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Nonperturbative effects from the resummation of perturbation theory
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Using the general argument in Borel resummation of perturbation theory that links the divergent perturbation
theory to the nonperturbative effect | argue that the nonperturbative effect associated with the perturbation
theory should have a branch cut only along the positive real axis in the complex coupling plane. The compo-
nent in the weak coupling expansion of the nonperturbative amplitude that gives rise to the branch cut can be
calculated in principle from the perturbation theory combined with the exactly calculable properties of the
nonperturbative effect. The realization of this mechanism is demonstrated in the double well potential and the
two-dimensionalO(N) nonlinear sigma model. In these models the leading term in the weak coupling expan-
sion of the nonperturbative effect can be obtained with a good accuracy from the first terms of perturbation
theory. Applying this mechanism to the infrared renormalon induced nonperturbative effect in QCD, | suggest
some of the QCD condensate effects can be calculated in principle from the perturbation theory.
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[. INTRODUCTION and assume thak(a) be real fora>0. | shall further as-
sume thata, at large orders is nonalternating in sign. In
The usual perturbation in the weak coupling constant ingeneral, a,, diverges factorially due to renormalons or
field theory is an asymptotic expansion. When the perturbainstanton—anti-instanton pairs, and in principle Efy) is
tion series is sign alternating it may be resummed, for exmeaningless unless some kind of resummation is performed
ample, in the manner of Borel resummation. However, wheron the divergent series. To do a resummation, consider a new
the series is not sign alternating, it usually implies the presseries
ence of a genuine nonperturbative effect, and the Borel re-
summation of the perturbation series alone is in principle not °°
sufficient for an adequate description of the true amplitude. B(a)=2, a,(—1)" ta"*? 2
. . . 0
The nonperturbative effect and the perturbation expansion
are not tot_ally independent; the fO(mer pontrol§ the large Ofwhich is obtained from Eq(1) by flipping the sign of the
der pghawor of 'the latter. Even with this relation, .however'coupling constant. Since far>0 this series is alternating in
explicit calculations show that the no_npertur_batlve eﬁECtsign, it can now be Borel resummed, yielding a resummed
cannot be calculated from the perturbation series even Wheé}nplitudeB {a)
the latter is known to all orders. P '
The purpose of this paper is to argue, by taking a closer w0
look at the general but heuristic argument that relates the BPT(a)Ef dbe /9B (b) 3
nonperturbative effect with the perturbation theory, that some 0
parts of the nonperturbative effect, which usually include the
leading piece in weak coupling expansion, can be calculate®n
in principle from the Borel resummation of perturbation " i1
theory along with the exactly calculable properties of the E(b)=2 (-D" a,
0

n
nonperturbative effect. —r 0" (4)

ere

One would expect thafA(«) could be obtained from the
Il. CALCULABLE COMPONENT IN NONPERTURBATIVE Borel resummedp(a) by analytic continuation from the
EFFECT positive real axis to the negative real axis in the complex
rp_)lane. The problem is, howevd( @) is expected to have
a branch cut along the negative axis, and consequently
Bp(—a=*ie) will have an imaginary part. Therefore ana-
lytic continuation alone oBp(a) cannot reproducé\(«)
which is by definition real forx>0. The expected resolution
of this problem is that the true amplitudg «) has a non-
o perturbative amplitudé\yp(«) in addition to theBp(— a),
A(a)=, a,a"? (1)  so when they are added together the imaginary parts from
0 each amplitude cancel each other, rendering the total ampli-
tude to be real. That is,

A general but heuristic argument that relates the nonpe
turbative effect with perturbation theory goes as folldws.
Let A(«) be an amplitude with perturbation expansion in the
coupling constant::

A good introduction can be found {i1,2). A(a)=Apt(a)+Ayp(a) (5
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with from the Borel resummation of the perturbation theory. The
real part, however, is in general not calculable from the per-
Im[Ap{axie)]+Im[Ayp(axie)]=0, (6)  turbation theory.

The argument hitherto is well known, perhaps except for
where Apr(a@)=Bpt(— @), which may be called the pertur- Eq.(7) which allows me to relate the imaginary part from the
bative amplitude, has now a branch cut along the positiveinalytic continuation in ther plane to that arising from the
real axis in then plane. Performing the analytic continuation Borel integral. Now, my observation, which will play a cru-
in Eq. (3) I obtain cial role throughout the paper, is that E66) suggests

. Anp(@) have a branch cut along the positive real axis in the
R L S complex coupling plane, in order to cancel the imaginary
Aprlazie)= 0+ie dbe ©'A(b) ™ part coming from the branch cut in the Borel resummed per-
turbative amplitude. This rather straightforward observation
wheré can have an important consequence: it renders some part of
the nonperturbative amplitude to be calculable from the per-
A(b)=—-B(—b) turbation theory. In the weak coupling limit &—0) the
approximate functional form of\\p(«) can be rather easily
“ 2 determined from other nonperturbative techniques such as
=> Tp", (8)  renormalization group argument or instanton calculations,
o n and the component, typically the leading one in weak cou-
pling expansion, that could give rise to a branch cut along
Note that, as | make analytic continuation B-(a) from  the positive real axis can be easily identified. | then further
the positive real axis to the negative real axis in éhplane  fix this component to a more specific form loemanding
counterclockwiséclockwisg in the upperlower) half plane,  that it give a branch cut only along the positive real axis
the integration contour also should rotate counterclockwiscéxpect the nonperturbative effect should not have other

(clockwise, hence thex sign in Eq.(7). branch cut, for instance, such as one along the negative real
Using the dispersion relation on the resumm@si{a)  axis, since it would imply that the perturbation seriés is
and Eq.(6), we have not Borel-summable even far<0. The constraint on the

functional form from this step turns out to be sufficient

1 (=Im[Apr(a’+ie)] | enough for me to relate the real part of the above-mentioned

Apr(a)= ;JO ?da component to its imaginary part, consequently rendering the
former to be calculable from the Borel resummation of the

1 perturbation theory through E¢G).

