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Polyakov loops versus hadronic states
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The order parameter for the pure Yang-Mills phase transition is the Polyakov loop which encodes the
symmetries of th&y center of theSU(N) gauge group. On the other side the physical degrees of freedom of
any asymptotically free gauge theory are hadronic states. Using the Yang-Mills trace anomaly and tAg exact
symmetry we construct a model able to communicate to the hadrons the information carried by the order

parameter.
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[. INTRODUCTION tion (as function of the temperatyres a weak first order for

SU(3). The predictions are in reasonable agreement with
Investigating theSU(N) deconfinement phase transition lattice results. Moreover, the PLM is used to model the Yang-
is, in general, a complex problem. At zero quark densityMills free energy. Recently some interesting phenomenologi-
important sampling lattice simulations are able to providecal PLM-inspired models aimed to understand BNL Relativ-
vital information about the nature of the temperature-driveristic Heavy lon Collider(RHIC) physics were constructed
phase transition for two- and three-color Yang-Mills theories[18,19.

with and without matter field¢see[1,2] for three colors Here we will consider pure gluon dynamics. This allows
Different approache$3—21] are used in the literature to us to have a well-defined framework where fgsymmetry
tackle or study the features of this phase transition. is exact. The hadronic states are the glueball fiekds &nd

At zero temperatur& U(N) the Yang-Mills theory is as- their effective theory at the tree level is constrained by the
ymptotically free and the physical spectrum of the theoryYang-Mills trace anomaly.
consists of a tower of hadronic states referred to as glueballs A real puzzle to me is how the information about the
and pseudo-scalar glueballs. The theory develops a mass g&#png-Mills phase transition encoded, for example, inZhe
and the lightest glueball has a mass of the order of few timeglobal symmetry can be communicated to the hadronic states
the confining scale. The classical theory is conformal whileof the theory. Here we propose a concrete model which can
guantum corrections lead to a nonvanishing trace of the erhelp resolve this puzzle.
ergy momentum tensor. This model is constructed using trace anomaly andZipe

At a nonzero temperature thg, center of SU(N) is a  symmetry. We will demonstrate that the information carried
relevant global symmetrj22] and it is possible to construct by ¢ is efficiently transferred to the glueballs. More generally
a number of gauge-invariant operators charged uggr the glueball field is a function of:
among which the most notable one is the Polyakov loop,

H=H[¢]. )
1
€)= {TrL] Our results can be tested via first-principle lattice simulations
[23] and support the recent phenomenological investigations
1 s [18,19.
ENTV[PeXF{' gfo Ao(X,T)d7 ] (1) In Sec. Il we present the model. In Sec. Il we consider

the two-color Yang-Mills theory while in Sec. IV the three-

P denotes path ordering, is the SU(N) coupling constant, color theory is considered. We finally conclude in Sec. V.
andx is the coordinate for the three spatial dimensions while

7 is Euclidean time. The field is real forN=2 while oth- Il. THE MODEL

erwise complex. This object is charged with respect to the

centerZy of the SU(N) gauge groui22] under which it balls. At zero temperature the Yang-Mills trace anomaly has

transforms ag —z¢ with ze Zy. A relevant feature of the been used to constrain the potential of the lightest glueball
Polyakov loop is that its expectation value vanishes in the P 9 9

low-temperature regime while it is nonzero in the high- StateH [24]

temperature phase. The Polyakov loop is a suitable order

parameter for the Yang-Mills temperature-driven phase tran- V[H]= Em

sition [22]. 2
This behavior recently led Pisarskil] to model the

Yang-Mills phase transition as a mean-field theory of Polya-A is chosen to be the confining scale of the theory Hnid

kov loops. This model is often referred to as the Polyakova mass dimension-four field. This potential correctly satu-

loop model(PLM). Using this model one can infer that the rates the trace anomaly wheth is assumed to be propor-

SU(2) phase transition is second order while a phase transtional to T{G,,G*”] andG,,, is the standard Yang-Mills

The hadronic states of the Yang-Mills theory are the glue-

. (3

A
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field strength. The potential nicely encodes the properties ofeneral function of a set of bosonic fielf .} with mass-
the Yang-Mills vacuum at zero temperature and it has beedimensionsd, one can construct the associated trace of the
used to deduce a number of phenomenological reEedts energy-momentum tensor via

At high temperature Pisarski conjectured that the Yang-
Mills pressure can be written in terms of the fi€ldThis free
energy must be invariant und&g, and it takes the general
form:

V[ @]

" _ -
O =4V[®n]- 2 5.

