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Heavy-quark axial charges to nonleading order
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We combine Witten’s renormalization group with the matching conditions of Bernreuther and Wetzel to
calculate at next-to-leading order the complete heavy-quark contribution to the neutral-current axial-charge
measurable in neutrino-proton elastic scattering. Our results are manifestly renormalization group invariant.
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This paper announces results for the next-to-leading-o
~NLO! heavy-quark corrections to the axial chargegA

(Z) for
protons to couple to the weak neutral current

Jm5
Z 5

1

2 H (
q5u,c,t

2 (
q5d,s,b

J q̄gmg5q. ~1!

The calculation is performed by decoupling heavy quarkh
5t,b,c sequentially, i.e. one at a time. An extension to
multaneous decoupling oft,b,c quarks is foreshadowed i
our concluding remarks.

The chargegA
(Z) receives contributions from both ligh

u,d,s and heavyc,b,t quarks,

2gA
(Z)5~Du2Dd2Ds!1~Dc2Db1Dt ! ~2!

where Dq refers to expectation valuêp,suq̄gmg5qup,s&
52mpsmDq for a proton of spinsm and massmp . It governs
parity-violating effects due toZ0 exchange at low energies i
elasticnp and n̄p scattering@1,2# or in light atoms@3,4#. A
definitive measurement ofnp elastic scattering may be pos
sible using the MiniBooNE setup at Fermilab@5#.

Once heavy-quark corrections@2,6,7# have been taken
into account,gA

(Z) is related~modulo the issue ofd-function
terms atx50 @8#! to the flavor-singlet axial charge, define
scale invariantly and extracted from polarized deep inela
scattering:

gA
(0)u inv50.220.35. ~3!

The small value of this quantity has inspired vast experim
tal and theoretical activity to understand the spin structure
the proton @9#. As a result, new experiments are bei
planned to map out the spin-flavor structure of the prot
These include polarized proton-proton collisions at the B
Relativistic Heavy Ion Collider~RHIC! @10#, semi-inclusive
polarized deep inelastic scattering, and polarizedep collider
studies@11#. Full NLO analyses are essential for a consist
interpretation of these experiments.

Many techniques for decoupling a single heavy quark
available. We rely on Witten’s method@12#, where the renor-
malization scheme is mass independent and impro
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Callan-Symanzik equations@13# can be exploited. In such
schemes, the decoupling of heavy particles required by
Appelquist-Carrazone theorem@14# is not manifest. How-
ever, correct decoupling is ensured by applying the match
conditions of Bernreuther and Wetzel@15#; these relate cou-
pling constant, mass and operator normalizations before
after the decoupling of a heavy quark. The advantages of
approach are its rigor and the fact that the final results
expressed in terms of renormalization group~RG! invariants.
These invariants are Witten-style running couplingsãh , one
for each heavy quarkh5t,b,c, and axial charges for nucle
ons in the residual theory with three light flavors.

We find that, when firstt, thenb, and finallyc are decou-
pled from Eq.~2!, the full NLO result is

2gA
(Z)5~Du2Dd2Ds! inv1P~Du1Dd1Ds! inv1O~mt,b,c

21 !
~4!

whereP is a polynomial in the running couplingsãh ,

P5
6

23p
~ãb2ã t!H 11

125663

82800p
ãb1

6167

3312p
ã t

2
22

75p
ãcJ 2

6

27p
ãc2

181

648p2
ãc

21O~ ã t,b,c
3 ! ~5!

and (Dq) inv denotes the scale-invariant version ofDq de-
fined in the following way.

Let a f5gf
2/4p and b f(a f) be the gluon coupling and

beta function forMS renormalized quantum chromodynam
ics ~QCD! with f flavors andNc53 colors, and letg f(a f) be
the gamma function for the singlet current

~ ūgmg5u1d̄gmg5d1••• ! f5 (
k51

f

~ q̄kgmg5qk! f . ~6!

A scale-invariant current (Sm5) f is obtained when Eq.~6! is
multiplied by

Ef~a f !5expE
0

a f
dx

g f~x!

b f~x!
. ~7!
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Up to O(mh
21) corrections, the invariant singlet charge~3! is

given by

gA
(0)u inv5E3~a3!~Du1Dd1Ds!3

5~Du1Dd1Ds! inv . ~8!

