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Polarization and distribution function of the Lb baryon

Tsung-Wen Yeh
Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan

~Received 4 April 2002; published 7 August 2002!

The polarization of theLb baryon has been measured in ALEPH, OPAL, and DELPHI experiments. A
significant loss on the transfer of theb quark polarization to theLb baryon polarization has been noticed. This
implies that the hadronization effects cannot be neglected. Therefore we may make use of the polarization
measurements to look for a suitable model for theLb distribution function. To investigate theLb polarization,
we construct four models based on a perturbative QCD factorization formula. The models are the quark model,
the modified quark model, the parton model, and the modified parton model. The modified models mean the
models having transverse degrees of freedom and the associated soft radiative corrections having been re-
summed. The quark and parton models cannot describe all experiments at the same time. On the other hand, the
modified models can have the power to explain all data in the same formalism.
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I. INTRODUCTION

The polarization of bottom baryonsLb’s has been mea
sured by ALEPH @1#, OPAL @2#, and DELPHI @3#. The
ALEPH data showed that theLb polarization has a value
P520.2320.20

10.24(stat)60.08(syst). The OPAL data indicate
the polarizationP520.5620.13

10.20(stat)60.09(syst). The DEL-
PHI experiment gaveP520.4920.30

10.32(stat)60.17(syst). Al-
though these three measurements are compatible with
other, theLb polarization still has a wide range of valu
from 10.01 to20.79. To improve the situation, it is better t
find out a sensitive measurable quantity on the polarizat
However, this is very difficult before we have a more qua
tative understanding on the spin properties ofLb baryons.
This paper is intended to understand the behind mechan
by constructing physical models based on perturbative Q
formalism.

Measurement of a large longitudinal polarization of t
Lb may indicate the polarization of a primaryb quark pro-
duced from aZ0 decay. Theb quarks produced in the reac
tion e1e2→Z0→bb̄ are highly polarized with polarization
P520.94 @4–6#. The corrections from hard gluon emis
sions and mass effects can change the polarization of
final stateb quarks by only 3%@7,8#. Theb quark can frag-
ment into mesons and baryons. The decays ofb mesons into
spin zero pseudoscalar states do not retain any polariza
information. The hadronization tob baryons might preserve
a large fraction of the initialb quark polarization. In the
heavy quark mass limit, the spin degrees of freedom of thb
quark are decoupled from a spin-zero light diquark. The
tial polarization of theb quark can therefore be preserve
until the Lb decays. The higher massb baryon states can
decay into theLb baryon but transfer little spin degrees
freedom. These effects have been estimated from diffe
scenarios as about 30%. This leads to that the finalLb po-
larization could beP520.6–0.70@9,10#.

The ALEPH Collaboration measured theLb polarization
by employing the method suggested by Bovicini and Ran
@11#. In the ratio y(P)5^El(P)&/^En̄(P)& with ^El& and
^En̄& the average lepton and antineutrino energies in
0556-2821/2002/66~3!/034004~13!/$20.00 66 0340
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laboratory reference frame, the fragmentation effects
largely cancelled out. Also, the spectra of the electrons
antineutrinos produced from the inclusive semileptonic
cays of polarizedLb baryons are harder relative to the spe
tra of unpolarized decays. The ALEPH Collaboration pr
posed to measure the ratio R(P)5y(P)/y(0), which is a
Lorentz invariant quantity. TheLb polarization is then ex-
tracted from a comparison between the measured r
RALEPH51.1260.10 and a Monte Carlo simulation rati
RMC(P) with varying P. Because theLb polarization is best
defined in the rest frame of theLb baryons, one can rewrite
the ratio R in terms of the average variables in the rest fra
to determine the polarization

P5
^El* &^En̄

* &~12R!

^El* &^Pn̄
* &R2^En̄

* &^Pl* &
, ~1!

where the star variables denote the average quantities in
rest frame and are evaluated withP521. Theoretically, the
values of average quantities in the above equation are m
dependent. They are sensitive to the nonperturbative m
employed for calculation. For example, if we apply the fr
quark model to calculate the star variables, we can obtain
polarizationP520.23, which is closed to the ALEPH’s re
sult @1#. The situation will become interesting as we app
the same model for the DELPHI experiment. The DELP
experiment measured the same ratio RDELPHI51.2120.14

10.16 and
obtainedPDELPHI520.4920.30

10.32. In the same way, it is easy t
check that substituting DELPHI’s ratio RDELPHI into Eq. ~1!
can derive a different valueP520.38 in the free quark
model. On the other hand, in the same model, if we emp
the OPAL’s polarizationPOPAL520.56 into the ALEPH’s
and DELPHI’s Monte Carlo simulation ratios RMC, we can
extract the central value of corresponding R as R151.30 and
R251.27, respectively. This seems to imply that there
quires more investigations to find a consistent picture forLb
polarization. That is we need to find a model which c
explain the experiments self-consistently. The model dep
©2002 The American Physical Society04-1
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dence in the equation forP, such as Eq.~1!, arises from the
z variable zl ( n̄)5^Pl ( n̄)

* &/^El ( n̄)
* &. Using thez variables, Eq.

~1! can be recast as

P5
~12R!

zn̄R2zl

. ~2!

It will become clear in the following sections that differe
models would give different values of ratiozl but almost the
samezn̄ due to the characteristics of the lepton and a
tineutrino spectra.

In order to explore the mechanisms controlling the s
properties of polarizedLb baryons, we shall investigate fou
models. They are the~free! quark model~QM!, the modified
quark model~MQM!, the parton model~PM!, and the modi-
fied parton model~MPM!. The parton model describes th
probability of finding theb quark carrying a momentum frac
tion of the momentum of theLb baryon by a parton distri-
bution function. The quark model assumes that theLb
baryon contains only oneb quark and two light quarks an
the corresponding parton distribution function is just a de
function of the momentum fraction. This means that theb
quark carries almost all theLb baryon momentum. The
modified quark model and the modified parton model me
that the quark model and the parton model contain an a
tional Sudakov form factor and transverse momentum. T
Sudakov form factor arises from a resummation over rad
tive corrections of soft gluons and have the effects to
hance the perturbative QCD contributions.