== a"tl (9 In the next two sections | consider a few definite ex-
n=0

amples and show how this procedure can be realized in
) o ) model calculations. In these examples | shall focus on the
Thus the perturbative coefficient in E) can be written as  onperturbative effect associated with the first singularity on
the positive real axis in the Borel plane.

rn+2

fmlm[ANT(a’—i-ie)]

0 [e%

1 (>Im[Axpla+tie)
Y L L
7)o a"t? Ill. THE DOUBLE WELL POTENTIAL

which makes the relation between the nonperturbative eﬁec&ct-irohne quantum mechanical double well potential with the
and the perturbation theory explicit. At large valuesnahe

dominant contribution in Eq(10) comes from the smallv 1 1
region, and so for large order behavior only the weak cou- S:f _q2_ =g%(1—\q)?|dt (12)
pling limit of the nonperturbative effect is required. 2 2

Now with Egs.(5) and(6) the amplitudeA(«) for a>0 i i )
can be written as the sum of the real parts of the perturbativBaS instanton solutions, and the nonperturbative effects due
and the nonperturbative terms: to the instantons give rise to singularities on the positive real

axis on the Borel plane, causing same sign perturbation se-
A(a)=Re[Ap(a*ie)|+Re[Ayp(atie)]. (11)  res.
() Al )] [ Anel )] (1Y Consider, for examples(«) defined by
Equation(6) also shows that the imaginary part of the non- 1
perturbative amplitud&yp( ) can be calculated in principle E(a)= §[E+(a)+ E (a)-1], (13)

2Throughout the paper whenever a Borel transform is defined
through a perturbation series like E8) it is assumed that the value  *The idea of rebuilding nonperturbative effects from perturbation
of the Borel transform at a point beyond the convergence disk igsheory is an old story. To the author’s knowledge it was first specu-
obtained by analytic continuation. lated in[3], and an approach similar to mine was observef#in
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wherea=\? andE_(«), E, (a) are, respectively, the ener- In any event, inferring this form may not be so difficult since

gies of the ground and the first excited states. The Borethe preexponential factor &/can be obtained by counting

transform the number of(quas)zero modes, in this case two, and the
logarithmic term arises from the instanton—anti-instanton po-
tential at large distance.

]

= n
E(b>=n§0 ﬁbn (14) We can now improve the form of the nonperturbative ef-
fect (19) by demanding that it have a branch cut only along
of the perturbation series f&(«), the positive real axis in the plane. Because the branch cut

can arise only from the logarithmic term we can immediately

” see thatyp(a) must assume the following form:
E(a)= Y a,a"?, (15) .
n=0

C i ;
is expected to have multi-instanton caused singularitids at Enel(a)= Ee [In(= )+ subleading terms
=2nS,, where n=1,2,3..., and S,=1/6 is the one- (20
instanton action.

The large order behavior of the perturbatidm®) is con-  with C an unknown real constant. Of course, a comparison
trolled by the first singularity éb=1/3. The nonperturbative Wwith Eq. (16) shows that the true value of the constant must
effect that causes this singularity is due to the contributionde C=1. | now show that the leading term, the logarithmic
of instanton—anti-instanton pairs, and can be calculated frorterm, in the real part18) can be calculated from the pertur-
the potential of an instanton—anti-instanton pair, and readbation theory starting from the ansa20). The imaginary

[5] and the real parts from this expressi@d) are then
1 s -2 53 C
Enpla)=——€ In| ——|+7e|]|1- g a IM[Epnp(a*ie)]= i;e*”&’[lﬂLsubleading terms  (21)
23
——a+0(a?na)|, (16) _ C ,
2 REEnp(atie)]=— ﬁe*”&‘[ln(a) + subleading termis
where yg is the Euler constant. (22

Notice thatEyp(«) has a branch cut along the positive
real axis in thea plane, in agreement with our argument in To determine the leading term in the real part we now only
the previous section. The minus sign in the argument of th&@eed to fix the constar@. This constant becomes the resi-
logarithmic term, which causes the branch cut, arises fron§lue, up to a calculable normalization, of the first singularity
the required sign flip in the coupling constant to pick up thein the Borel plane, and can be calculated in perturbation
nonperturbative effect from the attractive potential of thetheory[7,8]. In fact, for the Borel resummation
instanton—anti-instanton pdi6].

The imaginary and the real parts Bfs(«) now read

oo+

Epfaz*ie)= f iEe*b’“)E(b)olb (23

O*ie

: 17

53
1+ EOH_ O(a?)

1
IM[Enp(atie)]=x—e 13 o o
a to have imaginary parts that can cancel the imaginary terms

1 in Eq. (21) the Borel transfornt (b) must have a singularity
R Enp(atie)]=—e Y [=In(a)+In(2)+ ye+ O(a)]. atb=1/3 of the form
(18)

~ 9C
Note that the real part has terms, for example, the constant E(b)=- 7T(l_3b)2”JFO(l_Sb)]' (24
terms within the bracket in Eq18), that have nothing to do
with the imaginary part. These terms represent genuine NoRry qetermine the residue we now consider a funciRgb)
perturbative effect and cannot be calculated from Borel reyqfined by
summation of perturbation theory.

