of a single
instanton.7 This is to be compared with the accepted va
^0uG2u0&'0.5– 1.0 GeV4. A similar inconsistency arise
from considering topological susceptibility under ev
weaker assumptions: Assuming that gauge structures
general lumps of quantized and approximately uncorrela
topological charge leads to the estimate of topologi
susceptibility ^Q2&/V'n'50 fm24'50(200 MeV)4, i.e.,
about 50 times the accepted value. At the same time,
topological charges of our lattices~determined as a byprod
uct of the overlap calculation! are in very good agreemen
with the expected value of topological susceptibility in t
pure gauge vacuum.8

The above considerations strongly suggest that the to
logical charge contained within the structure is probably
quantized. One is led to the same conclusion from consi
ation of radii of regions of coherent local chirality. Our da
indicate the valuê Rn&'0.15 fm in the continuum limit.
However, the ’t Hooft instanton formula for the density
quantized charges valid at short distances, i.e.,n(r)}r6, is
frequently invoked as a basis for concluding that the occ
rence of instantons of this size should be essentially ne
gible ~certainly relative tor'0.3 fm instantons for which the
formula is still expected to be valid! @28,7#. We interpret this
marked mismatch as a manifestation of the fact that the
derlying assumption for the ’t Hooft formula, namely th
local quantization of topological charge, is probably n
valid. Indeed, the suppression of small instantons is a co
quence of their quantized topological charge: it is difficult
squeeze an entire unit of topological charge inside a sm
radius. However, without quantization, there is no reason
expect a suppression of smaller-scale fluctuations, wh
would simply contain proportionally less topological charg

Finally, we would like to return to Fig. 4 and discuss t
rapidly increasing density of the structures with decreas
lattice spacing. While the density atb56.55 is very large,
the fraction of sites contained in the structures is still re
tively small, as shown by the packing fractions plotted
Fig. 11. The peaks thus retain their identity, as can be s
from Fig. 5. However, let us elaborate for the moment on

7The estimates of this type are usually used to justify the IL
parameters@7#.

8For example, from our small ensemble atb56.55 we estimate
the topological susceptibilityx50.9260.50 fm24.
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hypothetical possibility that the density increases inde
nitely, because this might suggest something unphysical e
if topological charge is not locally quantized, as we argu
above. Indeed, how should one interpret a diverging den
of structures in the continuum limit, especially if their ave
age size~cf. Fig. 6! remains finite? The point is that contrar
to quantized topological charges, where the finite topolog
susceptibility forces the density to assume a finite phys
value in the continuum limit, the peaks of nonquantized
pological charge might well lose their identity closer to t
continuum limit and their density might indeed be unphy
cal. ~However, the regions of coherent local chirality iden
fied with the help of these peaks and their sizes are
physical.! The picture that we have in mind is that of rel
tively isolated mountain peaks belonging to a larger mo
tain range and coalescing as the continuum limit is
proached. Our algorithm to measure the size of regions
coherent local chirality would then sample the size of t
mountain range rather than individual peaks. A more d
namical analogy is to imagine disturbing a calm surface
water. The regions where the water is above the origi
level ~positive topological charge density! have various
shapes and volumes, but on average have some typical
Yet, within such regions there could be many local maxim
at all length scales. While the sizes of individual maxima
not define the scale and may not be physically meaning
the average radius measured relative to these maxima pr
the typical finite size of these coherent regions. It is easy
imagine that in the continuum, the fluctuations of topologic
charge resemble violently disturbed surface of water. In s
a hypothetical scenario, the diverging density of structu
would actually be very natural.

We emphasize that in this paper we do not attempt to
forward any specific low-energy scenario for the behavior
topological charge fluctuations in the continuum limit. Th
purpose of the discussion in the previous paragraph is
argue that as soon as one abandons the local quantizatio
topological charge, then the data in Fig. 4 do not repres
anything unexpected.

FIG. 11. Packing fractions. The sites contained in a given str
ture are bound by the largest hypersphere with the same sig
local chirality as in the center of the structure.
1-11
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FIG. 12. Upper: X distributions for two Iwasaki gauge ensembles considered. Lower left: Density of structures for Iwasa
Wilson actions. Lower right: Average size from coherent regions of local chirality for Iwasaki and Wilson actions.
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G. The question of dislocations

In the lattice discussions of gauge field topology, one
to face the possible problem of ‘‘dislocations.’’ While th
notion is frequently used as an unspecified synonym for ‘‘
tice artifact,’’ in the original discussion of Refs.@29,30# it has
a rather well-defined meaning which we will adopt. In pa
ticular, for a given lattice gauge action and given topologi
charge operator, it is the local structure in the gauge fi
with action smaller than the continuum action of an insta
ton, and with unit topological charge.9 In the loose sense, thi
is frequently pictured as a small instanton that is almost f
ing through the lattice and lives on one to two lattice sp
ings. Invoking entropy arguments, it was suggested in R
@30# that for the action–topological-charge combinati
where this happens, it is possible that dislocations domin
the topological-charge fluctuations, and can lead to unph
cally large~possibly diverging! susceptibility. This raises the
question of whether the large density of structures that
see is caused by unphysical dislocations.10

This question can be addressed at several levels. Fir
all, the arguments of Ref.@30# assume that the topologica

9We thank Tama´s Kovács for clarifying this.
10We thank Thomas Scha¨fer for pointing this out.
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charge of the dislocation is concentrated on its core. Inde
the idea that dislocations are important relies rather hea
on the picture of locally quantized topological charge. If t
topological charge does not come in unit lumps, as we s
gest here, then the issue simply does not arise.

