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We show that perturbation theory provides two distinct mechanisms for the powerlike growth of hadronic
cross sections at high energy. One, the leading Baiitskilin-Kuraev-Lipato BFKL) effect, is due to the
growth of the parton density, and is characterized by the leading BFKL expanefiie other mechanism is
due to the infrared diffusion, or the long range nature of the Coulomb field of perturbatively massless gluons.
When perturbative saturation effects are taken into account, the first mechanism is rendered ineffective but the
second one persists. We suggest that these two distinct mechanisms are responsible for the appearance of two
Pomerons. The density growth effects are responsible for the hard Pomeron and manifest themselves in small
systems(e.g. y* or small size fluctuations in the proton wave funcliomhere saturation effects are not
important. The soft Pomeron is the manifestation of the exponential growth of the black saturated regions
which appear in typical hadronic systems. We point out that the nonlinear generalization of the BFKL equation
which takes into account wave function saturation effé¢t®omeron loops” provides a well defined pertur-
bative framework for the calculation of the soft Pomeron intercept. The conjecture of a perturbative soft
Pomeron is consistent with picturing the proton as a loosely bound system of several small black regions
corresponding e.g. to constituent quarks of size about 0.3 fm. Phenomenological implications of this picture are
compatible with the main qualitative features of datapsp scattering.
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[. INTRODUCTION lution to the leading logarithmic approximation, but to all
orders in the gluon density. The resulting system of evolution
It has been long recognized that at asymptotically highequations is a set of functional equations, and its study so far
energies hadronic cross sections are dominated by soft nohas not been feasible beyond the double logarithmic approxi-
perturbative physics. In particular the validity of the Froissartmation.
bound for the total cross section requires a mass gap in the There exists however a regime in which the general non-
spectrum. The corresponding generation of the pion mass iinear evolution simplifies. This happens when a small object
QCD, or the generation of the glueball mass in pure gluody{such as a highly virtual photorscatters on a large target
namics, is a bona fide nonperturbative effect. However, evegsuch as a large nucleudn this case the leading nonlinear
though the asymptotics is expected to be nonperturbativeorrections are due to the fact that the projectile wave func-
perturbative _dynar_nics may well play an important role in thegjgn at high energy has a large multigluon component. As
preasymptotic regime. _ o _ soon as thewumberof gluons in these multigluon states be-
Indeed, cross sections for small objects, like highly virtual,ymes large, one has to account for the possibility that more
than one gluon scatters, even if the gluodensitymay still
e'ﬂe small. When the target is large, so that the scattering
ﬁrobability of a gluon is parametrically larger thag [for a
large nucleus of atomic numbéy, it is O(AY3ay)], these
corrections become important earlier than those due to high
density effects.

remains small. The main perturbative mechanism that driv
the growth of cross sections with energy is the Balitski
Fadin-Kuraev-LipatoBFKL) evolution[1]. It predicts that
cross sections grow exponentiallyges®, where o

=4 In 2N(as/m) to leading order inag. This behavior is . . . .
nonunitary, as it violates the Froissart boumet (/m2)t2. The system of evolution equations which takes into ac-

Heret is the rapidity;t = In(sm?), andm denotes the mass of count these multiple scattering effects has been derived first
the lightest particle in the theory. The main reason for thigh [5]- In [6] its largeN limit was derived independently in
lack of unitarity is the growth of the partonic density in the the dipole picture of7]. The advantage of the lardé, limit
hadronic system. As the partonic density reaches a criticdp that the(otherwise infinit¢ hierarchy of evolution equa-
value of order 14, the BFKL approach ceases to be valid, tions closes and becomes a single equation for the gluon
and one must take into account finite density effects. density (or dipole scattering probability We will refer to
This has been recognized and forcefully advocated in théhis nonlinear equation as the Balitsky-Kovcheg®K)
pioneering workg 2] and later in[3]. A more complete ap- equation. The relation between the equation$4dfand [5]
proach to QCD evolution at finite density has been develhas been discussed [i8], where it was shown that the latter
oped more recently if4]. These papers treat the QCD evo- is the limit of the former when the induced field density
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is small. This result was later rederived by similar methods One aim of the present paper is to furnish more details to
in [9]. the derivations of10]. This is done in Secs. Il and IV, after

The range of validity of the BK equation is wider than the short recourse to the BFKL evolution in Sec. Il. The
that of the BFKL evolution in the sense that it can be appliedother aim is to reflect on possible implications of these two
to scattering on large targets. If the target is large so that thdistinct perturbative mechanisms for the powerlike growth of
scattering probability of a given probe on it is of order unity, the total cross section. The first mechanism—the growth of
the BFKL evolution violates unitarity very quickly, at rapidi- partonic density—is naturally associated with small systems.
ties of ordeitgpg < 1/agN, . This violation of unitarity stems As long as the size of the system is small and also the num-
from the scattering probability rising above one locally in ber of partons not very large, one expects that the growth of
impact parameter space. In contrast with BFKL, the BK evo-density is indeed the leading mechanism. This suggests that
lution ensures that the scattering probability at a given imthe BFKL exponen{possibly modified by higher order cor-
pact parameter is always below unity. Nevertheless, as weectiong dominates the scattering cross section of small sys-
will discuss in the following, for scattering of @mall) pro-  tems. However, if a typical hadron is a dense partonic system
jectile of transverse sizg, on a(large target of sizeR,, the  rather than a dilute one, then the density growth mechanism
BK evolution violates unitarity for rapiditiest>tgy is rendered irrelevant by saturation effects. It is only the
x1/agNIn(Ry/%;). The reason for this violation is that the Powerlike growth due to the perturbative expansion in the
value of the maximal impact parameter that contributes tdransverse plane which remains effective in this case. One is
scattering grows exponentially with rapidity. Thus eventhus led naturally to conjecture, that it is this latter mecha-
though the scattering probabilities remain unitary, the total!'S™M that"|s responsible for the experimentally found “soft
cross section grows exponentiallys explet!, and violates FOmeron” behavior of hadronic cross sections.