Flavor-dependent, scale-invariant axial chargesDqu inv such
as

Dsu inv5
1
3 ~gA

(0)u inv2gA
(8)! ~9!

can then be obtained from linear combinations of Eq.~8! and

gA
(3)5Du2Dd5~Du2Dd! inv

gA
(8)5Du1Dd22Ds5~Du1Dd22Ds! inv . ~10!

Here gA
(3)51.26760.004 is the isotriplet axial charge me

sured in neutron beta-decay, andgA
(8)50.5860.03 is the oc-

tet charge measured independently in hyperon beta de
Taking ã t50.1, ãb50.2 andãc50.35 in Eq.~5!, we find a
small heavy-quark correction factorP520.02, with LO
terms dominant.

Our results extend and make more precise the well kno
work of Collins, Wilczek and Zee@6# and Kaplan and Mano
har @2#, where heavy-quark effective theory was used to
timate gA

(Z) in leading order~LO! for sequential decoupling
of t,b andt,b,c respectively. Our analysis is also influenc
by a discussion of@6# by Chetyrkin and Ku¨hn @16#, who
considered some aspects of NLO decoupling of thet quark
from the neutral current and in particular, the requirem
that the result be scale invariant. Related work has been d
on heavy-quark production in polarized deep inelastic s
tering using the QCD parton model@17# and in high-energy
polarizedgp andpp at NLO @18#.

The plan of this paper is as follows. First is a brief revie
of Witten’s application of improved Callan-Symanzik equ
tions @13# to the decoupling of a heavy quark in mas
independent renormalization schemes. Next, we combin
with matching conditions@15# to deal with next-to-leading-
order ~NLO! calculations involving axial-vector currents
Following is then a direct derivation of Eq.~5! from Eq. ~1!
for the neutral current. Our concluding remarks indicate
result of extending Eq.~5! to simultaneous decoupling o
t,b,c—done not only for numerical reasons, but also
check that thet,b contributions cancel formt5mb .

We begin by considering mass-independent schemes,
as the modified minimal subtraction scheme(MS), where
renormalized masses behave like coupling constants.
key property is exploited in Witten’s method.

Let m be the scale used to define dimensional regular
tion and renormalization. Then theMS scale is

m̄5mA4pe2g/2, g50.5772 . . . . ~11!

We choose the same scalem̄ irrespective of the number o
flavors f being considered, and so holdm̄ fixed as the heavy
quarks~massesmh) decouple:
03190
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F→ f flavors, mh→`.

Also held fixed in this limit are the couplinga f and light-
quark massesml f of the residual f-flavor theory, and all mo-
mentap. Feynman diagrams for amplitudes

AF5AF~p,m̄,aF ,mlF ,mh! ~12!

give rise to power series inmh
21 modified by polynomials in

ln(mh /m̄). We consider just the leading powerÃF :

AF5ÃF$11O~1/mh!%. ~13!

As mh tends to infinity, logarithms inÃF can be produced
by any 1PI ~one-particle irreducible! subgraph which con-
tains at least one heavy-quark propagator and whose d
gence by power counting is at least logarithmic. The effec
equivalent to shrinking all contributing 1PI parts of ea
diagram to a point. This means@14# that theF-flavor ampli-
tudes ÃF are the same as amplitudesAf in the residual
f-flavor theory, apart frommh-dependent renormalizations o
the coupling constant, light masses, and amplitudes:

ÃF~p,m̄,aF ,mlF ,mh!

5(
A8

ZAA8~aF ,mh /m̄ !Af8~p,m̄,a f ,ml f ! ~14!

a f5a f~aF ,mh /m̄ !, ml f 5mlFD~aF ,mh /m̄ !. ~15!

Eventually, we will have to invert Eq.~15!, i.e. usea f and
ml f as dependent variables instead ofaF andmlF , because
we holda f andml f fixed asmh→`.

For any number of flavorsf ~including F), let

Df5m̄
]

]m̄
1b f~a f !

