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Polyakov loops versus hadronic states

Francesco Sannino
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

~Received 19 April 2002; published 15 August 2002!

The order parameter for the pure Yang-Mills phase transition is the Polyakov loop which encodes the
symmetries of theZN center of theSU(N) gauge group. On the other side the physical degrees of freedom of
any asymptotically free gauge theory are hadronic states. Using the Yang-Mills trace anomaly and the exactZN

symmetry we construct a model able to communicate to the hadrons the information carried by the order
parameter.

DOI: 10.1103/PhysRevD.66.034013 PACS number~s!: 12.38.Mh
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I. INTRODUCTION

Investigating theSU(N) deconfinement phase transitio
is, in general, a complex problem. At zero quark dens
important sampling lattice simulations are able to prov
vital information about the nature of the temperature-driv
phase transition for two- and three-color Yang-Mills theor
with and without matter fields~see@1,2# for three colors!.
Different approaches@3–21# are used in the literature t
tackle or study the features of this phase transition.

At zero temperatureSU(N) the Yang-Mills theory is as-
ymptotically free and the physical spectrum of the theo
consists of a tower of hadronic states referred to as glueb
and pseudo-scalar glueballs. The theory develops a mass
and the lightest glueball has a mass of the order of few tim
the confining scale. The classical theory is conformal wh
quantum corrections lead to a nonvanishing trace of the
ergy momentum tensor.

At a nonzero temperature theZN center ofSU(N) is a
relevant global symmetry@22# and it is possible to construc
a number of gauge-invariant operators charged underZN ,
among which the most notable one is the Polyakov loop

,~x!5
1

N
Tr@L #

[
1

N
TrHP expF i gE

0

1/T

A0~x,t!dtG J . ~1!

P denotes path ordering,g is theSU(N) coupling constant,
andx is the coordinate for the three spatial dimensions wh
t is Euclidean time. The, field is real forN52 while oth-
erwise complex. This object is charged with respect to
centerZN of the SU(N) gauge group@22# under which it
transforms as,→z, with zPZN . A relevant feature of the
Polyakov loop is that its expectation value vanishes in
low-temperature regime while it is nonzero in the hig
temperature phase. The Polyakov loop is a suitable o
parameter for the Yang-Mills temperature-driven phase tr
sition @22#.

This behavior recently led Pisarski@11# to model the
Yang-Mills phase transition as a mean-field theory of Pol
kov loops. This model is often referred to as the Polyak
loop model~PLM!. Using this model one can infer that th
SU(2) phase transition is second order while a phase tra
0556-2821/2002/66~3!/034013~6!/$20.00 66 0340
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tion ~as function of the temperature! is a weak first order for
SU(3). The predictions are in reasonable agreement w
lattice results. Moreover, the PLM is used to model the Ya
Mills free energy. Recently some interesting phenomenolo
cal PLM-inspired models aimed to understand BNL Relat
istic Heavy Ion Collider~RHIC! physics were constructe
@18,19#.

Here we will consider pure gluon dynamics. This allow
us to have a well-defined framework where theZN symmetry
is exact. The hadronic states are the glueball fields (H) and
their effective theory at the tree level is constrained by
Yang-Mills trace anomaly.

A real puzzle to me is how the information about th
Yang-Mills phase transition encoded, for example, in theZN
global symmetry can be communicated to the hadronic st
of the theory. Here we propose a concrete model which
help resolve this puzzle.

This model is constructed using trace anomaly and theZN
symmetry. We will demonstrate that the information carri
by , is efficiently transferred to the glueballs. More genera
the glueball field is a function of,:

H[H@,#. ~2!

Our results can be tested via first-principle lattice simulatio
@23# and support the recent phenomenological investigati
@18,19#.

In Sec. II we present the model. In Sec. III we consid
the two-color Yang-Mills theory while in Sec. IV the three
color theory is considered. We finally conclude in Sec. V.

II. THE MODEL

The hadronic states of the Yang-Mills theory are the glu
balls. At zero temperature the Yang-Mills trace anomaly h
been used to constrain the potential of the lightest glue
stateH @24#:

V@H#5
H

2
lnF H

L4G . ~3!

