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The renormalized Dyson-Schwinger equation for the quark propagator is studied, in the Landau gauge, in a
novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally
eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new
equations. To construct a truncation which preserves multiplicative renormalizability and reproduces the cor-
rect leading order perturbative behavior, nontrivial cancellations involving the full quark-gluon vertex are
assumed in the quark self-energy loop. A model for the running coupling is introduced with an infrared fixed
point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with the correct logarith-
mic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of
the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approxi-
mation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic
phenomenology, without requiring an infrared enhancement of the running coupling.

DOI: 10.1103/PhysRevD.66.034032 PACS nuniber12.38.Aw, 11.10.Gh, 11.15.Tk, 14.65q

I. INTRODUCTION important field of investigation.
The kernel of the gap equation not only reflects the strong

In the standard model of the strong, weak, and electrointeraction between quarks and gluons, but also embodies the
magnetic forces, the interactions are quantitatively describedomplicated structure of the QCD vacuum, which in the con-
by gauge field theories. Quantum chromodynamics is a nortinuum contains self-interacting gluon fields as well as ghost
Abelian gauge theory, and the proof of its renormalizabilityfields. Understanding the infrared behavior of the gluon and
[1] and discovery of ultraviolet asymptotic freedd&] have  ghost propagators and of the running coupling is therefore of
been milestones in its acceptance as the theory of the stromggeat importance for the study of dynamical mass generation
interaction. For large momenta the coupling becomes smal[13].
and perturbation theory seems an appropriate calculational Early studies of the Dyson-Schwinger equation for the
tool. However, for small momenta the coupling grows largegluon propagator in the Landau gauge seemed to indicate
and adequate methods have to be used to study nonperturtibat the gluon propagator could be highly singular in the
tive phenomena such as confinement, dynamical chiral symnfrared [14—17], possibly providing the above-mentioned
metry breaking, and bound state formation. One such methodfrared enhancement in the kernels of the gap equation.
is the study of the Dyson-Schwinger equatidi¥SE) [3], However, these gluon propagator studies neglected any con-
and their phenomenological applications to hadronic physicsibution of the ghost fields, and required thé hoccancel-
is a subject of growing intere$t]. lations of certain leading terms in the equations. It is there-

Dynamical chiral symmetry breaking can be studied byfore far from certain that these solutions reflect the correct
means of the quark propagator DSE, also called the ga@CD infrared behavior.
equation. The quark equation is part of an infinite tower of More recently, studies of the coupled set of Dyson-
integral equations relating all the Green’s functions of theSchwinger equations for the gluon and ghost propagators
guantum field theory, and a truncation is necessary to be ab[d8-20 have shown that the coupling of ghost and gluon
to solve it. The often used Abelian approximation introducedields plays a crucial role in the generation of a consistent
an effective running coupling in the kernels of the quarkinfrared behavior of QCD. In the infrared the gluon and
equation, based on features of QED. A number of studies afhost propagators are power behaved, and the strong running
the gap equation were performed in this approximation withcoupling has an infrared fixed point. Moreover, the leading
effective strong couplings that are infrared enhanjceel7], infrared power in the gluon vacuum polarization depends
infrared vanishing[8,9], infrared vanishing with large en- only on the ghost loop, and not on the gluon loop nor any
hancements in the intermediate reg{d®], and infrared fi- other diagram in the gluon equation. Although the precise
nite[11,12. These studies all find that dynamical chiral sym-values of the infrared powers depend on the veAegdze
metry breaking can be triggered, provided some parameter iand other details of the truncation, all these studies showed
the model exceeds a critical value, and a large integratiothat the full ghost propagator is more divergent than its bare
strength is needed in the self-energy kernels to achieve largmunterpart, while the full gluon propagator is less divergent.
enough “constituent” quark masses, needed for hadron pheRecent lattice calculations also support the infrared propaga-
nomenology[9]. The Ansatzof a strong infrared enhance- tor power laws and fixed point of the running couplir&f—
ment in the kernels of the quark DSE is therefore a majo23]. As neither the gluon propagator nor the running cou-
ingredient in phenomenological studies, and the search fquling are infrared enhanced in the Landau gauge, one seems
the source of such an enhancement, coming from the gluoto be at loss to explain how enough strength can be achieved
propagator, quark-gluon vertex, or their combination is anwhen breaking the chiral symmetry in the gap equation. The
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problem to reconcile the DSE results of the gauge sectoallows me to design a novel truncation scheme for these
with the need for a strong infrared enhancement in the effecformal equations, which respects both the multiplicative
tive coupling might hint to a deficiency in the Abelian ap- renormalizability and the resummed perturbative limit of the
proximation to the gap equation. A first attempt to extend thesolutions. The full vertex is genuinely nonperturbative in this
study of dynamical chiral symmetry breaking beyond thetruncation, and nontrivial cancellations in the self-energy in-
Abelian approximation, by solving the coupled set of DSEstegrals are assumed to strip the vertex from its complete
for the quark, gluon, and ghost propagators simultaneous!{r€ssing, leaving only bare vertices in the truncated equa-
[24], underlines this conundrum by finding a generated fer!'ONS- , ,

mion scale that is a factor of 2 too small for phenomenologi- !N the new truncated quark equations, the running cou-
cal purposes. One can then wonder if the approximationd?!ing iS the only object carrying information about the non-
introduced to solve the gap equation, violate some essentigfrturbative effects in the gauge sector. The back reaction of
property of quantum chromodynamics, such that the strengtfi!® auarks on the running coupling could in principle be
of dynamical chiral symmetry breaking is significantly weak- ncluded through a self-consistent study of the coupled
ened? And if so, can we construct a truncation which preduark-gluon-ghost DSEs. However, to perform a first quan-

serves this property, and would naturally generate a |arggtative calculation of dyr_1amica| chiral symmetry b_reaking, I
enough dynamical quark mass? introduce a model running coupling based on prior knowl-

Multiplicative renormalizability(MR) is an important fea- ©d9€ about its infrared fixed point, acquired from the ghost-
ture of gauge field theories, proven for perturbative renor9!uon DSE[20,29, the resummed leading order perturbative
malization[1], but believed to hold foany renormalization behavior, and Fhe qualitative features of the transition be-
scale, and it is often ruined by the approximations to thdWeen both regiongl9]. o , .
vertices and vertex renormalization constants introduced in Pynamical chiral symmetry breaking is then investigated
DSE studies to truncate the infinite tower of equations. Non&!Sing this model running coupling in the MR truncation of
of the truncations introduced in the DSE studies mentioned’® duark DSE. Although the equations in my new truncation

above, on the quark, gluon, and ghost DSEs, preserve muieok very similar to those in the Abelian approximation, the
tiplicative renormalizability. slight modifications ensuring MR vyield important quantita-

In a recent papef25] | discussed how the DSE studies tive diff_ereljces: the dynamically generated mass in the MR
[18-20 of the gauge sector violate the multiplicative renor- truncation is boosted by about a factor of 3 compared to the
malizability of the gluon and ghost propagators and | devel/AP€lian approximation with the same running coupling. The
oped a new truncation scheme which preserves multiplica?®W findings show that no infrared enhancement, nor fine-
tive renormalizability and showed how this induced MNiNG of the strong running coupling is needed: a running
important changes in the equations. | investigated the cons&UPling having a reasonably valued infrared fixed point
quences for the analysis of the infrared behavior of the @~ 2.6), which smoothly bends over into the perturbative
propagators, and found that the ghost loop, gluon |oop[ogza_r|thm|c tail, is able to generate masses allowing for re-
3-gluon, and 4-gluon diagrams gibtentially contribute to ~ &listic hadron phenomenology.
the leading infrared power in the gluon propagator DSE,
which is at variance with the conclusions of Rf$8—20Q,
where only the ghost loop contributed to leading order. Al-
though the combination of ghost and gluon loops alone does Starting from the spinor quark DSB], | derive two sca-
not seem to allow infrared power solutions for the propagaiar equations for the mass function and renormalized quark
tors [25], there are strong indications that the infrared con-dressing function, using the definitions of renormalized fields
tribution of the 4-gluon diagram, also called squint diagram,and coupling. The ensuing quark equations are part of an
is such that infrared power solutions do exist when all theinfinite tower of integral equations relating all the Green’s
diagrams are taken into accoy@b. functions of QCD, and a truncation is necessary to be able to