Since in this example the nonperturbative effect can be
calculated in weak coupling expansion there is no real need
to attempt to extract the nonperturbative effect from the per- _
turbation theory. However, for the sake of argument, let usThe difference betweeR(b) andE(b) is that the former has
suppose that we knew only that the nonperturbative effect i much softer singularity. Although it may appear tRéb)
weak coupling expansion was given in the form: is regular atbb=1/3, it is easy to see that this is not the case.

In fact, for the imaginary parts from the Borel integral Eq.

(23 to cancel the imaginary parts {a7), E(b) should have
an expansion around the singularity

R(b)=E(b)(1—3b)2. (25)

1 .
Enp(a)x—e” Y34 |n( @) + subleading termis ~ (19)
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TABLE I. Sum of the firstN +~1 terms of the perturbation series 1— \/1_73[)/2
for the normalized residued,=C..=1). =, (32
1+1-3b/2
N 0 1 2 3 4 5 ) . . .
This maps the first singularity toy=w,, where
Cn 0.349 0.175 0.339 0.487 0.631 0.759
EN 0.349 0.109 0.502 0.650 0.862 0.994 \/5— 1 ~0171 (33
o f+1 T
~ and all other singularities to the unit circle. Because the sin-
E(b)=— m{l_ 1g(1=3b) gularities (other than the first onein the w plane are rela-

tively farther away from the origin than in the plane, we

) expect the series in the plane to give better convergence. In
+0O[(1-3b)%In(1—-3b)]|. (26)  fact, the first terms shown in Table | &, which is defined
by
R(b) is, therefore, logarithmicallymultiplied by (1—3b)?] N
singular atb=1/3, but bounded. 7 ~
In terms ofR(b) the constant is given by ~ 9 Z F'nWo, (34)
C:_f (1) (27) show a definite improvement in convergengete again
9 13 C.=1).

The result of this exercise shows that the leading term in
€the nonperturbative effect caused by the instanton—anti-
instanton pairs on the ground state energy can be calculated
accurately(99% accuracywith only the first six terms of the

The essential point for the perturbative calculation of the
residue is that the right-hand side of Eg7) can be written
as a convergent series. The perturbation serieR(b),

o perturbation series for the ground state energy.
R(b)= > rpb", (28
n=0 IV. THE TWO-DIMENSIONAL O(N) NONLINEAR SIGMA
. : . MODEL
is convergent on the dislb|<1/3 (note the boundary is in- ©
cluded. Being bounded, though singular, lat1/3, R(b) This model is exactly solvable inN/expansion and mim-
can be evaluated in seriestat 1/3. ics many interesting features of quantum chromodynamics

We can now do some numerical checks to see how rapidlyQCD). It has an asymptotic freedom, dimensional transmu-
the serieg(28),when evaluated av=1/3, converges to the tation, and most interestingly for us the infrard®) and
known exact value. From the perturbative coefficients forultraviolet(UV) renormalons at the next leading order itN1/
E(«) given in [9] the coefficientsr, in Eq. (28) can be expansion. Moreover, it was through the studies of this
obtained. In Tal# | | give the first terms oCy defined by model[3,11-14 that the link between operator product ex-

N pansion(OPE and IR renormalons suggested by Paris]
" has become more transparent. This model can also provide a
Z ( ) (29 nontrivial test of our proposed mechanism.
The two-dimensionaD(N) nonlinear sigma model is de-
Note thatC..= 1. The numbers show that fro@, to Cs the  fined by the(Euclidean action
series approaches the true value in a steady pattern.

Since the positions of the singularities f@(b) are jdzxz
known | can improve the convergence using an “optimal”
conformal mapping10]

9,0%(x)d,0%X)

a(X)

w=w(b). (30) + N a?(x)a?(x) — (39

m)’

An optimal mapping for our case is thBfb(w) ] become as
smooth as possible within the convergence disk of the pe
turbation expansion in the plane

lyvherea(x) is an auxiliary field, and is the coupling con-
stant. At the leading order in N/the o fields get dynamical
mass

R[b(w)] =n§=:0 oW, (31) m?= e Y, (36)

where i is the renormalization scale, through the vacuum
An obvious strategy for an optimal mapping is to push allcondensate of the auxiliary field
other singularities in the Borel plane except for the first one
far away from the origin. Here we consider a mapping (0]a(0)|0)=— yNn?. (37)
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Equation(36) also defines the renormalization gro(RG) 1
running of the coupling constant. Thfunction in the lead- GM(h)=— 5+2b2_4b+ 1+(1-b?)
ing order in 1N is therefore given by
X[p(1+Db)+p(2—b)+2¥e],
df

f)=u?—=—f2 38
A= 39 HOB)=——— = 1 g ), (43)

| shall now test my proposed mechanism with the truncate(éo(b) B

two-point function of theo fields 1(b), whose exact forms are not important for us,

are analytic functions.