®,d,. (6)

At finite temperature we still define our temperature-
V[¢]=T*F[€]. (4)  dependent energy-momentum tensor as in @Y. Here H
possesses engineering mass dimensions 4 whgedimen-
F[ €] is a polynomial in¢ invariant undeiZy, and the coef- sionless, yielding the following temperature-dependent stress
ficients depend on the temperature itself allowing for a€Nergy tensor:
mean-field description of the Yang-Mills phase transitions.
We now marry the two models by requiring both fields to 04(T)=—2H +A4T*Y[€]+4
be present simultaneously at nonzero temperature. The

theory must reproduce the ordinary glueball Lagrangian a{w is normalized such tha¢0|®ﬁ|0>=e—3p with e the

zero and low temperatures while the PLM must reproduce at_# .
vacuum energy density armthe pressure. At zero tempera-

tr:gh temperatures. We propose the following effective pOtenfure only the first term survives, yielding magnetic-type con-
' densation typical of a confining phase, while at extremely
high temperature the second term dominates, displaying an
i i L4 energy density and pressure of the deconfined .phase._
VA HITHPLOFTVEL, () The theory containing just can be obtained integrating

out H via the equation of motion

whereV[€¢] andP[ €] are generalbut rea) polynomials in SV[H, €]

€ invariant undeiZy whose coefficients depend on the tem- ——— - —. )
perature. The explicit dependence is not known and should oH
be fit to lattice data. Dimensional analysis and analyticity in
H when coupling it with€ severely restricts the effective
potential terms. We stress thHtP[ €] is the most general

1HD
SH

Vi[H]. (7

H [H
V[H,€]:EIn F

Formally this is justifiable if the glueballs degrees of free-
dom are very heavy. For simplicity we neglect the contribu-
. : : . - tion of V{[H] as well as the mean-field theory corrections
interaction term which can be constructed without SpOIIIngfor €. However, in the future a more careful treatment, which

theFi?trr?e-:trerT)Fr)]er?;llj;teict:ﬁfeer;:r:i%??leyr.ms can arise when Con{;\Iso includes.the _kinetic terms, ghould be _consi_dered. Within
L ; .~ these approximations the equation of motion yields

sidering thermal and quantum corrections and are partially

contained invV{[H] which schematically represents the tem- A4

perature of a gas of glueballs. In the following we will not H[¢]= ?exp(—ZP[é’]). (9)

investigate in detail such a term. Our theory cannot be the

full story since we neglecteths customaryall of the tower  The previous expression shows the intimate relation between
of glueballs and pseudoscalar glueballs as well as the infinitg 5nq the physical states of strongly interacting theories.

series of dimensionless gauge-invariant operators with differ- - afier substituting Eq(9) back into potential(5) and hav-
ent charges with respect #),. Nevertheless the potential is ing neglectedv;[H] we have

sufficiently general to hope to capture the essential features
of the Yang-Mills phase transition. A?

When the temperatur€ is much less than the confining V[€]=T*V[€]~- 26 SXN—2P[L]). (10
scaleA the last term in Eq(5) can be safely neglected. Since
the glueballs are relatively heavy compared to thescale  This formula shows that for large temperatures the only rel-
their temperature contributioV[H] can also be disre- evant energy scale i and we recover the PLM model.
garded. At low temperatures the theory reduces to the starHowever at low temperatures the scaleallows for new
dard glueball potential augmented by the third term whichterms in the Lagrangian. In addition to tAé and theA*
does not affect the trace anomaly. terms we also expect terms with coefficients of the type’

At very high temperaturécompared to\) the last term  and T?2A2 and T3A. However, in our simple model these
dominates K itself is very small, recovering the picture in  terms do not seem to emerge.
which ¢ dominates the free energy. In this regime we have Expanding the exponential we have
Fle]=V[£].

