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Polarization and distribution function of the A, baryon
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The polarization of the\, baryon has been measured in ALEPH, OPAL, and DELPHI experiments. A
significant loss on the transfer of thequark polarization to thé , baryon polarization has been noticed. This
implies that the hadronization effects cannot be neglected. Therefore we may make use of the polarization
measurements to look for a suitable model for Ahedistribution function. To investigate the,, polarization,
we construct four models based on a perturbative QCD factorization formula. The models are the quark model,
the modified quark model, the parton model, and the modified parton model. The modified models mean the
models having transverse degrees of freedom and the associated soft radiative corrections having been re-
summed. The quark and parton models cannot describe all experiments at the same time. On the other hand, the
modified models can have the power to explain all data in the same formalism.
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[. INTRODUCTION laboratory reference frame, the fragmentation effects are

largely cancelled out. Also, the spectra of the electrons and

The polarization of bottom baryons,’s has been mea- antineutrinos produced from the inclusive semileptonic de-
sured by ALEPH[1], OPAL [2], and DELPHI[3]. The cays of polarized\, baryons are harder relative to the spec-
ALEPH data showed that tha, polarization has a value tra of unpolarized decays. The ALEPH Collaboration pro-

P=—0.23"324stat)*= 0.08(syst). The OPAL data indicated P0S€d to measure the ratio B(=y(P)/y(0), which is a

the polarizatiorP = —0.5&8{03(stat)i 0.09(syst). The DEL- Lorentz invariant quantity. The\, polarization is then ex- _

PHI experiment gav®= — 0.49 03 stat)+ 0.17(syst). Al- tracted from a comparison between the measured ratio

ALEPH _ H i H
. . =1.12-0.10 and a Monte Carlo simulation ratio
though these three measurements are compatible with ea&w

o . . €(P) with varying P. Because the\, polarization is best
other, theA,, poIarlzatlon still has a ‘_N'de_ range of value defined in the rest frame of th&, baryons, one can rewrite
from +0.01 to—0.79. To improve the situation, it is beter 0 he ratig R in terms of the average variables in the rest frame
find out a sensitive measurable quantity on the polarizationy, getermine the polarization
However, this is very difficult before we have a more quali-

tative understanding on the spin propertiesAgf baryons.

This paper is intended to understand the behind mechanisms (EFWEX)(1-R)
by constructing physical models based on perturbative QCD pP= ! ! , (1)
formalism. (EF XPR—(ETXPF)

Measurement of a large longitudinal polarization of the
A may indicate the polarization of a primabyquark pro-
duced from az° decay. Theb quarks produced in the reac- where the star variables denote the average quantities in the
tion e"e”—2Z%—bb are highly polarized with polarization rest frame and are evaluated wkh= —1. Theoretically, the
P=-0.94[4-6]. The corrections from hard gluon emis- values of average quantities in the above equation are model
sions and mass effects can change the polarization of théependent. They are sensitive to the nonperturbative model
final stateb quarks by only 3%{7,8]. Theb quark can frag- €mployed for calculation. For example, if we apply the free
ment into mesons and baryons. The decays wfesons into  quark model to calculate the star variables, we can obtain the
spin zero pseudoscalar states do not retain any polarizatid¥plarizationP= —0.23, which is closed to the ALEPH’s re-

information. The hadronization to baryons might preserve sult [1]. The situation will become interesting as we apply

a large fraction of the initiab quark polarization. In the the same model for the DELPHI experiment. The DELPHI

heavy quark mass limit, the spin degrees of freedom obthe experiment measured the same ratfF'®"'=1.21°5.1% and

quark are decoupled from a spin-zero light diquark. The ini-obtainedPPE-PH= —0.49°332 In the same way, it is easy to
tial polarization of theb quark can therefore be preserved check that substituting DELPHI’s ratio®®-"H into Eq. (1)
until the Ay decays. The higher madsbaryon states can can derive a different valu®=—0.38 in the free quark
decay into theA, baryon but transfer little spin degrees of model. On the other hand, in the same model, if we employ
freedom. These effects have been estimated from differethe OPALs polarizationP®™t=—0.56 into the ALEPH’s
scenarios as about 30%. This leads to that the fipapo-  and DELPHI's Monte Carlo simulation ratiosV&, we can
larization could beP=—0.6-0.70[9,10]. extract the central value of corresponding R @sR.30 and
The ALEPH Collaboration measured thg, polarization R,=1.27, respectively. This seems to imply that there re-
by employing the method suggested by Bovicini and Randalfuires more investigations to find a consistent pictureAfgr
[11]. In the ratioy(P)=(E;(P))/(E,(P)) with (E;) and polarization. That is we need to find a model which can
(E;) the average lepton and antineutrino energies in the&xplain the experiments self-consistently. The model depen-
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dence in the equation fd®?, such as Eq(1), arises from the neglect the corrections like2/M? with m, the charm quark
z variablez,;)=(P};)/(E};). Using thez variables, Eq. mass. This approximation is less than 10% and is safe as

(1) can be recast as compared with the accuracy of the experiments. However, it
requires one to consider the collinear divergences due to our
(1-R) ignorance of the charm quark mass. The jet function is then
= . (2 necessary for absorbing the collinear divergences. The uni-
zZ,R-2 versal soft function involves thie quark matrix element. The

matrix element contains a large scale factor,llygiark mass

It will become clear in the foIIOWing sections that different Mb- To have a well established matrix element, we need to
models would give different values of ratipbut almost the  employ heavy quark effective theoHQET) to scale out
samez, due to the characteristics of the lepton and an+his large scale. We also need to separate the leading order
tineutrino spectra. matrix elements in M, expansion from the higher order