In this paper | construct an MR preserving truncation tosolve them. | briefly discuss the Abelian approximation,
the quark DSE using an approach similar to that presented iwhich violates multiplicative renormalizability, before con-
Ref. [25] for the gauge sector, and investigate dynamicaktructing a novel truncation which preserves the multiplica-
chiral symmetry breaking. | show that the preservation oftive renormalizability of the quark solutions.
multiplicative renormalizability in the truncated quark equa- The Dyson-Schwinger equation for the quark propagator
tion can naturally generate a phenomenologically acceptabi@ QCD, formulated in Euclidean space, is
mass scale, while being consistent with the properties of the
gluon and ghost propagators known from the DSE studies of

Il. THE QUARK EQUATION

the gauge sector, without infrared enhancement of the stron 3 _ d*q

running coupling. ?SF(p)] 12[52([3)] 1_CFggf (277)4F?/,g'0(p=q7r)SF(Q)
| first reformulate the quark equations, such that the Lan-

dau gauge equations are free of renormalization constants. In xT99q,p,—r)D**(r), (1)

this formulation the self-energy kernels are explicitly driven

by the running coupling, and the multiplicative renormaliz-

ability of the quark dressing function and renormalizationwhere Sz and S are the full and bare quark propagators,
point invariance of the dynamical mass are manifest. ThiD*" is the full gluon propagatoﬂ,“jlg'0 andT'%9 are the bare
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and full quark-gluon vertices, the color fact@F=(N§
—1)/2N,=4/3 for N,.=3, g, is the bare coupling, and Uz(p?,0%,r%,A%)=

0,
Trlp-yI'3%%(p,q,r)

—pn— 4p2r2
=p—aq.
The most general expression for the full quark propagator i 2\y71°09 A2
can be written as X(q-y+iM(g9)I',%(q,p,—r,A%)]
x| & (r)+ d e 8
B Z(p?) o(r) FU2A2) 12 | (8)
Se(p)=—r, 2
ip-y+M(p9)

whereZ(p?) is the quark dressing function, atd(p?) is

1
U (P22t A%) = Tr F,(ftg"‘)(loiq,r)(l—i
r

2
the mass function. The bare propagator for a quark with bare M(@®)
massmy is
XT39%a,p,—r,A%)
Lp)= — 3
ip-ytmg’ " ¢ ﬂ]
x| ot (r)+—F(r2,A2) el 9
The full gluon propagator in a general covariant gauge is
given by with 8“7(r)=g*”—r#*r"/r?, and the kernelt); andU,, also
depend implicitly onZ and M through the full quark-gluon
PP, F(p?) PP, vertexI'%9. The vector and scalar quark self-energy integrals
Du(P)=| 6= = > tE— (4)  are herein regulated with an ultraviolet cutaff yielding a
P P P A2 dependence of the regularized dressing functions, and the

A? dependence of the bare masg(A?) is such thaM (p?)
where F(p?) is the gluon dressing function, and for future is finite and independent of?.
use | also give the general form of the full ghost propagator:

A. Renormalization

A(p)=— G(p?) 5) The full, regularized Green'’s functions are potentially di-
P 2 vergent when the ultraviolet cutoX is taken to infinity, and
they are renormalized by applying the principles of multipli-

whereG(p?) is the ghost dressing function. cative renormalization. The quark field is renormalized by

After substituting the propagato(®) — (4) in Eg. (1), one Z(p%, A2 =Z5(u? AD)Za(p? 12, (10)
can derive a set of two coupled equations for the quark dress-
ing function and the mass function by multiplying EQ),

- . ) : 4 whereZg is the renormalized quark dressing functi@, is
respectively, by-ip- vy andl,, and taking the trace in spinor

the quark field renormalization constant, and at the renormal-

space: ization pointZg(u?, u?)=1.
When addressing mass renormalization it is important to
1 Ce , o) . ) o ob;erve tha}t each choig:e of bare mass paramagén ?)
207 A2 =1+ o7 Jo(A )f d*qZ(q%,A%) defines a different physical theofg7], and for QCD each
(p%A%) quark flavor corresponds to a different valog(A?). The
F(r2,A?) running mass functioM(pZ) is renormalization point in-
> —5-Uz(p?,q% %A%,  (6) variant as it is unambiguously determined g (A 2). The
q°+M=(q°) bare mass parameter is chosen such that the running mass
function M(p?) is finite, and takes the valud (x?)=m,,
(p?) where the renormalized mass parametgris determined, in
=mo(A?) practice, by matching the calculated value of some mass de-
Z(p%A?) pendent observable to its measured value. Note that we
c speak of masparameterinstead of mass to emphasize that
F 2.2 4 2 42 2 the quarks are confined and have therefore no pole mass.
a 167T4g0(A )f d"az(q" AIM(@") The renormalization of the quark-gluon vertex introduces
a vertex renormalization constany; , which is related to the
F(r2,A2 renormalization of the strong coupling b
(JZiM—Zm)Z)UM(pZ,qZ,rz,AZ), (7 9 COIPIng B
Z3A P AP Zo(u? AP
g(u?)= go(A?), (1D
where Z1¢(u?,A?)
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whereg(u?) is the value of the renormalized coupling at the cancelled by the seeds of Edq$4) and(15) to yield a finite
renormalization scale. Gauge invariance of the renormalizedressing functiorZg and mass functioi.

theory ensures the universality of the renormalized coupling
for the quark-gluon, ghost-gluon, and triple-gluon interac-

: B. Abelian approximation
tion, such that also

A truncation often used in previous studies to decouple

Zl/2(lu2 A2)23(M2 A2?) the quark equation€l4) and (15) from the infinite tower of
g(pu?)= s 7 ' go(A?) DSEs is the bare vertex, Abelian approximation. There, ghost
Zy(p? A% field contributions are neglected, and one introduces the sub-
z§’2 2) (12) stitution
:m 9o(A%), a(p)Z5FR(r?, w) T IO P a®(r ) T I §9°,

(16)

whereZ, andZ; are the ghost-gluon and triple-gluon vertex based on QED gauge invariance properties and on the as-
renormalization constantZg and23 are the renormalization sumption that the bare vertex approximation might be appro-

constants for the gluon and ghost fields, priate in the Landau gauge. In this approximatiefii(r?)
o o by can be considered as @iffectiverunning coupling. In the
F(p*,A%)=2Z5(uA%)FR(p%,u9), Abelian approximation the quark equatiofs4) and (15)

B (13  become
G(p?,A?)=Z3(u? A?)Gg(p? 1),

C
where the renormalized gluon and ghost dressing functions =Zy(u? A%+ —F3
are defined such th&tg(u? u?)=Gr(u? u?)=1. 4