Note the renormalon poles Bt=n, wheren is a nonzero
integer, inG® H®, To avoid these poles the integration
o _ ) contour can be either on the upper or the lower half plane;
which is known to all orders in OPE at ordemlvia the ¢4 consistency, however, an identical contour should be
exact calculation of the self-ener@y(p®) in [16]. T'(p?) can  t5pen forC, andC;.
be expanded in powers @fi’/p?, which corresponds to an | gpg| identify the first term in Eq/40) as the perturbative
OPE, as amplitudeI'p and the second term as the nonperturbative
amplitudelyp. Performing the integration ovérin Eq. (41)
it is then easy to see thatp at order 1N is given by

L(p?)=p?+2(p?), (39)

2

m 4
I'(p?)=p? Co[f(p)]+Cl[f(p)]F+O

. (40

I

m2
i _
| keep here only the first two terms because | am focused onNFNP[f(p)_IE] p? [Inf(p)=iareal const O(f)]
the nonperturbative effect associated with the first IR renor- (44)
malon. The first term contains the usual perturbation expan-
sion, and the second term, which comes from the vacuum =—e YIP{In[ — f(p) Fie] +real const

condensate of(x), is the nonperturbative amplitude that
gives rise to the first IR renormalon. The terms of higher
powers inm?/p? are associated with the higher renormalon
singularities, and shall be ignored.

At the leading order in N, Co=C;=1. At order 1N
they have a rich structure and refdb] NI ol f)=—e Yin(—1), (46)

+0O(f)}, (45

where in the last step we have used E86). Thus to the
leading order in weak coupling

—biE(p) ©) which has a branch cut along the positive real axis in the
e _f(p) F™(b) coupling plane, again in agreement with my proposed
mechanism. The origin of the imaginary part in E44) lies

1 [=+ie
co[f(p)iie]zﬁfo ~db
*le

with the ambiguity in obtaining the renormalized condensate,
+G(O)(b)) —H(o)(b)}a in this case the condensate of the auxiliary fielc), from
the dimensionally regularized condensate i &dimension
1 [3,11,13. When the perturbative and the nonperturbative
e~ b/f(p)<_|:(1)(b) amplitudes are added together this imaginary part is canceled
f(p) by the imaginary part inl'p¢[ f(p) =ie] coming from the
pole atb=1 in G(O(b).
+G(1)(b)) —H(l)(b)}, (41) From Eq.(41) the perturbation expansion férp[ f(p)]
can be easily obtained,

w0 *j

. 1 €
Cl[f(p)ile]=—ﬁj db

O*ie

oo

where
Perd f(p)]=Inf(p)-+constt 2, af(p)"™*,  (47)

FO(b)=1,

O (p)= 1,1 b b
G™( )—B+m—¢(1+ )—P(2—b) =2, ap=—2,
1 a,=n{[1+(-1)"1{(n+1)-2} (for n=1), (48)
(0) =—+
H™(b) b Ba(b), (“42) where { denotes the Riemani function. The logarithmic
term in Eq.(47) arises from the anomalous dimension of the
and o fields.
It is instructive to see now that the logarithmic depen-
FM(b)=b?-1, dence in Eq(44) can be obtained without knowing the exact
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solution for theo self-energy. To see this let us make the Now, once | know the form of the anomalous dimensions

renormalization scale dependencelofexplicit, which was for the o and« fields, and the logarithmic dependence in the

hitherto implicitly suppressetiI'[p? u2 f(x)] can be ex- Wilson coefficient at order N, the nonperturbative ampli-

panded in OPE as tude can be written with no help from the exact solution for
the o self-energy as

F[pz,nz,f(mkpz{Eo[uzlpz,f(u)] NT ol f(p) e Y P In f(p) + subleading ternis
(53
1_ . "
+Cy[n2 At olalo Then demandind’\p(f) have a branch cut along the positive
2Calwlp ()10} e >‘ﬂ real axis in the coupling plane | can refine Ef3) to

_ _ _ NI ol f(p)]=Ce Y ®)In[ — f(p)]+ subleading terns
+ higher dimension terms (49 (54)

with C an undetermined real constant, from which | can ob-
whereC are the Wilson coefficients, and the ignored termstain a relation valid in leading order in weak coupling:

involve operators of dimension four or higher. From the RG

equations for the coefficier®,[ u?/p?,f(x)] and the con- 1 .
densate(0|«|0) the second term in Eq49) can be easily REI\p(f)]=F_Im[I'yp(f £i€)]In f(p)
written up to a momentum independent factor as

Ci[1f(p)Je M@ = %m[FPT(f_'_'é]lnf( ). (59

f(p)
Xex;{ —f [27,(F) +ya(f) ]/ B(T")dF’ } Because the imaginary part of the perturbative amplitude can
be calculated from Borel resummation this relation renders
(50 the real part of the nonperturbative amplitude to be calcu-
lable from the perturbation theory.

The leading term id"\p(f) depends only on the constant
C. | can calculate this constant from perturbation theory us-
ing the method used in the previous section for a similar

o f(p) purpose. First, | note that for tHé-{f) to cancel the imagi-
Cl[f(p)]zcl[l,f(p)]ex[{—j [2y,(f") nary part coming from Eq(54) at positivef(p) the Borel
transform ofl"p1(f) should have the following singularity at
b=1 (the first IR renormalon

where v, (f) and y,(f) denote the anomalous dimensions
for the o and « fields, respectively. Comparing this term
with the second one in E¢40) we can identify

+n(f’)]/ﬁ(f’)df’}- (51
~ C
I'p(b)=——[1+0O(1-b)]. 56
Therefore the logarithmic term in E¢44) can arise from a pr(b) l—b[ ( )] (56
IEgarithmic term at order N in the Wilson coefficient
Ci[1,f(p)], and the anomalous dimensions, .;, which
are nonvanishing at orderN/

