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Nonperturbative effects from the resummation of perturbation theory

Taekoon Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Daejon 305-701, Korea

~Received 1 April 2002; published 26 August 2002!

Using the general argument in Borel resummation of perturbation theory that links the divergent perturbation
theory to the nonperturbative effect I argue that the nonperturbative effect associated with the perturbation
theory should have a branch cut only along the positive real axis in the complex coupling plane. The compo-
nent in the weak coupling expansion of the nonperturbative amplitude that gives rise to the branch cut can be
calculated in principle from the perturbation theory combined with the exactly calculable properties of the
nonperturbative effect. The realization of this mechanism is demonstrated in the double well potential and the
two-dimensionalO(N) nonlinear sigma model. In these models the leading term in the weak coupling expan-
sion of the nonperturbative effect can be obtained with a good accuracy from the first terms of perturbation
theory. Applying this mechanism to the infrared renormalon induced nonperturbative effect in QCD, I suggest
some of the QCD condensate effects can be calculated in principle from the perturbation theory.
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I. INTRODUCTION

The usual perturbation in the weak coupling constan
field theory is an asymptotic expansion. When the pertur
tion series is sign alternating it may be resummed, for
ample, in the manner of Borel resummation. However, wh
the series is not sign alternating, it usually implies the pr
ence of a genuine nonperturbative effect, and the Borel
summation of the perturbation series alone is in principle
sufficient for an adequate description of the true amplitud

The nonperturbative effect and the perturbation expans
are not totally independent; the former controls the large
der behavior of the latter. Even with this relation, howev
explicit calculations show that the nonperturbative eff
cannot be calculated from the perturbation series even w
the latter is known to all orders.

The purpose of this paper is to argue, by taking a clo
look at the general but heuristic argument that relates
nonperturbative effect with the perturbation theory, that so
parts of the nonperturbative effect, which usually include
leading piece in weak coupling expansion, can be calcula
in principle from the Borel resummation of perturbatio
theory along with the exactly calculable properties of t
nonperturbative effect.

II. CALCULABLE COMPONENT IN NONPERTURBATIVE
EFFECT

A general but heuristic argument that relates the nonp
turbative effect with perturbation theory goes as follow1

Let A(a) be an amplitude with perturbation expansion in t
coupling constanta:

A~a!5(
0

`

anan11 ~1!

1A good introduction can be found in@1,2#.
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and assume thatA(a) be real fora.0. I shall further as-
sume thatan at large orders is nonalternating in sign.
general, an diverges factorially due to renormalons o
instanton–anti-instanton pairs, and in principle Eq.~1! is
meaningless unless some kind of resummation is perform
on the divergent series. To do a resummation, consider a
series

B~a!5(
0

`

an~21!n11an11 ~2!

which is obtained from Eq.~1! by flipping the sign of the
coupling constant. Since fora.0 this series is alternating in
sign, it can now be Borel resummed, yielding a resumm
amplitudeBPT(a),

BPT~a![E
0

`

dbe2(b/a)B̃~b! ~3!

where

B̃~b!5(
0

`
~21!n11an

n!
bn. ~4!

One would expect thatA(a) could be obtained from the
Borel resummedBPT(a) by analytic continuation from the
positive real axis to the negative real axis in the complexa
plane. The problem is, however,BPT(a) is expected to have
a branch cut along the negative axis, and conseque
BPT(2a6 ie) will have an imaginary part. Therefore ana
lytic continuation alone ofBPT(a) cannot reproduceA(a)
which is by definition real fora.0. The expected resolution
of this problem is that the true amplitudeA(a) has a non-
perturbative amplitudeANP(a) in addition to theBPT(2a),
so when they are added together the imaginary parts f
each amplitude cancel each other, rendering the total am
tude to be real. That is,

A~a!5APT~a!1ANP~a! ~5!
©2002 The American Physical Society27-1
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with

Im@APT~a6 ie!#1Im@ANP~a6 ie!#50, ~6!

whereAPT(a)[BPT(2a), which may be called the pertur
bative amplitude, has now a branch cut along the posi
real axis in thea plane. Performing the analytic continuatio
in Eq. ~3! I obtain

APT~a6 ie!5E
06 ie

`6 ie

dbe2(b/a)Ã~b! ~7!

where2

Ã~b!52B̃~2b!

5(
0

`
an

n!
bn. ~8!

Note that, as I make analytic continuation ofBPT(a) from
the positive real axis to the negative real axis in thea plane
counterclockwise~clockwise! in the upper~lower! half plane,
the integration contour also should rotate counterclockw
~clockwise!, hence the6 sign in Eq.~7!.

Using the dispersion relation on the resummedAPT(a)
and Eq.~6!, we have

APT~a!5
1

pE0

` Im@APT~a81 ie!#

a82a
da8

52
1

p (
n50

` F E
0

` Im@ANT~a81 ie!#

a8n12 G an11. ~9!

Thus the perturbative coefficient in Eq.~1! can be written as

an52
1

pE0

` Im@ANP~a1 ie!#

an12
da, ~10!

which makes the relation between the nonperturbative ef
and the perturbation theory explicit. At large values ofn the
dominant contribution in Eq.~10! comes from the smalla
region, and so for large order behavior only the weak c
pling limit of the nonperturbative effect is required.

Now with Eqs.~5! and ~6! the amplitudeA(a) for a.0
can be written as the sum of the real parts of the perturba
and the nonperturbative terms:

A~a!5Re@APT~a6 ie!#1Re@ANP~a6 ie!#. ~11!