We emphasize the importance of transverse degree
freedom of partons inside aLb baryon in our analysis. First
the transverse momenta regularize the divergences whe
outgoingc quark in the processb→cW is approaching the
end point. Second, the transverse momenta also enhanc
contributions from the spin vector along the polarization
rection. For completeness, we also introduce the intrin
transverse momentum for the distribution function. We
sume that the form of the intrinsic transverse momentum
of the parton distribution function can be parametrized
exp@2tM2b2# with an impact parameterb, which is the con-
jugate variable of the transverse momentum. The other
tors are theLb baryon massM and a dimensionless param
eter t. The impact parameterb will be integrated out in our
perturbative QCD~PQCD! formalism. Thez variables are
functions of t. To determine the parametert we rely on the
experiments. The OPAL Collaboration determined the po
ization by comparing the measured distribution of the ra
En̄ /El against a simulation of this ratio using theJETSET

Monte Carlo event generator. The polarizationPOPAL of the
OPAL experiment and results of the ALEPH and DELP
experiments will determine the range of parametert.

The arrangement of our paper is as follows. In the n
section, we shall demonstrate the factorization formula
the inclusive semileptonic decay of theLb baryon. In this
formula, the hard scattering amplitude, describing the sh
distance subprocessb→cl n̄, convolutes with a jet function
and a universal soft function. For simplicity, we shall assu
that the charm quark mass can be ignored. That is we s
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neglect the corrections likemc
2/M2 with mc the charm quark

mass. This approximation is less than 10% and is safe
compared with the accuracy of the experiments. Howeve
requires one to consider the collinear divergences due to
ignorance of the charm quark mass. The jet function is th
necessary for absorbing the collinear divergences. The
versal soft function involves theb quark matrix element. The
matrix element contains a large scale factor, theb quark mass
Mb . To have a well established matrix element, we need
employ heavy quark effective theory~HQET! to scale out
this large scale. We also need to separate the leading o
matrix elements in 1/Mb expansion from the higher orde
ones. We shall develop a description for separating the le
ing order from the higher order mass corrections. This
scription is equivalent to the OPE approach. In Sec. III,
shall construct four models based on the factorization f
mula. Section IV gives the numerical result. The conclus
is given in Sec. V.

II. FACTORIZATION FORMULA

We shall investigate the quadruple differential decay r
for polarizedLb baryons,Lb→Xcl n̄,

d4G

dEldq2dq0d cosu l

5
uVcbu2GF

2

256p4M
LmnWmn, ~3!

whereM denotes the mass of theLb baryon,Lmn represents
the leptonic tensor

Lmn5Tr@P” lGmP” n̄Gm#, ~4!

andWmn means the hadronic tensor

Wmn5~2p!3d (4)~PLb
2q2PXc

!

3(
X

^Lbuc̄Gm†buXc&^Xcuc̄GnbuLb&
d3PXc

~2p!32EXc

, ~5!

whereGm denotes theV2A operatorgm(12g5),uXc& means
the hadronic states containing a charm quark, andq is total
momentum carried by the lepton and antineutrino. W
choose the normalization for theLb state uLb& as

^Lb(PLb
8 ,S)uLb(PLb

,S)&5(2p)3(2PLb

0 )d3(SW 2SW 8)d3(PW Lb

2PW Lb
8 ). The kinematical variablesEl ,q,q0, and cosul are

expressed as follows. We choose theLb baryon rest frame
such that the initialLb baryon momentum,PLb

, and the final

state lepton and antineutrino momenta,pl and pn̄ , can be
defined as

PLb
5

M

A2
~1,1,0!,pl5~pl

1,0,0!,pn̄5~pn̄
1 ,pn̄

2 ,pn̄'!. ~6!

The variablesEl ,q, andq0 are related topl
1 ,pn̄

1 ,pn̄
2 asEl

5pl
1/A2,q252pl

1pn̄
2 , andq05(pl

11pn̄
1

1pn̄
2)/A2. We let

Pb5PLb
2 l represent theb quark momentum whose squa
4-2
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is set asPb
2'Mb

2 with Mb theb quark mass. The momentum
l of the light degree of freedom of theLb baryon can have a
large plus component and small transverse componentsl' .
The final state charm quark momentum is equal toPc
5PLb

2 l 2q. The angleu l is defined as the angle betwee

the third component ofpl and that of theb quark polarization
vector,Sb . The differential decay rate can also be rewritt
in terms ofEn̄ ,y,y0, andun̄ with En̄ the antineutrino energy
and corresponding angleun̄ . Because the right-hand side o
Eq. ~3! is independent of which parametrization for the le
tonic variables, we shall use both parametrizations for
differential decay rate.

It is convenient to use the scaled variablesxl ( n̄)
52El ( n̄) /M ,y5q2/M2, andy052q0 /M . The integration re-
gions forxl ( n̄) ,y, andy0 are

0<xl ( n̄)<1, 0<y<xl ( n̄) ,

y

xl ( n̄)

1xl ( n̄)<y0<11y. ~7!

Note that we have chosenM as the scale factor. For simplic
ity, we have chosenmc50 and left mcÞ0 to other work.
This approximation is safe as compared with the accurac
available experiments. The leading corrections to this
proximation are of orderO(mc

2/Mb
2) being less than 10%.

By optical theorem, the hadronic tensorWmn can be re-
lated to the forward matrix elementTmn through the formula

Wmn52
Im~Tmn!

p
. ~8!

The lowest order ofTmn is defined as

Tmn52 i E d4yeiq•y^LbuT @J†m~0!,Jn~y!#uLb& ~9!

with Jm5q̄gm(12g5)b theV2A current. We have abbrevi
ated the state vectoruLb(PLb

,q,S)& as uLb&. The forward
matrix element can be expressed in the momentum spac

Tmn52 i E d4Pb

~2p!4
Tr@Smn~Pb2q!T~Pb!#, ~10!

where the trace is taken over the fermion indices and c
indices, the hard functionSmn(Pb2q) describes the shor
distance decay subprocess,b→Wc, and the soft function
T(Pb) denotes the long distance matrix element

T~Pb!5E d4yeiPb•y^Lbub̄~0!b~y!uLb&. ~11!