This shows that the consta@t becomes the residue of the
renormalon singularity and can be written[&s8]

C=R(1) (57)

1
’Y{U,a}(f)ocﬁ[f—i_o(fz)] (52) with

What is noteworthy here is that the contributions from these
sources when added together conspire to absorb the imagi-
nary parts in Eq(44) into a cut-function. If, for example, the
logarithmic term had a different coefficient than that given in
Eq. (44), then after the absorption of the imaginary parts into
a cut-function[In(—f)] there would have remained a loga-
rithmic piece[ In(f)] which has a cut along the negative real

R(b)=(1—b)Tpr(b). (58

Because of the UV renormalon lat= —1 the residueC can-

not be directly evaluated by the perturbation expansion of
R(b) around the origin. To map away other renormalons
than the first IR renormalon | introduce a conformal mapping

axis in the coupling plane. This would have failed my argu- e e
ment that the nonperturbative amplitude has a cut only along w= 1+b—vi-bi2 (59
the positive real axis. V1+b+{1-b/2

which sends the first IR renormalon wo=1/3 and all other
“This was allowable because the renormalization scale deperfenormalons to the unit circle. Because in theplane the
dence inl"(p?) can be factored out. first IR renormalon is the closest singularity to the origin,
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TABLE II. Sum of the firstN+1 terms of the perturbation any bearing on the nonperturbative effects arising in chirality

series for the renormalon residu€.(= —1). violating processes.
For definiteness, | shall consider the AdRrfunction in
N 0 1 2 3 4 S massless QCD defined by

—Cy 2.000 2.000 0.100 0945 00916 1.052

dIi(—Q%

dQ?
can now be evaluated by pluggimg= 1/3 into the following
series expansion d®[b(w)]:° wherell(g?) (g?=-Q?) is the vacuum polarization func-
. tion in the Euclidean regiong?<0) of the currentj#(x)
_ n =u(x)y*d(x), with u,d denoting theup and down quarks.
R[b(w)]_zo FW' (60) D(Q?) can be expanded in OPE as

D(Q?%)=—47%Q? 1, (62)

0]04/0
D(Q?)=Co(Q?)+ C4(Q2)<|Q#

The first terms ofCy, which are defined by

N
1 n
CNZHZO Fn(g) , (61) + higher dimension terms. (63

were calculated using the perturbative coefficia@®. The As before | focus on the nonperturbative effect associated
numbers in Table Il show that the residue can be determine\éylth the closest singularity to the origin on the positive real

with good accuracy from the first terms of the perturbation xis in the Borel plane, in this case the first IR renormalon,
theor?/ 4 P and ignore terms of dimension six or higher since they are

associated with the higher IR renormalof8|O,4|0) is the

renormalization scale invariant gluon condensate of the

I now come to the potentially most interesting application 1
of my proposed mechanism. Because of the nonperturbative Oy=——+
nature of the QCD vacuum, operator condensates appear 7o
ubiquitously in low energy QCD phenomenology, especially a ' .
in the Shifman-Vainshtein-Zakhard®VZ) sum rule formal- whereGW IS the gluon field s@rength tensor, anq, 'S_ the
ism[17,18. The effects of these condensates become Strons_trong coupling constanB(as) is the QCDS function:
ger at lower energies and become phenomenologically more
important. They are | | not calculable, and treated 2dasm) _ o 2

p . y are in general not calculable, and treated as  g(ag)=pu —=—a[ Bot BrastO(ad)], (65
free parameters to be fitted by experimental data. The con- du
densates are generally introduced through OPE. In Borel re-
summation of the QCD perturbation theory they appear a¥/here forN; colors andN¢ quark flavors
the nonperturbative amplitudes which are required to cancel

Blas) G2 Ganr
ag e

: (64)

; g ] . . 1 /11 2
the imaginary parts arising from the IR renormalon singulari- Bo= _(_Nc_ Z f) ,
ties. The purpose of this section is to see the implication of 4w\ 3 3
my proposed mechanism on the nonperturbative effects
caused by these condensates. 1 (34, Ni-1 10
In general the form of a nonperturbative effect due to the B1= (41)2 ?NC_ N, Ne— ?NCNf : (66)

condensates can be determined by OPE and the RG equa-

tions for the associated Wilson coefficients and the condenthe Wilson coefficientsC,,C, can be expanded in power
sates. Once the form is determined then | can further refine Eeries in the strong couplings(Q):

by demanding the nonperturbative amplitude have a branch

cut only along the positive real axis in the coupling plane. ~

This will then allow me to write the real part of the ampli- Co(Q%)= Z dPay Q)" (67)
tude in terms of the imaginary part that can be calculated n=o

from Borel resummation. 22 w

_ Of course, one should remember that not all .nonperturba- CuQ)="—|1+ E Wﬁo)as(Q)” , (68)
tive effects in QCD could be related to perturbation theory. It 3 n=1

is clear, for example, that perturbation theory cannot have o 0 (o
where the coefficientd?),w(®) are real numbers.