Secondly, it is important to realize that dislocation is
concept assigned to the pair gauge-action–topologi
charge-operator. While we work with the Wilson gauge a
tion which is supposedly susceptible to the possibility
dislocations, we use chiral fermions to measure topolog
charge. It has frequently been noted~see, e.g., Ref.@7#! that
fermions should not be sensitive to dislocations. This is
deed very plausible. As we have argued in Sec. II C, o
naturally expects that infrared fermionic modes will be qu
smooth and will not inherit the singular behavior of the u
derlying gauge fields.

Finally, there is no hint of behavior symptomatic of di
locations in our data. For example, even the smallest of
structures are extended objects in physical units and spa
least four lattice spacings. Moreover, the estimates of to
logical susceptibility from topological charge measured
the overlap Dirac operator are in very good agreement w
the accepted value of about 1 fm24 ~see footnote 8!. If the
underlying structures were dislocations~and hence carried
topological charge close to unity!, then this value should be
1-12
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FIG. 13. TheX distributions for the first 20 near-zero modes of configuration 8 atb56.2.
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substantially larger. This is one of the arguments that actu
suggests that topological charge is not locally quantized
we stressed in Sec. III F.

Nevertheless, to eliminate any concern that dislocati
may be a problem, we have performed a comparative st
with a renormalization-group improved gauge action. In t
case, the possibility of dislocation dominance should be s
stantially reduced. In particular, we have employed
Iwasaki action@31#, and studied overlap eigenmodes at tw
03450
ly
as

s
dy
s
b-
e

different lattice spacings. In the standard normalization
Iwasaki action ~see Refs. @31,32#!, we considered a
103312 lattice at b52.384 and a 143316 lattice at b
52.592. This corresponds to lattice spacingsa50.14 and
0.10 fm, respectively, as determined from string tension
using the data of Ref.@32# and the two-loop beta function fit

The summary of our results is shown in Fig. 12. T
structure of the resultingX distributions is very similar to the
structure for Wilson gauge ensembles, as can be see
1-13
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I. HORVÁTH et al. PHYSICAL REVIEW D 66, 034501 ~2002!
comparing to Fig. 1. We thus applied identical procedu
~with identical cuts! for finding the structures and determin
ing their size as we did for Wilson gauge ensembles.
though the behavior of density for Wilson gauge action~see
Fig. 4! might have suggested the possibility of dislocatio
this is not the case because a similar pattern appears t
followed in the case of Iwasaki action as well. Similarly, t
sizes of structures are systematically lower than the I
values. It would obviously be interesting to investigate
larger window of lattice spacings with Iwasaki action, to
able to study the issues of continuum extrapolation. Ho
ever, the purpose of this comparative study was to dem
strate that our conclusions are not sensitive to the choic
gauge action and that there is no problem of dislocatio
Our results clearly indicate that this is indeed the case.

IV. CONCLUSIONS

Uncovering the local structure of topological charge flu
tuations promises to have profound implications for our u
derstanding of low-energy QCD. This expectation is born
of the fact that possible microscopic explanations for imp
tant phenomena such as spontaneous chiral symmetry b
ing, the resolution of the UA(1) problem, and theQ depen-
dence of QCD are based on the picture of the vacu
wherein self-dual lumps of locally quantized topologic
charge~instantons! play a major role. It is consequently quit
essential to determine whether such a picture~e.g., ILM! is
indeed fundamental, or if there is in fact a different micr
scopic mechanism driving these important effects.

Expanding upon the ideas of Ref.@1#, we have explained
here in detail why studying low-lying Dirac eigenmodes pr
vides a natural and reliable approach for exploring the lo
nature of topological charge fluctuations~at least as implied
by the ILM!. The study of theX distribution in low-lying
modes has been designed as a tool for probing the l
vacuum structure indirectly. While the available resu
@13,14# on the qualitative behavior of theX distribution
could in principle be viewed as confirming the consistency
the instanton picture, we have pointed out here that the
sociation with instantons is not unique. In other words,
double-peaked qualitative structure ofX distribution is a nec-
essary condition for instanton dominance, but not sufficie

As a step towards resolving these issues, we have c
puted and analyzed low-lying modes of the overlap Di
operator in Wilson gauge backgrounds over a wide rang
lattice spacings (a'0.04– 0.12 fm). The double-peake
structure of theX distribution has been observed wi
maxima at X'60.65 ~using a fraction f 50.1 of lattice
points!. The position of maxima shows very little chang
with lattice spacing without a visible tendency to move
ward the extremal values ofX561, even though an exactl
chiral lattice fermion is used. Our main initial aim in th
study was to verify whether the characteristics of local str
tures contributing to the peaks of theX distribution are con-
sistent with quantitative characteristics of the gauge featu
in the backgrounds proposed in the ILM. In other words,
attempted to verify whether low-lying modes can~at least
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approximately! be viewed as mixtures of ’t Hooft ‘‘would-
be’’ zero modes generated by gauge structures resemb
approximatelyr5 1

3 fm instantons of densityn51 fm24. To
the contrary, we have found local characteristics indicat
that the true nature of topological charge fluctuations is v
different from that envisioned in the ILM.