In order to explore the mechanisms controlling the spinpnes. We shall develop a description for separating the lead-
properties of polarized, baryons, we shall investigate four ing order from the higher order mass corrections. This de-
models. They are théree) quark modelQM), the modified  scription is equivalent to the OPE approach. In Sec. Ill, we
quark mode(MQM), the parton modelPM), and the modi-  shall construct four models based on the factorization for-

fied parton mode(MPM). The parton model describes the mula. Section IV gives the numerical result. The conclusion
probability of finding theb quark carrying a momentum frac- s given in Sec. V.

tion of the momentum of the , baryon by a parton distri-

bution function. The quark model assumes that thg Il. EACTORIZATION FORMULA

baryon contains only onb quark and two light quarks and

the corresponding parton distribution function is just a delta We shall investigate the quadruple differential decay rate
function of the momentum fraction. This means that the for polarizedA, baryons,A,— Xl v,

quark carries almost all thé\, baryon momentum. The

modified quark model and the modified parton model mean d4T |Vp|2G2
that the quark model and the parton model contain an addi- 5 = 7 LW, 3
tional Sudakov form factor and transverse momentum. The dEdqg°dgod cosf  2567"M

Sudakov form factor arises from a resummation over radia-
tive corrections of soft gluons and have the effects to enyvhereM d_enotes the mass of the, baryon,L,, represents
hance the perturbative QCD contributions. the leptonic tensor

We emphasize the importance of transverse degrees of _
freedom of partons inside &, baryon in our analysis. First, Ly =THPL,PTL, @
the transverse momenta regularize the divergences when the, v
outgoingc quark in the procesb—cW is approaching the
end point. Second, the transverse momenta also enhance g = (27)35*)(P, —q—Py)
contributions from the spin vector along the polarization di- a P ¢

means the hadronic tensor

rection. For completeness, we also introduce the intrinsic d3p

. . . . J— J— X
transverse momentum for the distribution function. We as- X D (Ap|cT#th| X)X cT"b| A p)y————, (5)
sume that the form of the intrinsic transverse momentum part X (27-r)32EXC

of the parton distribution function can be parametrized as
exy —tM?b?] with an impact parametds, which is the con-  wherel'* denotes th&/ — A operatory*(1— ys),|X,) means
jugate variable of the transverse momentum. The other faahe hadronic states containing a charm quark, quigl total
tors are theA, baryon masdV and a dimensionless param- momentum carried by the lepton and antineutrino. We
etert. The impact parametds will be integrated out in our choose the normalization for the\, state |A,) as
perturbative QCD(PQCD formalism. Thez variables are  (x (p!  g)|Ay (P, ,S))=(2m)3(2P% )63%(S—S")5%(P,
functions oft. To determine the parameteme rely on the I o ) b b
experiments. The OPAL Collaboration determined the polar— Px,)- The kinematical variableg, ,q,qo, and cog} are
ization by comparing the measured distribution of the ratioexpressed as follows. We choose thg baryon rest frame
E,/E, against a simulation of this ratio using theTSET  such that the initiah, baryon momentun®, , and the final
Monte Carlo event generator. The pOlarizatBﬂPAL of the state |epton and antineutrino momenm,and p*, can be
OPAL experiment and results of the ALEPH and DELPHI defined as '
experiments will determine the range of paraméter

The arrangement of our paper is as follows. In the next M
section, we shall demonstrate the factorization formula for Pr,= —(1,1,0),p,=(pﬁ,0,0),pjz(pf ,pf Py). (6)
the inclusive semileptonic decay of thg, baryon. In this V2
formula, the hard scattering amplitude, describing the short ] L -
distance subprocess—clv, convolutes with a jet function The variables, ,q, f‘”d do are related +th| P, P, asE
and a universal soft function. For simplicity, we shall assume=p; /v2,0°=2p;"p; , andgo=(p;" +p, +p;)/2. We let
that the charm quark mass can be ignored. That is we sha,=P, —I represent thé quark momentum whose square
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is set angmMg with M, theb quark mass. The momentum N,m=1. Among the radiative corrections, the contributions
| of the light degree of freedom of the, baryon can have a from soft gluons will become dominant at the end points, at

large plus component and small transverse comporignts Which the final state quark is approaching on-shell. As dis-

The final state charm quark momentum is equal Fig cussed in the Introduction, the hard gluon emissions can only

=P, —l—q. The angled, is defined as the angle between contribute about 3%. Therefore we shall retain the soft gluon
. .

. L contributions at the end points. To discuss the power correc-
the third component gf, and that of thé quark polarization P P

The diff ial d s b ..__tion terms, we need to be more careful. As investigated in the
vector, S, . The differential decay rate can also be rewritten ;o i0r product expansid®PB and heavy quark effective

in terms ofE,,y,Yo, and 8, with E, the antineutrino energy theor .

vy v v ) . y (HQET) approach, the power corrections can have
and corresponding anglé,. Because the right-hand side of 1,5 soyrces; one from the short distance expansion for the
Eq. (3) is independent of which parametrization for the |ep-oarq matrix element and the other one from the heavy

tonic variables, we shall use both parametrizations for th%]uark mass expansion for the expanded matrix elements.

diﬁerential decaY rate. i B Here, we shall present a different approach in which the

It is conven;entz to use the scaled variabley,) |eading order matrix elements are in terms of nonlocal heavy
=2E(;)/M,y=0q°/M?, andy,=2qo/M. The integration re- 4 ark ‘currents composed of heavy quark effective fields in
gions forx;),y, andy, are HQET.