the Froissart bound. This is the main resulf ®0]. We can Associgting th_e soft Pomero_n with a perturbative phe-
. : nomenon is certainly unconventional. All models of the soft
give a crude estimate of the exponentbut we are not able

to perform a reliable analytical calculation at this point Pomeron that we are aware of, try to expl_aln the power
. . . “growth of cross sections by a nonperturbative mechanism
quever the num_erlcal _results tt1] give '?:O'75"' which 12,13. On the other hand, this power growth of the cross
is indeed _compatlble with our rough estimate. Thus the B ection implies by the extension of Heisenberg’s argument
exponent is smaller than the BFKL one, but not very S|gn|f|-[14] the powerlike distribution of “matter” in impact param-
cantly. _ ~ eter space. Perturbation theory naturally provides such a
The reason why at high enough energy the BK evolutionyechanism, since it operates with massless gluons and thus
ceases to be valid is that the projectile wave function betong range Coulomb fields. Thus it could well be that the role
comes dense, and further evolution is affected by the higlof nonperturbative physics is limited to taming the powerlike
density effects in the projectile wave function. The onset ofperturbative growth in asymptotia, rather than to provide an
these corrections is dt<1l/agN¢In(1/ag). As discussed be- additional mechanism for a powerlike growth in the pre-
low, the gluon density in the center of the projectile is largeasymptotic regimé.
at energies at which large values of the impact parameter For this scenario to be viable, the basic saturated
become dominant. Thus, finite density corrections in the cent‘black” ) building blocks of hadrons must be themselves
tral region are important. Their main direct effect is to slowsmall in size, so that the perturbative Coulomblike structure
down the growth of density in the central region, but thisof the gluon fields is still relevant at these distances. It has
must also have a large effect on the growth of the scatteringeen pointed out repeatedly in the literature that the distance
probability at large impact parameters. As we will discussscale associated with the constituent quarks is much smaller
below, this growth at large impact parameter is due to theéhan the scale of confining physics. Indeed, the models
long range Coulomidor Weizsaker-Williams fields origi- [12,13 deal with scales of order .3 fermi. The picture we
nating from the fluctuation of the color charge in the centralsuggest therefore, is that of a proton containing three small
“black” region. The finite density effects inevitably reduce “black” constituent quarks with the size about .3 fermi in the
the magnitude of these fluctuations and therefore also thproton rest frame. As the proton is boosted, the radius of
Coulomb fields which feed the periphery. We expect thereconstituent quarks grows with half the soft Pomeron power,
fore that these corrections are likely to reduce the exponen-xs®. The mechanism of this growth jserturbativeand
tial e significantly. The proper calculation of the exponentialthe power itself should be calculable from the full nonlinear
e must involve the analysis of the full nonlinear equation, QCD evolution equatiof4]. Section V of the present paper

including the wave function saturation effe¢ts. is devoted to a more detailed discussion of this scenario.
We note that although it is claimed verbally[®] that the equa- 2We note that the models dfl2,13, when translated into our
tions of[4] should be equivalent to those [&] not only for small  language try to provide an alternative nonperturbative mechanism

induced fields, but also in general, the actual mathematical analysfer the growth of the density rather than for the growth in impact
of [9] does not justify this claim. The mathematical analysi$adf  parameter space. Since the exponent governing this growth is sup-
(up to notational differencéss equivalent to that off8], where the  posed to be much smaller than the perturbative one, it is hard to see
origin of the differences between the result§®fand[4] has been  how this sort of mechanism can survive as the leading one when
discussed. juxtaposed with BFKL.
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[I. THE TWO EXPONENTS OF THE BFKL EQUATION The high density at central impact parameters is not the

. . . only source of growth in Eq(3). The gluon density does
To illustrate the perturbative features of high energy reac'cgiecrease towards the peripheral impact parameters, but it
. X ._does so rather slowly. For a given transverse momerkum

(DIS). The subprocess relevant to strong interaction physma1e density stays finite up to impact parameters of order

is the scattering of the photon of virtuali§? on a proton. In 21N, : X .
the parton model, the photon counts the number of chargel({jﬁ'(b Kky)=ad. One cannot establish the exact proportionality

artons in the proton. The scattering cross section is then oefficient from Eq,(3), since the validity of this equation
P b ' 9 does not extend to such large impact parameters. However

impact parameters of order bifkk,) = vag with very smally

are still covered by Eq3). For such impact parameters the
density is still exponentially large, although parametrically
smaller than inside the “diffusion radius.” These peripheral
where the first factor is the parton level cross section whildmpact parameters do not contribute to the leading BFKL
N; is the number of partons of a given species in the protonexponential. When the density is integrated over the impact
The number of partons depends on both the resolution scaarameter plane to calculate the total number of gluons, one
Q2 and the energy at which the proton wave function isobtains the leading BFKL resultN(t)=[d’b¢(b,t)
probed,x=[Q?%/(Q?+W?)]. Here W denotes the center of =aexpwt which is dominated by the impact parameters

a

Q?Z e?N;(Q.x),

opis(Q,X)= (1)

mass energy of th@/*p system. One can define the phaseWithin the diffusion radius. However the contribution of the

space density of partong,(k), in terms of which

N(Q%x)= Ldzb f o KA, )

wherek is the intrinsic transverse momentum of the parton
andb is the impact parameter at which the parton is found i
the transverse plane.

Although the photon directly counts the number of

charged partons, i.e. quarks, at lawthe proton wave func-
tion is dominated by gluons. The number of quarks is the

directly determined by the gluon content of the wave func-

tion. In the following we will therefore concentrate on the
gluons only.

At low X, in the leading logarithmic approximation, the
gluon density¢ is determined by the asymptotic solution of
the BFKL equation1]. According to this solution, the dis-
tribution of gluons is

Here t=In1/x is the rapidity, ®=4 In 2N.a/7 and a2
=147(3)N.ag/7 with ¢(n) being the Riemann zeta-
function, £(3)=1.2@ ... . This distribution depends also

In2b2kk,

a%t

d(b,k,x,kg) exp{ wt— €]

n

peripheral region is by itself also exponentially increasing.
Were we to exclude the central impact parameters from the
integration region, we would still get an exponentially large
contribution of the form exfgad}. The exponent here is
smaller than the leading BFKL one, and thus gives a negli-
gible contribution to the total cross section within the BFKL
framework. However, this exponent is nevertheless present,
and its physical origin is quite distinct from the exponential
growth of partonic density.

The exponential growth of the cross section violates the

nFroissart bound which requires the total cross section to

grow not faster than the second power of the logarithm of
energy

s | 2 S (5)
OtotalS —2IN"—.
mﬂ' mﬂ'

The leading exponential growth of the BFKL cross sec-
tion is of course unphysical at high enough energies. Taken
at its face value Eq(l) in conjunction with Eq.(3) would
mean that the probability for scattering of a strongly inter-
acting probe at fixed impact parameter grows without bound
at large energy. This is inconsistent with the fact that the
probability cannot exceed 1, and violates unitarity of the
scattering probability at fixed impact parameter. The reason
is that a strongly interacting probe has finite probability to

onkg which characterizes the initial transverse momentum ofnteract with more than one gluon at fixeédvhen the gluon

the gluon which gave rise t¢ through the evolution to high
t. Formula(3) is valid for impact parameters which are not
too large, namely

0<Inb?kky<at. (4)

The striking feature of Eq3) is that even if at low rapid-

density at fixed impact parameter and fixed resolut@h
exceeds X . Thus the cross section is not proportional to
the number of gluons anymore. Multiple scattering effects
must be properly taken into account in order to relate the
gluon density with the scattering probability.