We can, in principle, compute all of the relevant thermo-
dynamical quantities in our approach, i.e., entropy, pressure,
etc.

A relevant object is the trace of the energy-momentumSince V[€] and P[ €] are real polynomials irf invariant
tensor®/, . At zero temperature and when the potential is aunderZy we immediately recover a general potentialin

A4 A4
V[€]=T4V[€]+?P[€]—£+--~. (1)
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. THE TWO-COLOR THEORY to the glueballgluon-condensajecoupling to two Polyakov
loops and it would be relevant to measure it on the lattice. At
T=T,, ¢=0, andH=A%e.

Let us now consider the cage=T.+ AT with

To illustrate how our formalism works we first consider in
detail the caseN=2 and neglect for simplicity the term
V{[H]. This theory has been extensively studied via lattice

simulationg[25,26] and it constitutes the natural playground AT
to test our model. Heré is a real field and th&, invariant T—<1. (18
V[€] andP[ €] are taken to be ¢

. 2 . - .
V[€]=a.%+a,64+ O(£5), Expanding(¢)< at the leading order iAT/T, yields

P — 2 4 bl A4
[€]=b€"+0O(£"), (12 3+~
a ea TJ AT
with a;,a,, andb,; unknown temperature-dependent func- <€>2=g—241——- (19
tions which should be derived directly from the underlying 2, _ & A_ ¢
theory. Lattice simulations can, in principle, fix all of the ea T7

coefficients. In order for us to investigate in some more de-

tail the features of our potential and inspired by the PLMWe used Eq(17) and Eq.(13) which relate the temperature

model mean-field type of approximation we first asstage dependence ofl to the one oft. At high temperature¢see

andb;, to be positive and temperature-independent constantSec. IlIB) (¢) can be normalized to one by imposing

while we modela; = «(T, —T)/T, with T, aconstantand  «/2a,=1 and the previous expression reads

another positive constant. We will soon see that due to the

interplay between the hadronic states &nd’, need not be b, A

the critical Yang-Mills temperature whil@, displays the l+3aF AT AT —3T AT
H H Cc Cc *

typical behavior of the mass square term related to a second- <e>2:—2 —= —

order type of phase transition. _ 2_b1 A_4 Te  (1=2by)Te+2b,T, T

4

The extrema are obtained by differentiating the potential ea T4
with respect taH and ¢: ¢ (20)
vV In|eH _InjeH - For a given critical temperature consistency requiregnd
GH 2| A4 TPUI=7 A4 +b267=0, (13 71, 10 be such that
N y 4T.—3T, 0 (21)
=0.
ﬁzzeﬂ a1+Fbl+2a2€2) =0. (14) (1-2by)Tc+2by T,

The temperature dependence in this regime of the gluon con-

A. Small and intermediate temperatures densate is

At small temperatures the second term in Egl) domi- 4

nates and the only solution &=0. A vanishingf leads to a (H)= ?exp:—Zbl(f)z]. (22
null P[€] yielding the expected minimum fdt:
A4 We find the mean-field exponent fér i.e., €2 increases lin-
(Hy=—. (15) early with the temperature near the phase transif@n.
e Interestingly the gluon condensate drops exponentially. The
drop in the gluon condensate is triggered by the risé afd
Here ¢ andH decouple. it happens in our simple model exactly at the deconfining
We now study the solution near the critical temperaturecritical temperature. Although the drop might be sharp it is
for_the deconfinement transition. For all the temperatures fogontinuous in temperature and this is related to the fact that
which the phase transition is second order. Our findings strongly
4 3 support the common picture according to which the drop of
Ta;+Hb; =T a(T, —T)+Hb, >0, (16 the gluon condensate signals, in the absence of quarks, de-

the solution for¢ is still € =0 yielding Eq.(15). The critical confinement,

temperature is reached for .
B. High temperature

T =T b, A* 1 At very high temperatures the second term in 84} can
=t gy A7) pe neglected and the minimum féris