We now demonstrate this description. To start up, we ex-

<x<1, Osy=x, :
0=xy=1, O<y=xi), press the forward matrix element

y 4

o TAm=Yos1ty. ™ iT/w=f TP 5Py ) T(Py))
() 77)4

Note that we have chosevi as the scale factor. For simplic- d‘p d*p!

ity, we have chosem,=0 and leftm,#0 to other work. +f bf b TS (Py—q,P}—0q)

This approximation is safe as compared with the accuracy of 2m*) (2m)* “

available experiments. The leading corrections to this ap- N ,

proximation are of orde®©(m%/M2) being less than 10%. XT Py, Pp)]+- - (12)
By optical theorem, the hadronic tenséf” can be re-

lated to the forward matrix elemeffit*” through the formula

by including a higher order term from triple parton matrix
elements containing gluon fields

Im(T#) o
— - . ( ) Ta(PbIPl;):J' d4yJ' d4ZéPb'yei(Pb7P[’3)'Z
The lowest order off#” is defined as X (A |H(o)[—gA“(z)]b(y)|A Yy (13
b b

THY=—j J dyeaY(Ap|TTIT(0),3%(y)]|Ap)  (9)  with A%(2) the gluon fields. Thé®, and P, denote the out-
going and incomingd quark momenta. The hard functions

with J“=qy*(1— ys)b theV—A current. We have abbrevi- $*" andS," have the following expressions:

ated the state vectdlAb(PAb,q,S)) as|Ap). The forward

. . r#p.Jarv
matrix element can be expressed in the momentum space SHV= — Pe ' (14)
P2+ie
TH f d°Py TSP, — ) T(Py) (10)
V= —1 I v - ] ! 14
(277)4 [ b q ( b ] FMPC')’aPcF

(15

« T 02, 2,
+ +
where the trace is taken over the fermion indices and color (Petie)(Pc+ie)
indices, the hard functio’s*”(P,—q) describes the short
distance decay subproceds,~Wc, and the soft function

T(Py) denotes the long distance matrix element

whereP(P()=Py(P})—q. We shall employ the light-cone
gaugeAt=n-A=0. To continue, it is useful to introduce the
light-cone vectorg andn in the + and— directions, respec-
- tively. These two vectors satisfy propertipé=n?=0 and
T(Pb)zf d*yePoY(A,|b(0)b(y)|Ay). (1) p-n=P,,-n. The A, baryon momentun®, is then recast
as
Because we are only interested in the leading contributions
in this note, we are required to separate the leading contri-
butions from subleading contributions. To specify the leading
contributions, we also need to consider correction terms. The
correction contributions may come from radiative correctionFor the b quark inside theA, baryon, we parametrize its
terms like o) and power correction terms like M/" for ~ momentumP, as

2

2p-n

Pﬁbz pH+ n*. (16)
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P2+ P2,
Zp”’-l—W +P (17
P5—Mp
=A#+ M
P 2Py n n*, (18

PHYSICAL REVIEW D66, 034004 (2002

in the right-hand side of Eq20) are to replace the gluonic
field operators in the first term in the right-hand side of Eq.
(21) by covariant derivative operators. Let us explain this.
By substitutingS,”(ép,&p) andSEY(ép, €' p) into Eq.(12),

we can arrive at

" 4
wherePZ=M?2 is the on-shell part oP, and the momentum _f dl TS (£p,£p)(1 — €p)T(1)]
fraction z defined byz=P;/P; =1—1"/P} . By the pa- (2m)*
rametrization ofP,, the b quark propagator is then ex- d? a4’
pressed as +f f T SE (ép,&'p) T, ] (23
2m) 2 [Se"(ép.&'p)T(L1M]. (
i _i(Py+Mp) in _ _
P, Mytie Pﬁ— M§+ie 2P, N+ie I_n light cone gauge - A=0, we can rewrite the above equa-
tion as
=Fi(Py) + F5(Py). (19 a1 i
LV ’ a )l _ja ’
There are two scenarios to be discussed. The first situation isf (277)4J' (2am)* TH S (6P, P, (Z1*)T(LIY)
for small z That is we allowl ™ to be of orderPX andz ’
~AIM with A~ Agep. TheFS(Pb) term having power like X (24r)484)(| _|r)f dié(g_g’)+'ra,(|,| ,)H’
1/A is as important as thEb(Pb) term. We shall see later 2m
that the power correction completely comes from the short (24)
distance hard function. There is also the second situation in
which the value ofz is large of order - A/M. This corre-  \here the projection tensw’, =g%, —p“n, has been em-

sponds to small™. In this case, th(Fb(P )~1/M is power

ployed. SinceS,”(ép, &' p) is independent of momentand

suppressed thaffi;(Py) ~ 1/A. In this configuration, the hard |7 \ve can move it out of the integrals and employ the iden-
function is in the end pointx—1 andy—0y,—1. The tltles

power corrections come from the noncollinear momentum of

the b quark. We now investigate the contributions from the dn

above two scenarios. For simplicity, we shall ignore the fdgf 2—e"“§"‘“)=1,
transverse component of the neutrino momentum. This will ™

not affect the following analysis. (25
For the largd * scenario, we need to separate the leading dl iy aiNn_ ()
terms of the hard functions**,S"* from the higher order (277)4‘:J et =45"(y—An),
terms. The hard functio®"” is a function ofl and S;” a
function of| andl’. Thel andl’ are momenta of light de- \ye optain
grees of freedom of thé, and are defined as=P, — Py
andl’=P, —P[. We can make Taylor expansion f&"” , - e ’
and S** with respect tol * and|"’. This is because the j dff d¢’' T[S, (ép, &' pIw, {T7 (£,€")
momentuml(l’) have a large plus componeht=ép(1™’ o )
=¢'p) with é=1—2z(&'=1-—2'). By performing Taylor ex- +T5 (6,6}, (26)
pansions forS*”(l) and S.”(1,1") around S*”(ép) and
S*(¢p,&'p), we then obtain where
ISHY o , dx (dyp I
SHY(1)=SP"(£p)+ P (I—&p)o+---, (20 Ty (&6 ):fﬂf z—e'*” Py iNégmin(é—¢")
I=¢p - ,
v ’ v ’ X<Ab|b(0)|&a (ﬂn)b()\n)|-/\b>, (27)
S =8,"(ép.&'p) + (2D
The following low energy theorems are assumed to hold TS (&€= fd_h g”emn PayeiNégmin(é—¢")
=—S."(p.ép). (22 X (Ap|b(0)[—gA™ () Ib(AN)|Ap).
(28)