]

]a f
1d f~a f !(

k51

f

mk f

]

]mk f
~16!

be the corresponding Callan-Symanzik operator. Then
amplitudeAF and hence its leading powerÃF both satisfy an
F-flavor improved Callan-Symanzik equation:

$DF1gF~aF!%ÃF50. ~17!

In general, bothgF andZ5(ZAA8) are matrices.
If we substitute Eq.~14! in Eq. ~17! and change variables

DF5m̄
]

]m̄
1~DFa f !

]

]a f
1 (

k51

f

~DFmk f!
]

]mk f
~18!

the result is an improved Callan-Symanzik equation for e
residual amplitude,

$Df1g f~a f !%Af50 ~19!

where the functions@12,15#

b f~a f !5DFa f ~20!
1-2
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d f~a f !5DFln ml ~21!

g f~a f !5Z 21@gF~aF!1DF#Z ~22!

depend ona f alone. The lack ofml dependence of the reno
malization factors in Eqs.~14! and ~15! ensures mass
independent renormalization for the residual theory.

Although these equations hold for anyf ,F, their practi-
cal application is straightforward only when heavy qua
are decoupled one at a time. So we setF5 f 11, where just
one quarkh is heavy. Then it is convenient to introduce
running coupling@12#

ãh5ãh„aF , ln~mh /m̄ !… ~23!

associated with theMSF renormalized massmh :

ln~mh /m̄ !5E
aF

ãh
dx@12dF~x!#/bF~x!. ~24!

It satisfies the constraints

ãh~aF,0!5aF ,ãh~aF ,`!50 ~25!

the latter being a consequence of the asymptotic freedom
the F-flavor theory (F<16). Also, Eqs.~16!, ~20! and ~24!

imply that ãh is renormalization group~RG! invariant:

DFãh50. ~26!

Witten’s solution of Eq.~22! for the matrixZ is

Z~aF ,mh /m!5expH E
aF

ãh
dx

gF~x!

bF~x!J
ord

Z~ ãh,1!

3exp2H E
a f

a f (ãh,1)
dx

g f~x!

b f~x!J
ord

~27!

where ‘‘ord’’ indicatesx-ordering of matrix integrands in th
exponentials. Note that it is therelative scaling between the
initial and residual theories which matters.

For our NLO calculation, we need the formulas

b f~x!52
x2

3p S 33

2
2 f D2

x3

12p2
~153219f !1O~x4!

g f~x!5
x2

p2
f 1

x3

36p3
~17722 f ! f 1O~x4!

d f~x!52
2x

p
1O~x2! ~28!

whereg f refers to thef-flavor singlet current~6! and includes
the three-loop term found by Larin@19# and Chetyrkin and
Kühn @16#.

Our matching procedure amounts to evaluating to N
accuracy the quantitiesãh , a f(ãh,1) andZ(ãh,1) in Eq.
~27!, such that the answers depend ona f and notaF .
03190
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Bernreuther and Wetzel@15# applied the Appelquist-
Carrazone decoupling theorem@14# to the gluon coupling
constantaQ

MO renormalized at space-like momentumQ,

aQ
MOuwith h5aQ

MOuno h1O~mh
21! ~29!

and compared calculations ofaQ
MO in the F5 f 11 and

f-flavor MS theories. This reduces to a determination of t
leading power of the one-h-loop MSF gluon self-energy. The
result is a matching condition

aF
212a f

215CLO ln ~mh /m̄ !1CNLO1O~a f ,mh
21!

~30!

with a f-independent LO and NLO coefficients given by

CLO5
1

3p
, CNLO50. ~31!

As a result, we find

a f~ ãh,0!5ãh1O~ ãh
3! 5

NLO
ãh . ~32!

Bernreuther and Wetzel showed that it is possible to
duceall LO and NLO terms in Eq.~30! from Eq.~31! andb f
andd f in Eq. ~28!. We have done the calculation explicitly

a f 11
21 5

NLO
a f

211
1

3p
ln

mh

m̄
1cf lnF11

a f

3p
ln

mh

m̄
G

1df lnF11
a f

3p S 33

2
2 f D ln

mh

m̄
G

cf5
142219f

2p~3122 f !
, df5

57116f

2p~3322 f !~3122 f !
.