Equation~6! also shows that the imaginary part of the no
perturbative amplitudeANP(a) can be calculated in principle

2Throughout the paper whenever a Borel transform is defi
through a perturbation series like Eq.~8! it is assumed that the valu
of the Borel transform at a point beyond the convergence dis
obtained by analytic continuation.
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e

e

ct

-

e

-

from the Borel resummation of the perturbation theory. T
real part, however, is in general not calculable from the p
turbation theory.

The argument hitherto is well known, perhaps except
Eq. ~7! which allows me to relate the imaginary part from th
analytic continuation in thea plane to that arising from the
Borel integral. Now, my observation, which will play a cru
cial role throughout the paper, is that Eq.~6! suggests
ANP(a) have a branch cut along the positive real axis in
complex coupling plane, in order to cancel the imagina
part coming from the branch cut in the Borel resummed p
turbative amplitude. This rather straightforward observat
can have an important consequence: it renders some pa
the nonperturbative amplitude to be calculable from the p
turbation theory.3 In the weak coupling limit (a→0) the
approximate functional form ofANP(a) can be rather easily
determined from other nonperturbative techniques such
renormalization group argument or instanton calculatio
and the component, typically the leading one in weak c
pling expansion, that could give rise to a branch cut alo
the positive real axis can be easily identified. I then furth
fix this component to a more specific form bydemanding
that it give a branch cut only along the positive real axis; I
expect the nonperturbative effect should not have ot
branch cut, for instance, such as one along the negative
axis, since it would imply that the perturbation series~1! is
not Borel-summable even fora,0. The constraint on the
functional form from this step turns out to be sufficie
enough for me to relate the real part of the above-mentio
component to its imaginary part, consequently rendering
former to be calculable from the Borel resummation of t
perturbation theory through Eq.~6!.

In the next two sections I consider a few definite e
amples and show how this procedure can be realized
model calculations. In these examples I shall focus on
nonperturbative effect associated with the first singularity
the positive real axis in the Borel plane.

III. THE DOUBLE WELL POTENTIAL

The quantum mechanical double well potential with t
action

S5E F1

2
q̇22

1

2
q2~12lq!2Gdt ~12!

has instanton solutions, and the nonperturbative effects
to the instantons give rise to singularities on the positive r
axis on the Borel plane, causing same sign perturbation
ries.

Consider, for example,E(a) defined by

E~a!5
1

2
@E1~a!1E2~a!21#, ~13!

d

is

3The idea of rebuilding nonperturbative effects from perturbat
theory is an old story. To the author’s knowledge it was first spe
lated in @3#, and an approach similar to mine was observed in@4#.
7-2



r-
r

at

on
ro
ad

e
in
th
o
he
he

ta

o
re

b
ee
e
u
t

e
g
e

po-

ef-
ng
ut
ely

on
ust
ic
r-

nly
i-
ity
ion

rms

se.
q.
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wherea[l2 andE2(a), E1(a) are, respectively, the ene
gies of the ground and the first excited states. The Bo
transform

Ẽ~b!5 (
n50

`
an

n!
bn ~14!

of the perturbation series forE(a),

E~a!5 (
n50

`

anan11, ~15!

is expected to have multi-instanton caused singularitiesb
52nS0, where n51,2,3, . . . , and S051/6 is the one-
instanton action.

The large order behavior of the perturbation~15! is con-
trolled by the first singularity atb51/3. The nonperturbative
effect that causes this singularity is due to the contributi
of instanton–anti-instanton pairs, and can be calculated f
the potential of an instanton–anti-instanton pair, and re
@5#

ENP~a!5
1

pa
e21/3aF S lnS 22

a D1gED S 12
53

6
a D

2
23

2
a1O~a2ln a!G , ~16!

wheregE is the Euler constant.
Notice thatENP(a) has a branch cut along the positiv

real axis in thea plane, in agreement with our argument
the previous section. The minus sign in the argument of
logarithmic term, which causes the branch cut, arises fr
the required sign flip in the coupling constant to pick up t
nonperturbative effect from the attractive potential of t
instanton–anti-instanton pair@6#.

The imaginary and the real parts ofENP(a) now read

Im@ENP~a6 ie!#56
1

a
e21/3aF11

53

6
a1O~a2!G , ~17!

Re@ENP~a6 ie!#5
1

pa
e21/3a@2 ln~a!1 ln~2!1gE1O~a!#.

~18!

Note that the real part has terms, for example, the cons
terms within the bracket in Eq.~18!, that have nothing to do
with the imaginary part. These terms represent genuine n
perturbative effect and cannot be calculated from Borel
summation of perturbation theory.

Since in this example the nonperturbative effect can
calculated in weak coupling expansion there is no real n
to attempt to extract the nonperturbative effect from the p
turbation theory. However, for the sake of argument, let
suppose that we knew only that the nonperturbative effec
weak coupling expansion was given in the form:

ENP~a!}
1

a
e21/3a@ ln~a!1subleading terms#. ~19!
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In any event, inferring this form may not be so difficult sinc
the preexponential factor 1/a can be obtained by countin
the number of~quasi!zero modes, in this case two, and th
logarithmic term arises from the instanton–anti-instanton
tential at large distance.

We can now improve the form of the nonperturbative
fect ~19! by demanding that it have a branch cut only alo
the positive real axis in thea plane. Because the branch c
can arise only from the logarithmic term we can immediat
see thatENP(a) must assume the following form:

ENP~a!52
C

pa
e21/3a@ ln~2a!1subleading terms#

~20!

with C an unknown real constant. Of course, a comparis
with Eq. ~16! shows that the true value of the constant m
be C51. I now show that the leading term, the logarithm
term, in the real part~18! can be calculated from the pertu
bation theory starting from the ansatz~20!. The imaginary
and the real parts from this expression~20! are then

Im@ENP~a6 ie!#56
C

a
e21/3a@11subleading terms#, ~21!