The minus sign in the above equations is due to the direction

of the momentum flow of. The effects of the second terms Adding upT”‘ andT5 " leads to
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dy APy N (€ p“p’,p“n’,n*p’,n*n”,d*’=p*n’+n*p’—g*’. Because

J f e Payem Mg Im(EmE) p?=n2=0, the hard function is then proportional towith
transverseu, v, or p with u=v=—. The existence of the
><<Ab|E(o)Da’(nn)b()\n)mb), (29)  term proportional tgp implies thatiTg” can have subleading

power suppression terms. We now demonstrate this fact. The
with D*=i9“—gA®. It is easy to find that the contributions contraction ofT(P,) with p requires one to consider that the
from Si"(ép, &' p) terms are power suppressed t84ri(£p) b quark propagator contacts with. We first consider the
by at leastO(1/M) due to an additional charm quark propa- effects from the out-goindp quark propagator. Since in the
gator. This can be realized as follows. First we note that theecond scenario, the quark propagator has a on-shell part
charm quark propagator i8*" has terms proportional tp Ft(Pb) and a power suppressed pEIﬁ(Pb). The situation
and# and, in this scenario, both terms are compatible. Beas the on-shell paif;(P,) contacts withp can lead to
cause the light cone gauge and projection tervgdr, the L ) . s
subscripte in S** must be transverse. Also considering the ~ Fo(Pb)P=Fu(Po)[(Po=2p)*(i7a) =iMp]F5(Py)p.
property of light vectorp?=n?=0 and the momentum (34)
P¢(P¢) with terms proportional tg or A, we can conclude The contribution from the power suppression PBR(Pp,)
that the leading possible combination of the supersciipts  contacting withp has the form
can only be transverse. This implies tl8§f" has terms pro-
portional to y; with transverse indexg=_1. Thus we can FS(Pb)p:Fb(Pb)[—gA“](iya)Fﬁ(Pb)p. (35

safely ignore the contributions from tt8" terms at leading o ] ] ) )
order. Similar considerations can be applied for the incoming

We now consider the second scenario, the largesmall ~ duark propagator. The fotal effects from thejuark propa-
|+ case. To derive leading order contributions, we need t@ator contacting withp leads to
extract the leading contribution from the term 4

R d*Py ,
Iy :f(qu)“ T S*(Pp)T(Py)]

'Tw—J d'Py T S**(P,)T(P 30
'0—(2W)4r[ (Pp)T(Py)] (30)

d*Py
+ v
which is just the first term of Eq12). The hard function has f (2m)* THSW (Po) Tw(Po)]

the structure

d*P, [ d*P| ,
M2 +J 4J 2 Tr[S"“’(Pb PpW, T
T (z=a)p+ ph—-|T” (2m)"J (27)

SO VP (Y X(Py.,Py)l, (36

with where the new hard functionSf;"(P,) and S, *”(Py,Py)
take expressions
y y a—y v ; v
a=Yo~ o ,3:(1—;), zp= B Shi(Py) = —iF 5(Py)S**(Py)
+iSH(P[FF(PL]T, 3
In the end point regim&— 1 andy—0,y,— 1, the variables (Po)[Fo(Po)] 37
.becorrllea—>l,,8—>1. andzg—1. The imaginary part oT§” S (Py Pl =iy, FS(Py) S (Py)
is equivalent to taking a cut over the charm quark propagator.
This implies that —iS*"(Py)[F5(Pu) 1 7e . (39
1 and the new matrix elements, (Py) andT“'(Pb,Pt’,) have
8(PY)— ——— 8(z—1zp), (32 the forms
M“B
and theS**(k) becomes TM(Pb)=f d*yePoY(Ap[b(0)Mpb(y)[Ap),  (39)
M2
_ FM[(ZB—H)pﬂLBVﬁT r Ta’(Pb,P{))IJ d4zf dy &Pb-Yel (Ph~Py)-2
SHY(K)—iar 5 . (33
M“B

X(Ap|[b(0)D*(2)b(y)|Ap). (40)
It is clear that in this scenario, the large the charm
quark propagator irs**(P.), after taking the cut, has a Itis easy to see that the contributions fr@f)" andS " are
vanishing p component and a largéé component. The power suppressed theBt” by at leastO(1/M). To leading
m,v indices take one of the possible combinationsorder, we can consider the first termidfy” .
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The b quark field in the leading matrix elememtin Eq.
(36) contains a large phase factor explw-x) with v T=Ty+O
= PAb/M the A, velocity. This is unsuitable to define a ma-

trix element at low energies. To solve this, we can employpq T, is in terms of the effective heavy quark fied,
the HQET. In HQET, we can rescale thequark field,b(x), \yhich is defined as the, field in the infinite mass limit

into b, (x) =exp(My-X)(1+#/2)b(x). The rescaled, field ;. The missing of th@©(1/M) term is due to the equa-

is a small fluctuation quantity of coordinate, since the re+jon of motion. The expression fdr, is easily written down
maining scale in its phase factor is only abdigcp scale. In- oo

HQET, Py, is parametrized a®,=M v +Kk, with k the re-
sidual momentum. The rescalbdjuark field,b,(x), carries
the residual momenturk and has a small effective maas

with A=M — My . Under the heavy quark mass expansion

S (42)

M2

To= f d*y € Y(Ap(v,9)[h,(0)h,(y)|Ap(v,S)). (43)