Because we are only interested in the leading contributi
in this note, we are required to separate the leading co
butions from subleading contributions. To specify the lead
contributions, we also need to consider correction terms.
correction contributions may come from radiative correct
terms like as

n and power correction terms like 1/Mm for
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n,m>1. Among the radiative corrections, the contributio
from soft gluons will become dominant at the end points,
which the final state quark is approaching on-shell. As d
cussed in the Introduction, the hard gluon emissions can o
contribute about 3%. Therefore we shall retain the soft glu
contributions at the end points. To discuss the power cor
tion terms, we need to be more careful. As investigated in
operator product expansion~OPE! and heavy quark effective
theory ~HQET! approach, the power corrections can ha
two sources; one from the short distance expansion for
forward matrix element and the other one from the hea
quark mass expansion for the expanded matrix eleme
Here, we shall present a different approach in which
leading order matrix elements are in terms of nonlocal he
quark currents composed of heavy quark effective fields
HQET.

We now demonstrate this description. To start up, we
press the forward matrix element

iTmn5E d4Pb

~2p!4
Tr@Smn~Pb2q!T~Pb!#

1E d4Pb

~2p!4E d4Pb8

~2p!4
Tr@Sa

mn~Pb2q,Pb82q!

3Ta~Pb ,Pb8!#1••• ~12!

by including a higher order term from triple parton matr
elements containing gluon fields

Ta~Pb ,Pb8!5E d4yE d4zeiPb•yei (Pb2Pb8)•z

3^Lbub̄~0!@2gAa~z!#b~y!uLb& ~13!

with Aa(z) the gluon fields. ThePb andPb8 denote the out-
going and incomingb quark momenta. The hard function
Smn andSa

mn have the following expressions:

Smn52
GmP” cG

n

Pc
21 i e

, ~14!

Sa
mn5

GmP” cgaP” c8G
n

~Pc
21 i e!~Pc8

21 i e!
, ~15!

wherePc(Pc8)5Pb(Pb8)2q. We shall employ the light-cone
gaugeA15n•A50. To continue, it is useful to introduce th
light-cone vectorsp andn in the1 and2 directions, respec-
tively. These two vectors satisfy propertiesp25n250 and
p•n5PLb

•n. TheLb baryon momentumPLb
is then recast

as

PLb

m 5pm1
M2

2p•n
nm. ~16!

For the b quark inside theLb baryon, we parametrize its
momentumPb as
4-3
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Pb
m5zpm1

Pb
21Pb'

2

2Pb•n
nm1Pb'

m ~17!

5 P̂b
m1

Pb
22Mb

2

2Pb•n
nm, ~18!

whereP̂b
25Mb

2 is the on-shell part ofPb and the momentum
fraction z defined byz5Pb

1/PLb

1 512 l 1/PLb

1 . By the pa-

rametrization ofPb , the b quark propagator is then ex
pressed as

i

P” b2Mb1 i e
5

i ~P”̂ b1Mb!

Pb
22Mb

21 i e
1

in”

2Pb•n1 i e

[Fb
L~Pb!1Fb

S~Pb!. ~19!

There are two scenarios to be discussed. The first situatio
for small z. That is we allowl 1 to be of orderPLb

1 and z

;L/M with L;LQCD. TheFb
S(Pb) term having power like

1/L is as important as theFb
L(Pb) term. We shall see late

that the power correction completely comes from the sh
distance hard function. There is also the second situatio
which the value ofz is large of order 12L/M . This corre-
sponds to smalll 1. In this case, theFb

S(Pb);1/M is power
suppressed thanFb

L(Pb);1/L. In this configuration, the hard
function is in the end pointsx→1 and y→0,y0→1. The
power corrections come from the noncollinear momentum
the b quark. We now investigate the contributions from t
above two scenarios. For simplicity, we shall ignore t
transverse component of the neutrino momentum. This
not affect the following analysis.

For the largel 1 scenario, we need to separate the lead
terms of the hard functionsSmn,Sa

mn from the higher order
terms. The hard functionSmn is a function of l and Sa

mn a
function of l and l 8. The l and l 8 are momenta of light de
grees of freedom of theLb and are defined asl 5PLb

2Pb

and l 85PLb
2Pb8 . We can make Taylor expansion forSmn

and Sa
mn with respect tol 1 and l 18. This is because the

momentuml ( l 8) have a large plus componentl 15jp( l 18
5j8p) with j512z(j8512z8). By performing Taylor ex-
pansions forSmn( l ) and Sa

mn( l ,l 8) around Smn(jp) and
Sa

mn(jp,j8p), we then obtain

Smn~ l !5Smn~jp!1
]Smn

] l a U
l 5jp

~ l 2jp!a1•••, ~20!

Sa
mn~ l ,l 8!5Sa

mn~jp,j8p!1••• . ~21!

The following low energy theorems are assumed to hold

]Smn

] l a
~jp!52Sa

mn~jp,jp!. ~22!

The minus sign in the above equations is due to the direc
of the momentum flow ofl. The effects of the second term
03400
is

rt
in

f
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n

in the right-hand side of Eq.~20! are to replace the gluonic
field operators in the first term in the right-hand side of E
~21! by covariant derivative operators. Let us explain th
By substitutingSa

mn(jp,jp) andSa
mn(jp,j8p) into Eq. ~12!,

we can arrive at

2E d4l

~2p!4
Tr@Sa

mn~jp,jp!~ l 2jp!aT~ l !#

1E d4l

~2p!4E d4l 8

~2p!4
Tr@Sa

mn~jp,j8p!Ta~ l ,l 8!#. ~23!

In light cone gaugen•A50, we can rewrite the above equa
tion as

E d4l

~2p!4E d4l 8

~2p!4
TrFSa

mn~jp,j8p!wa8
a H ~2 l a8!T~ l ,l 8!

3~2p!4d (4)~ l 2 l 8!E dj8

2p
d~j2j8!1Ta8~ l ,l 8!J G ,

~24!

where the projection tensorwa8
a

5ga8
a

2pana8 has been em-
ployed. SinceSa

mn(jp,j8p) is independent of momental and
l 8, we can move it out of the integrals and employ the ide
tities

E djE dl

2p
e2 il(j2 l •n)51,

~25!

E d4l

~2p!4
e2 i l •yeil l •n5d (4)~y2ln!,

we obtain

E djE dj8 Tr@Sa
mn~jp,j8p!wa8

a $T1
a8~j,j8!

1T2
a8~j,j8!%#, ~26!

where

T1
a8~j,j8!5E dl

2pE dh

2p
eiln•PLbe2 ilje2 ih(j2j8)

3^Lbub̄~0!i ]a8~hn!b~ln!uLb&, ~27!