L is chosen to be the confining scale of the theory andH is
a mass dimension-four field. This potential correctly sa
rates the trace anomaly whenH is assumed to be propor
tional to Tr@GmnGmn# and Gmn is the standard Yang-Mills
©2002 The American Physical Society13-1
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field strength. The potential nicely encodes the propertie
the Yang-Mills vacuum at zero temperature and it has b
used to deduce a number of phenomenological results@24#.

At high temperature Pisarski conjectured that the Ya
Mills pressure can be written in terms of the field,. This free
energy must be invariant underZN and it takes the genera
form:

V@,#5T4F @,#. ~4!

F @,# is a polynomial in, invariant underZN and the coef-
ficients depend on the temperature itself allowing for
mean-field description of the Yang-Mills phase transitions

We now marry the two models by requiring both fields
be present simultaneously at nonzero temperature.
theory must reproduce the ordinary glueball Lagrangian
zero and low temperatures while the PLM must reproduc
high temperatures. We propose the following effective pot
tial:

V@H,,#5
H

2
lnF H

L4G1VT@H#1HP @,#1T4V @,#, ~5!

whereV @,# andP @,# are general~but real! polynomials in
, invariant underZN whose coefficients depend on the tem
perature. The explicit dependence is not known and sho
be fit to lattice data. Dimensional analysis and analyticity
H when coupling it with, severely restricts the effectiv
potential terms. We stress thatHP @,# is the most genera
interaction term which can be constructed without spoil
the zero-temperature trace anomaly.

Further nonanalytic interaction terms can arise when c
sidering thermal and quantum corrections and are parti
contained inVT@H# which schematically represents the tem
perature of a gas of glueballs. In the following we will n
investigate in detail such a term. Our theory cannot be
full story since we neglected~as customary! all of the tower
of glueballs and pseudoscalar glueballs as well as the infi
series of dimensionless gauge-invariant operators with dif
ent charges with respect toZN . Nevertheless the potential i
sufficiently general to hope to capture the essential feat
of the Yang-Mills phase transition.

When the temperatureT is much less than the confinin
scaleL the last term in Eq.~5! can be safely neglected. Sinc
the glueballs are relatively heavy compared to theL scale
their temperature contributionVT@H# can also be disre
garded. At low temperatures the theory reduces to the s
dard glueball potential augmented by the third term wh
does not affect the trace anomaly.

At very high temperature~compared toL) the last term
dominates (H itself is very small!, recovering the picture in
which , dominates the free energy. In this regime we ha
F @,#5V @,#.

We can, in principle, compute all of the relevant therm
dynamical quantities in our approach, i.e., entropy, press
etc.

A relevant object is the trace of the energy-moment
tensorQm

m . At zero temperature and when the potential is
03401
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general function of a set of bosonic fields$Fn% with mass-
dimensionsdn one can construct the associated trace of
energy-momentum tensor via

Qm
m54V@Fn#2(

n

dV@Fn#

dFn
Fn dn . ~6!

At finite temperature we still define our temperatur
dependent energy-momentum tensor as in Eq.~6!. Here H
possesses engineering mass dimensions 4 while, is dimen-
sionless, yielding the following temperature-dependent str
energy tensor:

Qm
m~T!522H14T4V @,#14F12H

d

dHGVT@H#. ~7!

Qm
m is normalized such that̂0uQm

mu0&5e23p with e the
vacuum energy density andp the pressure. At zero tempera
ture only the first term survives, yielding magnetic-type co
densation typical of a confining phase, while at extrem
high temperature the second term dominates, displaying
energy density and pressure of the deconfined phase.

The theory containing just, can be obtained integratin
out H via the equation of motion

dV@H,,#

dH
50. ~8!

Formally this is justifiable if the glueballs degrees of fre
dom are very heavy. For simplicity we neglect the contrib
tion of VT@H# as well as the mean-field theory correctio
for ,. However, in the future a more careful treatment, whi
also includes the kinetic terms, should be considered. Wi
these approximations the equation of motion yields

H@,#5
L4

e
exp~22P @,# !. ~9!

The previous expression shows the intimate relation betw
, and the physical states of strongly interacting theories.

After substituting Eq.~9! back into potential~5! and hav-
ing neglectedVT@H# we have

V@,#5T4V @,#2
L4

2e
exp~22P @,# !. ~10!