Note that we have replaced the hadronic state vector

1 |Au(Py,,S)) by its equivalent representatipf,(v, S)). The
b, (x)=h,(x)+0O M) e (4D final task is to extract the leading contributions B¢” . This
can be achieved by means of Fierz identity. As a result, the
the matrix elemenT in terms ofb, can be expanded as leading order forward matrix elemefi” takes the form

v [ d% , "
TP a9~ | | TS k=~ D QPITI ToPa, Sk £

hys
4S,-n

+0 , (44)

—TF[S/”(k=—§p,Q)5b75]Tf{To(PAb,Syk=—§p) IVE

where we have inserted the Fierz identity where x=x(x;),0= 6,(6,), and I'©=G2/167°%|V,|?M°®.
The scaleu is introduced as a renormalization and factoriza-
1 1 tion scale. The transverse momentlllm_has_been _reintro-
Iijlmn:Z(')’M)im( Yuin+ Z(?’“Vs)im( Ys¥int duced for re_gule}rlzatlop'of thg end point smgularllt[éﬁ]. _
The end point singularities arise from the end point region
(45 x—1 andy—0,yo—1. The charm quarkassumed as mass-
les9 has a large minus componelﬁgz(l—y/x)M/\/i and
wherei,j,m,n denote the fermion indices and the dots rep-a small plus componer®_ = (1—y,—y/x)M/ /2. This im-
resent the other gamma matrix that would result in higheplies that there is a very small invarialﬁ«tg:Mz(l—yo
order terms. In summary, the leading contributions are fromy y) which leads to an on-shell jet subprocess. Thente-
Iargez Configuration. This fact will be employed to make a gra|s can be finished 0n|y when we know the exact depen-
model for the distribution function. dence of the jet function oh . But the jet function is non-
We now briefly describe how to derive the factorization perturbative and cannot be determined theoretically, so far.
formula for the inclusive semileptonic decay,— X.lv. The  Fortunately, this difficulty for integration over can be re-

details about the derivation of the fOIIOWing factorization moved by means of a Fourier transformation for the Jet func-
formula can be found |ﬁ12] We shall Only demonstrate the tion into its impact space representation as

main ideas and try not to give a repeated proof. The formula

for the quadruple differential decay rate can be expressed as 2
a convolution integral over the soft functi@) the jet func- Iz P | :f J(zP- b.weltt (4
tion J, and a hard functiot (2P luow) )2 (2P D) “0

1 R M2 2 The IL_ !ntegrals then (_jecouple frorr_l the jet_ function and the

B _J dZJ d?,S(z,1, ,p) remaining factore'' ? is then associated with the soft func-
r© dxdydydcost 2 Jg,, tion. The factorization formula Eq46) can also be applied

to the case with loop corrections. With the Fourier transfor-

XJI(z,Pc |, ,w)H(z,Pc i), (46)  mation forl, , the Feynman rule for the radiative gluon cross
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over the final state cut should be modified with an extra 67 T2 10 8
phase factoe':"P. The upper and lower limits of are cho- A®)= 9 3 Mt 3zhln
sen asZ,,,=1 andz,;,=x. The lower limitz,;,=x is from

the jet function. The upper limit,,,=1 is chosen to fill the  The scale invariance of the differential decay rate in @)
kinematical gap betweeM , andM. The Fourier transforma-  and the Sudakov form factor in E¢49) requires the func-
tion of Eq. (46) into the impacth space then takes the form ¢35 & andH to obey the following renormalization group

(RG) equations:

e?
?) . (52

1 d°r —szld f d’b X2b - .
1© dxdydydcost 2 Jx 2 (2m)?2 (z.b.p) DI(b, ) =—2y4I(b, ),
X(z,P; b, w)H(z,PL p). (49 DS(b, )= — ysS(b, ),

To deal with the collinear and soft divergences resulting DH(P; ,u)=(2yq+ ys)H(P¢ ), e
from the radiative corrections for the massless parton inside (53
the jet, the resummation technique is necessary and theggip
divergences can be resummed into a Sudakov form factor
[12]. The jet function is then reexpressed into the form J J

D=M£+B(g)@- (54)

J(z,P; ,b,p)=exd —2s(P; ,0)[3(z,b,u), (49 _ _ o
Yq= —as/m is the quark anomalous dimension in axial

where exp—2s(P; ,b)] is the Sudakov form factor. The gauge, andys=—(as/m)Cy Is the anomalous dimension of

renormalization grouRG) invariant Sudakov exponent has > After solving Eq.(53), we obtain the evolution of all the
the expression up to one loop accuracy convolution factors in Eq(48),

- A g\ A@/[q AL TJ(z,Pc,b,M):ex;{—Zs(Pc,b)
=——qhn| = | +—|=—1]-55(q-
s(P .b) Zﬁlq n(b " 4B3\ b ! Zﬁl(q b) B
. . vdu — |~
_AWB,.In(2b)+1  In(2q)+1 —ZLb:yq[as(m] J(z,b,1b),
ag b q g
[a® w0 e271) (a ~S(z,b,ﬂ)=exr{—JMd:M75[as(;)] f(z,b,1b),
42 4B\ 2 b il
(1) “du —
+A fz[mz(z&)—lnz(zﬁ)] (50) H(z,P¢ .u)=exr{—fp°=ﬂ{27q[as(u)]
1 ooH
with the variables +yd as(w) ]} H(z,P, ,P;). (55)

a:m(P_C), 6=In(i ) (51)  In the above solutions, we set theblds an IR cutoff for
A bA single logarithm evolution.