Now that all the necessary renormalized quantities have

R pznﬂz)

eff .2
been defined, | multiply Eqs6) and (7) by Z,, such that » f dqZa( o p2)— )
their left-hand sides become finite, and introduce the renor- q’+M?(g?)
malized dressing functions using Eq4d0), (13), and the 0,2 2.2
renormalized coupling(«?) using Eq.(11): xUz(p,q%,r ), (17)
1 Cr M(p?) Cr
————=7,(uA A+ —— a(p?)Z2(u? A2 5= 2Z(u* AP m(A?) — —
ZR(pZ’MZ) 2(1““ ) 4773 (ILL) lf(lu’ ) ZR(p2,M2) 2 0 4773
Fr(r?,u?) J a®f(r?)
X | d*qZg(9®, u>)————+ X | d*aZp(9? uHM(QD) 55—
f aZr(0%p )q2+M2(q2) qsr(a% q 9%+ M%(q?)
X Uz(p?,g%r2,A%), (14 XU (p?,02,r?), (18)
M (p?) 5 o ) Whereug andU(,\),I are calculated by replacing the full, regu-
2 2 =Zy(p", A7) Mp(AS) larized, unrenormalized quark-gluon vertE%? by the bare
Zr(p%,1°)

vertex,I'99%=iy,, in Eqgs.(8) and(9).
) ) s It is easy to convince oneself that Eq47) and (18) of
= (D224 A?) the Abelian approximation violate multiplicative renormaliz-

3
4 ability, and this will be illustrated further in Sec. IV.

R( 211“‘ )

4 2
fd qZR(0% 1*)M(A?) M)

C. MR truncation

The aim of this paper is to derive a novel truncation
XUw(p?,g2,r2,A%), (15  scheme, which preserves the multiplicative renormalizability
of the solutions, starting from the exact renormalized equa-
where | definedn(u?)=g?(u?)/4w. Note that the integrals tions (14) and (15). This will be achieved by specific ma-
in the renormalized equations are preceded by a renormalizaipulations of the renormalization constant; and by as-
tion factorZ'ff(,uz,Az), originating from the renormalization suming nontrivial cancellations involving the full quark-
of the coupling. Although it is customary to absorb afie  gluon vertex in the quark self-energy loop, as specified in the
factor in the full unrenormalized vertex in order to renormal-remainder of this section.
ize it, | deliberately do not proceed like this here, so that the The nonperturbative expression for the quark-gluon ver-
full vertex depends on the momenta flowing in the vertex,tex renormalization constaid; ; is not known, but it can be
and onA, but not onu. The self-energy integrals haveAa  eliminated from the equations using Eq4.l) and (12),
dependence consistent with perturbation theory, which isvhich state the universality of the strong coupling:
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- Z,(u?,A?) Landau gaug¢28], we see that, in that gauge, the product

Z1(u? A?). (19 a(g? u? A?) defined in Eq(23) is nothing else but the run-

Zy(uP A% = z———-
Zs(p? A?)

ning coupling a(g?) (see also Refs[14,18,19). One can
It is interesting to note the similarity between the QCD rela-'dentify the product(23) in Egs. (21) and (22), and in the
tion (19) and the QED analogy;=Z,, in a theory without ~-andau gauge these equations become
ghost fields.

As Z4; is independent of the integration momentum, the

factor Z%; can be moved inside the self-energy integrals of ;: Zo(n2 A+ &
Egs.(14) and(15) and factorized in a\ and au dependent Zr(p% 12 a3
part by applying Eq(19), and consequently using the defi- 5
nitions (10) and (13) to replaceZ, andZ5 by ratios of un- XJ d* 1 a(r’)
renormalized to renormalized dressing functions at momenta Zr(9%,1?) g2+ M23(g?)
of our choice: P
Z°(q°,A%) 2 2 2.2
Z(GP.A?) Gr(r2 u?). L UL(pA gAY |, (25
Zy(u2 At = 2R S5 (202, 20) G*(r.A%)
G(r?,A%) Zgp(q? u?)
where | have chosen to use the quark momentum of the M (p?) Cr
self-energy loop to rewrit&,, and the gluon momentum for 5= Za(n? AP)My(A?) — —
Z5. After substituting the square of E20) in the quark Zr(P% %) am
equations(14) and(15) one finds xf . M(q?) a(r?)
1 s s CE s Zr(9?,u%) 4*+M*(q?)
———=Z(uA A+ — a(uD) Zi(u? A?)
ZR( DZ,,U«Z) 4773 ZZ(qZ,AZ)
5 —5 5 5. Um(p%a% A% | (26)
1 Fr(r®u?Gi(r?u? G(ro,A%)
XJ d4q 2 2 2 2(~2
Zr(@*u®) P M)
5 2 Ao In numerical calculations the seeds of the equations will be
Z°(a%A )U (p2,q2,r2,A2) 1) eliminated in the usual way by subtracting each equation at
GX(r3,A2) 20 ’ two different momenta and imposing the renormalization
conditions. Note that, except for the seeds of the integral
M (p?) equations(25) and (26), the renormalization point depen-

C ~
=22 AP)mg(A?) — —F3a(,u2)2§(,u2,1\2) dence only enters through the renormalized quark dressing
Zr(P*, 1) 4m function Zg, so that the multiplicative renormalizability of
2 2 2,2 2 the dressing function and renormalization point invariance of
XJ 4t M(a%)  Fr(r%w?)GR(r", 1) the mass function are manifested in a very clear way by the
Zr(0%,1?) g%+ M?2(g?) 1/Z structure on both sides of the equations. Furthermore
these equations are still exact as no approximations have
been introduced in their derivation, and this shows how the
running coupling explicitly enters the self-energy kernels,
and drives the mass function, in a non-Abelian gauge theory.
From Egs.(12) and(13) it is easy to see that the product The kernelsU; and Uy, defined in Egs(8) and (9),
contain the full, unrenormalized quark-gluon vertex, thus
a(q?, u? A = a(u?)Z2(n? AD)FR(0?%, u?)G2(g% 1) coupling the propagator equatiof25) and(26) to the higher
23) order DSEs, and in order to perform a numerical calculation
| introduce an approximation which decouples the quark
can also be written in terms of unrenormalized quantitieg¢quations from the vertex DSE.
only: A simple truncation which preserves the MR properties of
the solutions and reproduces the leading order renormaliza-
. gS(Az) tion group equatiofRGE) improved perturbative behavior
a(qzuuz,/\z):?F(qz,Az)Gz(qz-Az). (24 consists in assuming that the factafé/G? in the square
brackets of Eqs(25) and(26) cancel both the nonperturba-
which shows thaf (g2, u2,A2) is renormalization group in- tivg vertex a.nd Ipop corrections in the self'—energy inte_grals.

. . . 2 RN This truncation is analogous to the one introduced in the
variant, I.e., independent ofi”. Therefore a(q%.u%A%)  pgE for the gluon propagator in RgR5]. The kernels be-
=a(9%,9% A?), and taking into account the renormalization wween square brackets in EG85) and(26) are thus approxi-
conditions forFr and Gg, and the fact thaZ,=1 in the  mated by

ZZ(qZ,AZ)

X| U (pA, g% 13, A2
G2(r2.A2) m(P%.q )

NP
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ZZ(qZ,AZ)

u 2, 2,r2,A2 —>U0 2’ 2,I’2, 2
G(12.A7) 2(p%,q )—=Uz(p%,05r%),  (27)
Z%(q?,A?)
! U 2, 2,r2,A2 UO 2, 2,r2,
G2(r2AD) m(P%.0 )—=Un(p%,g%r°)
(28)

Whereug ande\’,I are calculated by replacing the full, regu-
larized, unrenormalized quark-gluon vertE%? by the bare
vertex,I'%%%=iy, , in Egs.(8) and(9). After substituting the
Ansaze (27) and(28) in Egs.(25) and(26) we find

1 Cr
- =7 2,A2 4+
Zaphpt) AT
1 a(r?)
de4q 2 2 2 2 2
Zr(0?,1?) *+M%(¢?)
X UY(p2,q2,r), (29)
M(p?) C

——— 5= Zo(p AR my(AY) - —
Zr(p=, %) 4

M(g?) a(r?)
d4
Xf Zr(9%, 1% 9°+M%(q?)
xU%(p%,q%,r?), (30

where the Landau gauge kernef=0) are given by

2[p%q*—(p-9)?]
3p-q- :

r2

1
UY(p?,q2r?)= W
(3D

3
U&(pz,qz,r2>=—r—2. (32

PHYSICAL REVIEW D66, 034032 (2002

principles of multiplicative renormalization defined in Eg.
(10), demonstrates that the novel truncation respects the mul-
tiplicative renormalizability of the solutions. Such a con-
struction is not possible for Eq$17) and (18) of the bare
Abelian approximation, hence showing its violation of mul-
tiplicative renormalizability.