A nonlinear QCD evolution equation that takes into ac-
count these multiple scattering effects has been derived by

ity to one starts with a single gluon, after evolution to high Balitsky [5]. Its largeN. version was obtained by Kovche-

enought, the density of gluons at small impact parametersgov [6] using Mueller’s dipole model approach. In the next
becomes exponentially large. Within the diffusion radiustwo sections we will discuss how far this perturbative resum-
Inbecat*’?, the overall scale of density is determined by themation goes beyond the simple BFKL framework towards

exponential factor eXmt}. Thus using Eq(3) in the gluonic
analog of Eq.(1) gives the total cross section which grows
exponentially with rapidity.

restoring the unitarity of the hadronic cross sections.
We start our discussion with considering the evolution in
the target rest frame.
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_ _ M z _ The first three terms in Eq9) are just the ones discussed
—q—YI BOOS>T < Y &+ 4y above, while the last term is the “virtual” correction which
I E— W X ensures that the dipole wave function stays normalized
. throughout the evolution.
z The following two properties of the BK equation E®)
: /Iyl a are important for our discussion. First, as stressed above, it
Targe N> N

]

within this approach the projectile wave function evolves

X] takes into account multiple scattering corrections. Second,
according to the linear evolution of the dipole model. Inter-

+
\ z

FIG. 1. Boosting thejq-dipole (x.y) generates the higher Fock e 1ot taken into account. This is seen explicitly e.g. from
componentq(x)q(y)g(z)) with a gluon at transverse positianin  the original derivation of6] where the density of dipoles in
the largeN,-limit, this corresponds to the generation of dipoles o projectile wave functiom,(x,y) satisfies the linear
(x.2) and §/,2). BFKL evolution equation,

IIl. THE BK EVOLUTION IN THE TARGET REST FRAME

agN¢ 5 1
The essence of the BK evolution is the following. Sup- aimOoy) =52 f d z<(y_z)2n1(x,z)
pose at some initial rapidity, we are interested in the scat-
tering of a probe consisting of @q dipole on a large had- + ;znl(y,z)
ronic target, for example a heavy nucleus. The scattering (x=2)
probability of a dipole with legs at transverse coordinates (x—y)?
andy on a hadronic target N(x,y). Increasing the center of - 5 5 nl(x,y)) . (10)
mass energyor rapidity) amounts to boosting the dipole to (x=2)%(y—-2)

rapidity t=ty+ 6t. Under boost, the longitudinal Coulomb . L . .

field associated with the dipole acquires a transverse parf,"€ nonlinearity in the BK evolution equation comes
i.e., the dipole of transverse size-y generates an extra not from thg nonlinearities in the'evoll_mo_n of the prpjecule
gluonic component whose density is given by the equivalenfV@ve function, but from the nonlinearity in the relation be-
gluon content of the Weizsker-Williams field of the dipole, tween the dipole density and the scattering probability. This

see Fig. 1: is again given explicitly in[6]. A single dipole &g,Yo)
- at initial rapidity ty develops at a greater rapidity into
— — a wave function characterized by thme-dipole densities,
[aG0aty)—Ala(x)a(y)e(2)) © Nm(Xo,Yo,tolX1,Y1; - -+ Xm,Ym,t). If the single dipole scat-
with tering probability atty is y(Xx,y), the total scattering prob-

ability is given by[6]
_ asNe (x—y)?

AP= 272 7 (x—2)2(x—y)?" ™ i
N(X07YO’t):% iljl ¥(Xi,Yi)
In the largeN, limit, the gluon is equivalent to a quark-
antiquark pair. This and the global color conservation of the X Nm(Xo,YostolX1,Y1s + -+ XmyYm)- (1)

QCD evolution implies that the single_pqg state is equiva-
lent to two dipoles with coordinatesz andy,z respectively, h i
see Fig. 1. In the leading lard¢. approximation, the dipoles the rapidity.

scatter independently of each other. Thus the probability fO{. Th(la_ a_ccct)unttr?f Imu(ljt.iple sca;]teri_ngs tir? Ehe %K retshuné”;i'l_
the scattering of the pair of dipoles is ion eliminates the leading mechanism that renders the

evolution nonunitary. Since the scattering probability in the
N(x,z;y,z)=N(x,2)+N(y,z) —N(x,2)N(y,z). (8)  BKevolution is no longer proportional to the gluon density,
the scattering probability at any impact parameter does not
The last negative ternN(Xiz)N(y'Z)’ is the probabmty exceed Unity. This is obvious from E@) When the scat-
that both dipoles scatter in the same collision. Such doubletering probabilityN(x,y) reaches unity at all impact param-
scattering events should be counted once and not twice in tHers, the right hand side of the evolution equation vanishes,
total cross section, and the last term in E8). corrects the —and the probability stops growing.

The scattering probability depends on the target, but not on

overcounting ofN(x,z) + N(y,2). A number of numerical[15-17 as well as analytical
This leads to the following nonlinear evolution equation[18,19 studies of Eq(9) have been performed, and they all
for the dipole scattering probability: lead to the following consistent picture: Suppose one starts
the evolution from the initial condition of small target fields
d aNe [, (x—y)? i [or N(x,y)<1 for all x,y]. Then initially the evolution fol-
Gy =5 J Z(X_Z)z(y_z)zLN(X,Z)JrN(y,Z) lows the BFKL equation, since the nonlinear term in E3).
is negligible. As the scattering probability approaches unity,
—N(X,2)N(z,y) —N(x,y)]. (9) the nonlinear term kicks in and eventually the growth stops
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as the right-hand sidgéRHS) of Eg. (9) vanishes for over the dipole sizes. At every rapidity the main contribution
N(x,y)=1. The larger dipole§large (x—y)?] saturate ear- comes from the dipoles which are saturated, that is those
lier, with the smaller dipoles following at later “timetf’ The  with sizes abover’l(t). The scattering probability for a
following simple parametrizatiof20] of the scattering prob- virtual photon at high energgby high we mean here such
ability gives an adequate description of the evolution: that Qs> Q), is given by

N(x,y)=1—exp{— (x—y)2QZ(t)} (12)

with the saturation momentu@(t) a growing function of

rapidity. Thus at any given value of rapidity, all pairs of size

greater tharQg *(t) are saturated. o With the exponential dependence & on rapidity this
The exact dependence Qf on rapidity is not known, but  anslates into

both the numerical resul{45,17 and simple theoretical es-

timates[21,19 are consistent with the exponential growth of

the form

NG )= [, et ainQiQ.  an

N(y*)xcaegmasins/sy, (19

Qs(t) =A explag\t} (13)  and therefore

with N of order unity. This physical picture was anticipated
several years ago i21].