The critical temperature can be determined via lattice simu- (€)= [ (23)
lations. We see that within our framework the latter is related 2a,
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1 constants whilea;=a(T, —T)/T. With ¢=|¢|e'® the ex-
<H> trema are now obtained by differentiating the potential with
0.8 respect toH, |€|, and ¢,
0.6 dV InjeH ¢ In| eH b.1¢12= 0
m—EPJFP[ ]_§P+ 1/€]°=0,
04
0.2 T
- ¢ N _ 4 H 2| _
<£> m—2|€|T al+Fb1—3a3|€|cos(3<p)+2a2|€| =0,
098 099 1 101 102 103 104
T/Te
v .
FIG. 1. The thin line is the gluon condensék¢) normalized to £=6|€| sin(3¢)=0. (27

A%le as a function of the temperature. The thick line represents the
normalized to unity¢) as a function of the temperature. We have

chosen for illustrationy=1, b, =1.45, andT .~ 1.16A At small temperature thel/T# term in the second equation
’ . il C . .

dominates and the solution {§¢|)=0, (H)=A%e, and the
For H we have now last equation is verified for anfp), so we choogécp>=0.
The second equation can have two more solutions:

Hy=""ex] —2b, .
(H)= g exp —2b, 5~

In the last step we normalized) to unity at high tempera-
ture. In order for the previous solutions to be valid we need ) o o
to operate in the following temperature regime: whenever the square root is well definge., at sufficiently
high temperaturgsThe negative sign corresponds to a rela-
tive maximum while the positive one corresponds to a rela-
4 by tive minimum. We have then to evaluate the free energy
™ ;<H>%TC' (25 value (i.e., the effective thermal potentjaat the relative
minimum and compare it with the one &+ 0. The tempera-

We find that at sufficiently high temperatufl) is exponen- ture val.ue fo'r which the tyvp minima have the same free
tially suppressed and the suppression rate is determingd'€rdy is defined as the critical temperature and is
solely by the glueball¢? mixing term encoded ifP[¢].

A4
= ?exp[ —2b;]. (29

3ag 9a§+a(T—T*) b,H
4a,” V162  2Ta,  2a,T%

(28)

The coefficient; should be largéor increase with the tem- 4

. . . bl A C(a.z
peraturg since we expect a vanishing gluon condensate at T=|Tet — 3| ——- (29
asymptotically high temperatures. Clearly it is crucial to de- €a T |aay+as

termine all of these coefficients via first-principle lattice
simulations. The qualitative picture which emerges in ourWhenas vanishes we recover the second-order-type critical
analysis is summarized in Fig. 1. temperaturel .. To derive the previous expression we held
fix the value ofH to A%/e at the transition point. In a more
refined treatment one should not make such an assumption.
Below this temperature the minimum is still fof)=0 and

Z5 is the global symmetry group for the three-color case(H)=A%/e.
while € is a complex field. The functiong[ €] andP[{] are Just above the critical temperature the fields jump to the

new values:

IV. THE THREE-COLOR THEORY

V[€]=a.|€]?+ay|€|*—az(£3+€*3)+ O(£>), A4
a

(=22 (Hy=—exd—2by(|¢))?]. (30

PL€1=by|€|*+0O(£?), (26) ’

Close but abovE; (i.e., T=T,+AT) we have

with a;, a,, az, andb; unknown temperature-dependent

coefficients which can be determined using lattice data. In

this paper we want to investigate the general relation be- <|€|>:§+pA_T (31)

tween glueballs and so we will not try to find the best a, T’

parametrization to fit the lattice data. In the spirit of the

mean-field theory we take,, az, and b, to be positive with
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the hadronic sectoithe glueballs and some dimensionless
fields (¢) charged under the discrete grodp understood as
the center of the underlyin§ U(N) Yang-Mills theory[11].