T2
a8~j,j8!5E dl

2pE dh

2p
eiln•PLbe2 ilje2 ih(j2j8)

3^Lbub̄~0!@2gAa8~hn!#b~ln!uLb&.

~28!

Adding upT1
a8 andT2

a8 leads to
4-4
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E dl

2pE dh

2p
eiln•PLbe2 ilje2 ih(j2j8)

3^Lbub̄~0!Da8~hn!b~ln!uLb&, ~29!

with Da5 i ]a2gAa. It is easy to find that the contribution
from Sa

mn(jp,j8p) terms are power suppressed thanSmn(jp)
by at leastO(1/M ) due to an additional charm quark prop
gator. This can be realized as follows. First we note that
charm quark propagator inSmn has terms proportional top”
and n” and, in this scenario, both terms are compatible. B
cause the light cone gauge and projection tensorwa8

a , the
subscripta in Sa

mn must be transverse. Also considering t
property of light vector p25n250 and the momentum
Pc(Pc8) with terms proportional top” or n” , we can conclude
that the leading possible combination of the superscriptsmn
can only be transverse. This implies thatSa

mn has terms pro-
portional to gb with transverse indexb5'. Thus we can
safely ignore the contributions from theSa

mn terms at leading
order.

We now consider the second scenario, the largez or small
l 1 case. To derive leading order contributions, we need
extract the leading contribution from the term

iT0
mn5E d4Pb

~2p!4
Tr@Smn~Pb!T~Pb!# ~30!

which is just the first term of Eq.~12!. The hard function has
the structure

Smn~Pb!52

GmF ~z2a!p”1bn”
M2

2 GGn

M2b~z2zB!1 i e
~31!

with

a5y02
y

x
, b5S 12

y

xD , zB5
a2y

b
.

In the end point regimex→1 andy→0,y0→1, the variables
becomea→1,b→1 andzB→1. The imaginary part ofT0

mn

is equivalent to taking a cut over the charm quark propaga
This implies that

d~Pc
2!→ 1

M2b
d~z2zB!, ~32!

and theSmn(k) becomes

Smn~k!→ ip

GmF ~zB2a!p”1bn”
M2

2 GGn

M2b
. ~33!

It is clear that in this scenario, the largez, the charm
quark propagator inSmn(Pb), after taking the cut, has
vanishing p” component and a largen” component. The
m,n indices take one of the possible combinatio
03400
e

-

o

r.

pmpn,pmnn,nmpn,nmnn,dmn5pmnn1nmpn2gmn. Because
p25n250, the hard function is then proportional ton” with
transversem,n, or p” with m5n52. The existence of the
term proportional top” implies thatiT0

mn can have subleading
power suppression terms. We now demonstrate this fact.
contraction ofT(Pb) with p” requires one to consider that th
b quark propagator contacts withp” . We first consider the
effects from the out-goingb quark propagator. Since in th
second scenario, theb quark propagator has a on-shell pa
Fb

L(Pb) and a power suppressed partFb
S(Pb). The situation

as the on-shell partFb
L(Pb) contacts withp” can lead to

Fb
L~Pb!p”5Fb~Pb!@~Pb2zp!a~ iga!2 iM b#Fb

S~Pb!p” .
~34!

The contribution from the power suppression partFb
S(Pb)

contacting withp” has the form

Fb
S~Pb!p”5Fb~Pb!@2gAa#~ iga!Fb

S~Pb!p” . ~35!

Similar considerations can be applied for the incomingb
quark propagator. The total effects from theb quark propa-
gator contacting withp” leads to

iT0
mn5E d4Pb

~2p!4
Tr@Smn~Pb!T~Pb!#

1E d4Pb

~2p!4
Tr@SM

mn~Pb!TM~Pb!#

1E d4Pb

~2p!4E d4Pb8

~2p!4
Tr@Sa8

mn~Pb ,Pb8!wa8
a Ta8

3~Pb ,Pb8!#, ~36!

where the new hard functionsSM
mn(Pb) and Sa8

mn(Pb ,Pb8)
take expressions

SM
mn~Pb!52 iF b

S~Pb!Smn~Pb!

1 iSmn~Pb!@Fb
S~Pb!#†, ~37!

Sa8
mn~Pb ,Pb8!5 igaFb

S~Pb!Smn~Pb!

2 iSmn~Pb!@Fb
S~Pb!#†ga , ~38!

and the new matrix elementsTM(Pb) andTa8(Pb ,Pb8) have
the forms

TM~Pb!5E d4yeiPb•y^Lbub̄~0!Mbb~y!uLb&, ~39!

Ta8~Pb ,Pb8!5E d4zE d4yeiPb•yei (Pb82Pb)•z

3^Lbub̄~0!Da~z!b~y!uLb&. ~40!

It is easy to see that the contributions fromSM
mn andSa8

mn are
power suppressed thanSmn by at leastO(1/M ). To leading
order, we can consider the first term ofiT0

mn .
4-5
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The b quark field in the leading matrix elementT in Eq.
~36! contains a large phase factor exp(2iMbv•x) with v
[PLb

/M theLb velocity. This is unsuitable to define a ma
trix element at low energies. To solve this, we can emp
the HQET. In HQET, we can rescale theb quark field,b(x),
into bv(x)5exp(iMbv•x)(11v”/2)b(x). The rescaledbv field
is a small fluctuation quantity of coordinate, since the
maining scale in its phase factor is only aboutLQCD scale. In
HQET, Pb is parametrized asPb5Mbv1k, with k the re-
sidual momentum. The rescaledb quark field,bv(x), carries
the residual momentumk and has a small effective massL̄,
with L̄[M2Mb . Under the heavy quark mass expansio

bv~x!5hv~x!1OS 1

M D1•••, ~41!

the matrix elementT in terms ofbv can be expanded as
p
he
om
a

on

n
e
u
d

03400
y

-

T5T01OS 1

M2D 1•••. ~42!

The T0 is in terms of the effective heavy quark fieldhv ,
which is defined as thebv field in the infinite mass limit
Mb→`. The missing of theO(1/M ) term is due to the equa
tion of motion. The expression forT0 is easily written down
as

T05E d4yeik•y^Lb~v,S!uh̄v~0!hv~y!uLb~v,S!&. ~43!