| shall now identify the first term in Eq63) as the per-
SMore precisely, it is the expansion B{b) of the Borel transform  turbative amplitudeDp+{ a5(Q)] and the second term of
for [[p(f) —In f—consi in Eq. (47) rather than that of the Borel gluon condensate as the nonperturbative amplitude
transform forl'p(f). Either of the Borel transforms can be used Dypl as(Q)]. Dpt can be expressed as a Borel resummation
because both have an identical renormalon singularity=at . of the perturbation serig®7)
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1 (eo=xie -
DpT[as(Q)iie]=Efo+i dbe PPosADp(h),
(69)
whereDp1(b) is defined by
- Z o d@p\n
o005, ) "
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ag(Q) ", with » a noninteger number, | conjecture that the
nonperturbative amplitude is given in the form:

Dy @s(Q)]=C[ — as(Q)] Y&~ %Poas(Q)
XCyl as(Q). B W,

whereC is an undetermined, dimensionless, real constant. In
this specific case the power of the coupling constant in the
preexponential factor depends oronly. But, in general, the

(79

This series is expected to have a finite radius of convergendeower depends not only om but also on the one-loop

(Jb|=1) set by the UV renormalon dt=—1. Beyond the

radius of convergenc®(b) is assumed to be obtained by
analytic continuationD p1 is now expected to have an imagi-
nary part with sign ambiguity due to the first IR renormalon
at b=2 in the Borel integral. This imaginary part is to be
canceled by the imaginary part froByp. Now Dyp, the
second term in Eq63), can be written as

Dl (Q) ] ag(Q) e~ 20T [ ag(Q), B; W ]

(71)
via the weak coupling expansion of
0]04/0 as(Q) da’
—< | :' >oceX[{—2f a, ] (72
Q B(a’)

which comes from the RG invariance of the gluon conden-

sate. Here,

v=2p,185, (73

which is noninteger for most of the combinationsNgf, Ny .
C,, which comes fronC, and the weak coupling expansion

anomalous dimensions of the associated operators. In such a
case, | propose that the branch cut arises likewise from the
preexponential power term in the coupling, and the correct
form for the nonperturbative amplitude can be obtained by
flipping the sign of the coupling constant in the preexponen-
tial factor.

The argument leading to E(5) shows that whem takes
an integer value for a particular combinationMf and N,
the nonperturbative amplitudg,, cannot have an imaginary
part. This implies disappearance of the first IR renormalon
singularity in the Borel plane for an integer. A further
comment on this point will follow shortly.

Now with Eq. (75 we have the real and the imaginary
parts,

Re{Dyp[ a(Q) i€]}=C cog vmr)ay(Q) *e 2oslQT,,

(76)

IM{D e a(Q) £ie]}=+Csin(vm)as(Q) "
xe_Z/BOD‘S(Q)E4,

(77

from which a relation between the real and the imaginary
parts is obtained:

of Eq.(72), is real and calculable in perturbation, and can be

expanded in power seriés:

Calas(Q), 8 WO =1+ WPy Q)+ W a(Q)2+ - - -,
(74)

wherew(?) depends orB;,; andw?, i=<n, respectively, in
Egs.(65) and (698).

Following the argument in Sec. Il | demand the imaginary
part in Dyp come from a branch cut along the positive real
axis in the coupling plane. Presence of UV renormalons
which gives rise to a sign alternating large order behavior
does not affect this requirement, since UV renormalons cal

be mapped away using a conformal mapping from the Bore

integration contour, thus causing no essential problem fo
Borel resummatiofil5,19. Since in the nonperturbative am-
plitude (71) a branch cut can arise only from the factor

Re[Dyel as(Q) *ie]} == ot ym)IM{Dyel as(Q) *iel}.
(78)

This has an important implication. It relates the usually in-
calculable real part of the nonperturbative amplitude to its
imaginary part that is calculable from Borel resummation.
Moreover, this relation is not for some part only of the am-
plitude as in the previous two examples, but holds to all
orders in perturbative expansion 6f,. This implies that as
far as the gluon condensate effect is concerned the nonper-
turbative effect can be calculated completely from the Borel
hesummation of the perturbation theory.

From Eq.(78) and the fact that the imaginary parts in
|5PT[aS(Q)tie] and Dyp a5(Q) £ie] cancel each other, |
can write the Adler function in terms @ p7 only:

D(Q?)=[Rexcot{ vm)Im]Dp as(Q) *ie].

Thus both the real and the imaginary parts of the Borel re-

(79

SWhen the higher renormalons are taken into account the seriesymmation are required to rebuild the true amplitude from

expansion foiC, is an asymptotic expansion, and should be Borel
resummed. However, since | ignore all higher renormalGgsis

assumed to be well defined by the series expansion. The ers on
by this assumption i©(e~Y$0*(Qy which is due to the dimension
six condensates.

the perturbation theory. The imaginary part comes from the
region beyond the first IR renormalom*2), and for its

calculation analytic continuation to the region beyond the
radius of convergence of the perturbative Borel transform
(70) is required. A more convenient method, though equiva-

034027-8



NONPERTURBATIVE EFFECTS FROM TH. . . PHYSICAL REVIEW D 66, 034027 (2002

lent to the analytic continuation, is to use a conformal map—=d© w (¢=1)=w!?, and w,(é=1)=w!?. Also the

ping to map, for example, all the renormalon singularities, orgorel transform(70) ;h(;uld be redefined as
all the renormalon singularities except for the first IR renor-

malon, to the unit circle. A conformal mapping of the first _ “da ()
kind was used in rebuilding the imaginary part of a Dpr(b,&)=> -
metastable-vacuum energy in a quantum mechanical model n=o Nt 1B
[20].' and the second kind was recently psed n Borel reSUMR 0w the renormalization scale invariance of the gluon con-
mation of the real part of the Adler functig@l], which may densate allows me to rewrite E(5) as
also be used for the calculation of the imaginary part. Here,

b n
—) . (83

instead, | shall try to evaluate the const&h’wh_ich Woulc_J Dyl s(£Q)]=CEY — ay(£Q)] "e™ ZPoas(éQ)
give a rough estimate of the nonperturbative amplitude ~
Dnel as(Q)]- X Cylas(£Q),Bi Wi()], (84)