~33!

From Eq.~24!, we have also foundãh in NLO,

ãh
21 5

NLO
a f

211
1

3p S 33

2
2 f D ln

m̄h

m̄
1

153219f

2p~3322 f !

3 ln F11
a f

3p S 33

2
2 f D ln

mh

m̄
G ~34!

wherem̄h is Witten’s RG invariant mass:

m̄h5mhexpE
aF

ãh
dxdF~x!/bF~x!. ~35!

If desired, ln(m̄h /m̄) can be eliminated by substituting

ln
m̄h

m̄
5
LO

ln
mh

m̄
2

12

3122 f
lnF11

a f

3p S 31

2
2 f D ln

mh

m̄
G . ~36!

Therefore the asymptotic formula forãh asmh→` is
1-3
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ãh;3pY H S 33

2
2 f D ln

mh

m̄
1kf ln ln

mh

m̄
1O~1!J

kf5
3~153219f !

2~3322 f !
2

6~3322 f !

3122 f
. ~37!

To find the matrixZ(ãh,1) in NLO, we need a matching
condition for theMS amplitudeGm5 for h̄gmg5h to couple to
a light quarkl. We have calculated the leading power due
the two-loop diagram :

Gm55S aF

p D 2

gmg5S ln
mh

m̄
1

1

8D 1O~aF
3 ,mh

21!. ~38!

Consequently, there is a NLO termãh
2/8p2 in Z(ãh,1) for

h̄gmg5h to producel̄ gmg5l asmh→`.
Now we consider the special case where heavy quarks

decoupled from the weak neutral axial current. Let us ad
the shorthand notationqf for MS currents (q̄gmg5q) f in the
f-flavor theory, e.g. the neutral currentJm5

~Z! and the scale-
invariant singlet current (Sm5) f :

JZ5 1
2 ~ t2b1c2s1u2d!6 ~39!

Sf5Ef~a f !~u1d1s1••• ! f . ~40!

We begin by decoupling thet quark. Because of

~c2s1u2d!65~c2s1u2d!51O~1/mt! ~41!

we see that Eq.~27! is nontrivial only for

~ t2b!65Z6→5~u1d1s1c1b!51 1
5 ~u1d1s1c24b!5

1O~1/mt!. ~42!

Since (t2b)6 is scale invariant, we havegF50 in Eq. ~27!:

Z6→5~a6 ,mt /m̄ ! 5
NLO

Z6→5~ ã t,1!exp2E
a5

ã t
dx

g5~x!

b5~x!
. ~43!

The operator matching condition~38! corresponds to

t65
a6

2

p2S ln
mt

m̄
1

1

8D ~u1d1s1c1b!51O~a6
3 ,mt

21! ~44!

and so we conclude:

Z6→5~ ã t,1!52 1
5 1 ~8p2!21ã t

21O~ ã t
3!. ~45!

Equation~43! is to be expanded aboutã t;0 with a5 held
fixed. In that limit, the exponential tends to the constant f
tor E5(a5) of Eq. ~7!. This factor combines with the single
current in Eq.~42! to form the scale-invariant operatorS5, as
required by RGf 55 invariance. The full NLO result is then
obtained by writing
03190
re
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~ t2b!6 5
NLO

Z6→5~ ã t,1!expH 2E
0

ã t
dx

g5~x!

b5~x!J S5

1 1
5 ~u1d1s1c24b!5 ~46!

and expanding inã t , keeping all quadratic terms:

~ t2b!65H 2
1

5
2

6

23

ã t

p
S 11

6167

3312

ã t

p
D 1O~ ã t

3!J S5

1 1
5 ~u1d1s1c24b!51O~1/mt!. ~47!

Next we decouple theb quark. Here, it is natural to defin
five-flavor quantitiesãb5

andm̄b5
analogous to the six-flavo

running couplingã t and massm̄t for the top quark:

ln
mb5

m̄
5E

a5

ãb5dx
12d5~x!

b5~x!
,

ln
m̄b5

mb5

5E
a5

ãb5dx
d5~x!

b5~x!
. ~48!