Note that we have replaced the hadronic state ve
uLb(PLb

,S)& by its equivalent representationuLb(v,S)&. The

final task is to extract the leading contributions ofiT0
mn . This

can be achieved by means of Fierz identity. As a result,
leading order forward matrix elementT0

mn takes the form
T0
mn~PLb

,q,S!'2 i E d4k

~2p!4 H Tr@Smn~k52jp,q!P” b#TrFT0~PLb
,S,k52jp!

n”

4Pb•nG
2Tr@Smn~k52jp,q!S” bg5#TrFT0~PLb

,S,k52jp!
n”g5

4Sb•nG J 1OS 1

M2D , ~44!
a-

ion
-

en-

far.

nc-

he
-

or-
ss
where we have inserted the Fierz identity

I i j I mn5
1

4
~gm! im~gm! jn1

1

4
~gmg5! im~g5gm! jn1•••,

~45!

where i , j ,m,n denote the fermion indices and the dots re
resent the other gamma matrix that would result in hig
order terms. In summary, the leading contributions are fr
largez configuration. This fact will be employed to make
model for the distribution function.

We now briefly describe how to derive the factorizati
formula for the inclusive semileptonic decayLb→Xcln. The
details about the derivation of the following factorizatio
formula can be found in@12#. We shall only demonstrate th
main ideas and try not to give a repeated proof. The form
for the quadruple differential decay rate can be expresse
a convolution integral over the soft functionS, the jet func-
tion J, and a hard functionH

1

G (0)

d3G

dxdydy0d cosu
5

M2

2 E
zmin

zmax
dzE d2l'S~z,l' ,m!

3J~z,Pc
2 ,l' ,m!H~z,Pc

2 ,m!, ~46!
-
r

la
as

where x5xl(xn̄),u5u l(un̄), and G (0)5GF
2/16p3uVcbu2M5.

The scalem is introduced as a renormalization and factoriz
tion scale. The transverse momentuml' has been reintro-
duced for regularization of the end point singularities@12#.
The end point singularities arise from the end point reg
x→1 andy→0,y0→1. The charm quark~assumed as mass
less! has a large minus componentPc

25(12y/x)M /A2 and
a small plus componentPc

15(12y02y/x)M /A2. This im-
plies that there is a very small invariantPc

25M2(12y0

1y), which leads to an on-shell jet subprocess. Thel' inte-
grals can be finished only when we know the exact dep
dence of the jet function onl' . But the jet function is non-
perturbative and cannot be determined theoretically, so
Fortunately, this difficulty for integration overl' can be re-
moved by means of a Fourier transformation for the jet fu
tion into its impact space representation as

J~z,Pc
2 ,l' ,m!5E d2b

~2p!2
J̃~z,Pc

2 ,b,m!ei l'•b. ~47!

The l' integrals then decouple from the jet function and t
remaining factorei l'•b is then associated with the soft func
tion. The factorization formula Eq.~46! can also be applied
to the case with loop corrections. With the Fourier transf
mation forl' , the Feynman rule for the radiative gluon cro
4-6
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over the final state cut should be modified with an ex
phase factorei l'•b. The upper and lower limits ofz are cho-
sen aszmax51 andzmin5x. The lower limit zmin5x is from
the jet function. The upper limitzmax51 is chosen to fill the
kinematical gap betweenMb andM. The Fourier transforma
tion of Eq. ~46! into the impactb space then takes the form

1

G (0)

d3G

dxdydy0d cosu l
5

M2

2 E
x

1

dzE d2b

~2p!2
S̃~z,b,m!

3 J̃~z,Pc
2 ,b,m!H~z,Pc

2 ,m!. ~48!

To deal with the collinear and soft divergences result
from the radiative corrections for the massless parton ins
the jet, the resummation technique is necessary and t
divergences can be resummed into a Sudakov form fa
@12#. The jet function is then reexpressed into the form

J̃~z,Pc
2 ,b,m!5exp@22s~Pc

2 ,b!# J̃~z,b,m!, ~49!

where exp@22s(Pc
2 ,b)# is the Sudakov form factor. The

renormalization group~RG! invariant Sudakov exponent ha
the expression up to one loop accuracy

s~Pc
2 ,b!5

A(1)

2b1
q̂ lnS q̂

b̂
D 1

A(2)

4b1
2 S q̂

b̂
21D 2

A(1)

2b1
~ q̂2b̂!

2
A(1)b2

4b1
2

q̂F ln~2b̂!11

b̂
2

ln~2q̂!11

q̂
G

2FA(2)

4b1
2

2
A(1)

4b1
lnS e2g21

2 D G lnS q̂

b̂
D

1
A(1)b2

8b1
3 @ ln2~2q̂!2 ln2~2b̂!# ~50!

with the variables

q̂5 lnS Pc
2

L D , b̂5 lnS 1

bL D . ~51!

We choose the QCD scaleL5LQCD to have the value
0.2 GeV in the numerical analysis in Sec. IV. The oth
factors are defined as

b15
3322nf

12
,

b25
153219nf

24
,

A(1)5
4

3
,

03400
a

g
e
se
or

r

A(2)5
67

9
2

p2

3
2

10

27
nf1

8

3
b1 lnS eg

2 D . ~52!

The scale invariance of the differential decay rate in Eq.~48!
and the Sudakov form factor in Eq.~49! requires the func-
tions J̃,S̃, andH to obey the following renormalization grou
~RG! equations:

DJ̃~b,m!522gqJ̃~b,m!,

DS̃~b,m!52gSS̃~b,m!,

DH~Pc
2 ,m!5~2gq1gS!H~Pc

2 ,m!,
~53!

with

D5m
]

]m
1b~g!

]

]g
. ~54!

gq52as /p is the quark anomalous dimension in axi
gauge, andgS52(as /p)CF is the anomalous dimension o
S̃. After solving Eq.~53!, we obtain the evolution of all the
convolution factors in Eq.~48!,

J̃~z,Pc
2 ,b,m!5expF22s~Pc

2 ,b!

22E
1/b

m dm̄

m̄
gq@as~m̄ !#G J̃~z,b,1/b!,

S̃~z,b,m!5expF2E
1/b

m dm̄

m̄
gS@as~m̄ !#G f ~z,b,1/b!,

H~z,Pc
2 ,m!5expF2E

m

Pc
2dm̄

m̄
$2gq@as~m̄ !#

1gS@as~m̄ !#%GH~z,Pc
2 ,Pc

2!. ~55!