Re@ENP~a6 ie!#52
C

pa
e21/3a@ ln~a!1subleading terms#.

~22!

To determine the leading term in the real part we now o
need to fix the constantC. This constant becomes the res
due, up to a calculable normalization, of the first singular
in the Borel plane, and can be calculated in perturbat
theory @7,8#. In fact, for the Borel resummation

EPT~a6 ie!5E
06 ie

`6 ie

e2(b/a)Ẽ~b!db ~23!

to have imaginary parts that can cancel the imaginary te
in Eq. ~21! the Borel transformẼ(b) must have a singularity
at b51/3 of the form

Ẽ~b!52
9C

p~123b!2
@11O~123b!#. ~24!

To determine the residue we now consider a functionR(b)
defined by

R~b!5Ẽ~b!~123b!2. ~25!

The difference betweenR(b) andẼ(b) is that the former has
a much softer singularity. Although it may appear thatR(b)
is regular atb51/3, it is easy to see that this is not the ca
In fact, for the imaginary parts from the Borel integral E
~23! to cancel the imaginary parts in~17!, Ẽ(b) should have
an expansion around the singularity
7-3
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Ẽ~b!52
9

p~123b!2 F12
53

18
~123b!

1O@~123b!2ln~123b!#G . ~26!

R(b) is, therefore, logarithmically@multiplied by (123b)2#
singular atb51/3, but bounded.

In terms ofR(b) the constant is given by

C52
p

9
RS 1

3D . ~27!

The essential point for the perturbative calculation of
residue is that the right-hand side of Eq.~27! can be written
as a convergent series. The perturbation series forR(b),

R~b!5 (
n50

`

r nbn, ~28!

is convergent on the diskubu<1/3 ~note the boundary is in
cluded!. Being bounded, though singular, atb51/3, R(b)
can be evaluated in series atb51/3.

We can now do some numerical checks to see how rap
the series~28!,when evaluated atb51/3, converges to the
known exact value. From the perturbative coefficients
E(a) given in @9# the coefficientsr n in Eq. ~28! can be
obtained. In Table I I give the first terms ofCN defined by

CN52
p

9 (
n50

N

r nS 1

3D n

. ~29!

Note thatC`51. The numbers show that fromC1 to C5 the
series approaches the true value in a steady pattern.

Since the positions of the singularities forẼ(b) are
known I can improve the convergence using an ‘‘optima
conformal mapping@10#

w5w~b!. ~30!

An optimal mapping for our case is thatR@b(w)# become as
smooth as possible within the convergence disk of the p
turbation expansion in thew plane

R@b~w!#5 (
n50

`

r̃ nwn. ~31!

An obvious strategy for an optimal mapping is to push
other singularities in the Borel plane except for the first o
far away from the origin. Here we consider a mapping

TABLE I. Sum of the firstN11 terms of the perturbation serie

for the normalized residue (C`5C̃`51).

N 0 1 2 3 4 5

CN 0.349 0.175 0.339 0.487 0.631 0.759

C̃N
0.349 0.109 0.502 0.650 0.862 0.994
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w5
12A123b/2

11A123b/2
. ~32!

This maps the first singularity tow5w0, where

w05
A221

A211
'0.171, ~33!

and all other singularities to the unit circle. Because the s
gularities ~other than the first one! in the w plane are rela-
tively farther away from the origin than in theb plane, we
expect the series in thew plane to give better convergence.
fact, the first terms shown in Table I ofC̃N , which is defined
by

C̃N52
p

9 (
n50

N

r̃ nw0
n , ~34!

show a definite improvement in convergence~note again
C̃`51).

The result of this exercise shows that the leading term
the nonperturbative effect caused by the instanton–a
instanton pairs on the ground state energy can be calcul
accurately~99% accuracy! with only the first six terms of the
perturbation series for the ground state energy.

IV. THE TWO-DIMENSIONAL O„N… NONLINEAR SIGMA
MODEL

This model is exactly solvable in 1/N expansion and mim-
ics many interesting features of quantum chromodynam
~QCD!. It has an asymptotic freedom, dimensional transm
tation, and most interestingly for us the infrared~IR! and
ultraviolet~UV! renormalons at the next leading order in 1/N
expansion. Moreover, it was through the studies of t
model @3,11–14# that the link between operator product e
pansion~OPE! and IR renormalons suggested by Parisi@15#
has become more transparent. This model can also provi
nontrivial test of our proposed mechanism.

The two-dimensionalO(N) nonlinear sigma model is de
fined by the~Euclidean! action

S5
1

2E d2x(
a51

N F ]msa~x!]msa~x!

1
a~x!

AN
S sa~x!sa~x!2

N

4p f D G , ~35!

wherea(x) is an auxiliary field, andf is the coupling con-
stant. At the leading order in 1/N the s fields get dynamical
mass

m25m2e21/f (m), ~36!

where m is the renormalization scale, through the vacuu
condensate of the auxiliary field

^0ua~0!u0&52ANm2. ~37!
7-4
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Equation~36! also defines the renormalization group~RG!
running of the coupling constant. Theb function in the lead-
ing order in 1/N is therefore given by

b~ f !5m2
d f

dm2
52 f 2. ~38!

I shall now test my proposed mechanism with the trunca
two-point function of thes fields

G~p2!5p21S~p2!, ~39!

which is known to all orders in OPE at order 1/N via the
exact calculation of the self-energyS(p2) in @16#. G(p2) can
be expanded in powers ofm2/p2, which corresponds to an
OPE, as

G~p2!5p2FC0@ f ~p!#1C1@ f ~p!#
m2

p2
1OS m4

p4 D G . ~40!