This formula shows that for large temperatures the only
evant energy scale isT and we recover the PLM mode
However at low temperatures the scaleL allows for new
terms in the Lagrangian. In addition to theT4 and theL4

terms we also expect terms with coefficients of the typeTL3

and T2L2 and T3L. However, in our simple model thes
terms do not seem to emerge.

Expanding the exponential we have

V@,#5T4V @,#1
L4

e
P @,#2

L4

2e
1•••. ~11!

Since V @,# and P @,# are real polynomials in, invariant
underZN we immediately recover a general potential in,.
3-2
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III. THE TWO-COLOR THEORY

To illustrate how our formalism works we first consider
detail the caseN52 and neglect for simplicity the term
VT@H#. This theory has been extensively studied via latt
simulations@25,26# and it constitutes the natural playgroun
to test our model. Here, is a real field and theZ2 invariant
V @,# andP @,# are taken to be

V @,#5a1,21a2,41O~,6!,

P @,#5b1,21O~,4!, ~12!

with a1 ,a2, and b1 unknown temperature-dependent fun
tions which should be derived directly from the underlyi
theory. Lattice simulations can, in principle, fix all of th
coefficients. In order for us to investigate in some more
tail the features of our potential and inspired by the PL
model mean-field type of approximation we first assumea2
andb1 to be positive and temperature-independent const
while we modela15a(T* 2T)/T, with T* a constant anda
another positive constant. We will soon see that due to
interplay between the hadronic states and,, T* need not be
the critical Yang-Mills temperature whilea1 displays the
typical behavior of the mass square term related to a sec
order type of phase transition.

The extrema are obtained by differentiating the poten
with respect toH and,:

]V

]H
5

ln

2 FeH

L4G1P @,#5
ln

2 FeH

L4G1b1,250, ~13!

]V

],
52,T4S a11

H

T4
b112a2,2D 50. ~14!

A. Small and intermediate temperatures

At small temperatures the second term in Eq.~14! domi-
nates and the only solution is,50. A vanishing, leads to a
null P @,# yielding the expected minimum forH:

^H&5
L4

e
. ~15!

Here, andH decouple.
We now study the solution near the critical temperat

for the deconfinement transition. For all the temperatures
which

T4a11Hb15T3a~T* 2T!1Hb1.0, ~16!

the solution for, is still ,50 yielding Eq.~15!. The critical
temperature is reached for

Tc5T* 1
b1

ea

L4

Tc
3

. ~17!

The critical temperature can be determined via lattice sim
lations. We see that within our framework the latter is rela
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to the glueball~gluon-condensate! coupling to two Polyakov
loops and it would be relevant to measure it on the lattice.
T5Tc , ,50, andH5L4/e.

Let us now consider the caseT5Tc1DT with

DT

Tc
!1. ~18!

Expanding^,&2 at the leading order inDT/Tc yields

^,&25
a

2a2

113
b1

ea

L4

Tc
4

12
b1

2

ea2

L4

Tc
4

DT

Tc
. ~19!

We used Eq.~17! and Eq.~13! which relate the temperatur
dependence ofH to the one of,. At high temperatures~see
Sec. III B! ^,& can be normalized to one by imposin
a/2a251 and the previous expression reads

^,&25

113
b1

ea

L4

Tc
4

12
2b1

2

ea

L4

Tc
4

DT

Tc
[

4Tc23T*
~122b1!Tc12b1T*

DT

Tc
.

~20!

For a given critical temperature consistency requiresb1 and
T* to be such that

4Tc23T*
~122b1!Tc12b1T*

>0. ~21!

The temperature dependence in this regime of the gluon c
densate is

^H&5
L4

e
exp@22b1^,&2#. ~22!

We find the mean-field exponent for,, i.e., ,2 increases lin-
early with the temperature near the phase transition@27#.
Interestingly the gluon condensate drops exponentially. T
drop in the gluon condensate is triggered by the rise of, and
it happens in our simple model exactly at the deconfin
critical temperature. Although the drop might be sharp it
continuous in temperature and this is related to the fact
the phase transition is second order. Our findings stron
support the common picture according to which the drop
the gluon condensate signals, in the absence of quarks
confinement.