Does saturation of the scattering probabilagally in im-
pact parameter plane necessarily imply that the total crosshus the DIS cross section has an extra powenefative to
section unitarizes and satisfies the Froissart bound? The athe cross section of a purely hadronic process.
swer clearly is negative. The Froissart bound states that the This extra power oft is consistent with the numerical
inelastic cross section for the scattering of a haddipole) results of[17]. The basic question of unitarization however
on a hadronic target cannot grow faster than the square eémains the same: what is the dependende ofi rapidity ?
rapidity While there is no doubt that QCD is a unitary theory, and
therefore indeedR(t) «t, there is no guarantee that the non-
linear BK EQs.(32),(9) preserve this property. In fact simple
considerations indicate the opposite. This is especially clear
from Kovchegov’'s derivation6] (see alsd23]) where the
wherem is the mass of the lightest hadronic excitation. Todensity of dipoles in the projectile wave function is explicitly
calculate the inelastic cross section one has to integrate thgetermined by the BFKL equation. Saturation is the result of
scattering probability over the impact parameter. Thus, in thehe multiple scattering of the dense dipole system, rather
saturation regime than the slowdown in the growth of the dipole density. Since

) the transverse size of a system in BFKL evolution grows
o=7R(t), (15 exponentially with rapidity, there is little doubt that the BK

: . L ._evolution violates unitarity of the total cross section.
whereR(t) is the size of the region in the transverse plane in - \ye now present a simple calculation that establishes this

yvhich the s_catte_ring_ probability for hadronig size “dipo_les" point: Consider the BK evolution as the evolution of the
is unity. This rad|u§ itself depends onTo satlsfy the Fr0|_s— projectile[6,23] (see Fig. 2 Suppose at the initial energy the
sart bound the radiug(t) should grow at most linearly with 10 tile is a color dipole of siz&,. It scatters on a had-

t. The question of unlt:anty |§ therefore the que_stlon about th onic target of sizeR,. As the energy is increased, the pro-
rate of growth of the “black” region, and thus is completely ;o ije wave function evolves according to the BFKL equa-

separate from the question of saturation of the scatterin on. At rapidityt the density of dipoles of sizeat transverse

probability at fixed impact parameter. . . ._distancer from the original dipole is given by the BFKL
As an aside we note that for the deeply inelastic Scatterm%xpressior(see for examplé24)):

the unitarity bound is somewhat differef&2]. In this case
the projectile is a virtual photon. It does not have a fixed

hadronic size, but rather is characterized by a distribution of 5
dipole sizes. The perturbative wave function of the Vlrtualstrongly couples to quarks. The ultraviolet structure of such a par-

photqn IS. well known. An interesting prO_perty of this nge ticle is affected by the running of the strong coupling constant. The
function is that for a transverse photon it has a long tail OMbytraa(r 1) which replacesr,,in Eq. (17) introduces a logarith-

Opis™ aemaSTrRz(t)t. (19

<" (14
g m2 y )

The situation is very different for a vector particle which directly

; ; -2
the small dipole siderf<Q™?) mically decreasing factor which suppresses the contribution of very
1 small pairs to the total cross section. For such a particle therefore

P2(r) % e (16) the cross section satisfies the standard Froissart bound. Although

this is entirely academic, we note that our expression for the DIS
cross section is valid only at energies belosy such that
In such a projectile not all dipoles saturate at the same e, a.ns./s,<1. Above this energy higher order electromagnetic
ergy. The scattering probability thus is given by the integralcorrections must become important so thNgty*) also saturates.
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= (XY IIR FIG. 3. Under boost, the dipole density of the BK equation

Target —x,y)
Rest (x,y,)  BOOST
Frame

ty—et=t;+ 0t
(longitudinal)

evolves according to Eq20). If the density of dipoles of critical
sizeQ;l(to) is unity at some impact parameterthen the scatter-
""""""""" ing probabilityN(b) is unity as well.

FIG. 2. The BK evolution in the target rest frame. Under boost,
the initial dipole &q,yo) evolves into a wave function containing 5 1 Xxp agN,
m-dipole configurations with density determined by the BFKL ex- R(t)= 16 Q(t )ex o et (21
pression(20). The spread of these configurations in impact param- 0
eter space leads to a finite interaction probability even if the initiaIWith
dipole (xo,Yo) Was at very large impact parameter.

N a
16b? 1602 T =T 141145 (22
In——- , In>— 2 2 a
b.t)= XoX t—| 16b XoX
N(Xo0,X,0,0)= 27 (WaZt)S/ZeXp @t=in XoX a2t Numerically we find

(20) agN,
e=.87w. (23

2

with w=4 In 2N as/7 anda®=14{(3)N.as/ 7 andZ(n) be-

ing the Riemann ;eta—fupction. . Thus, as claimed we arrive at the exponential growth of the
Once the density of dipoles at some impact parameter ;-1 cross section.

becomes larger than some fixed critical number, the scatter- The exact value oé given in Eqs(22),(23) should not be
ng probab_lllty at this impact parameter saturates. The exaghyen too seriously. The point is that the explicit form of the
value of this number depends on the target, but importantly 'Hipole density Eq(20) was derived by a saddle point inte-
does not depend on rapidity. Thus the total cross section i ration, and as such is valid only for In(Bxx) < at.
given. by the square of the Ia_trge.st impact parameter at whic ince t,his condition is not satisfied by E@1), we cansnot
thg dipole density in t.he pl’Oje.CtI|e' wave function is of orderStrictly speaking use the saddle point expression B4).
unity. In order to estimate this directly from E®O, We  This ambiguity however affects only the numerical value of
choose the dipole sizein Eq. (20) asx=Qg "(to). Recall . 514 not the parametric dependence in @4). The reason

that according to Eq12), the dipole of this size scatters with 5 that even beyond the saddle point approximation the den-
probability 1, if it hits inside the radius of the targeg (in sity has the form

this view of the evolution only the projectile wave function

depends on energy, while the properties of the targetias 16b2

the same as ag). Thus if at some impact paramef(t) the 1 Inw

density of dipoles of siz&Q_ *(to) is unity, the scattering N(Xq,X,b,t)c —exp| agtF 0 (24)
probability at this impact parameter is unity as well; see Fig. X ast

3. Requiring the exponential in E(R0) to vanish we obtaih . _
The relevant condition i =0, and thus the solution para-

metrically must be the same as Eg1).

“More accurately one should require that the number of dipoles of _ Itis 'mpo_rtant to realize, that although we use the BFKL
sizeQ; (o) in the area of the overlap with the targetR2) is at  diPole density of Eq(20), our argumentloes notassume
least one. This refinement however only modifies the preexponerfhat the scattering probability &(t) is dominated by one
tial factor in Eq.(21), the calculation of which is in any case Pomeron exchange. The only assumption is that parametri-
beyond the scope of this paper. To determine this preexponenti&ally the total unitarized probability is the same as the one
factor one would have to treat more carefully the preexponentiaPomeron one. We use the criterion of dipole density only as
factors in Eq.(20). Equation(21) is thus valid only with exponen- an indicator for the magnitude of the total probability. The
tial accuracy. total scattering probability is given by
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[

P<b>=m2:1 Ym(X,1)Pin(Xo,%,b,1), (25)

whereP,(Xg,X,b,t) is the probability to find in the projec-
tile wave functionm dipoles of sizex at transverse coordi-
nateb within the area of the target radil, and y,, is the
probability of the scattering of am-dipole state. In fact one
should also sum over all dipole sizes smaller tlhi&n We
have neglected this summation in E&5) thus somewhat
underestimating the total probability. Singg= v, the prob-
ability is bounded from below as

P(b)= ‘ymZ:l Pi(Xo0.X,b,t). (26)

For dipoles of sizer_l, the scattering probabilityy is of
order unity. Thus the only condition that we use is

oo

2, PriXo,%,b,0=0(1) 27

whenever

©

n(Xo,X,b,t)= 21 MPy(Xo,X,b,t)=0(1).

m=

(28)

The only way this condition can be violated, is if the wave

function is dominatedwith exponential accuragyby the

PHYSICAL REVIEW B6, 034031 (2002
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FIG. 4. The BK evolution in the target evolution picture. As
long as the dipole leg is in the white region, only the evolution of
the scattering amplitudg (x) in Eq. (33) is nontrivial.