For the initial soft functionf(z,b,1/b), we shall keep the
We choose the QCD scald=Aqcp to have the value intrinsic b dependence b§(z,b,1b)~f(z,b). Theb depen-
0.2 GeV in the numerical analysis in Sec. IV. The otherdence inf(z,b) can support a way to explore the mechanism

factors are defined as for the polarization. We assunféz,b) to have the form
33-2n; f(z,b)="f(z)e >®, (56)
1= )
12 and take an ansaze for parametrizing[exp(b)] as
153— 19 e 2(b) = g~ tM%b? (57)
Bo=——%

with an unknown parametér The reason for the above pa-

rametrization for thd dependent part df(z,b) will become

Al = 4 clear later. To avoid double counting for the contributions
3’ from transverse degrees of freedom, we need some modifi-
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cations for the factorization formula. For the end point re-tribution function contained in the Sudakov form facfoe.,
gime where the Sudakov suppression dominates, we empldhe yg term in Eq.(61)][16,17
the approximation

d*l VU,
(2m)* (v-1)?

f(z,b)=f(z), (58) AIR:4WCFJ 2m3(1%) ag(12) e’ PNAY

while for other regimes which are not under the control of (62
the Sudakov suppression, we take into account the intrinsic

wherev is the velocity of the heavy quark amd*” the gluon
dependence of(z,b)

polarization tensor in the axial gauge’ —A~ =0. We have
put the argument ofrs(1°) asl? . We then expresa,(I?) as

f(z,b)=e M™% (z). (59)

© lJ_
We make further approximations such thafz,b,1/b) ag(1f)= WJO daexp{ —20f4In AQCD) } (63
=J0(z,b), andH(z,P, ,P.)=HO(z,P,).
Combining the above results, we arrive at the factoriza-and substitute it into the amplitud®g, to yield
tion formula as

bAQCD
2

27P1 T (= opy)
T(1+0B)

(64)

1 d‘T A'R:CFL do
1© dxdydyd cosé
r Xxayay with T being the gamma function. There are poles contained

1 “bdh _ in thel'(— o B4). The smallo~0 pole of'(— o B,) results
=sz dzf 4—J(°)(z,b)H(°)(z,Pg)e*S(Pc ) in the anomalous dimension. There are also polesof6y
x Jo T =1,2,3.... This implies that, asr=1/8;,2/B1, . .., we
f(z) for x inend point regimes  have the IR 'renormalons with corresponding correc'tions. of
(exp[—thbz]f(z) for x in other regimes b?,b*, ... .Since IR renormalons lead to corresponding sin-

gularities, we need to introduce nonperturbative functions to
(60) absorb these divergences. The leading contributions from the
IR renormalons are of the form e[>([AQCDb)2]. Thus we at
where least need a nonperturbative function with the form like
exd —Cb?]. This is the way we employed to parametrize the
intrinsic b dependent part of(z,b). In summary, we can
_ _ podu — — choose the integration range bofas O<b<1/A ocp.
S(P¢ ,b)=2s(P; .b)~- L/b =[2yq(m) +vs(w)]. Let us now discuss how to parametn‘f@(k()g defined in
H (62) Eq. (43). As discussed in previous paragraphs, at leading
order, To(k) is expanded in the form

The parametet will be determined by experiment. From

practical calculations, we find that the above difference be- 1 1

tween the distribution funct!on _wnh_and without intrinsic To(k):Zpb'npf(z)_zsb’np75g(z)- (65)
transverse momentum contributions is very small. Therefore

we shall include the factor ekptM?2b?] for the entire range
of x in the numerical analysis.

The integration range of the impact paramediewill af-
fect the determination of We now discuss this point. The
Sudakov form factor gives strong suppression over ldrge dn _
for b>1/Aocp, Where the perturbative calculations can no f(z)= f ﬁe'(l_m(v,SIhU(O)Vth()\n)Iv,S> (66)
longer be applicable since (1/b)>1. Therefore the Suda-
kov suppression guarantees that the main contributions atg,
from smallb<1/Aqcp. However, there are singular points
that happen at b/~ A ocp at which the strong coupling con-
stant ag becomes divergent. The infrardtR) renormalon dA i(1-2n —
arise in such a scenario. It is well knoWtd—15 that the IR 9(2)= J onC (v,Sh,(0)Aysh,(AM)v,S).
renormalon implies the need for the introduction of a non- (67)
perturbative function to make the physical quantity well-
defined. Therefore the estimation of the IR renormalons cait is easy to show thaf(z) and g(z), in the heavy quark
give the information about the distribution function. It is limit, share a common matrix element which could be de-
equivalent to reconsidering the evolution factor for the dis-scribed by a universal distribution functiofy, (z). This just

The unpolarized and polarized distribution functioféz)
andg(z), are defined as
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reflects the heavy quark spin symmetry. We adopt the distriBy substituting the inputs
bution function proposed ifiL2] in the form

NZ(1-2)? M=5.641 GeV, M,=4.776 GeV,

fao(2)=————=60(1-2). 68

e LU (68)
The parameterdl,a, and € are fixed by the first three mo- Kp=0.012+0.0026, (71)
ments offAb(z):

into Eq. (69), we determine the parametd¥sa, ande to be

1
ffA (z2)dz=1,
o P N=0.10615, a=1, €=0.00413. (72

For simplicity we shall omit the subscript cifAb(z) in the
following text. Finally, one should note that the second mo-
ment of the structure function implies largehat is consis-
tent with previous discussions in determining the leading

Joldz(l—z)fAb(z)=K/M+O(A5CD/M2),

1 , A2 2 . 5 contributions.
fo dZ(l—Z) fAb(Z):W'F §Kb+O(AQCD/M ),
(69) IIl. DIFFERENTIAL DECAY RATES
whereA=M —M, andK, is to parametrize the matrix ele- In this section we construct four models based on the
ment factorization formula Eq(60). The models are the quark

model (QM), the modified quark modéMQM), the parton
L (iD)? model (PM), and the modified parton modéMPM). The
— ' charged lepton and antineutrino spectra for the det
Ko== 537 (Aol (0) == h,(0)[Ay).  (70) e P g ¥
2M —Xclv in the quark model are expressed as

2

X—I[(3—2X|)—Pcosa|(1—2x,)] for |
1oy, | °
r© dxdcosg | 2 B
EVX?(l—Xj)(l—PCOSH;) for v,

(73

where P and cosj;, denote the polarization and cosine of the anglg, between the third components of the lepton
(antineutring momentum and thd ,, spin vector.