I keep here only the first two terms because I am focused
the nonperturbative effect associated with the first IR ren
malon. The first term contains the usual perturbation exp
sion, and the second term, which comes from the vacu
condensate ofa(x), is the nonperturbative amplitude th
gives rise to the first IR renormalon. The terms of high
powers inm2/p2 are associated with the higher renormal
singularities, and shall be ignored.

At the leading order in 1/N, C05C151. At order 1/N
they have a rich structure and read@16#

C0@ f ~p!6 ie#5
1

NE06 ie

`6 ie

dbFe2b/ f (p)S 1

f ~p!
F (0)~b!

1G(0)~b! D2H (0)~b!G ,
C1@ f ~p!6 ie#52

1

NE06 ie

`6 ie

dbFe2b/ f (p)S 1

f ~p!
F (1)~b!

1G(1)~b! D2H (1)~b!G , ~41!

where

F (0)~b!51,

G(0)~b!5
1

b
1

1

b21
2c~11b!2c~22b!22gE ,

H (0)~b!5
1

b
1B1~b!, ~42!

and

F (1)~b!5b221,
03402
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G(1)~b!52
1

b
12b224b111~12b2!

3@c~11b!1c~22b!12gE#,

H (1)~b!52
1

b
2

1

b21
2

1

11b
1B0~b!. ~43!

B0(b),B1(b), whose exact forms are not important for u
are analytic functions.

Note the renormalon poles atb5n, wheren is a nonzero
integer, in G(0),H (1). To avoid these poles the integratio
contour can be either on the upper or the lower half pla
for consistency, however, an identical contour should
taken forC0 andC1.

I shall identify the first term in Eq.~40! as the perturbative
amplitudeGPT and the second term as the nonperturbat
amplitudeGNP. Performing the integration overb in Eq. ~41!
it is then easy to see thatGNP at order 1/N is given by

NGNP@ f ~p!6 ie#52
m2

p2
@ ln f ~p!7 ip1real const1O~ f !#

~44!

52e21/f (p)$ ln@2 f ~p!7 ie#1real const

1O~ f !%, ~45!

where in the last step we have used Eq.~36!. Thus to the
leading order in weak coupling

NGNP~ f !52e21/f ln~2 f !, ~46!

which has a branch cut along the positive real axis in
coupling plane, again in agreement with my propos
mechanism. The origin of the imaginary part in Eq.~44! lies
with the ambiguity in obtaining the renormalized condensa
in this case the condensate of the auxiliary fielda(x), from
the dimensionally regularized condensate in 21e dimension
@3,11,12#. When the perturbative and the nonperturbat
amplitudes are added together this imaginary part is canc
by the imaginary part inGPT@ f (p)6 ie# coming from the
pole atb51 in G(0)(b).

From Eq.~41! the perturbation expansion forGPT@ f (p)#
can be easily obtained,

GPT@ f ~p!#5 ln f ~p!1const1 (
n50

`

anf ~p!n11, ~47!

with

a0522,

an5n! $@11~21!n#z~n11!22% ~ for n>1!, ~48!

where z denotes the Riemannz function. The logarithmic
term in Eq.~47! arises from the anomalous dimension of t
s fields.

It is instructive to see now that the logarithmic depe
dence in Eq.~44! can be obtained without knowing the exa
7-5
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solution for thes self-energy. To see this let us make t
renormalization scale dependence ofG explicit, which was
hitherto implicitly suppressed.4 G@p2,m2, f (m)# can be ex-
panded in OPE as

G@p2,m2, f ~m!#5p2H C̄0@m2/p2, f ~m!#

1
1

p2
C̄1@m2/p2, f ~m!#^0uau0& um

1higher dimension termsJ , ~49!

whereC̄i are the Wilson coefficients, and the ignored ter
involve operators of dimension four or higher. From the R
equations for the coefficientC1@m2/p2, f (m)# and the con-
densatê 0uau0& the second term in Eq.~49! can be easily
written up to a momentum independent factor as

C̄1@1,f ~p!#e21/f (p)

3expF2E f (p)

@2gs~ f 8!1ga~ f 8!#/b~ f 8!d f8G ,
~50!

where gs( f ) and ga( f ) denote the anomalous dimensio
for the s and a fields, respectively. Comparing this ter
with the second one in Eq.~40! we can identify

C1@ f ~p!#5C̄1@1,f ~p!#expF2E f (p)

@2gs~ f 8!

1ga~ f 8!#/b~ f 8!d f8G . ~51!

Therefore the logarithmic term in Eq.~44! can arise from a
logarithmic term at order 1/N in the Wilson coefficient
C̄1@1,f (p)#, and the anomalous dimensionsg$s,a% , which
are nonvanishing at order 1/N:

g$s,a%~ f !}
1

N
@ f 1O~ f 2!#. ~52!

What is noteworthy here is that the contributions from the
sources when added together conspire to absorb the im
nary parts in Eq.~44! into a cut-function. If, for example, the
logarithmic term had a different coefficient than that given
Eq. ~44!, then after the absorption of the imaginary parts in
a cut-function@ ln(2f)# there would have remained a log
rithmic piece@ ln(f)# which has a cut along the negative re
axis in the coupling plane. This would have failed my arg
ment that the nonperturbative amplitude has a cut only al
the positive real axis.

4This was allowable because the renormalization scale de
dence inG(p2) can be factored out.
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Now, once I know the form of the anomalous dimensio
for thes anda fields, and the logarithmic dependence in t
Wilson coefficient at order 1/N, the nonperturbative ampli
tude can be written with no help from the exact solution
the s self-energy as

NGNP@ f ~p!#}e21/f (p)@ ln f ~p!1subleading terms#.
~53!