B. High temperature

At very high temperatures the second term in Eq.~14! can
be neglected and the minimum for, is

^,&5A a

2a2
. ~23!
3-3
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For H we have now

^H&5
L4

e
expF22b1

a

2a2
G5

L4

e
exp@22b1#. ~24!

In the last step we normalized̂,& to unity at high tempera-
ture. In order for the previous solutions to be valid we ne
to operate in the following temperature regime:

T@A4 b1

a
^H&'Tc . ~25!

We find that at sufficiently high temperature^H& is exponen-
tially suppressed and the suppression rate is determ
solely by the glueball—,2 mixing term encoded inP @,#.
The coefficientb1 should be large~or increase with the tem
perature! since we expect a vanishing gluon condensate
asymptotically high temperatures. Clearly it is crucial to d
termine all of these coefficients via first-principle lattic
simulations. The qualitative picture which emerges in o
analysis is summarized in Fig. 1.

IV. THE THREE-COLOR THEORY

Z3 is the global symmetry group for the three-color ca
while , is a complex field. The functionsV @,# andP @,# are

V @,#5a1u,u21a2u,u42a3~,31,* 3!1O~,5!,

P @,#5b1u,u21O~,3!, ~26!

with a1 , a2 , a3, and b1 unknown temperature-depende
coefficients which can be determined using lattice data
this paper we want to investigate the general relation
tween glueballs and, so we will not try to find the bes
parametrization to fit the lattice data. In the spirit of t
mean-field theory we takea2 , a3, and b1 to be positive

FIG. 1. The thin line is the gluon condensate^H& normalized to
L4/e as a function of the temperature. The thick line represents
normalized to unitŷ ,& as a function of the temperature. We ha
chosen for illustrationa51, b151.45, andTc.1.16L.
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constants whilea15a(T* 2T)/T. With ,5u,ueiw the ex-
trema are now obtained by differentiating the potential w
respect toH, u,u, andw,

]V

]H
5

ln

2 FeH

L4G1P @,#5
ln

2 FeH

L4G1b1u,u250,

]V

]u,u
52u,uT4S a11

H

T4
b123a3u,ucos~3w!12a2u,u2D 50,

]V

]w
56u,u3sin~3w!50. ~27!

At small temperature theH/T4 term in the second equatio
dominates and the solution is^u,u&50, ^H&5L4/e, and the
last equation is verified for anŷw&, so we choosêw&50.
The second equation can have two more solutions:

3

4

a3

a2
6A 9

16

a3
2

a2
2

1
a~T2T* !

2Ta2
2

b1H

2a2T4
, ~28!

whenever the square root is well defined~i.e., at sufficiently
high temperatures!. The negative sign corresponds to a re
tive maximum while the positive one corresponds to a re
tive minimum. We have then to evaluate the free ene
value ~i.e., the effective thermal potential! at the relative
minimum and compare it with the one at,50. The tempera-
ture value for which the two minima have the same fr
energy is defined as the critical temperature and is

Tc5FT* 1
b1

ea

L4

Tc
3 G aa2

aa21a3
2

. ~29!

Whena3 vanishes we recover the second-order-type criti
temperatureTc . To derive the previous expression we he
fix the value ofH to L4/e at the transition point. In a more
refined treatment one should not make such an assump
Below this temperature the minimum is still for^,&50 and
^H&5L4/e.

Just above the critical temperature the fields jump to
new values:

^u,u&5
a3

a2
, ^H&5

L4

e
exp@22b1^u,u&2#. ~30!

Close but aboveTc ~i.e., T5Tc1DT) we have

^u,u&.
a3

a2
1r

DT

Tc
, ~31!

with

e

3-4
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r.
aa2

a3

4kTc23T*
a2Tc24b1a~kTc2T* !

,

k5
aa21a3

2

aa2
, ~32!

a positive function of the coefficients of the effective pote
tial. In this regime

^H&5
L4

e
expF22b1S a3

a2
1r

DT

Tc
D 2G . ~33!

At high temperature we expect a behavior similar to the o
presented for the two-color theory case. A cartoon repres
ing the behavior of the Polyakov loop and the gluon cond
sate is presented in Fig. 2.