Also note that the solutions of the truncated equations
(29) and (30) satisfy the leading order resummed perturba-
tive results. This feature was demonstrated earlier for the
Abelian casd 11,29, and even though the newly proposed
equations differ from the former in ther dependence, their
UV limits are identical, aZr(p?) =1 to leading order in the
Landau gauge, and hence, their mass functions have the
same UV behavior. For systems whetg(p?)# 1 the Abe-
lian approximation does not reproduce the correct perturba-
tive behavior for the quark functions, while truncations simi-
lar to Egs.(27) and (28) still do. This has previously been
shown for the gluon and ghost dressing functions in QCD
[25], which obey similar equations. Also note that a trunca-
tion of the fermion equation in QEP[30], constructed in
order to reproduce the correct perturbative behavior, features
a similar linearity in the dressing functiah which, as was
shown above, is sufficient to achieve multiplicative renor-
malizability. The treatment of QCD is, however, significantly
different from QED, as the running coupling only enters the
equations after introducing appropriate ghost field correc-
tions as proposed in Eq&7) and(28).

The fact that the simple truncatid27) and(28) satisfies
these two important features of gauge theories is not a mere
accident. Similarly to our work on the gluon equation in Ref.
[25], the cancellations assumed in cdmsatzcan be related
to the cancellation of the quantum corrections coming from
both the full quark-gluon vertex and the integral over the
DSE kernel, in a way similar to Mandelstam’s work on the
gluon equatiori14]. Indeed, the quark-gluon vertex Slavnov-
Taylor identity, which is a consequence of gauge invariance,
is

(p—K)“T ,(p.k;p—k)=G[(p—k)2][S: (k) =S 1 (p)],
(34)

Let us verify that this truncation preserves the multiplicative

renormalizability of the solutions. From E@L0) one can

show that multiplicative renormalization is satisfied if solu-

tions renormalized at?> and v? are related by
Zr(p?,1?)
Zg( VZaMZ),

Zy(v?,A?) = Zr(v?, u?) Zp(u?, A?).

ZR( pzv Vz) =

(33

Now assume one has found solutichig( p?, x2), M(p?) of
Egs.(29) and(30), for all p2, renormalized at a scaje’, i.e.,
with Z,(u?,A?) such thatZg(u? x?)=1. If one multiplies
both equationg29) and (30) by Zg(v?,1?), it is clear that
Zr(p?,v?) of Eq.(33) and the original mass functiov (p?)
are solutions of the new equations, satisfyifigv?,v?) =1,
and with renormalization constad,(v?,A?) obeying Eq.
(33). The ability to construct the solutions renormalized-at
starting from the solutions renormalized,at, following the

which shows that the bare vertex receives nonperturbative
corrections proportional taG/Z. Although the Slavnov-
Taylor identity does not constrain the transverse part of the
vertex, multiplicative renormalizability requires the complete
full vertex to have corrections of a similar nature. Further-
more, Mandelstam also showed in REE4] how perturba-
tive loop corrections to the propagators in fact introduce a
doubleG/Z correction, and | herein assume that this is not
just a perturbative feature, but rather a true nonperturbative
one, engendered by the integrations over the full Green’s
functions in the self-energy integrals. Hence, in this analysis,
one factorZ/G is assumed to cancel the quantum corrections
of the full vertex, and the other factat/G to cancel the
nonperturbative corrections generated by the integrals over
the kernels. This nonperturbativensatzis consistent with
perturbation theory at large momenta, hence yielding the cor-
rect resummed perturbative behavior of the quark functions,
but moreover it preserves the multiplicative renormalizabil-
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ity of the solutions for any choice of renormalization point. truncation scheme, the gluon and ghost propagators obey
Note that, even though the full vertex has not been conpower laws in the infrared region, and the running coupling
structed explicitly, it is genuinelynonperturbativein this  has an infrared fixed point. Furthermore, the leading infrared
truncation. However, the final equations contain bare verticepehavior of the gluon equation is completely determined by
only, as a consequence of the nontrivial cancellations ashe ghost loop contribution to the vacuum polarization.
sumed in theAnsatz These results were confirmed by studies of Atkinson and
The main aim of this study is to in_vesFigate the realizationg|gch [19,20 using different verteAnsazeand angular ap-

of dynamical chiral symmetry breaking in the proposed MR oximations. However, the various truncations used in these
preserving truncation, where the kernel is explicitly drivengygies all violate the principle of multiplicative renormaliz-

by the running coupling. Fro_m the de_rivgtion of qug)_ ability, and Ref.[25] proposed a truncation where multipli-
_and(30) we note that Fhe running coupling in these e(.wat'onscative renormalizability is respected, and which possesses
|s_the true QCD running coupllng, ki an eﬁecnve COU%he distinctive feature that all diagrams contribute to the
pling as was the case in the Abelian approximation, ELs.

and (18). The running coupling connects the quark equatiorlIeadmg infrared behavior of the gluon equation. A recent

to the gauge sector, and in the next section | discuss thkg{;vestigation of the contributions of the two-loop diagrams
strong running coupl,ing in more detail to the gluon vacuum polarizatidi26] in this MR truncation

reveals a relatively large infrared contribution of the four-

gluon orsquintdiagram which is essential, when combined

with the ghost and gluon loop contributiop®5], to ensure
Formally the truncated quark equatiai29) and(30) have  the existence of the propagator power laws, and of an infra-

to be solved in a coupled system together with the equationked fixed point for the strong running coupling. This is a

for the gluon and ghost propagators presented in R, satisfying observation as the infrared power law solutions for

such that the back reaction of the quarks on the gluooth the gluon and the ghost propagators and the infrared

vacuum polarization be taken into account correctly in afixed point of the strong coupling are also supported by a

truncation that preserves multiplicative renormalizability. number of recent lattice calculatiop®1-23.

However, as shown in Reff25], the pure gauge gluon-ghost

system itself is not yet fully understood, and one can circum-

vent this complicated analysis, and postpone the study of the B. The model

coupled equations to a later stage, by introducing a realistic Taking into account all this evidence, | herein build a

model for the running coupling, thus decoupling the quarkmodel running coupling which has an infrared fixed point,

equations from the gluon-ghost system. o and a constraint on its value can be derived from the ghost
I will construct a model running coupling using informa- pSEg only, as shown in the Appendix, independently of the

tion originating from perturbation theory, from Dyson- getails of the gluon DSE. From E¢A11) one computes that,

Schwinger studies of the coupled ghost-gluon system, angh, SU(3), the fixed point satisfies 2/3<ay<4m/3, de-

IIl. THE STRONG RUNNING COUPLING

from recent lattice calculations. pending on the precise value of the exponemf the propa-
gator power lawsg(A3), and combining with recent lattice
A. Asymptotic behavior results givingx=~0.5[21-23, | assume a preferred value

_— S . =57/6~2.6.
Renormalization group equation improved leading order*® . . .
perturbation theory yields the asymptotic ultraviolet behavior, Even though | pinned down the leading asymptotic behav-

of the running coupling, including the quark contribution to or of the running coupling at !arge and sma]l momen.ta, one
the vacuum polarization: still needs to know the behavior of the running coupling for

all momenta in order to solve the quark equati@S), (30).