Then demandingGNP( f ) have a branch cut along the positiv
real axis in the coupling plane I can refine Eq.~53! to

NGNP@ f ~p!#5Ce21/f (p)$ ln@2 f ~p!#1subleading terms%,
~54!

with C an undetermined real constant, from which I can o
tain a relation valid in leading order in weak coupling:

Re@GNP~ f !#57
1

p
Im@GNP~ f 6 ie!# ln f ~p!

56
1

p
Im@GPT~ f 6 ie!# ln f ~p!. ~55!

Because the imaginary part of the perturbative amplitude
be calculated from Borel resummation this relation rend
the real part of the nonperturbative amplitude to be cal
lable from the perturbation theory.

The leading term inGNP( f ) depends only on the constan
C. I can calculate this constant from perturbation theory
ing the method used in the previous section for a sim
purpose. First, I note that for theGPT( f ) to cancel the imagi-
nary part coming from Eq.~54! at positive f (p) the Borel
transform ofGPT( f ) should have the following singularity a
b51 ~the first IR renormalon!:

G̃PT~b!5
C

12b
@11O~12b!#. ~56!

This shows that the constantC becomes the residue of th
renormalon singularity and can be written as@7,8#

C5R~1! ~57!

with

R~b![~12b!G̃PT~b!. ~58!

Because of the UV renormalon atb521 the residueC can-
not be directly evaluated by the perturbation expansion
R(b) around the origin. To map away other renormalo
than the first IR renormalon I introduce a conformal mapp

w5
A11b2A12b/2

A11b1A12b/2
~59!

which sends the first IR renormalon tow51/3 and all other
renormalons to the unit circle. Because in thew plane the
first IR renormalon is the closest singularity to the origin,C
n-
7-6
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can now be evaluated by pluggingw51/3 into the following
series expansion ofR@b(w)#:5

R@b~w!#5 (
n50

`

r nwn. ~60!

The first terms ofCN , which are defined by

CN5 (
n50

N

r nS 1

3D n

, ~61!

were calculated using the perturbative coefficients~48!. The
numbers in Table II show that the residue can be determ
with good accuracy from the first terms of the perturbat
theory.

V. THE QCD CONDENSATE EFFECTS

I now come to the potentially most interesting applicati
of my proposed mechanism. Because of the nonperturba
nature of the QCD vacuum, operator condensates ap
ubiquitously in low energy QCD phenomenology, especia
in the Shifman-Vainshtein-Zakharov~SVZ! sum rule formal-
ism @17,18#. The effects of these condensates become st
ger at lower energies and become phenomenologically m
important. They are in general not calculable, and treate
free parameters to be fitted by experimental data. The c
densates are generally introduced through OPE. In Bore
summation of the QCD perturbation theory they appear
the nonperturbative amplitudes which are required to can
the imaginary parts arising from the IR renormalon singula
ties. The purpose of this section is to see the implication
my proposed mechanism on the nonperturbative effe
caused by these condensates.

In general the form of a nonperturbative effect due to
condensates can be determined by OPE and the RG e
tions for the associated Wilson coefficients and the cond
sates. Once the form is determined then I can further refin
by demanding the nonperturbative amplitude have a bra
cut only along the positive real axis in the coupling plan
This will then allow me to write the real part of the amp
tude in terms of the imaginary part that can be calcula
from Borel resummation.

Of course, one should remember that not all nonpertur
tive effects in QCD could be related to perturbation theory
is clear, for example, that perturbation theory cannot h

5More precisely, it is the expansion ofR(b) of the Borel transform
for @GPT( f )2 ln f2const# in Eq. ~47! rather than that of the Bore
transform forGPT( f ). Either of the Borel transforms can be use
because both have an identical renormalon singularity atb51.

TABLE II. Sum of the first N11 terms of the perturbation
series for the renormalon residue (C`521).

N 0 1 2 3 4 5

2CN 2.000 2.000 0.100 0.945 0.916 1.052
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any bearing on the nonperturbative effects arising in chira
violating processes.

For definiteness, I shall consider the AdlerD function in
massless QCD defined by

D~Q2!524p2Q2
dP~2Q2!

dQ2
21, ~62!

whereP(q2) (q2[2Q2) is the vacuum polarization func
tion in the Euclidean region (q2,0) of the currentj m(x)
5ū(x)gmd(x), with u,d denoting theup anddownquarks.
D(Q2) can be expanded in OPE as

D~Q2!5C0~Q2!1C4~Q2!
^0uO4u0&

Q4

1higher dimension terms. ~63!

As before I focus on the nonperturbative effect associa
with the closest singularity to the origin on the positive re
axis in the Borel plane, in this case the first IR renormal
and ignore terms of dimension six or higher since they
associated with the higher IR renormalons.^0uO4u0& is the
renormalization scale invariant gluon condensate of
dimension-four operator:

O4[2
1

pb0
Fb~as!

as
Gmn

a GamnG , ~64!

whereGmn
a is the gluon field strength tensor, andas is the

strong coupling constant.b(as) is the QCDb function:

b~as!5m2
das~m!

dm2
52as

2@b01b1as1O~as
2!#, ~65!

where forNc colors andNf quark flavors

b05
1

4p S 11

3
Nc2

2

3
Nf D ,

b15
1

~4p!2 S 34

3
Nc

22
Nc

221

Nc
Nf2

10

3
NcNf D . ~66!

The Wilson coefficientsC0 ,C4 can be expanded in powe
series in the strong couplingas(Q):

C0~Q2!5 (
n50

`

dn
(0)as~Q!n11, ~67!