As in the previous examples, this constant becomes the
residue, up to a calculable constant, of the Borel transform a&nd consequently the renormalon singularity corresponding
the renormalon singularity ah=2. In fact, for the Borel to Eq.(80) is given by
resummation69) to have an imaginary part that can cancel cet

the imaginary part77) the Borel transformDp(b) should Dpr(b, &)= =———(Bo/2)* "(1—b/2) 177
have the following singularity ay=2: F'(=v)
X[1+0O(1—b/2)]+analytic part. (85)

~ C
Dpr(b)= m(,BOIZ)“”(l—bIZ)‘l‘V

X[14O(1—b/2)]+analytic part, (80)

Note thatC in Egs.(84) and(85) is the same one defined in
Eq. (75), and is independent of the scaléout dependent on
the renormalization scheme.

. . With Eq. (85), C can be written as
where “analytic part” denotes terms that are analyticbat ! a. (89 wr

=2. In general the analytic part cannot be calculated. Note 1
that, as previously mentioned, the renormalon singularity C=—T(=v)(2IBo)*""R(b=2,) (86)
disappears when takes an integer value. This is obvious for

a negative integew, which happens, for example, &t; )
—2N;=8 with v=—10, or atN,=3N;=15 with y=  With
—176. The disappearance of the renormalon singularity for
the latter case was noticed bef¢&2]. What seems to have

been unexpected is that the singularity also disappears for\%e now proceed to evaluat(b=2.¢) as a perturbation

non-negative integer, for example, aN=6N;=12 with .o Bacause of the UV renormalorbat — 1 the evalua-
v=1. In this case the singularity disappears because of thﬁ

I . ‘ . i on pointb=2 is beyond the convergence radius of the se-
vanishing residue. The residue vanishes since the cor@tantries for R(b,£) around the origin, hence we have to map
fhc;uld aIwa;t;s %e bounded, for the nonperturbative amp"tUdf‘iiway all oth’er renormalons excebt for the first IR renorma-
75) cannot be divergent. : S
With Eg. (80), C can now be obtained by7,8] lon, using a conformal mapping like

C=T(=»)(2/B)"""R(2) (81 we Yitb=vi-bi3
V1+b++y1-b/3

which maps the first IR renormalon te=1/2 and all other
R(b)=(1—b/2)*" "D p(b). (82)  renormalons to the unit circle. Now in tive planeC can be
expressed as a convergent power series, thaCisC.,
As in the previous exampleR(2) may be evaluated as a WhereCy is defined by
perturbation series. However, it is unlikely to obtain a good L "
estimate of the constai@ by directly following the proce- N 14w
dures in the previous examples, since too few perturbative Cn(£9)= gl‘(— v)(2/Bo) ngo r“(é)(i) (89
coefficients are known. Only the first three terms of the per-
turbation series for the Adler function are presently known.with r ,(¢£) coming from the expansion
To improve the situation we will exploit the renormalization
scale independence of the Adler function. To do this, we *
replace in Eqs(67)—(69), and(74) the couplinga(Q) with R[b(w),£]= 20 r(€)wh. (90)
the running couplingx(£Q), with ¢ defined by the renor- "
malization scaleu?=£?Q?. Then the perturbative coeffi- Although C is ¢ independent, in generay, will have a ¢
cients in these equations should change accordingly#s dependence because of its finite order summation. This prop-
—dn(8), WO—w, (&), and W —w, (&), with d,(¢=1) erty is generic for any finite order QCD perturbation series

R(b,&)=(1-b/2)*""Dpr(b,&). (87)

(88)
with

N
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51 L L L Re{Dyel as(Q) Tie]}
8 _ —
7 [ . ~Cy(2.2co8vm)ay(Q) e~ (AT,
6 — -
4
ST ] MS (0) 2
o8 4 [ : ~Ca(22c08vm)- {1+ Way( Q)+ O(a)) ]
ST ] (99
2 — -
1 L ] wherew!{? is defined in Eq.68) and we have substituted
ok ] C3(2.2) for C, Ays denotes théMS renormalization scale.
_1 L L] Now this nonperturbative amplitude can be translated to a
0 8 gluon condensate in the ORB3). | define the gluon con-
densate by this nonperturbative amplitude by
FIG. 1. Renormalon residue vs renormalization sdle ag 3Q4 )
—G},G* ) =——Re{Dyd as(Q) *ie]}
and can be used to improve the convergence of the series by Ne o 2T
demanding that at an optimélthe scale dependence of the 3
series be minimdl23]. Applying this idea to our problem we 2 4
can hope that a better estimate of the constantan be 22 Ca(2:9cosvm) Afgs
achieved by takingCy(£2) at an optimalé, at which the
unphysical¢ dependence disappears locally, ~0.005 GeV, (95)
d Cn(&?) where | have used ys~370 MeV for Ny=3 quark flavors
£=¢ One should not compare the estimated vaRs directly