1 Ry
In—,

t>
asN¢ ™ Xo

(30

the BK evolution is nonunitary and cannot be applied.

This also illustrates that the applicability of the BK evo-
lution crucially depends on the nature of the target. If the
target is thick enough, so that the multiple scatterings be-
come important before the growth of the projectile radius
does, and if the target is wide enough, so that saturation
occurs before the projectile radius swells beyond that of the
target, then there is an intermediate regime in which the in-
elastic cross section remains practically constant and equal to
wRé. Then BK applies in this intermediate regime. However,
if the target is a nucleon, neither one of these conditions is
satisfied. Thus the tainted infrared behavior of the BFKL
evolution of the projectile will show up right away and will
invalidate the application of the BK equation.

IV. THE TARGET EVOLUTION PICTURE

trivial configuration with no dipoles, even when the average

dipOle number is one. Although the dlpOle model wave func- The BK equatior(g) is valid only in the |eading approxi_
tion is known to have relatively large fluctuations, there ismation in 1N.. Beyond the leading order the evolution for a
nothing in its known propertief7,11] to suggest such an gipole cross section does not close, but rather is the first in
extreme behavior. In fact for the explicit exponential modelihe infinite hierarchy of equations. This hierarchy was de-
used in[7,11] our condition clearly holds. o rived in [5]. It is useful to consider its interpretation in the
To summarize, in the target rest frame, the violation offrame where all the energy resides in the target. In this frame
unitarity by the BK evolution can be understood as follows:fyrther increase in energy leads to growth of the target gluon
Start with a single dipole scattering on the hadronic target ofie|ds. The evolution equation governs the change in the dis-
transverse siz&,. With increasing energy the projectile di- ipution of the gluon fields,, in the wave function of the
pole emits additional dipoles strictly according to the BFK'—target. In the particular gauge used i, the largest compo-
evqlutiqn. The density as well as the transverse _size of th@ent of the vector potential ™. In this gauge the S-matrix
projectile state thus grows. The increase in density leads tgy, scattering of a fast fundamental projectile on the target
increasing importance of multiple scatterings which arefigds is given by the unitary eikonal factar(x)
properly accounted for in the BK derivation. This ensures

that the scattering probability saturates locally. In the satura-
tion regime, as long as the size of the projectile sR({8 is
smaller than the target si#®,, the cross section grows es-
sentially only due to surface effects,

U(x)= Pexp[if deaA;(x)], (31)
whereT? are the generators of tf&U(N) group in the fun-
damental representation. The first in the hierarchy of evolu-
asNc tion equations derived ifb] is

2

et]. (29

o=mR3+ ZWROXOGX[{

d s (X_y)2
As long as @ N./2m)et<In(Ry/Xy), the cross section is &TKl_UT(X)U(y)):ﬁJ ZZW
practically geometrical. However once the energy is high
enough, so that the projectile size is larger than that of the X(NTITUT()U(y)]
target, the total cross section is determined by the former and U U@ ITTUT (2 U(y)])

grows exponentially with rapidity according to EQ1).

Thus at rapidities (32
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The averaging in Eq.32) is taken over the ensemble of field them we can only underestimate the rate of growth of the
strengths characterizing the target, i.e., over the target wavadius of the black region. The formal solution of Eg6) is

function. In the largeN. limit the averages in Eq.32) fac-
torize and one recovers EQ) with the identification(see
Fig. 4)

1
N(x,y)= N—CTr<1—UT(X)U(y)>- (33

A physically appealing reformulation of Balitsky’s hierarchy

of equations was given by Weigd@5] in terms of a nonlin-
ear stochastic process. The unitary scattering amplitude
evolves under the action of a stochastic source

dU(x) o[ @z (x-2)
gr _9UMIT WW[

00021 &(2)

+

iaSU(x)Taf A2z 0 () U(2)]
272 (X_Z)2 '

(34)

whereU(x) and U(x) are the unitary matrice€31) in the

fundamental and adjoint representations, respectively. Th
white noise¢ is characterized by Gaussian local correlations

(&1, 2) (1", 2") = 626, 8(t' —t")8(2' —2"). (35)

This Langevin equation gives rise to an infinite number of

equations for correlators & which coincide with those de-
rived in [5].

Consider then the Langevin equation formulation, Eq.

(34). Assume that at the initial rapiditty, the target is black
within radius Ry. This means that fofz| <R, the matrix

[aN, [t (X—=2);
1_U(X,t): 2772 ftodeZ|<R(T)dZZ(X_Z)2 gi(Z)-
(37)

Squaring it and averaging over the noise term gives

_ o asNe [t 2 ;
<[1 U(X’t)] >_ 27T2 ,LodTLz<R(T)d Z(X_Z)Z.
(39

As long asx is outside the black region ang| >R, we can
approximate the integral on the right hand side by

1 R?(7)
LKR(T)dZZ(x—z)Z:W X2 39
and Eq.(38) becomes
sNe 1 [t
([1-U(xt)]2)= aZW FftOdTRZ(T). (40)

As the black region grows, eventually it will reach the point
X. At this rapidity the matrixU(x) starts fluctuating with an
amplitude of order 1. Thus, wheR(t)=|x|, the left hand
Side of Eq.(40) becomes a number of order 1, which we call
1/e. We thus have an approximate equation Rit),

1 aN, [t
“RY(t)= —— f drR?(7), (41)
€ 2 to
or in the differential form
= 2N i 42
GRD=7"eR(). (42

group space. Let us concentrate on the painthich is ini-
tially outside of this black region. The matrld(x) then is
close to unity. Thus there is no correlation betwékix) and

U(z), and the second and third terms on the right hand side

exponentially large

agN¢

4

R(t)= R(to)exp{ e(t—to)}. (43)

of Eq. (34) can be set to zero. This is the random phaseye thus recover the result of the previous section.

approximation introduced if25] and used later ifil9]. Note

The approximations leading to E42) are not strictly

that this approximation does not linearize the evolution.gpeaking valid when the pointis on the boundary of the
Rather it corresponds to equating the nonlinear term in Ecp|ack region. First, Eq(39) is an underestimate of the inte-