In the above solutions, we set the 1/b as an IR cutoff for
single logarithm evolution.

For the initial soft functionf (z,b,1/b), we shall keep the
intrinsic b dependence byf (z,b,1/b)' f (z,b). Theb depen-
dence inf (z,b) can support a way to explore the mechanis
for the polarization. We assumef (z,b) to have the form

f ~z,b!5 f ~z!e2S(b), ~56!

and take an ansaze for parametrizing exp@2S(b)# as

e2S(b)5e2tM2b2
~57!

with an unknown parametert. The reason for the above pa
rametrization for theb dependent part off (z,b) will become
clear later. To avoid double counting for the contributio
from transverse degrees of freedom, we need some mo
4-7
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cations for the factorization formula. For the end point
gime where the Sudakov suppression dominates, we em
the approximation

f ~z,b!5 f ~z!, ~58!

while for other regimes which are not under the control
the Sudakov suppression, we take into account the intrinsb
dependence off (z,b)

f ~z,b!5e2tM2b2
f ~z!. ~59!

We make further approximations such thatJ̃(z,b,1/b)
5 J̃(0)(z,b), andH(z,Pc

2 ,Pc
2)5H (0)(z,Pc

2).
Combining the above results, we arrive at the factori

tion formula as

1

G (0)

d4G

dxdydy0d cosu

5M2E
x

1

dzE
0

`bdb

4p
J̃(0)~z,b!H (0)~z,Pc

2!e2S(Pc
2 ,b)

3H f ~z! for x in end point regimes

exp@2tM2b2# f ~z! for x in other regimes,

~60!

where

S~Pc
2 ,b!52s~Pc

2 ,b!2E
1/b

Pc
2dm̄

m̄
@2gq~m̄ !1gS~m̄ !#.

~61!

The parametert will be determined by experiment. From
practical calculations, we find that the above difference
tween the distribution function with and without intrins
transverse momentum contributions is very small. Theref
we shall include the factor exp@2tM2b2# for the entire range
of x in the numerical analysis.

The integration range of the impact parameterb will af-
fect the determination oft. We now discuss this point. Th
Sudakov form factor gives strong suppression over largb
for b.1/LQCD, where the perturbative calculations can
longer be applicable sinceas(1/b).1. Therefore the Suda
kov suppression guarantees that the main contributions
from small b,1/LQCD. However, there are singular poin
that happen at 1/b;LQCD at which the strong coupling con
stant as becomes divergent. The infrared~IR! renormalon
arise in such a scenario. It is well known@13–15# that the IR
renormalon implies the need for the introduction of a no
perturbative function to make the physical quantity we
defined. Therefore the estimation of the IR renormalons
give the information about the distribution function. It
equivalent to reconsidering the evolution factor for the d
03400
-
oy

f

-

-

re

re

-

n

-

tribution function contained in the Sudakov form factor@i.e.,
the gS term in Eq.~61!# @16,17#

AIR54pCFE d4l

~2p!4

vmvn

~v• l !2
2pd~ l 2!as~ l'

2 !ei l'•bNmn

~62!

wherev is the velocity of the heavy quark andNmn the gluon
polarization tensor in the axial gaugeA12A250. We have
put the argument ofas( l'

2 ) as l'
2 . We then expressas( l'

2 ) as

as~ l'
2 !5pE

0

`

ds expF22sb1lnS l'
LQCD

D G , ~63!

and substitute it into the amplitudeAIR to yield

AIR5CFE
0

`

dsS bLQCD

2 D 2sb1 G~2sb1!

G~11sb1!
~64!

with G being the gamma function. There are poles contain
in the G(2sb1). The smalls;0 pole ofG(2sb1) results
in the anomalous dimension. There are also poles forsb1
51,2,3, . . . . This implies that, ass51/b1 ,2/b1 , . . . , we
have the IR renormalons with corresponding corrections
b2,b4, . . . . Since IR renormalons lead to corresponding s
gularities, we need to introduce nonperturbative functions
absorb these divergences. The leading contributions from
IR renormalons are of the form exp@(LQCDb)2#. Thus we at
least need a nonperturbative function with the form li
exp@2Cb2#. This is the way we employed to parametrize t
intrinsic b dependent part off (z,b). In summary, we can
choose the integration range ofb as 0<b<1/LQCD.

Let us now discuss how to parametrizeT0(k) defined in
Eq. ~43!. As discussed in previous paragraphs, at lead
order,T0(k) is expanded in the form

T0~k!5
1

4
Pb•np” f ~z!2

1

4
Sb•np”g5g~z!. ~65!

The unpolarized and polarized distribution functions,f (z)
andg(z), are defined as

f ~z!5E dl

2p
ei (12z)l^v,Suh̄v~0!n”hv~ln!uv,S& ~66!

and

g~z!5E dl

2p
ei (12z)l^v,Suh̄v~0!n”g5hv~ln!uv,S&.

~67!

It is easy to show thatf (z) and g(z), in the heavy quark
limit, share a common matrix element which could be d
scribed by a universal distribution function,f Lb

(z). This just
4-8
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reflects the heavy quark spin symmetry. We adopt the dis
bution function proposed in@12# in the form

f Lb
~z!5

Nz2~12z!2

@~z2a!21ez#2
u~12z!. ~68!

The parametersN,a, ande are fixed by the first three mo
ments off Lb

(z):

E
0

1

f Lb
~z!dz51,

E
0

1

dz~12z! f Lb
~z!5L̄/M1O~LQCD

2 /M2!,

E
0

1

dz~12z!2f Lb
~z!5

L̄2

M2
1

2

3
Kb1O~LQCD

3 /M3!,

~69!

whereL̄5M2Mb andKb is to parametrize the matrix ele
ment

Kb52
1

2M
^Lbuh̄v~0!

~ iD !2

2M2
hv~0!uLb&. ~70!
03400
i-By substituting the inputs

M55.641 GeV, Mb54.776 GeV,

Kb50.01260.0026, ~71!

into Eq. ~69!, we determine the parametersN,a, ande to be

N50.106 15, a51, e50.004 13. ~72!

For simplicity we shall omit the subscript off Lb
(z) in the

following text. Finally, one should note that the second m
ment of the structure function implies largez that is consis-
tent with previous discussions in determining the lead
contributions.