] ] _with the phenomenologically fitted gluon condensate, for ex-
Using the calculated next-next-leading order Adler functiongmpe, from the QCD sum rule. In the QCD sum rule, the

[24,25 and the estimate®(«y) coefficient[21,26], in the  ifference between the Borel resummed perturbative ampli-

MS scheme aN;=3 quark flavors £=1)7 tude and the sum of the first terms in the perturbation series
is approximated by power corrections, and therefore the phe-
D(Q%=a(Q)+1.6398a(Q)*+6.3710a(Q)* nomenologically fitted condensate includes contributions not
©) 4 5 only from the nonperturbative amplitude but also from the
+d;7a(Q)*+0(a), (92 perturbative amplitude. One may try to extract the gluon

. condensate effect in the resummed perturbative amplitude
wherea(Q)= as(Q)/, | give the last two calculable terms through Eq.(69), for example, by computing the minimal

for Cy in the MS scheme: term of the perturbation series with the large order behavior
given by the renormalon singularit$0). | believe, however,
C,(1.7)=5.37, C3(2.2=6.96. (93)  that this is not necessary, and also not a good way to handle

_ . _ ) . the renormalon effect. A better approach to incorporate the
In this calculation I took the estimated Va|l_1§ =25, which  renormalon effect, with only the first few terms of the per-
is from the recent estimate using a technique called “bilocaturbation series available, is to write using E8Q) the Borel

expansion of Borel amplitude[21]. This value is also in transformDp(b) in the Borel integral69) as
consistency with the well-known estimate[i26]. Note that

the optimalé for Cy is até2~1.7 forC, and¢2~2.2 forCy R(b)

(see Fig. 1 Dpr(b)= ————— (96)
BecauseC is evaluated with the perturbation seri@§) at (1-b/2)t*”

w=1/2 which is on the boundary of the convergence disk,

Cy in Eq. (93) should be regarded only as a rough estimateand do perturbation oR(b) instead of doing perturbation

The speed of convergence of the sequeBgds expected to  directly on Dpy(b). This way the Borel transform can be

be sensitive on the size of the analytic part in B§), since  better described in the most important region in the Borel

the size of the singular term &{(b,£) atb=2 is determined integral, i.e., between the origin and the first IR renormalon

by this analytic part. singularity and the region just beyond the singulaf{].
Using this estimate of we can now evaluate the real part  Nonetheless, it is interesting to observe that the estimated
of the nonperturbative amplitude. From E&6) value(95) is remarkably close to the recent estimate of gluon

condensate 0.0860.012 GeV [28] which was obtained by
fitting the spectral function of hadronie decay using the
dn(£) in terms ofd”) can be found if21]. QCD sum rule.
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Finally, some comments are in order. A full amplitude in the form of a part of the nonperturbative amplitude, the part
QCD in general has infinitely many cut singularities in thefrom which the branch cut arises, sufficiently that a relation
complex coupling plane as shown by 't Hop9]. One may can be established between the usually incalculable real part
wonder how this can be compatible with our proposedof the nonperturbative amplitude and the imaginary part that
mechanism that is based on the proposition that the nonpeis calculable from the Borel resummation. This way part of
turbative amplitude as well as the Borel resummed amplitudéhe real part of the nonperturbative amplitude, which usually
of perturbation theory have cuts only along the positive realncludes the leading term in weak coupling expansion, can
axes. The resolution of this question lies probably with thebe calculated from Borel resummation of the perturbation
nonconvergence of the OPE. Since the OPE is expected to ltkeeory.
an asymptotic expansidr30], each term in the OPE, to the  As a nontrivial test, this mechanism was applied to the
Wilson coefficient of which the Borel resummation is ap- ground state energy of the double well potential and the two-
plied, does not have to have the same singularities of the trugoint function in the two-dimension&®(N) nonlinear sigma
amplitude. Also, throughout this paper, the nonperturbativenodel at order M. In agreement with my proposed mecha-
effects due to the higher dimensional operator condensatessm the nonperturbative amplitudes in these models have
were consistently ignored. | expect, however, there should bbranch cuts only along the positive real axis in the coupling
no fundamental difficulty in incorporating them along the plane. With this mechanism the leading terms of the nonper-
lines described in this section. | conjecture that the nonperturbative amplitudes in these models could be calculated
turbative effect by the condensate of a dimensionopera-  with good accuracy from the first terms of the corresponding
tor in the Adler function can be written as perturbation series.

_ | then applied this mechanism to the QCD condensate
Dnplas) =Cil — as] "mexp(—n/Boas)Con(as), (97)  effects, particularly the gluon condensate effect, and sug-
] ] gested that some of the condensate effects can be calculated
wherev, is a constant calculable from the RG Equa'uons ONrom perturbation theory, and gave an estimate of the non-
the Wilson coefficient and the condensate, abg), is a  perturbative amplitude induced by the gluon condensate us-
modified Wilson coefficient defined in a similar fashion asing the known perturbative calculations of the Adler func-
the 64 in Eq. (74). Heref:zn should be Borel resummed in tion. | observed that this mechanism could be applied to
the manner described in this section. The unknown constaf®CD, despite the fact that a true QCD amplitude has an
C, can then be determined by demanding that the imaginaripfinite number of cut singularities in the coupling plane,
part of ordera_ "nexp(—n/Bya) be canceled by the imagi- Since the OPE to which the Borel resummation is applied is

nary parts coming from the amplitudes associated with th&'0t & convergent expansion.
operators of lower dimensions.
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