We emphasize in this context that the underlying iss
here is to determine whether one should view the ILM p
ture as a fundamental one, or as an effective description w
phenomenological meaning only. For example, claims t
the bulk of spontaneous chiral symmetry breaking is due
mixing of ‘‘would-be’’ zero modes associated with instanto
have only well-defined microscopic meaning if the corr
sponding low-lying modes have the local structure predic
by this microscopic mechanism. To verify this propositio
we have no other choice but to examine these modes.
appears to be a well-defined problem with a well-defin
answer. Our results indicate that the ILM scenario does
provide for accurate microscopic description of these mo
and thus remains at the phenomenological level. It is t
important distinction that we wish to stress in this paper.

While the detailed arguments are summarized in S
III F, our main conclusion can be verified in an independe
manner. To make this point qualitatively, we have calcula
20 near-zero modes for configuration 8 from ourb56.2
ensemble.11 This configuration hasQ50, and the physical
volume is such that according to the ILM it should conta
about three or four instantons and anti-instantons. Hence
subspace spanned by ’t Hooft would-be zero modes sho
have a dimension of that order. Consequently, it is the IL
prediction that chirally peakedX distributions should be ob
served for three or four near-zero modes~and possibly a few
more! but the rest of the modes should resemble approxim
free-field behavior with local chirality peaked around the o
gin. In Fig. 13, we plot theX distribution atf 50.1 for all 10
pairs of near-zero modes computed~the histogram is the
same for both modes in a pair!. Inspecting these results re
veals that there are at least 14 modes with significant dou
peaked structure and none of them is peaked at the origin
a matter of fact, atf 50.02,all 20 calculated modes exhib
the double-peaked behavior and this most likely pers
even for higher modes. While this fact can hardly be e
plained by the ILM, it is not very surprising in view of th
results presented here. On this particular configuration,
have identified 32 local structures.12

Even though we have concentrated on the ILM in th
paper, we believe that our results suggest a more gen
conclusion. In particular, as we have argued in Sec. III F, i
very difficult ~if not impossible! to reconcile the topologica
susceptibility of the pure gauge vacuum and the assump

11Needless to say, this was rather demanding on computer
sources.

12Note that this observation also makes very unlikely the possi
ity that one could interpret several structures as forming a seve
deformed quantized lump of topological charge which one co
somehow still associate with the ILM instanton. In this case,
subspace of would-be zero modes should still be of size 3 or 4
1-14
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that local structures in fermionic near-zero modes are cau
by underlying gauge excitations with locally quantized top
logical charge. This leads us to believe that the bulk of
pological charge in the QCD vacuum is not locally quantiz
in integer units as suggested some time ago by Witten@6#.
We will address this issue in detail in a forthcoming pub
cation @33#.
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Shuryak, Rev. Mod. Phys.70, 323 ~1998!.

@8# D. I. Diakonov and V. Y. Petrov, Nucl. Phys.B272, 457~1986!.
@9# T. Banks and A. Casher, Nucl. Phys.B169, 125 ~1980!.

@10# M. I. Polikarpov and A. I. Veselov, Nucl. Phys.B297, 34
~1988!; M. C. Chu, J. M. Grandy, S. Huang, and J. Nege
Phys. Rev. D49, 6039~1994!; C. Michael and P. S. Spence
ibid. 52, 4691~1995!.

@11# J. Smit and J. Vink, Nucl. Phys.B284, 234 ~1987!; B298, 557
~1988!; M. Laursen, J. Smit, and J. Vink,ibid. B343, 522
~1990!.

@12# T. DeGrand and A. Hasenfratz, Phys. Rev. D64, 034512
~2001!.

@13# T. DeGrand and A. Hasenfratz, Phys. Rev. D65, 014503
~2002!; I. Hip et al., ibid. 65, 014506~2002!; R. Edwards and
H. Heller, ibid. 65, 014505~2002!; T. Blum et al., ibid. 65,
014504~2002!.

@14# C. Gattringeret al., Nucl. Phys.B618, 205 ~2001!; B617, 101
~2001!.

@15# S. J. Donget al., Nucl. Phys. B~Proc. Suppl.! 106, 563~2001!.
.

,

@16# B. Berg, Phys. Lett.104B, 475 ~1981!; J. Hoek, ibid. 166B,
199 ~1986!; J. Hoek, M. Teper, and J. Waterhouse, Nucl. Ph
B288, 589 ~1987!.

@17# P. de Forcrand, M. G. Pe´rez, and I.-O. Stamatescu, Nucl. Phy
B ~Proc. Suppl.! 47, 777 ~1996!; M. G. Pérez, O. Philipsen,
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