C4~Q2!5
2p2

3 S 11 (
n51

`

wn
(0)as~Q!nD , ~68!

where the coefficientsdn
(0) ,wn

(0) are real numbers.
I shall now identify the first term in Eq.~63! as the per-

turbative amplitudeDPT@as(Q)# and the second term o
gluon condensate as the nonperturbative amplit
DNP@as(Q)#. DPT can be expressed as a Borel resummat
of the perturbation series~67!
7-7
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DPT@as~Q!6 ie#5
1

b0
E

06 ie

`6 ie

dbe2b/b0as(Q)D̃PT~b!,

~69!

whereD̃PT(b) is defined by

D̃PT~b!5 (
n50

` dn
(0)

n! S b

b0
D n

. ~70!

This series is expected to have a finite radius of converge
(ubu51) set by the UV renormalon atb521. Beyond the
radius of convergenceD̃(b) is assumed to be obtained b
analytic continuation.DPT is now expected to have an imag
nary part with sign ambiguity due to the first IR renormal
at b52 in the Borel integral. This imaginary part is to b
canceled by the imaginary part fromDNP. Now DNP, the
second term in Eq.~63!, can be written as

DNP@as~Q!#}as~Q!2ne22/b0as(Q)C̃4@as~Q!,b i ,wi
(0)#

~71!

via the weak coupling expansion of

^0uO4u0&

Q4
} expF22Eas(Q) da8

b~a8!
G , ~72!

which comes from the RG invariance of the gluon cond
sate. Here,

n52b1 /b0
2 , ~73!

which is noninteger for most of the combinations ofNc ,Nf .
C̃4, which comes fromC4 and the weak coupling expansio
of Eq. ~72!, is real and calculable in perturbation, and can
expanded in power series:6

C̃4@as~Q!,b i ,wi
(0)#511w̃1

(0)as~Q!1w̃2
(0)as~Q!21•••,

~74!

wherew̃n
(0) depends onb i 11 andwi

(0) , i<n, respectively, in
Eqs.~65! and ~68!.

Following the argument in Sec. II I demand the imagina
part in DNP come from a branch cut along the positive re
axis in the coupling plane. Presence of UV renormalo
which gives rise to a sign alternating large order behav
does not affect this requirement, since UV renormalons
be mapped away using a conformal mapping from the Bo
integration contour, thus causing no essential problem
Borel resummation@15,19#. Since in the nonperturbative am
plitude ~71! a branch cut can arise only from the fact

6When the higher renormalons are taken into account the se

expansion forC̃4 is an asymptotic expansion, and should be Bo

resummed. However, since I ignore all higher renormalonsC̃4 is

assumed to be well defined by the series expansion. The error oC̃4

by this assumption isO(e21/b0a(Q)) which is due to the dimension
six condensates.
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as(Q)2n, with n a noninteger number, I conjecture that th
nonperturbative amplitude is given in the form:

DNP@as~Q!#5C@2as~Q!#2ne22/b0as(Q)

3C̃4@as~Q!,b i ,wi
(0)#, ~75!

whereC is an undetermined, dimensionless, real constant
this specific case the power of the coupling constant in
preexponential factor depends onn only. But, in general, the
power depends not only onn but also on the one-loop
anomalous dimensions of the associated operators. In su
case, I propose that the branch cut arises likewise from
preexponential power term in the coupling, and the corr
form for the nonperturbative amplitude can be obtained
flipping the sign of the coupling constant in the preexpon
tial factor.

The argument leading to Eq.~75! shows that whenn takes
an integer value for a particular combination ofNc andNf ,
the nonperturbative amplitudeDNP cannot have an imaginar
part. This implies disappearance of the first IR renorma
singularity in the Borel plane for an integern. A further
comment on this point will follow shortly.

Now with Eq. ~75! we have the real and the imagina
parts,

Re$DNP@a~Q!6 ie#%5C cos~np!as~Q!2ne22/b0as(Q)C̃4 ,

~76!

Im$DNP@a~Q!6 ie#%56C sin~np!as~Q!2n

3e22/b0as(Q)C̃4 , ~77!

from which a relation between the real and the imagin
parts is obtained:

Re$DNP@as~Q!6 ie#%56cot~np!Im$DNP@as~Q!6 ie#%.

~78!

This has an important implication. It relates the usually
calculable real part of the nonperturbative amplitude to
imaginary part that is calculable from Borel resummatio
Moreover, this relation is not for some part only of the am
plitude as in the previous two examples, but holds to
orders in perturbative expansion ofC̃4. This implies that as
far as the gluon condensate effect is concerned the non
turbative effect can be calculated completely from the Bo
resummation of the perturbation theory.

From Eq. ~78! and the fact that the imaginary parts
DPT@as(Q)6 ie# and DNP@as(Q)6 ie# cancel each other,
can write the Adler function in terms ofDPT only:

D~Q2!5@Re7cot~np!Im#DPT@as~Q!6 ie#. ~79!

Thus both the real and the imaginary parts of the Borel
summation are required to rebuild the true amplitude fr
the perturbation theory. The imaginary part comes from
region beyond the first IR renormalon (b>2), and for its
calculation analytic continuation to the region beyond t
radius of convergence of the perturbative Borel transfo
~70! is required. A more convenient method, though equi

es

l
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lent to the analytic continuation, is to use a conformal m
ping to map, for example, all the renormalon singularities,
all the renormalon singularities except for the first IR ren
malon, to the unit circle. A conformal mapping of the fir
kind was used in rebuilding the imaginary part of
metastable-vacuum energy in a quantum mechanical m
@20#, and the second kind was recently used in Borel resu
mation of the real part of the Adler function@21#, which may
also be used for the calculation of the imaginary part. He
instead, I shall try to evaluate the constantC which would
give a rough estimate of the nonperturbative amplitu
DNP@as(Q)#.