The gluon-condensate is, strictly speaking, not an order
parameter for the deconfining Yang-Mills phase transition.
However, we have shown that the information encoded in the
true order parametef is efficiently communicated to the
gluon condensate. Since the exponential drop of the conden-
sate just above the Yang-Mills critical temperature is a direct
consequence of the behavior of the true order parameter at
I the transition we can consider this drop as a strong signal of
055 . 161 102 103 deconfinement. This drt_)p has already I_o_een used in various

T/Te models for the Yang-Mills phase transition. We have also
seen that the reduction in the gluon condensate is associated

FIG. 2. A cartoon sketching the gluon condensd# normal- ~ With the increase of the Polyakov loop condenséterhe
ized to A%/e and the(|€|) (thick line) behaviors as function of the information about the order of the phase transition is also
temperature. We have chosen for illustratiag=0.3, a,=1, «  transferred to the behavior of the gluon condensate. Indeed

=2,b,=0.7, andT,=1.2A. from Fig. 1 and Fig. 2 we deduce that the drop is continuous
for the gluon condensate in the two-color case while it is
aay, 4xT.—3T, discontinuous for the three-color theory. Physically the glue-

balls start decaying into gluons and this information is en-
coded in theHP[¢] term of the present theory. We now
) better understand the mechanism for transferring information
_aaptag 32 from the Yang-Mills order parameter to the physical states.
K= ad, (32 It is important to stress that our model is very limited
since we neglect the temperature corrections associated with
a positive function of the coefficients of the effective poten-the glueball gas as well as other dimensionless operators
tial. In this regime with different charges undety . Finally we did not include
any of the excited glueball and pseudoscalar glueball states
a; AT)\? present in the theory. Besides the temperature dependence of
a_2+P-|-_C : the coefficients ifP[ €] and V[ €] is not known and we have
just adopted the simplest guess consistent with mean-field
At high temperature we expect a behavior similar to the ondheory. We also know that mean field cannot be the whole
presented for the two-color theory case. A cartoon represenstory and corrections need to be included.
ing the behavior of the Polyakov loop and the gluon conden- It is worth mentioning that the Polyakov loop need not be
sate is presented in Fig. 2. the only acceptable order parameter. For example, using an
Since we are in the presence of a first-order phase transfbelian projection one can define a néwonlocal in the
tion higher-order terms in Eq26) may be important. How- cromomagnetic variablgsorder parametef20]. Our model
ever, lattice simulations have shown that the behavior of théan be, in principle, modified to be able to couple the had-
Polyakov loop, for three colors, resemble a weak first-ordefonic state to any reasonable Yang-Mills order parameter.
transition(i.e., smallag) partially justifying our simple ap- The same holds true when considering the introduction of
proach. quarks. Once we identify a true order parameter for QCD
The approximation for our coefficients is too crude and itwith quarks we can first construct a model Lagrangian which
would certainly be relevant to fit them to lattice simulations. satisfies the ordinary symmetries at zero temperature for the
What we learned is that the gluon condensate, althoughadronic states and then extend it to describe at the same
not a real order parameter, encodes the information of théme the order parameter and the hadronic states. Althéugh
underlying Z; symmetry. More generally we have shown is not a good order parameter when quarks are added to the
that once the map between hadronic states and the true ord&eory, since the&Zy symmetry is explicitly broken, we can
parameter is known we can use directly hadronic states t8till construct a theory containing and the hadronic states
determine when the phase transition takes place and the dimesons and glueballgrovided we introduce expliciZy
der of the phase transition. For example by comparing Fig. breaking terms. This approach might be relevant for under-
and Fig. 2 we immediately notice the distinct difference instanding RHIC physic§18,19.
the gluon condensate temperature dependence near the phasélthough the model is at a very early stage of develop-

P ey a,T—4ba(kTo—T,) '

(33

A4
<H>: ?eX[{—Zbl

transition. ment at the tree level some of the results are already fairly
robust. For example the exponential drop(bf) as function
V. CONCLUSIONS AND SELFE-CRITICISM of (£) is a prediction not expected to be very sensitive to

different sources of corrections. We also note that the first-
Our simple model is able to account for many featuresorder behavior of the deconfining three-color Yang-Mills
inherent to the Yang-Mills deconfining phase transition. Wetheory is directly inherited by théH ). Indeed this quantity is
related two very distinct and relevant sectors of the theorydiscontinuous at the phase transition for three colors while it
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displays a smooth behavior in the two-color case. We expect ACKNOWLEDGMENTS
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