By taking into account Sudakov suppression from the resummation of large radiative corrections, and sulfgitijng
= 8(1—z)exd —tM2?],HO=(x—y)[(Yo—X) — P cosé(yo—x—2y/x)] and the Fourier transform of(®=5(P2) with P2
=M?(1—yo+y— pf/MZB) into Eq. (60), we derive the lepton spectrum in the modified quark model. The spectrum is, after
integrating Eq(60) overz andy,, described by

1 derQM x LA MQM 2y, 2 -
- Yimem —tMOMM2p2] —S(PC by
T dxdcosé, Mfodyfo dbé € Ca=y)m

X (1+y—x,)— P cosé,

y
1+y_X|_2X—I)}

2
XJ1(nMb)— (W 7d2(7Mb) — 7233(7M b)) (1-P Cosﬁl)], (74)
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where P_=(1-y/x)M/\2,7=\(x—y)(1/x—1), and 1 42T oy
J1,Jd,, andJs are the Bessel functions of order 1, 2, and 3,
respectively. Note that we have made an approximation b
substituting exp—tM?b?] for the end point regimes. We also
need the antineutrino spectrum in the modified quark model — P cosé,
as

(Yy+z=x)

X| 1
ﬁ dxdcosé, fo dylezf(z)(x,—y)

. (76)

y
y+ z—x|—22X—|)

In the same way, the antineutrino spectrum can be written

2
% d:ij =M f dy f " dbd ") down

,adcose,; 0 0 1 2T oy,
x e~ Pe Ply—(1—x;) 5’ I, (7' Mb) I'® dx;d cos6;,

X (1—Pcosé,) (795 :fx?dyfldzf(z)sz—ry)(l—Pcos67).
0 X,

with 7' =0, —y) (1,—1). 77)
The charged lepton spectrum in the parton model is ob-

tained by adopting H(®=(x,—y){[yo—x—(1-2)y/x] The charged lepton spectrum in the modified parton

— P coshyo—x—(1+2y/x]} and Pi=M?[1-y,+y—(1  model takes into account large perturbative corrections and

—2)(1-y/x))]. After integration overy,, we then derive nonperturbative intrinsic contributions with the expression as

1 d*Tyewm X 1 LA (MPM 22 -
el - la—S(P, .b) _
1 dxd cosé, ML dyLdzL dbé e f(2)(x—y)n

X

(z+y—x;)— P cosé, z+y—x,—22xl) Ji(nMb)
|

2
—(M—bﬂJz(vM b) = 7°J3(7Mb) (1—P0059|)}, (78

with = (x—Yy)(z/x,—1). The antineutrino spectrum in the modified parton model is also easily derived as

1 dTyewm X, 1 LA - MPMy ;21,2
WW:M fo dyfidzfo dbe S(Pc P M s () x(z2—x;) 7' I1( 5’ Mb) (1— P cosé,). (79
14 14 XV
|
with 7' = (x,—y)(z/x,— 1). However, there still exist many uncertainties suffered from

experimental procedures on extracting the energy spectra. It
requires normalizing the measurgdwith an unpolarized
IV. NUMERICAL RESULT simulatedyM®(0). Therefore the experimentally measured

. quantity is the ratio
The Ay’s produced in ALEPH, DELPHI, and OPAL ex-

periments are highly boosted in the laboratory frame. For the

relativistic Ay’s, the forward-backward asymmetry of a de- y(P)
cay product can be directly expressed in terms of a shift in = e
the average value of its energy. The charged lepton also car- y™(0)
ried a residual sensitivity to thd, polarization. Because

neither the A, four-momentum nor the lepton four- A| EpPH and DELPHI determined the polarization by com-
momentum can be fully reconstructed in the experiments, th aring the measured value of the ratio R with the Monte

ALEPH and DELPHI experiments proposed to measure e simulation #C(P) with varying P. The experimental
A}, polarization,P, through the variablg suggested ifl11] results are R1.12+0.10 and P=—0.23 %2{stat) for

ALEPH and R=1.21"31¢ and P=-0.49"03stat) for

. (81

(E)) DELPHI, respectively. Theoretically, the, polarization can
= _'_ (80) be best defined in the rest frame. It is instructive to rewyite
(Ew) in terms of average variables in the rest frame
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TABLE I. The values of the\,, polarization are predicted from the quark model, the parton model, the
modified quark model, and the modified parton model by employing the ALEPH and DELPHI experiments.
The ALEPH and DELPHI experimental results are also shown for comparison.

Pom Pem Pnmom Puvpm Pexp R Experiment
-0.23'51 —0.23'31  —024329 —0247920 —0.23923 1.12+0.1 ALEPH
-0.38" 522 -0.38"323  —039733 -0.39792 -04993%  1.21791% DELPHI
(EF)+P(P}(P=—1)) MQM, MPM with parametergMM=tMPM=q The result is
=—— " , (82 shown in Table I. We can see that the theoretical polariza-
(E;)+P(PL(P=-1)) tions are close to the ALEPH polarizatid?*-E"H=—0.23

here the st iabl luated Rith- 1 but have a large deviation from the DELPHI polarization
where Ine star average variables are evajuate : DELPHI= _0.49. Among different model evaluations with

The average variables can be calculated from the formula one R, their differences are very small. This implies that

42T nonperturbative effects from the distribution function over
<a>:f f a dxdcosé (83) longitudinal momentum fraction and perturbative effects
I'®dxdcosé from Sudakov suppression are not important in determining

the polarization.
by employing different models for the differential decay rate. We now turn on the parametertd®™ andt™FM to find out

It is much simplified in calculations of these average quantheir values from experiments. It is interesting to note that

tities, if the charged lepton and antineutrino average quantithe ratio z=(P}')/I(E}') is model dependent but the ratio
ties are evaluated by their corresponding differential decay—

F n i doternin ‘R ,=(P>)/(EZ) is almost the same for all models. Using
;a;tes. rom these relations we can deterndne terms o these twoz VariabIeS, we can rewrite E@4) as

__(EDENA-R ” o 1°R .
(EFNPOR—(E,XPI)

- ZZR—Z|.