As in the previous examples, this constant becomes
residue, up to a calculable constant, of the Borel transform
the renormalon singularity atb52. In fact, for the Borel
resummation~69! to have an imaginary part that can canc
the imaginary part~77! the Borel transformD̃PT(b) should
have the following singularity atb52:

D̃PT~b!5
C

G~2n!
~b0/2!11n~12b/2!212n

3@11O~12b/2!#1analytic part, ~80!

where ‘‘analytic part’’ denotes terms that are analytic atb
52. In general the analytic part cannot be calculated. N
that, as previously mentioned, the renormalon singula
disappears whenn takes an integer value. This is obvious f
a negative integern, which happens, for example, atNc
52,Nf58 with n5210, or at Nc53,Nf515 with n5
2176. The disappearance of the renormalon singularity
the latter case was noticed before@22#. What seems to have
been unexpected is that the singularity also disappears
non-negative integern, for example, atNc56,Nf512 with
n51. In this case the singularity disappears because of
vanishing residue. The residue vanishes since the constaC
should always be bounded, for the nonperturbative amplit
~75! cannot be divergent.

With Eq. ~80!, C can now be obtained by@7,8#

C5G~2n!~2/b0!11nR~2! ~81!

with

R~b!5~12b/2!11nD̃PT~b!. ~82!

As in the previous examplesR(2) may be evaluated as
perturbation series. However, it is unlikely to obtain a go
estimate of the constantC by directly following the proce-
dures in the previous examples, since too few perturba
coefficients are known. Only the first three terms of the p
turbation series for the Adler function are presently know
To improve the situation we will exploit the renormalizatio
scale independence of the Adler function. To do this,
replace in Eqs.~67!–~69!, and~74! the couplinga(Q) with
the running couplinga(jQ), with j defined by the renor-
malization scalem25j2Q2. Then the perturbative coeffi
cients in these equations should change accordingly asdn

(0)

→dn(j), wn
(0)→wn(j), and w̃n

(0)→w̃n(j), with dn(j51)
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(0) , wn(j51)5wn

(0) , and w̃n(j51)5w̃n
(0) . Also the

Borel transform~70! should be redefined as

D̃PT~b,j!5 (
n50

`
dn~j!

n! S b

b0
D n

. ~83!

Now the renormalization scale invariance of the gluon co
densate allows me to rewrite Eq.~75! as

DNP@as~jQ!#5Cj4@2as~jQ!#2ne22/b0as(jQ)

3C̃4@as~jQ!,b i ,wi~j!#, ~84!

and consequently the renormalon singularity correspond
to Eq. ~80! is given by

D̃PT~b,j!5
Cj4

G~2n!
~b0/2!11n~12b/2!212n

3@11O~12b/2!#1analytic part. ~85!

Note thatC in Eqs.~84! and~85! is the same one defined i
Eq. ~75!, and is independent of the scalej but dependent on
the renormalization scheme.

With Eq. ~85!, C can be written as

C5
1

j4
G~2n!~2/b0!11nR~b52,j! ~86!

with

R~b,j!5~12b/2!11nD̃PT~b,j!. ~87!

We now proceed to evaluateR(b52,j) as a perturbation
series. Because of the UV renormalon atb521 the evalua-
tion point b52 is beyond the convergence radius of the
ries for R(b,j) around the origin, hence we have to ma
away all other renormalons except for the first IR renorm
lon, using a conformal mapping like

w5
A11b2A12b/3

A11b1A12b/3
, ~88!

which maps the first IR renormalon tow51/2 and all other
renormalons to the unit circle. Now in thew planeC can be
expressed as a convergent power series, that is,C5C`

whereCN is defined by

CN~j2!5
1

j4
G~2n!~2/b0!11n (

n50

N

r n~j!S 1

2D n

~89!

with r n(j) coming from the expansion

R@b~w!,j#5 (
n50

`

r n~j!wn. ~90!

Although C is j independent, in generalCN will have a j
dependence because of its finite order summation. This p
erty is generic for any finite order QCD perturbation ser
7-9
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and can be used to improve the convergence of the serie
demanding that at an optimalj the scale dependence of th
series be minimal@23#. Applying this idea to our problem we
can hope that a better estimate of the constantC can be
achieved by takingCN(j2) at an optimalj0 at which the
unphysicalj dependence disappears locally,

d CN~j2!

d j2 U
j5j0

50. ~91!

Using the calculated next-next-leading order Adler funct
@24,25# and the estimatedO(as

4) coefficient @21,26#, in the

MS scheme atNf53 quark flavors (j51)7

D~Q2!5a~Q!11.6398a~Q!216.3710a~Q!3

1d3
(0)a~Q!41O~a5!, ~92!

wherea(Q)[as(Q)/p, I give the last two calculable term
for CN in the MS scheme:

C2~1.7!55.37, C3~2.2!56.96. ~93!

In this calculation I took the estimated valued3
(0)525, which

is from the recent estimate using a technique called ‘‘bilo
expansion of Borel amplitude’’@21#. This value is also in
consistency with the well-known estimate in@26#. Note that
the optimalj for CN is atj0

2'1.7 for C2 andj0
2'2.2 for C3

~see Fig. 1!.
BecauseC is evaluated with the perturbation series~90! at

w51/2 which is on the boundary of the convergence di
CN in Eq. ~93! should be regarded only as a rough estima
The speed of convergence of the sequenceCN is expected to
be sensitive on the size of the analytic part in Eq.~85!, since
the size of the singular term ofR(b,j) at b52 is determined
by this analytic part.