(9) to unity for z in the black region.

gral, since the inequalityx| >R no longer holds. However,

As the target field ensemble evolves in rapidity, the radiughjs approximation can lead only to an underestimate of the

of the black region grows. As long as the poinstays out-

rate of growth ofR. Second, not for all points in the black

side the black region, we can approximate the Langevifegion the ternJ(x)U'(2) in Eq. (34) can be dropped. This

equation by
d _ asN¢ d2 (X=2);
aU(X)—— 2—777J|Z|<R 2x=2)2 &(2). (36

however is also unimportant, since wheiis on the bound-
ary of the black region, although the factofl
—U(x)UT(2)] is not strictly unity, it is still of order 1 for all
pointsz. It is in fact different from unity only for pointg in
the vicinity of x. Thus, although we cannot determine the

Here we did not indicate explicitly color indices, since they exact numerical value of, the functional form of the solu-
are inessential to the argument. We have also neglected thien as well as its parametric dependence is given correctly

contribution to the derivative ofJ that comes from gluons

by Eqg. (43).

originating from the sources outside the black region. Those From the point of view of the evolution of target fields the

contributions speed up the growth 0f and so by omitting

violation of the unitarity can be interpreted as follows. The
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RHS of Eq. (34) is nothing but the total Coulomb pendence on the impact parameter in EX).becomes para-
(Weizsaker-Williams field at pointx due to the color charge metric, and the growth of the total cross section is deter-
sources at pointg. The stochastic noise tells us that thesemined entirely by the shape of the initial condition. The
color sources are uncorrelated both in the transverse plarfroissart bound is then saturated for the exponential initial
and in rapidity. For such random sources the square of thprofile of N(b). The physics here is simple. In the local
total color charge is proportional to the area, and this is preapproximation of 15,16 the gluon density of the targéand
cisely the factorR? in Eq. (40). The incoming dipole thus the scattering probabiliti) evolves at all impact parameters
scatters on the Coulomb field created by a large incoherens according to the same exact translationally invariant equa-
color charge. Because the Coulomb field is long range, théion. The density locally grows at all impact parameters at
whole bulk of the region populated by the sources contribthe same rate. This rate is the same as the growth of the
utes to the evolution and leads to rapid growthRofif the  saturation momentum and is powerlike with rapidity, Eq.
field created by the sources was screened by some mass, #18). Thus if one starts from an initial configuration with the
evolution would be perfectly unitary. To illustrate this point, exponential density profilg(b) =exp{—b/Ry}, after the evo-

let us substitute the Coulomb fielck z)i/(x—z)2 in Eq. lution to rapidityt it becomes

(34) by an exponentially decaying fietdexp{—m[x—2]}. It is

straightforward to perform now the same analysis as before.

Equation(39) is now replaced by g(b,t)=exp{ —b/Ry+ a\t}. (46)

2 _ _ — — —
Ll<R(T)d zexp{ —m|x—z|}=exp{ —m[x—R]}. The scattering probability on such a system is unity at impact

(44) parameters for whiclg(b)=1. Thus the highest impact pa-
rameter that contributes to the total cross section at raptdity

: _ Bl 2
This leads to the substitutidR2— exp{mR} in all subsequent S Pmax=(@sA/Ro)t, and the cross sectidris o= by,

equations with the end result that «t? . For initial Gaussian distribution on the other hand, the
same argument leads to the linear growth of the cross section
c with t.
R(t)=asaty (45) This feature, namely that the asymptotic form @fis

determined by the initial distribution, is clearly an artifact of
the local approximation. The reason the local approximation

which in fact saturates the Froissart bound. leads to this behavior is that it neglects the effects of far

Thus the reason for the violation of unitarity is that the away black regionéwhereN=1) on the scattering probabil-
evolution is driven by the emission of the long range Cou-ity in the gray areagwhereN<1). As is apparent from our
lomb field from a large number ahcoherentcolor sources analysis in Eqs(36)—(40), it is precisely the effect of the far
in the target. away black regions that drives the growth of the total cross

To conclude this section we would like to discuss thesection. This is due to the long range Coulomb fields origi-
relation of our results with numerical studies of the nonlineamating in the central black region. In fact, the only contribu-
QCD evolution. Studies within the framework of the dipole tions we kept on the RHS of E¢B6) are due to dipoles with
model were reported ifll]. Referencg11] does not deal sizes of the order of the impact parameter. In this respect our
directly with the nonlinear BK equations, but rather with the discussion is orthogonal to that [df5,16]. It is clear from the
onium-onium  scattering in the framework of the dipole comparison of our results to those [df5,16 that the effect
model. However as is clear from our discussion at asympof these long range fields on the total cross section is far
totically high energies this distinction is irrelevant. The greater than that of the local translationally invariant part of
growth of the transverse size of the projectile eventually dethe evolution. Even if one starts from an exponential density
termines the behavior of the cross section irrespective of thgrofile, the full BK evolution generategowerlike and not
nature of the target. Indeed our results are in agreement witBxponential tails in the density at largeThese powerlike
those of[11]. The numerical results dfl1] clearly indicate  tails dominate the total cross section and lead to the universal
that even though the scattering probability is unitarized lo-exponential growth ot with rapidity. The local approxima-
cally in the impact parameter space, the total cross sectiofion is adequate for studying the behavior @f(t) in the
keeps on growing exponentially with(Figs. 9 and 10 of dense central region, as this is determined by local effects. It
[11]). From Fig. 10 of 11] we conclude that the power of the s however not a good approximation for the total cross sec-
exponential is about .#5 where » is the leading BFKL  tion, which is dominated by the evolution of long range Cou-
exponential. Interestingly, our rough estimé®3) is in rea-  |omb fields.
sonable qualitative agreement with this numerical result.

Our results Egs(21),(42) are in apparent contradiction
with the conclusions of numerical wofk5,16. The origin %In this discussion we neglect the dependenchl oh the size of
of this discrepancy is that these references solve (BH. the dipole. Strictly speaking such dependence is of course present,
within the local approximation, assuming that important con-and it determines the rapidity at which the asymptotic behavier of
tributions come only from the dipole sizes which are smallersets in. The asymptotic form af however is independent of the
than the impact parameter. Within this approximation the dedipole size.
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V. ONE POMERON, TWO POMERON; HARD POMERON, butions play the same role, since they are not associated with
SOFT POMERON high partonic densities. Since at very high energies the total
cross section is dominated by peripheral events, one does not

ent in the BK evolution is a direct consequence of the |argeex|pe_ct thi BK e\iolutmn to b? a valid app_roxmatlon in cal-
N, limit. In this limit one can neglect the interactions be- culating the total cross section. Comparing E(g0) and
tween the dipoles in the projectile wave function. Individual (48) we conclude that f9r |arg¢ targets, at rgp|d|t|e§ at which
Feynman diagrams which contain dipole-dipole interactiondh€ total cross section is dominated by peripheral impact pa-
are suppressed by powers oN1/ Thus, the dipoles in the rameters, the wave function saturation effects are important
projectile wave function do not interact during the evolution€ven for small projectiles. Thus even within perturbation
and they scatter independently of each other. However, th1€ory, the wave function saturation effects are bound to be
number of interacting diagrams grows very fast with thethe ones that determine the growth of the total cross section