Equations~20! and ~21! imply that ãb5
and m̄b5

are both

RGf 55 and RGf 56 invariant

D5ãb5
505D6ãb5

, D5m̄b5
505D6m̄b5

~49!

and hence physically significant in the original six-flav
theory. So we writeãb andm̄b for ãb5

andm̄b5
.

Consider decoupling theb quark from Eq.~47!. The NLO
matching condition~38! becomes

b55
a5

2

p2S ln
m̄b5

m̄
1

1

8D ~u1d1s1c!41O~a5
3 ,mb5

21! ~50!

so the nonsinglet current in Eq.~47! can be written

~u1d1s1c24b!55$12 ~ ãb
2 /2p2!%E4

21~ ãb!S4

1O~ ãb
3 ,mb5

21!. ~51!

For the singlet currentS5 in Eq. ~47!, we find

S55E5~ ãb!H 11
ãb

2

8p2J E4
21~ ãb!S41O~ ãb

3 ,mb5
21!

~52!

taking into account the definitions~7! and ~40!. Then we
expand Eqs.~51! and ~52! in ãb , keeping quadratic terms:

~ t2b!65
6

23p
~ãb2ã t!H 11

125663

82800p
ãb

1
6167

3312p
ã tJ S41O~ ã t,b

3 ,mt,b
21!. ~53!
1-4



e

v

lly

be

t

ity

hm

ca
tio
n

l

ey

ou-
e
en-

-

rch
n-

tek
ro-
lity

RAPID COMMUNICATIONS

HEAVY-QUARK AXIAL CHARGES TO NONLEADING ORDER PHYSICAL REVIEW D66, 031901~R! ~2002!
The same technique can be applied to decouple thc
quark fromS4 in Eq. ~53! and (c2s1u2d)4 @the result of
decouplingb from Eq. ~41!#. That yields the final results~4!
and ~5! given in the introduction.

Notice that our results depend on two key features:
~i! Like previous workers in this area, we decouple hea

quarks sequentially, i.e. one at a time.
~ii ! Our running couplingsã t , ãb and ãc , which corre-

spond to Witten’s prescription@12#, are all renormalization
group invariant.

The restriction to sequential decoupling is numerica
reasonable for thet quark, but dubious for theb and c

quarks, because it amounts to an assumption that ln(mc /m̄) is
negligible compared with ln(mb /m̄). This inhibits detailed
comparison of NLO results with data, which ought to
carried out with NLO accuracy@20#.

There is also a theoretical issue here: one would like
check that, in the limitmt5mb , the t and b contributions
cancel. However, that is outside the region of valid
ln(mt /m̄)@ln(mb /m̄) for sequential decoupling.

For these reasons, we have extended our analysis to
case of simultaneous decoupling, where the mass logarit
are allowed to grow large together: ln(mc /m̄);ln(mb /m̄)
;ln(mt /m̄)→large. This requires a considerable theoreti
development of matching conditions and the renormaliza
group, which we will present separately. It involves the co
struction of running couplingsa t , ab , ac with the following
properties:~i! They are renormalization group invariant;~ii !
they are defined formt>mb>mc , and can have a nontrivia
a

03190
y

o

the
s

l
n
-

dependence on more than one heavy-quark mass;~iii ! in the
special case of sequential decoupling, they agree withã t , ãb

and ãc to NLO; and~iv! for the case of equal masses, th
coincide, e.g.

a t5ab for mt5mb . ~54!

Then we find that the result for the simultaneous dec
pling of the t,b,c quarks from the neutral current is of th
same form~4! as the sequential answer, but with the sequ
tial running couplings in Eq.~5! replaced by our simulta-
neous couplingsa t , ab , andac :

P5
6

23p
~ab2a t!H 11

125663

82800p
ab1

6167

3312p
a t2

22

75p
acJ

2
6

27p
ac2

181

648p2
ac

21O~a t,b,c
3 !. ~55!

Notice the factorization of the terms depending ona t and
ab . Given Eq.~54!, the factorab2a t ensures that all con
tributions from b and t quarks cancel~as they should! for
mt5mb .
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