To model the intermediate momentum region, where the cou-
. (35) pling evolves from the infrared fixed point into the logarith-
Bo109(q%/ Adcp) mic tail, | use information collected from the study, Ref.

[19], of the coupled ghost-gluon system. The numerical re-
where sults and the analytically calculated infrared asymptotic se-
ries in that study showed that the coupling remains very
close to the infrared fixed point almost up q?x:AéCD,
crosses the leading order perturbative curve, and thereafter
drops quite rapidly to rejoin the perturbative curve, from
with N, colors andN; flavors, and where the leading order above, arounau2=10AéCD.

Aqcp can be determined from some high energy experiment. | propose a functional expression for the running coupling
Note that this leading order resummed behavior is also rewhich satisfies the various constraints mentioned above,
produced in the solutions of the nonperturbative DSEs, whemaking use of rational polynomial approximations multiply-
computed using the truncation described in R2&], which  ing the required asymptotic behaviors. In its simplest form
preserves multiplicative renormalizability. the approximation contains only one, dimensionless, param-

From an analysis of the coupled ghost and gluon DSEetercgy apart from the infrared fixed point, and the intrin-
system, von Smekatt al. [18] showed that, in a specific sic scaleA ocp,

uv 447
a(g?) ~

_ 1INg— 2N

Bo="—5 (36
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3 T T T " model —— The seeds of Eqg29) and (30) depend on the unknown
’ one-loop —— renormalization constar, and bare mass), and they are
25 1 eliminated in the usual way by subtracting each equation at
the renormalization point.? from that atp?, and imposing
2| the renormalization condition&g(u?)=1, M(u?)=m,.
All integrals in the subtracted equations are finite, and the
“E 15+ ultraviolet regulator can be taken to infinity. After introduc-
8 ing spherical coordinates, and performing two trivial angular
1L integrations, one finds
051

1o G fwd t ¥y Fde in o
= Sl
Ze0 " 2a2)0 VZay) yrmz(y) Jo

0.0001 0.01 , 12 100 10000 a(2) 3@0080 2xysin2 P
q” [Aqeol -
X z 72

FIG. 1. Running couplingx(g?), as given by Eq(37) with
ao=2.6 andcy= 15, andg? given in unitsAéCD. The coupling has )
an infrared fixed pointay and an ultraviolet behavior consistent —(Xeu) (38)
with resummed leading order perturbation theory.

a(9?)=a(tAcp) M (x) 3Ck (*. M(y) Yy
1 . 471_( 1 1 )tz . Zp(x) * 2772f0 Zr(Y) y+M?(y)
= 2| %% T 5 loat =1/ |’ ™
C0+'[2 BO |Ogt t—1 Xfo deSan 0[(@ _(XHMZ)}, (39)

wheret=q2/AéCD [43]. The first term in the square brackets
of Eq. (37) is responsible for the infrared fixed point, while

the term between round brackets yields the correct Ieading(om now on the renormalization point dependenceZaf

order logarithmic tail, where the simple pole &tcp has : PR — 2
been subtracted to make the coupling analytic for all spacev-vIII be implicitly understood Zg(x) = Zr(x, 7).

like momenta[31]. To match the intermediate region with _
the results of Ref{19], | choosec,=15, and | illustrate this A. Chiral case

model for the running coupling in Fig. 1. Note that in con-  |n the chiral case the mass equati@0) is homogeneous,
trast to the effective coupling often used in the application ofys7,m,=0, and no subtraction is needed for the mass equa-

DSE to hadron phenomenology, the running coupi8d  tion. Equation(39) is replaced by
does not have any infrared enhancement and can be consid-

with x=p?, y=0g? and z=x+y—2xycosé. Note that

ered as a smoothened version of the concatenation of then(x) 3Ce (= M(y) y w . a(2)
infrared fixed point with the leading order logarithmic tail, Zo(X) = 2f Y7 ) 5 f désir? HT.
where the smoothening is performed in a way suggested by ~® 2mJo RY)y+M=(y)Jo “0)

previous studies of the gauge sector. The meaning and deter-

mination of the intrinsic QCD scal& ocp in the model(37) ] ] ) ]
will be discussed in Sec. IV. | substitute the model running couplin@?) in the quark

equations(38) and (40) and compute the solutions of these
equations using a numerical procedure first constructed to
study dynamical chiral symmetry breaking in strong cou-
| now study how dynamical chiral symmetry breaking pling QED [32] and later also applied to solve the coupled
gets realized in Eqs(29) and (30) with kernels driven by gluon-ghost equation$19]. The method uses Chebyshev
a(g?) of Eq. (37). Note thata(q?) possesses an intrinsic polynomials to approximate the unknown functions and
scaleA ocp, with which all momenta are scaled, and hencesolves for the polynomial coefficients using the quadratically
all momenta and masses in the quark equations can be egonvergent Newton iterative method.
pressed hereinafter in units dfgcp. The equations are  The evolution ofM(x) and Zg(x) as a function of mo-
solved numerically for the chiral case, and the results, whictinentum is shown in Fig. 2, for I(kx/AéCD<105, and
satisfy MR, are compared with those computed in the MR+enormalization poinuzzAéCD. The mass function is ex-
violating Abelian approximation. | investigate the sensitivity pressed in units oA ocp, which sets the scale in the running
of the generated mass scale to the parameters of the mod®mupling (37). Note that, in my MR preserving truncation, a
coupling and discuss the determination Af,cp of the  different choice of renormalization point will merely multi-
model. | also show the results of the quark equation in theply the whole functioriZg(x) by a finite, constant factor over
massive case. the complete momentum range and will leave the mass func-

IV. NUMERICAL RESULTS
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FIG. 2. Solutions for the mass functiod (x) and quark dressing functiodr(x), from Egs.(38) and (40), renormalized atu?
=A(23(:D, usinga(x) given by Eq.(37), with a«p=2.6 andc,= 15, in the chiral case. Preservation of multiplicative renormalizability means
that a different choice of renormalization point will merely multify(x) by a constant factor, and lea¥(x) unchanged.

tion M(x) unchanged. The strength of the dynamical chiralof the unrenormalized case, for which the dynamical mass is
symmetry breaking can be characterized by the value of th#1(0)~0.326\ ocp, about three times smaller than in the

mass function at the origin: herein presented MR preserving truncation. My MR trunca-
tion clearly disagrees with the use of a bare quark-gluon
M(0)~1.057A qcp- (4D vertex, and the implicit dressing of the vertex assumed in the

MR truncation is essential. The violation of MR, and hence

The generated quark mass is of the order of the extension @fe renormalization point dependence of the generated mass
the infrared plateau of the coupling, and the absence of finescaje makes the bare vertex Abelian truncation ill-defined.
tuning in the coupling, to obtain such a mass scale, points 10 one furthermore observes that the mass scale generated in
a certain naturalness in the MR truncation. _the MR truncation depends very little on the momentum evo-
In the chiral case the ultraviolet behavior of the dynamicaltion of Z. To show this. it suffices to decouple the mass

mass function satisfies the well-known asymptotic form“"”‘equation(40) from the Z-equation (38) by forcing Zx(X)