Using this estimate ofC we can now evaluate the real pa
of the nonperturbative amplitude. From Eqs.~76!

7dn(j) in terms ofdn
(0) can be found in@21#.

FIG. 1. Renormalon residue vs renormalization scalej2.
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Re$DNP@as~Q!6 ie#%

'C3~2.2!cos~np!as~Q!2ne22/b0as(Q)C̃4

'C3~2.2!cos~np!
L

MS

4

Q4
@11w1

(0)as~Q!1O~as
2!#,

~94!

wherew1
(0) is defined in Eq.~68! and we have substitute

C3(2.2) for C, LMS denotes theMS renormalization scale.
Now this nonperturbative amplitude can be translated t

gluon condensate in the OPE~63!. I define the gluon con-
densate by this nonperturbative amplitude by

K as

p
Gmn

a GamnL
NP

[
3Q4

2p2
Re$DNP@as~Q!6 ie#%

'
3

2p2
C3~2.2!cos~np!LMS

4

'0.005 GeV4, ~95!

where I have usedLMS'370 MeV for Nf53 quark flavors
@27#.

One should not compare the estimated value~95! directly
with the phenomenologically fitted gluon condensate, for
ample, from the QCD sum rule. In the QCD sum rule, t
difference between the Borel resummed perturbative am
tude and the sum of the first terms in the perturbation se
is approximated by power corrections, and therefore the p
nomenologically fitted condensate includes contributions
only from the nonperturbative amplitude but also from t
perturbative amplitude. One may try to extract the glu
condensate effect in the resummed perturbative amplit
through Eq.~69!, for example, by computing the minima
term of the perturbation series with the large order behav
given by the renormalon singularity~80!. I believe, however,
that this is not necessary, and also not a good way to ha
the renormalon effect. A better approach to incorporate
renormalon effect, with only the first few terms of the pe
turbation series available, is to write using Eq.~82! the Borel
transformD̃PT(b) in the Borel integral~69! as

D̃PT~b!5
R~b!

~12b/2!11n
~96!

and do perturbation onR(b) instead of doing perturbation
directly on D̃PT(b). This way the Borel transform can b
better described in the most important region in the Bo
integral, i.e., between the origin and the first IR renorma
singularity and the region just beyond the singularity@21#.

Nonetheless, it is interesting to observe that the estima
value~95! is remarkably close to the recent estimate of glu
condensate 0.00660.012 GeV4 @28# which was obtained by
fitting the spectral function of hadronict decay using the
QCD sum rule.
7-10
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Finally, some comments are in order. A full amplitude
QCD in general has infinitely many cut singularities in t
complex coupling plane as shown by ’t Hooft@29#. One may
wonder how this can be compatible with our propos
mechanism that is based on the proposition that the non
turbative amplitude as well as the Borel resummed amplit
of perturbation theory have cuts only along the positive r
axes. The resolution of this question lies probably with
nonconvergence of the OPE. Since the OPE is expected
an asymptotic expansion@30#, each term in the OPE, to th
Wilson coefficient of which the Borel resummation is a
plied, does not have to have the same singularities of the
amplitude. Also, throughout this paper, the nonperturba
effects due to the higher dimensional operator condens
were consistently ignored. I expect, however, there should
no fundamental difficulty in incorporating them along th
lines described in this section. I conjecture that the nonp
turbative effect by the condensate of a dimension 2n opera-
tor in the Adler function can be written as

DNP~as!5Cn@2as#
2nnexp~2n/b0as!C̃2n~as!, ~97!

wherenn is a constant calculable from the RG equations
the Wilson coefficient and the condensate, andC̃2n is a
modified Wilson coefficient defined in a similar fashion
the C̃4 in Eq. ~74!. HereC̃2n should be Borel resummed i
the manner described in this section. The unknown cons
Cn can then be determined by demanding that the imagin
part of orderas

2nnexp(2n/b0as) be canceled by the imagi
nary parts coming from the amplitudes associated with
operators of lower dimensions.

VI. SUMMARY

Based on the general argument on Borel resummation
same sign perturbation series I have argued that the non
turbative effect associated with the divergence of the per
bation series should have a branch cut only along the p
tive real axis in the coupling plane. Demanding that t
nonperturbative amplitude have such a branch cut constr
a

9
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the form of a part of the nonperturbative amplitude, the p
from which the branch cut arises, sufficiently that a relati
can be established between the usually incalculable real
of the nonperturbative amplitude and the imaginary part t
is calculable from the Borel resummation. This way part
the real part of the nonperturbative amplitude, which usua
includes the leading term in weak coupling expansion, c
be calculated from Borel resummation of the perturbat
theory.

As a nontrivial test, this mechanism was applied to t
ground state energy of the double well potential and the tw
point function in the two-dimensionalO(N) nonlinear sigma
model at order 1/N. In agreement with my proposed mech
nism the nonperturbative amplitudes in these models h
branch cuts only along the positive real axis in the coupl
plane. With this mechanism the leading terms of the nonp
turbative amplitudes in these models could be calcula
with good accuracy from the first terms of the correspond
perturbation series.

I then applied this mechanism to the QCD condens
effects, particularly the gluon condensate effect, and s
gested that some of the condensate effects can be calcu
from perturbation theory, and gave an estimate of the n
perturbative amplitude induced by the gluon condensate
ing the known perturbative calculations of the Adler fun
tion. I observed that this mechanism could be applied
QCD, despite the fact that a true QCD amplitude has
infinite number of cut singularities in the coupling plan
since the OPE to which the Borel resummation is applied
not a convergent expansion.
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