Since we are in the presence of a first-order phase tra
tion higher-order terms in Eq.~26! may be important. How-
ever, lattice simulations have shown that the behavior of
Polyakov loop, for three colors, resemble a weak first-or
transition~i.e., smalla3) partially justifying our simple ap-
proach.

The approximation for our coefficients is too crude and
would certainly be relevant to fit them to lattice simulation

What we learned is that the gluon condensate, altho
not a real order parameter, encodes the information of
underlying Z3 symmetry. More generally we have show
that once the map between hadronic states and the true
parameter is known we can use directly hadronic state
determine when the phase transition takes place and th
der of the phase transition. For example by comparing Fi
and Fig. 2 we immediately notice the distinct difference
the gluon condensate temperature dependence near the
transition.

V. CONCLUSIONS AND SELF-CRITICISM

Our simple model is able to account for many featu
inherent to the Yang-Mills deconfining phase transition. W
related two very distinct and relevant sectors of the theo

FIG. 2. A cartoon sketching the gluon condensate^H& normal-
ized toL4/e and the^u,u& ~thick line! behaviors as function of the
temperature. We have chosen for illustrationa350.3, a251, a
52, b150.7, andTc51.2L.
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the hadronic sector~the glueballs!, and some dimensionles
fields ~,! charged under the discrete groupZN understood as
the center of the underlyingSU(N) Yang-Mills theory@11#.

The gluon-condensate is, strictly speaking, not an or
parameter for the deconfining Yang-Mills phase transitio
However, we have shown that the information encoded in
true order parameter, is efficiently communicated to the
gluon condensate. Since the exponential drop of the cond
sate just above the Yang-Mills critical temperature is a dir
consequence of the behavior of the true order paramete
the transition we can consider this drop as a strong signa
deconfinement. This drop has already been used in var
models for the Yang-Mills phase transition. We have a
seen that the reduction in the gluon condensate is assoc
with the increase of the Polyakov loop condensate,. The
information about the order of the phase transition is a
transferred to the behavior of the gluon condensate. Ind
from Fig. 1 and Fig. 2 we deduce that the drop is continuo
for the gluon condensate in the two-color case while it
discontinuous for the three-color theory. Physically the glu
balls start decaying into gluons and this information is e
coded in theHP @,# term of the present theory. We now
better understand the mechanism for transferring informa
from the Yang-Mills order parameter to the physical state

It is important to stress that our model is very limite
since we neglect the temperature corrections associated
the glueball gas as well as other dimensionless opera
with different charges underZN . Finally we did not include
any of the excited glueball and pseudoscalar glueball st
present in the theory. Besides the temperature dependen
the coefficients inP @,# andV @,# is not known and we have
just adopted the simplest guess consistent with mean-
theory. We also know that mean field cannot be the wh
story and corrections need to be included.

It is worth mentioning that the Polyakov loop need not
the only acceptable order parameter. For example, using
Abelian projection one can define a new~nonlocal in the
cromomagnetic variables! order parameter@20#. Our model
can be, in principle, modified to be able to couple the h
ronic state to any reasonable Yang-Mills order parameter

The same holds true when considering the introduction
quarks. Once we identify a true order parameter for QC
with quarks we can first construct a model Lagrangian wh
satisfies the ordinary symmetries at zero temperature for
hadronic states and then extend it to describe at the s
time the order parameter and the hadronic states. Althoug,
is not a good order parameter when quarks are added to
theory, since theZN symmetry is explicitly broken, we can
still construct a theory containing, and the hadronic state
~mesons and glueballs! provided we introduce explicitZN
breaking terms. This approach might be relevant for und
standing RHIC physics@18,19#.

Although the model is at a very early stage of develo
ment at the tree level some of the results are already fa
robust. For example the exponential drop of^H& as function
of ^,& is a prediction not expected to be very sensitive
different sources of corrections. We also note that the fi
order behavior of the deconfining three-color Yang-Mi
theory is directly inherited by thêH&. Indeed this quantity is
discontinuous at the phase transition for three colors whil
3-5
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displays a smooth behavior in the two-color case. We exp
these results to be quite general. We also stress that the
connected to the saturation of trace anomaly and theZN sym-
metry at the effective Lagrangian level when considering
multaneously, andH.

By computing the temperature dependence of the co
cients in the present effective theory lattice simulations
test the validity of the present model while improving t
present results.
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