(33,34 =1 for all x in the mass equation. The generated mass is
52 ) then M(0)=1.082Aqcp, only 2% off the value of the
ar — .
M (x)~ Ym qq — (42) coupled system of equations.
2
X EIOQ(X/AQCD) C. Model sensitivity

I now study the sensitivity of the solutions of the MR

with yyn=12/(33-2Ny). A large momentum fit yields the . \hcated quark equations to the features of the m(@id
value for the renormalization-point independent vacuum, . the running coupling.

guark condensate, which is also representative for the

First, | examine which part of the kinematical regime of
strength of dynamical chiral symmetry breaking: b -

the running couplind37) mainly contributes to the dynami-

— cal mass in the MR truncation. | substitute the solutions to

—(qa)°~(0.70\ ocp)*. (43
TABLE |. Dynamically generated masM(0), in units of

Aqcp, versus renormalization point? (in AéCD) in MR-violating
An important part of my analysis is to evaluate the influ- Abelian approximation, compared with MR solution.

ence of the multiplicatively renormalizable approach on the

B. Abelian approximation

dynamically generated mass scale. The only difference be- u? M(0)
tween the MR Egs(29) and (30) and Eqs(17) and(18) of MR any 1.057
the bare vertex, Abelian approximation, is the facZa(y)

which appears in the denominator of the integration kernels  Abelian unrenormalized 0.326
in the former, while it is found in their numerator in the 10° 0.327
latter, in a way violating MR. Using the model running cou- 10° 0.355
pling (37) as effective coupling in the Abelian approxima- 1 1.262
tion, | find a dynamically generated mass that strongly de- 1073 1.398
pends on the renormalization point, as can be seen in Table I. 1075 1.398

The value which is usually quoted in Abelian studies is that
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TABLE II. Dynamically generated masM(0), in units of TABLE I1ll. Sensitivity of the dynamically generated mass
Aqcp. Versus upper integration limit 3, (in A3cp) in Eq. (40). M(0), in units of Agcp, to changes in the infrared fixed point of
the coupling,a of Eq. (37), with cq=15.
Ady M(0)

0.1 0.076 o M)

1 0.562 1.0 0.028

10 1.044 1.8 0.548

100 1.057 2.6 1.057

108 1.057 3.4 1.494

4.2 1.874

Egs.(38) and(40), shown in Fig. 2, in the right-hand side of
Eq. (40) and calculate the mass integral for varying values ofequations is well above this value, and the quarks do acquire
the upper integration IimitAfN. The results are given in an appropriately sized dynamical mass in the MR truncation.
Table 1l, and one finds that slightly more than half of the When constructing the model couplirig7), the shape of
dynamical mass is generated by the infrared fixed point reits drop in the intermediate regioméCD< p2< 10AéCD,
gion of the couplingp2<AéCD. Most of the remaining mass where the coupling flows from the infrared asymptotic be-
is generated in the transition regioﬁ,éCD<p2<1OAéCD, havior into its perturbative logarithmic tail, was inferred
while the logarithmic tail only contributes about 1%. Hencefrom the numerical results of Ref19]. Even though | am
the dynamical mass is mainly generated in the nonperturbasonfident that the qualitative features of this study will re-
tive region of the coupling, and is virtually independent of its main valid outside the scope of its specific truncatias-
precise ultraviolet behavior. It is therefore not essential, ingular approximation, violation of MR, disregard of quark
the context of dynamical chiral symmetry breaking, that theloop and two-loop diagramsmore will be learned about the
ultraviolet behavior of the couplin¢B7) only reproduces the intermediate regime when solving the coupled quark-gluon-
RGE improved leading order perturbative results. ghost set of equations in an MR preserving truncation, as |
Next, | investigate the sensitivity of the results to the pa-plan to do in future work. However, the sensitivity of the
rameters of the model couplin@7). As shown in the Ap- generated mass scale with respect to a change in intermediate
pendix the value of the fixed point depends on the details obehavior can already be studied by varying the paranuogter
the infrared analysis of the gluon-ghost DSE system, withof the model coupling(37). The behavior of the running
bounds 2r/3< ag<4m/3, and preferred value&/6. In Fig.  coupling, ascg is varied, is illustrated in Fig. 4, and the
3 | show how the generated mass changes as one varies tlignamically generated mass is tabulated in Table IV, for se-
value of the fixed point over a slightly wider rangest, lected values ot,. The parametec, is related to the posi-
<12, and some of the main values are also tabulated in Tablgon of the transition region, where the running coupling
1. In the figure | also plot the corresponding results for thedrops from its fixed point to rejoin the perturbative curve,
unrenormalized, bare vertex, Abelian case discussed earlignd the dynamical mass gradually increases with increasing
As could be expected there is a critical valug'~0.90 (for  Co.
Co=15) below which chiral symmetry is not spontaneously ~Note that another approach yielding a finite infrared value
broken. However, the fixed point value dictated by the QCDof the running coupling can be derived from an analytic con-

4.5 T T T T T 3 T T T
one-loop
4 L
35+
-— 3 i
3)
g 25+ —~
= X
g 2y °
=
15t
1t
0.5 .
0 ‘-—‘/.‘ ' ' ' ' 0 1 1 1
0 2 4 6 8 10 12 0.1 1 10 100 1000
Og X [AéCD]

FIG. 3. Variation of the generated ma#4(0), in units of FIG. 4. Running couplingx(x), given by Eq.(37) with «,
Aqcp. With varying aq in Eq. (37), andcy=15, for my MR trun-  =2.6, for a range oty's. To focus on the influence daf, on the
cation scheme, and in the Abelian approximation. The vertical linentermediate momentum region the plotted momentum range is
shows the preferred valug,=2.6. taken as 0.§x/AéCDs 1000.
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TABLE IV. Sensitivity of the dynamically generated mass ForAQCDz 330 MeV in the model coupling37), the MR
M(0), inunits of Aqcp, to changes in the parametgyof Eq.(37),  truncation generates a dynamical quark malg0)

With ap=2.6. ~350 MeV and a chiral condensate(qq)°~ (230 MeV)?,
according to Eqs(41) and(43), which are of the right order

Co M(©) of magnitude for hadron phenomenology. Moreover, this
5 0.824 value of Aqcp is consistent with the above-mentioned per-

10 0.964 turbative values, taking into account their different defini-

15 1.057 tions, as the coupling grows strong in the same momentum
20 1.129 window.

40 1.325 Furthermore, for such a value dfocp, the model cou-

pling (37), whose ultraviolet behavior is only modeled up to
leading order in perturbation theory, yields a perturbative
. . . . . value «(M7)=0.134 M,=91.187 GeV). Particle physics
tinuation of the perturbative coupling as shown_ln F{éﬂ_]. _phenomenology gives a world-average(M,)=0.118 for

In contrast to the model used above, the coupling derived i e strong coupling35], and the leading order contribution
that approach has no infrared plateau, and is exactly given By, - :c value, comp;Jted from perturbation theory, is
expression37) with c,=0, yielding a finite infrared value aé"""p(Mz):O.lSS, including mass-threshold effe¢&s).

@(0)=1.51, forN;=4. This running coupling does notyield | cap thus conclude that the model coupling produces results

enough integration strength in the gap equation, as the comyhich are consistent with both nonperturbative and perturba-
puted dynamical fermion mas8(0)=0.036\cp is clearly  jye physics.

too small for hadronic applications. The numerical results obtained herein can also be com-
pared with some of the latest lattice results on the quark
D. Determining A ocp propagator in the Landau gaug@eith N;=0) [37]. Figure 5

shows the lattice data and the DSE results with the phenom-

- . 2 . .