III. DIFFERENTIAL DECAY RATES

In this section we construct four models based on
factorization formula Eq.~60!. The models are the quar
model ~QM!, the modified quark model~MQM!, the parton
model ~PM!, and the modified parton model~MPM!. The
charged lepton and antineutrino spectra for the decayLb

→Xcl n̄ in the quark model are expressed as
on

after
1

G (0)

d2GQM
T

dxdcosu
55

xl
2

6
@~322xl !2P cosu l~122xl !# for l

xn̄
2

6
xn̄~12xn̄ !~12P cosun̄! for n̄,

~73!

where P and cosul(n̄) denote the polarization and cosine of the angleu l ( n̄) between the third components of the lept
~antineutrino! momentum and theLb spin vector.

By taking into account Sudakov suppression from the resummation of large radiative corrections, and substitutingf (z,b)
5d(12z)exp@2tM2b2#,H(0)5(xl2y)@(y02xl)2Pcosul(y02xl22y/xl)# and the Fourier transform ofJ(0)5d(Pc

2) with Pc
2

5M2(12y01y2p'
2 /MB

2) into Eq. ~60!, we derive the lepton spectrum in the modified quark model. The spectrum is,
integrating Eq.~60! over z andy0, described by

1

G (0)

d2GMQM

dxld cosu l
5ME

0

x

dyE
0

1/L

dbe[ 2tMQMM2b2]e2S(Pc
2 ,b)~xl2y!h

3H F ~11y2xl !2P cosu l S 11y2xl22
y

xl
D G

3J1~hMb!2S 2

Mb
hJ2~hMb!2h2J3~hMb! D ~12P cosu l !J , ~74!
4-9
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where Pc
25(12y/xl)M /A2,h5A(xl2y)(1/xl21), and

J1 ,J2, andJ3 are the Bessel functions of order 1, 2, and
respectively. Note that we have made an approximation
substituting exp@2tM2b2# for the end point regimes. We als
need the antineutrino spectrum in the modified quark mo
as

1

G (0)

d2GMQM

dxn̄d cosun̄

5ME
0

x

dyE
0

1/L

dbe[ 2tMQMM2b2]

3e2S(Pc
2 ,b)xn̄~12xn̄ !h8J1~h8Mb!

3~12P cosun̄! ~75!

with h85A(xn̄2y)(1/xn̄21).
The charged lepton spectrum in the parton model is

tained by adopting H (0)5(xl2y)$@y02xl2(12z)y/xl #
2P cosul@y02xl2(11z)y/xl#% and Pc

25M2@12y01y2(1
2z)(12y/xl)#. After integration overy0, we then derive
-
th
e-
t i
c

-
th
th

03400
,
y

el

-

1

G (0)

d2GPM

dxld cosu l
5E

0

xl
dyE

xl

1

dz f~z!~xl2y!F ~y1z2xl !

2P cosu l S y1z2xl22z
y

xl
D G . ~76!

In the same way, the antineutrino spectrum can be writ
down

1

G (0)

d2GPM

dxn̄d cosun̄

5E
0

xn̄
dyE

xn̄

1

dz f~z!xn̄~z2xn̄ !~12P cosun̄!.

~77!

The charged lepton spectrum in the modified par
model takes into account large perturbative corrections
nonperturbative intrinsic contributions with the expression
1

G (0)

d2GMPM

dxld cosu l
5ME

0

xl
dyE

xl

1

dzE
0

1/L

dbe[ 2tMPMM2b2]e2S(Pc
2 ,b) f ~z!~xl2y!h

3H F ~z1y2xl !2P cosu l S z1y2xl22z
y

xl
D GJ1~hMb!

2S 2

Mb
hJ2~hMb!2h2J3~hMb! D ~12P cosu l !J , ~78!

with h5A(x2y)(z/xl21). The antineutrino spectrum in the modified parton model is also easily derived as

1

G (0)

d2GMPM

dxn̄d cosun̄

5ME
0

xn̄
dyE

xn̄

1

dzE
0

1/L

dbe2S(Pc
2 ,b)e2tMPMM2b2

f ~z!xn̄~z2xn̄ !h8J1~h8Mb!~12P cosun̄!. ~79!
m
a. It

d

-
te

e

with h85A(xn̄2y)(z/xn̄21).

IV. NUMERICAL RESULT

The Lb’s produced in ALEPH, DELPHI, and OPAL ex
periments are highly boosted in the laboratory frame. For
relativistic Lb’s, the forward-backward asymmetry of a d
cay product can be directly expressed in terms of a shif
the average value of its energy. The charged lepton also
ried a residual sensitivity to theLb polarization. Because
neither the Lb four-momentum nor the lepton four
momentum can be fully reconstructed in the experiments,
ALEPH and DELPHI experiments proposed to measure
Lb polarization,P, through the variabley suggested in@11#

y5
^El&

^En̄&
. ~80!
e

n
ar-

e
e

However, there still exist many uncertainties suffered fro
experimental procedures on extracting the energy spectr
requires normalizing the measuredy with an unpolarized
simulatedyMC(0). Therefore the experimentally measure
quantity is the ratio

R5
y~P!

yMC~0!
. ~81!

ALEPH and DELPHI determined the polarization by com
paring the measured value of the ratio R with the Mon
Carlo simulation RMC(P) with varying P. The experimental
results are R51.1260.10 and P520.2320.20

10.24(stat) for
ALEPH and R51.2120.14

10.16 and P520.4920.30
10.32(stat) for

DELPHI, respectively. Theoretically, theLb polarization can
be best defined in the rest frame. It is instructive to rewrity
in terms of average variables in the rest frame
4-10
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TABLE I. The values of theLb polarization are predicted from the quark model, the parton model,
modified quark model, and the modified parton model by employing the ALEPH and DELPHI experim
The ALEPH and DELPHI experimental results are also shown for comparison.

PQM PPM PMQM PMPM PEXP R Experiment

20.2320.17
10.19 20.2320.17

10.19 20.2420.17
10.20 20.2420.17

10.20 20.2320.20
10.24 1.1260.1 ALEPH

20.3820.24
10.24 20.3820.24

10.24 20.3920.24
10.25 20.3920.24

10.25 20.4920.30
10.32 1.2120.14

10.16 DELPHI
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y5
^El* &1P^Pl* ~P521!&

^En* &1P^Pn* ~P521!&
, ~82!

where the star average variables are evaluated withP521.
The average variables can be calculated from the formu

^a&5E E a
d2G

G (0)dxdcosu
dxdcosu ~83!

by employing different models for the differential decay ra
It is much simplified in calculations of these average qu
tities, if the charged lepton and antineutrino average qua
ties are evaluated by their corresponding differential de
rates. From these relations we can determineP in terms of R
as

P5
^El* &^En* &~12R!