We first compare the difference between the experimensince z,~1/3 for all models, we can further simplify the
tally determined polarizatiorP®" and the theoretically above equation into

evaluated polarizatio® ™ in the four models QM, PM and

004 prerrrT T e s R=1.12 ——— ]

3 ] 08 |- 3

0.06 - - ]

-0.08 - 06 =

0.1 . C

1 ki P=043 ]

- . o -04F —

5 -0.12 y n - ! b

-0.14 [ _- Lo T E

[ ] 02 F .

0.6 F - S ]

- B - - -

o bt - E

[ . ] g R=102 . _ ]

-0.18 — — 0 S R -3 =001 T

i) FETTTTUETY FITTTTEITE FTTETTTT] FIVETETE ST -2 -15 -1 -0.5 0
0 1 2 3 4 5 z

t
FIG. 2. The plot ofP vs z is shown by employing the ALEPH

FIG. 1. Plot ofz, vst. The modified quark modésolid line and  ratio R=1.12£0.10. The experimental polarizationP=
modified parton modeldashed lingare shown. —0.23" 323 is also shown to indicate the allowed rangezpf
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FIG. 3. The plot ofP vs z is shown by employing the DELPHI FIG. 4. Plot of R vsP. The ALEPH and DELPHI Monte Carlo

ratio R=1.21"315. The experimental polarizatidh=—0.49"J33is  simulations(solid line) and the theoretical predictichand ling are
also shown to indicate the allowed rangezpf shown.

_3(1-R) - =1.12+0.10(ALEPH) and FPEPHI=1 21+ 019 (DELPHI) in

Figs. 2 and 3, respectively. By applying the experimental
bounds forP, we can extract from Fig. 2 thg range of
Theoretically, thez, range would be model dependent. By —*=2= —0.105 for ALEPH and from Fig. 3 the range of
varying the value oft, we can easily change . This is —1.79<z=—0.02 for DELPHI. We now discuss that the
because the suppressions from the contributions of intrinsiB0SSible constraint over, can be obtained from the OPAL
transverse momentum are modeled by parantet€onsid- ~ €Xperiment. The OPAL Collaboration employed a compari-
ering MQM and MPM and plotting the, —t relation in Fig.  SON betweethChe measurgd=E,/E, and the Monte Carlo
1, we can find that there is an upper bound fprasz<  Simulated yz™~ to determine the polarizationP=
—0.05 witht~0.3, and a lower bound far, asz>—0.18 —0.56 g5 stat). Applying the OPAIP to the DELPHI and
with t~2. The reason for existing the upper and lowerALEPH experiments, we obtair 0.6<z<—0.1 for DEL-
bounds forz, is as follows. The fluctuations from the Bessel PHI and —0.55<z<—0.105 for ALEPH. We summarize
function in the differential decay rates would prevent thethe above discussions for the determination ofzhie Table
suppression of from becoming large and small. In the end, Il. In the models we are considering, the lower boundZor
there exist upper and lower bounds #r We also hope that cannot be smaller than 0.12. We then assume that the range
t should be less than unity and close to zero to make thef z can be obtained by combining the experimental and
perturbative calculation reliable. Thus thebound should be theoretical bounds. We thus have therange of—0.12<z,
—0.12<7=<-0.05 with the corresponding bound foy0  =<—0.105, and the correspondingange of O<t<0.05.
<t=0.3. Since, in the,—t plot, the differences between the  As a consistent check, we can write R in term$andz,
MPM and MQM are very small, we shall not distinguish as

~ R-3z

tMOM gnd tMPM,
We now discuss the extraction pffrom experiments. We _3(1+Pz) 87
first plot the behaviors oP with respect toz, for RA-EPH (3+P)

TABLE Il. The bounds ofz, are obtained from the ALEPH, DELPHI, and OPAL experiments, and from
the theory. OPALL represents the combination of the OPAL and the ALEPH experiments, and OPAL2 the
combination of the OPAL and the DELPHI experiments.

ALEPH DELPHI OPAL1 OPAL2 THEORY

—0<z<-0.105 —175<z<-0.02 -0.55<z<-0.105 —06<z<-0.1 -0.12<z<-0.05
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By this equation, we can parametrize the Monte Carlo simuALEPH, OPAL, and DELPHI experiments. We found that
lation ratios R'°(P)’s of ALEPH and DELPHI. We find that these experiments can be understood from theoretical mod-
the value ofzi~—0.075 can be used for both experiments inels, the modified quark model and modified parton model.
a good approximation within 5%-10%. In Fig. 4 we com- These two models contain intrinsic transverse momenta for
pare the R-P plots for z~—0.075 and for—0.12<z =< partons, which are nonperturbative and parametrized by an
—0.105. The experimental bounds for ratio R can give conexponential form with a parameterThe parameter relates
straints overP. The combination of ALEPH and DELPHI to the variable z,=(P}(P=—1))/(Ef) with (P](P=
experiments gives the range &f as —0.79<P<-0.05, —1)) and (E) the average momentum and energy of
while our analysis results ir 0.73<P<—0.05. The differ-  charge lepton in the rest frame 4f, baryon. We found that
ence between these two boundsRo€an be reduced by in- the ratio R=y(P)/y(0) can be approximately expressed in
cluding higher order corrections for the theory, such as theerms of P andz . Using experimental results, we then de-
mass corrections, etc. termined the ranges & andt.
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