number of interacting dipoles. As the number of dipoles inWith energy. _ _

the wave function which can interact with each other be- Could wave function saturation effects lead to a perturba-
comesO(N), the number of the suppressed diagrams pelive unitarization of the total cross section? As seen above,
comes O(N?) and the suppression disappears. At highthe violation of the Froissart bound in the BK approximation
enough rapidity, where the dipole-dipole interactions are imiS due to !arge and incoherent color pharge fluctuations in the
portant, the evolution equatiof®) breaks down and wave black region. If there was a mechanism to ensure strong cor-
function saturation effects start to play an essential role. Alf€lations such that the total color charge in a region of fixed
though Eq.(32) contains some N, corrections, those are sizel is zero, then the incoming dipole would feel the Cou-

only “group theoretical” corrections reflecting the fact that 1omP field only within the fixed distance from the black
region. Thus the new charges produced by the evolution

ould only “split off” the edges of the black region rather
an from its bulk. This scenario is equivalent to exponential
decay of the field, and would lead to a unitary evolution, as
expected for a confining theory like QCD. However, it does
not seem plausible that this type of correlation can be en-
forced on the system by a perturbative mechanism, nor that
perturbation theory can generate any kind of “mass” for the
gluons which would lead to exponential decay of gluon fields
generated by sources in the black region. We thus expect that
any perturbative corrections will generate powerlike tails of
gluon density at large distances from the black region. The
r2n(r)=expot}= l. (47  9rowth of these power tails with rapidity will inevitably lead
Qs to an exponential growth of the cross section.
_ _ ) We expect, however, that wave function saturation effects
Assuming that for a large targetis of order 1, this happens giminish the exponent significantly relative to the BK
for rapidities value (@N./27)e=.75». The evolution equations derived
in [4] go beyond the BK equation by including wave func-
toc iln Yo~ 1 In1/a.. (48) tion saturation effects. They provide a well-defined perturba-
) S (Neay) s tive framework for calculating this effect.
We have seen in the previous sections that QCD pertur-
The “subleading” largeN. nature of these corrections is bation theory predicts the existence of two distinct physical
clear if one traces back the explidi, dependence of Eq. mechanisms for the power growth of hadronic cross sections
(48). In fact, the coupling constamts occurs inn(r) only in  with energy. One is due to the fast growth of the partonic
the combinationegN,, since the BFKL evolution neglects densities, while the other is due to expansion of hadronic
dipole-dipole interactions. Thus theg in the numerator of states in the transverse plane. The first mechanism is the
Eq. (47) is explicitly subleading irN. and indeed accounts leading one for systems containing a small number of par-
for dipole-dipole interactions. tons. When the partonic density reaches the critical value of
The above illustrates that the BK resummation improvesorder 1k, further growth of the density is cut off by the
on the BFKL evolution when the target is dense, that is theperturbative saturation effects. The transverse expansion
scattering probabilityy is larger than orders. On a large  mechanism is however likely to survive in this situation, and
nucleus of atomic numbek one expectsxa A3 and thus  thus it should become the leading driving force for the per-
in this case BK resums all corrections in powersaA®  turbative growth of cross sections in dense systems.
[6]. However even in this case the validity of the BK equa- The first mechanism with the perturbative BFKL expo-
tion remains limited. The scattering probability is only ~ nent of around .3 .4 fits very nicely with the so called hard
large at central impact parameters. At peripheral impact paPomeron utilized to fit the hadronic cross sections of small
rameters the density in the target drops to zero, and so for theystemq26]. The exponent due to the transverse expansion
peripheral scattering events the applicability of BK is nohas not been calculated yet, although the equations which
better than that of BFKL. In particular, the diffusion contri- determine it have been derived [i4]. Although we do not

The linear evolution of the projectile wave function inher-

at finite N a gluon is not strictly equivalent to @q pair. It
does not contain the corrections due to the interactions
gluons(or dipoles in the projectile wave function.

The interaction probability of a dipole of sizewith an-
other dipole of similar size in the projectile wave function is
of the orderagr?n(r), while the probability of the direct
interaction with the target ig(r). The multiple scattering
corrections are thus more important as long @s?n(r)
<v(r). The projectile wave function corrections become
important as the density grows so that
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know yet the value of this exponent, we know for certain,
that it is smaller than the BFKL one. One is naturally led to

ask whether this perturbative growth of the transverse size of

. : BOOST
saturated systems underlies the experimentally observed
power growth of the cross sections in purely hadronic pro- tg—st=tgdt

cesses, likepp andﬁp. This type of expansion, and with it

the pO\tN?_rhk”e ?]r_ovr\]/th of the cror;ss seﬂcitlon, fh%m? Cef;]se at FIG. 5. Schematic picture of the proton as a loosely bound sys-
asymptotically high energies, where the perturbation th€0lYa, of three constituent quarks which provide “black” building
must become invalid. blocks at initial rapidityt,. Under boost, the blackness of these

This picture suggests that nonperturbative effects ar@egions does not change since the gluon density is saturated, but the
called for only in order to unitarize the cross section attransverse size of the black region grows.

asymptotically high energies, but not in order to furnish the

mechanism for its fast growth in the pre-asymptotic regimesma|l constituent quarks. The nonperturbative confining
This is also natural from the following perspective. Theforce keeps these quarks confined within the spatial region of
Froissart-like behavior is associated with the existence of @aadius .8-.9 fm.

gap in the spectrum, as can be illustrated by a simple and A quantitative analysis of the nonlinear evolution equa-
intuitive argument due to Heisenbdry]. In a theory with a  tions[4] which could substantiate our proposal of the pertur-
mass gap, the profile of the distribution of matter density inbative soft Pomeron, is not available yet. There are however
any target must decay exponentially at the periphg(i) some qualitative consequences of the above picture that can
o exp{—mb}. As this target is struck by a projectile, in order be compared to experimental data. Let us check first whether
to produce an inelastic scattering event at least one particle value of the cross section in our model is in rough agree-
must be produced. Assuming that the scattering is local in thg'ent with experiment. The total cross sectionpgf scatter-
impact parameter plane, the region of the overlap of thdnd at the lowest energy where the Reggeon contributions are
probe and the target must therefore contain energy at lea8ot important,/sx50 GeV, is 45 mb. The total cross sec-
equal to the mass of the lightest partiate, For scattering at  tion for the scattering of two black disks of diameteis
energyE=s/m in the frame where all the energy resides in 27d°. Thus in the simplest model in which the proton is
the target, the target energy densitEis(b). Thus the scat- cpmposed of three completely “t')Iac'k" constltueznt quarks of
tering can only take place for impact parameters smaller thafli2meterd, the totalpp cross section is 8 3x27d”. Equat-
those that satisfy Eexp—mb=m. Thus bpa, ing this to 45 mb we findl=.28 fm. This should be consid-