2 /,iszthe r:IT nrl:gs?:sglneg;(?n ) tg;qu:lS;Z) |es 3;32?120;? eXganologically preferred valua ocp=330 MeV, and also with

4" Aqcp. . q q A ocp=550 MeV, which yields a better agreement with the
pressed in units of\ ocp, and the value of\ ocp has to be

; . . : lattice points in the intermediate momentum regime
determined by matching theory with experiment. (3 GeVP<x<50 Ge\A). Note that below 3 Ge¥the lattice
Determining Aqcp of the model by matching in the  regyits have a slower increase of the mass function and a
perturbative region is not a reliable procedure, as the pertusieeper decrease of the dressing function. It is this discrep-
bative be'havior of the model coupling7) qnly agrees with ancy at small momenta that affects the value\gfp when
perturbation theory up to resummed leading order, and smajj,5iching the DSE results with the lattice data. Possible ori-
changes inv in the logarithmic region will have a big impact ging are lattice artifacts, vertex truncations, or inaccuracies in
on the value of\ ocp, and on all related hadronic masses, asthe modeling of the coupling3?) in the intermediate mo-
can be inferred from Eqs41) and (43). mentum regime. As the size of the dynamically generated

In perturbation theoryA ocp corresponds to the position mass is crucial for hadronic physics, this disparity should be
of the pole in the logarithmic expansion of the running COU-jnyestigated further.

pling, and depends on the renormalization scheme, and on
the mass threshold matching procedyBs]. In the MS E. Massive case
scheme its five flavor value determined from experiment is
A{2=208"23 MeV [35]. However,A ocp changes as flavor

thresholds are crossed, and the running of the perturbativ chiral_ x s chirals . 2 ;
(%9), wherem; "= M"¥(4%). In Figure 6 | plot the mass

. . 4 (Nf)
cou_plmg_should be calculated using the appropr@fi% and quark dressing functions for varying renormalized mass,
Taking into account mass thresholds, one f'nd%s m,,/ A gcp=0.0001,0.001,0.01,0.1,1, together with the chiral
=309°3MeV below the b-quark mass, and\} case (with renormalization pointu®/Adcp=10C°). In the
=37Tﬁ§§ MeV below the c-quark threshol@s long as per- massive case the logarithmic behavior satisfies the RGE im-
turbation theory remains valid proved perturbative result

The nonperturbative modéB7) has no perturbative pole,

Next | extend my analysis to the massive casgny,+ 0

in the mass equatio(80), or in practicem,>mS" in Eq.

and thereAo¢p is uniquely related to the evolution of the M(p?)=m a(p?)|"m

coupling (37), and corresponds to the scale where the cou- P “oa,

pling starts its descent off the infrared plateau towards the .

perturbative regimésee Fig. 1 As this definition ofA ocp is _ m (a4
at variance with the perturbative definition, a straightforward [log(p% Aé o]’

identification of its value with the perturbative values is not

possible. My aim herein is to investigate nonperturbative ef- R

fects, like dynamical chiral symmetry breaking', hedcgep  where m=mM[Iog(/ﬁ/AéCD)]7m and y,=12/(33-2Ny),

of the model should be determined by matching some nonwhich is the correct anomalous dimension of the mass func-
perturbative quantity related to the scale of hadronic physicgion. Observe that the log-tail of the mass function sets in

034032-11



J. C. R. BLOCH

0.6 T T

S ey
—_ = 5}
Aaon=550 MeV 1

o5 e
0.4 .

0.3 |

M(x) [GeV]

0.2

0.1

0 5 10 15 20 25

PHYSICAL REVIEW D66, 034032 (2002

1.4

1.3 |

09

Z(x)

0.8

— jl_\atticesso MoV
= )

e AoD=550 MeV

0 5 10 15 20 25 30 35 40 45 50
x [GeV?]

0.7 |

0.6

FIG. 5. Comparison of the Dyson-Schwinger solutions for the mass funktipt) and quark dressing functiafir(x) in the chiral case,
with the lattice results of Ref37] (chiral extrapolation The Dyson-Schwinger solutions are computed from E2f).and(40), usinga(x)
given by Eq.(37), with ag=2.6, c,=15, and withA ocp=330 and 550 MeMsee text The lattice results of Ref37] are plotted as a
function of the kinematic lattice momentum.

for ever smaller momenta as the renormalized mass is tunagamically generated chiral condensate of (122 MeWith
above the chiral value. Note again that the preservation ofi;=4), which is about a factor of 2 too small for phenom-
multiplicative renormalizability allows us to choose an arbi- enological purposes, apparently confirming the problem to
trary renormalization point, without altering the physical find the necessary integration strength in the quark equation.
content of the results: changing the renormalization poiniThe study uses a QCD anal$88] of the quenched QED
merely multipliesZg(x) by a constant factor at all momenta Curtis-Pennington vertex39] in an attempt to preserve
and leaves the mass functidM(x) unchanged. gauge invariance and MR. This is, however, not sufficient:
the vertex renormalization constani; is constructed such
that the solutions to the equations have the correct leading
order perturbative behavior, but it is not consistent with the
As shown before, the Abelian approximation, which vio- chosen nonperturbative verténsatz and its renormaliza-
lates MR, requires a strong infrared enhancement of the etion point dependence violates multiplicative renormalizabil-
fective coupling to achieve a strong enough breaking of thety.
chiral symmetry, and such an enhancement seems inconsis- In Ref. [40] a method was presented to solve the renor-
tent with the characteristics of the gauge sector. A first atmalized quark equations in an MR truncation of quenched
tempt to extend the DSE studies beyond the Abelian approxiQED. There the explicit construction &f; is circumvented
mation by solving a truncated set of DSEs for the quarkby eliminating the renormalization constants from the equa-

F. Discussion

gluon and ghost propagators simultaneoygl) finds a dy-

tions. It is, however, not clear if and how the method could

100 : : , 1
10 F 1 0.95 |
| E—— T oo |
3 0.1 ]
s N 085t
R X s I I Ve — ] &
= 08 |
Y e — ]
m=1 X |
0.0001 [ motet e 0.75
- m =1e-2 ¥
16-005 [ - muoted 07 L - mh=1e-3
chlir_al ch%ral
16-006 : : : 0.65 . - -
0.01 1 100 10000 0.01 1 100 10000
2
x [Ageol x [A3¢p]

FIG. 6. Mass function and quark dressing function solutions from B#.and (39) using a(x) given by Eq.(37), with ag=2.6 and
Co=15, for various values of renormalized quark mags, with renormalization poinpzlAéCD= 10°. Note the influence of the quark mass
on the onset of the logarithmic tail M (x).
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be extended to QCD. Moreover, in contrast to my MR trun-cussions. This work was funded by Deutsche Forschungsge-
cation, their method requires an explicit construction of ameinschaft under project no. SCHM 1342/3-1.
nonperturbative verteAnsatzsatisfying the Ward-Takahashi
identity and conditions of MR, and the two truncation AppeNDIX: INFRARED BEHAVIOR OF THE STRONG
schemes are not equivalent. RUNNING COUPLING
The MR truncation scheme presented in this paper leads
to solutions that satisfy the principles of multiplicative renor- | briefly show how the value of the infrared fixed poing
malizability in an elegant way, without explicit constructions of the strong coupling should be determined from the
of full vertices or renormalization constants, while naturally coupled Dyson-Schwinger equations for the gluon and ghost
producing a large enough dynamical breaking of chiral sympropagators. The contributions of the various diagrams in the
metry in QCD. In a next step, the MR truncation derived forgjyon equation are, however, not yet fully understood, and |
the gluon-ghost systeri25] should be combined with that gescribe how the ghost equation alone can give us tight
proposed herein to solve the coupled set of DSEs for quarkys,,nds on the value af.
gluon, and ghost propagators, thus avoiding the explicit con- The DSE for the gluon propagator is
struction of a model running coupling. Consequently, an MR
preserving truncation scheme for the Bethe-Salpeter equa- -1_1n0 -1_ _gh/ny_ gl _ 39
tion, describing hadronic bound states, should be constructed[D“V(p)] [D(P)] "= m,,(P) = 7, (P) — m,5(P)
in a way consistent with the quark equation derived herein, — 79 (p)— 72 p)— =9 (p), (A1)
which respects the Goldstone boson nature of the pion. a a .
Wherewa andD,,, are the bare and full gluon propagators,
V. CONCLUSIONS and the vacuum polarization includes contributions from the