^El* &^Pn̄
* &R2^En̄

* &^Pl* &
. ~84!

We first compare the difference between the experim
tally determined polarizationPEXP and the theoretically
evaluated polarizationPTH in the four models QM, PM and

FIG. 1. Plot ofzl vs t. The modified quark model~solid line! and
modified parton model~dashed line! are shown.
03400
.
-

ti-
y

-

MQM, MPM with parameterstMQM5tMPM50. The result is
shown in Table I. We can see that the theoretical polari
tions are close to the ALEPH polarizationPALEPH520.23
but have a large deviation from the DELPHI polarizatio
PDELPHI520.49. Among different model evaluations wit
one R, their differences are very small. This implies th
nonperturbative effects from the distribution function ov
longitudinal momentum fraction and perturbative effec
from Sudakov suppression are not important in determin
the polarization.

We now turn on the parameterstMQM andtMPM to find out
their values from experiments. It is interesting to note th
the ratio zl5^Pl* &/^El* & is model dependent but the rati
zn̄5^Pn̄

* &/^En̄
* & is almost the same for all models. Usin

these twoz variables, we can rewrite Eq.~84! as

P5
12R

zn̄R2zl

. ~85!

Since zn̄'1/3 for all models, we can further simplify th
above equation into

FIG. 2. The plot ofP vs zl is shown by employing the ALEPH
ratio R51.1260.10. The experimental polarizationP5

20.2320.20
10.24 is also shown to indicate the allowed range ofzl .
4-11
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P5
3~12R!

R23zl
. ~86!

Theoretically, thezl range would be model dependent. B
varying the value oft, we can easily changezl . This is
because the suppressions from the contributions of intri
transverse momentum are modeled by parametert. Consid-
ering MQM and MPM and plotting thezl2t relation in Fig.
1, we can find that there is an upper bound forzl as zl<
20.05 with t;0.3, and a lower bound forzl as zl>20.18
with t;2. The reason for existing the upper and low
bounds forzl is as follows. The fluctuations from the Bess
function in the differential decay rates would prevent t
suppression oft from becoming large and small. In the en
there exist upper and lower bounds forzl . We also hope tha
t should be less than unity and close to zero to make
perturbative calculation reliable. Thus thezl bound should be
20.12<zl<20.05 with the corresponding bound fort,0
<t<0.3. Since, in thezl2t plot, the differences between th
MPM and MQM are very small, we shall not distinguis
tMQM and tMPM.

We now discuss the extraction ofzl from experiments. We
first plot the behaviors ofP with respect tozl for RALEPH

FIG. 3. The plot ofP vs zl is shown by employing the DELPH
ratio R51.2120.14

10.16. The experimental polarizationP520.4920.30
10.32 is

also shown to indicate the allowed range ofzl .
03400
ic

r
l

e

51.1260.10~ALEPH! and RDELPHI51.2120.14
10.16 ~DELPHI! in

Figs. 2 and 3, respectively. By applying the experimen
bounds forP, we can extract from Fig. 2 thezl range of
2`<zl<20.105 for ALEPH and from Fig. 3 the range o
21.75<zl<20.02 for DELPHI. We now discuss that th
possible constraint overzl can be obtained from the OPAL
experiment. The OPAL Collaboration employed a compa
son between the measuredy35En̄ /El and the Monte Carlo
simulated y3

MC to determine the polarizationP5

20.5620.13
10.20(stat). Applying the OPALP to the DELPHI and

ALEPH experiments, we obtain20.6<zl<20.1 for DEL-
PHI and 20.55<zl<20.105 for ALEPH. We summarize
the above discussions for the determination of thezl in Table
II. In the models we are considering, the lower bound forzl
cannot be smaller than20.12. We then assume that the ran
of zl can be obtained by combining the experimental a
theoretical bounds. We thus have thezl range of20.12<zl
<20.105, and the correspondingt range of 0<t<0.05.

As a consistent check, we can write R in terms ofP andzl
as

R5
3~11Pzl !

~31P!
. ~87!

FIG. 4. Plot of R vsP. The ALEPH and DELPHI Monte Carlo
simulations~solid line! and the theoretical prediction~band line! are
shown.
om
L2 the
TABLE II. The bounds ofzl are obtained from the ALEPH, DELPHI, and OPAL experiments, and fr
the theory. OPAL1 represents the combination of the OPAL and the ALEPH experiments, and OPA
combination of the OPAL and the DELPHI experiments.

ALEPH DELPHI OPAL1 OPAL2 THEORY

2`<zl<20.105 21.75<zl<20.02 20.55<zl<20.105 20.6<zl<20.1 20.12<zl<20.05
4-12
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By this equation, we can parametrize the Monte Carlo sim
lation ratios RMC(P)’s of ALEPH and DELPHI. We find that
the value ofzl;20.075 can be used for both experiments
a good approximation within 5% –10%. In Fig. 4 we com
pare the R2P plots for zl;20.075 and for20.12<zl<
20.105. The experimental bounds for ratio R can give c
straints overP. The combination of ALEPH and DELPH
experiments gives the range ofP as 20.79<P<20.05,
while our analysis results in20.73<P<20.05. The differ-
ence between these two bounds ofP can be reduced by in
cluding higher order corrections for the theory, such as
mass corrections, etc.

V. CONCLUSION

In this paper we have constructed four models based
the PQCD factorization formula forLb→Xcl n̄. We used
these models to investigate the physics implied by
J.

03400
-

-

e

n

e

ALEPH, OPAL, and DELPHI experiments. We found th
these experiments can be understood from theoretical m
els, the modified quark model and modified parton mod
These two models contain intrinsic transverse momenta
partons, which are nonperturbative and parametrized by
exponential form with a parametert. The parametert relates
to the variable zl5^Pl* (P521)&/^El* & with ^Pl* (P5

21)& and ^El* & the average momentum and energy
charge lepton in the rest frame ofLb baryon. We found that
the ratio R5y(P)/y(0) can be approximately expressed
terms ofP and zl . Using experimental results, we then d
termined the ranges ofzl and t.
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