_ N : : ered as a lower bound on the valuedoit is more likely that
(Lm)inis/, which is equivalent to the Froissart bound. the constituent quarks are only black in the center and have

Conversely, if the cross section grows as a power of energ rav peripheral reqions. see Fid. 5. For periphacakvents
then the density distribution in the target is not exponentiaxéj y perph g i 9. 0. FOT perpheagever
he scattering occurs with probabiliti<<1. Incorporating

. . Y : 1\
but powerlike. With p(b)eb™" one obtainsbya<s™. this roughly as an average “grayness” factor in the formula
r the cross section gived=.28f "2 fm. For f=.5 we

Since the power growth of hadronic cross sections persists i
a large interval of energies, one expects that for a range aved=.4 fm. We may thus think of the proton as a collec-

impact parameters the density distribution in hadronic stategqn, of three loosely bound constituent quarks each described
is powerlike. Perturbation theory provides a natural explanaby a disk ofd=.3—.4 fm which is essentially black in its
tion of such a powerlike distribution. The tails of perturba- center but gray at its boundary, see Fig. 5.

tive distribution are due to massless g|u0n fields emitted This picture is quite remarkab'e' since the “active” area

from the color charges in the target. Even though the target ifaside the proton in our model is much smaller than the
neutral, it always possesses a multipole moment of somgroton radius and thus one may have worried that the model
order, and thus perturbatively is always accompanied by @ill underestimate the total cross section. This however does
long range powerlike tail of a massless gluon field. The prenot happen. Further support for this picture comes from the
condition for the applicability of this perturbative mechanismratio o ,,/opp which is very close to 2/3. The Pomeron
in hadronic systems is that hadrons themselves are built froroontributions to the total hadronic cross sections are param-
small “black” building blocks. As explained earlier, the etrized aso,,=21.7G*%%® and o,,=13.63%8%[28]. This
gluon fields at the periphery are emitted from the bulk of theis consistent withr having two constituent quarks.

black disk, and not from its boundary. Thus, in order to ex- Another feature of the model is that although the quarks
plain the preasymptotic powerlike rise of hadronic cross secare black, the proton itself is not. Thus we expect the ratio of
tions by perturbative Coulomb-like gluon fields, the radius ofthe elastic to total cross section to be well below the black
these black region must be smaller than the confining scaldisk value of 1/2. The experimental value of this ratio at
of QCD. It is in fact widely believed that QCD does natu- Js=50 GeV is indeed just below 1[28].

rally contain the scale of the right order—the scale associ- Another global characteristic of the scattering is the radius
ated with chiral symmetry breaking. In particular the radiusof the proton as measured via the shrinkage of the elastic
of a constituent quark is believed to be at most .3 fm andeak, do, /dt= exp{(R¥4)t}. For the elasticpp scattering
perhaps even smallg27]. This supports the phenomenologi- this gives the value oR consistent with the proton radius
cal picture of the proton as a loosely bound system of thre®=.8 fm [28]. Again at first sight this sounds like trouble,
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since it is much larger than the radius of a constituent quarkin pp scattering there are rare proton configurations which
However one should realize that the radius of the individualdo not have the typical hadronic structure, but contain quarks
quark is not relevant for this particular quantity. The processlosely bunched together in coordinate space. Those are the
is elastic if the proton as a whole emerges from the interacconfigurations responsible for the color transparency effects
tion intact. Thus indeed it is the radius of the proton and noin the hadronic scattering9]. These configurations are rare

of a quark that should determine tielependence of the and short lived. Thus they do not have time to develop the
elastic cross section in our model. The radius of the quari@luon clouds around the quarks that could make them
may emerge in a similar way in the processes “elastic” with “black.” Thgse conflguratlons will predomnjantly evolve to-
respect to individual constituent quark scattering. WhethelVards the increase in density, and thus will have the energy

one can define a subset of final states that correspond to sufﬁg_enden;:ezgf iﬂetharﬁ Pgn;eron. This is consiftelnt W(;th the
a process is an interesting question, but at present it is n {ndings o [26] that & hard Pomeron is present already in

clear to us how to do it. purely hadronic processes. _
The picture of the proton as built from three small con- On the other hand one does not necessarily expect the soft

stituent quarks was invoked in the nonperturbative model fOPomeron to appear inZDIS even at I@d. The reason is that
the high energy scattering if12]. The physics off12] is even.tho.ugh at lowQ* the (DIS) cross section has large
however quite different from that of our proposal. The contributions from the photon fluctuations into the states of

quarks themselves ifi12] are not thought of as being black, hadronic size, these states do not live long enough on the
and the growth of the quark-quark cross section is due to thﬁadromc time scale, and thus do not have time to develop
increase of the density of the gluon cloud surrounding a ense gluon clouds aroun_d the quarks. The energy depen-
individual quark, rather than to the increase in its transversﬁence of such large but Q|Iute states would th_en be c_)f the
size. Referenc¢l3] also appeals to the scale of .3 fermi ard Pomeron na'ture. This appears to be consistent with the
although not explicitly in connection with the size of con- recent results which do not require the soft Pomeron to fit

2
stituent quarks. Again, however the mechanism of th(P'SPdahta evin at very smaﬂ% [3;0]' thi o is that
growth of the cross section [13] appears to be the same as erhaps the most appealing feature of this scenario s tha

the leading BFKL mechanism, that is the growth of gluonicit giyes hope to. understand_the soft Pomeron within th? well
density. The role of instanton effects [a3] is to limit the ~ d€fined,bona fide perturbative framework. The equations
pwat resum the wave function saturation effects have been

luon emissions only to within the transverse sizes smaller, . . . . ;
g y derived in[4]. Even though their numerical study is probably

than .3 Fermi, and thus to cut off the expansion in the trans= ; :
verse plane. In contrast our picture assumes that nonpertu’?jUCh more involved than that of Eq®),(32), we think the

bative effects(perhaps instantohsare responsible for the question is interesting enough to motivate such an undertak-
buildup of a black gluon cloud around each quark at low'n9:
energy. The subsequent evolution in energy is dominated by
perturbative swelling of these black regions. Eventually,
when the size of the quarks reaches confining scale, other This work has been supported in part by PPARC. U.A.W.
nonperturbative effects kick in and cut off further powerlike thanks the Department of Mathematics and Statistics, Uni-
growth of the cross section. The physics of these nonperturersity of Plymouth for hospitality while part of this work
bative effects is presumably the physics of confinement. was being done. We are indebted to J.G. Milhano and H.
We note also that the two distinct physical mechanismaNeigert for interesting discussions during the early stages of
for two Pomerons have a consequence that they will appeahis work. We also thank M. Braun, Yu. Kovchegov, E. Levin
with different probability in different processes. For exampleand K. Tuchin for useful discussions and correspondence.
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