| have reformulated the coupled set of continuum equa-ghOSt loop, gluon loop, three-gluon diagram, four-gluon dia-

tions for the quark dressing function and dynamical mas$ram: tadpole dlagram, gnd quark qup. The DSE for the
function in QCD, such that, in the Landau gauge, all renor9h0St propagator, in Euclidean space, is

malization constants are eliminated, and the multiplicative[A( )] 1=[A%p)] 2

renormalizability of the quark dressing function and renor- P P

malization point invariance of the mass function are mani- d*q

fest. The kernels of the equations explicitly depend on the —Ncgﬁf Go(P,9A(9)G,(q,p)DH(r),
momentum evolution of the strong running coupling. The 2m* "

new formulation allowed me to construct a truncation which
preserves these properties and also satisfies the leading order
renormalization group equation improved perturbative "®iwhereN, is the number of colorsy, is the bare coupling\®

sults. This is achieved by assuming nontrivial cancellationsandA are the bare and full ghost propa atda“% and G
involving the full quark-gluon vertex in the self-energy loop, the bare and full ghost—gluc?n vertFi)cer) ganekp—q. Th/:a

such that no explicit construction of the full vertex and ver- :
tex renormalization constant are needed. general expressions for the full gluon and ghost propagators,

In order to perform numerical calculations of the dynami—def”"'z'”g the gluon and ghost dressing functiér®?®) and
cally generated mass scale, without solving the couple®(P”), were given in Eqs(4) and(5).
quark-gluon-ghost DSE system, | decoupled the quark equa- As mentioned in the main body of this paper, the coupled
tions from the gluon and ghost equations by introducing &quations Eqs(Al) and (A2) have been solved simulta-
model running coupling. This coupling satisfies the leadingneously in a number of previous studies using various trun-
order ultraviolet behavior known from perturbative QCD, cations, and there is convincing evidence thandG obey
and its nonperturbative behavior was constrained using thpower laws in the infrared, when all the diagrams in the
most recent results of gluon-ghost DSE and lattice studiegjluon equation are taken into account properly:
The coupling has an infrared fixed poink{~2.6), and its
behavior in the intermediate momentum region reproduces FrOG ) ~X?S,  Gr(X,u?)~X"*, (A3)
the qualitative features of the numerical DSE studies. ) ) )

The integral equations for the quark propagator are solveith x=p®, and whereFr and Gr are the renormalized
numerically for the chiral and massive cases, and the fermiof!uon and ghost dressing functions defined in 8.
mass and chiral condensate generated dynamically in the MR Because of Eq23), these power laws lead to an infrared
preserving truncation is of the order of the extension of thdixed point for the running coupling,
infrared plateau of the coupling. The generated scale is about
three times larger than what is found using the MR-violating,
bare vertex, Abelian approximation, and of the right order of

magnitude to perform hadron phenomenology, without infra-ag explained in detail in Ref25], the ghost and gluon equa-
red enhancement in the strong coupling. tions each typically yield a relation between the infrared
fixed pointay and the leading infrared exponest

(A2)

ao= lim a(u?) Fr(x,u?)G3(X, u?)—constant. (A4)

x—0
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when substituting the power lawé?3) in the coupled equa-
tions (A1) and(A2) and equating the coefficients of the lead-
ing power ofx for x—0 on both sides of the equations. The
functions ygn(«), xgi(x) are computed from the vacuum
polarization integrals, and a consistent infrared power solu-
tion requires the gluon and ghost expressions in(B§) to
be satisfied simultaneously: S
Xgh(K) = Xgi(K). (A6)
The solution of this equation yields the value of the leading
infrared exponenk, and the corresponding, can then be
computed from Eq(A5).

In a recent study25] | have shown that the gluon func- 0 : : : :
tion xqi(«) is a complicated object as it requires the compu- 0 0.2 0.4 06 08 1
tation of the nonperturbative loop integrals for all the gluon ¥
vacuum polarization diagrams in the infrared. However, FIG. 7. Fixed pointa, of the strong running coupling versus
the power laws are validhena consistent value of exists, infrared exponenk, as computed from the bare vertex approxima-
and the ghost equation can, on its own, provide very usefudon to the ghost equation for $8).
information. Indeed, the first identity of EAS) relates the
value of the infrared fixed point, of the strong coupling to
the infrared exponent of the dressing function@3), with-
out needing additional information from the gluon identity.
Therefore | now further analyze the infrared behavior of the
ghost equatiorfA2) in the bare ghost-gluon vertex approxi-

dqg 1
I(a,b)=f(2ﬂ_)4 yaz°

1 T(2-a)l(2-b)T(a+b-2)

mation, and computggp . = 5 — 2-a-b
In the Landau gauge, the bare vertex approximation of 16m I'@T'(b)T'(4-a-b)
Eq. (A2) for the renormalized ghost dressing function be- (A10)
comes
T (WA — Nea, Both sides of Eq(A7) yield a leading infrared powed, and
Gr(X,1?) S A3 equating their coefficients gives

XJ d*qTo(X,y,2)Gr(Y, u?)Fr(z,u?),
(A7)

where | introduced the full propagato@® and(5), the renor-

malized quantitie$12) and(13), usedZ,=1 (in the Landau
gauge, setx=p?, y=q?, z=r?, and

T S R
o(X,y,2)=— v +5

2z 4xy’
(A8)

1 (1 1) 1 1
—_ _+_
472 \y X

After substitution of the power lawgA3) in Eq. (A7), the
right-hand side yields a sum of integrals of the form

f d*qx*y*z?, (A9)

with a+ B+ vy=k—2. In Ref. [20] these integrals were

27 T(3-2K)1(3+ k)T (1+x)
“073N, T'2(2— k)['(2k)

. (ALY

where the Gamma function recurrence relation was used re-
peatedly to bring the expression in its simplest form.
Expression(A1l) gives the relation between the infrared
fixed point of the coupling and the infrared expon&nim-
posed by the ghost equation, and we illustrate this depen-
dence for SB) in Fig. 7. As mentioned before, the gluon
equationwill be consistent with this expression for some
value of « if the infrared power laws for the propagators are
valid. Previous DSE studig48-20,4] yielded values foi
between 0.4 and 1.0, depending on the truncation, and recent
lattice calculation$21,22 seem to indicate that is close to
0.5. Although the exact value of depends on the consis-
tency condition(A6) between the ghost and gluon DSEs, we

solved using spherical coordinates and the results were esee from Fig. 7 that the value af, is tightly bound, and will
pressed in terms of generalized hypergeometric functions. Ae in the interval[ 27/3,47/3] for SU(3), and the preferred

more concise, equivalent expression can be derjdéd by
noting that integrals of typ€A9) are typically encountered

value used herein igy(x=0.5)=57/6~2.6. Note that the
large values for the fixed pointyy~10-12, mentioned in

when applying dimensional regularization in perturbativesome previous studig48,19, have been shown to be arti-
calculations, and they are readily computed by introducindacts of angular approximations in the integration kernels

Feynman parameters, yieldifig2]

[20].
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