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Noncommutative oscillators and the commutative limit
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It is shown in first order perturbation theory that anharmonic oscillators in noncommutative space behave
smoothly in the commutative limit just as harmonic oscillators do. The noncommutativity provides a method
for converting a problem in degenerate perturbation theory to a nondegenerate problem.
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In the last few years theories in noncommutative spacdhe noncommuting coordinates can be expressed in terms of
[1-5] have been studied extensively. While the motivationcommuting coordinates and their momenta in the form
for this kind of space with noncommuting coordinates is
mainly theoretical, it is possible to look experimentally for ~ 1
departures from the usually assumed commutativity among X=X 5 0py,
the space coordinatd§—8]. So far no clear departure has
been found, but it is clear that any experiment can only pro- ~ 1
vide a bound on the amount of honcommutativity, and that y=y-+ ﬂﬁpx. (2
more precise experiments in the future can reveal a small
amount. Meanwhile, there are some theoretical issues WhiCF
have arisen in the course of these investigations. If one calls
the noncommutativity parameté; so that two noncommut-

e 1 1 e o~
ing spatial coordinates,y satisfy the relation Huyo= ﬁ(pi—i- py)+ Emwz(x2+y2)

he Hamiltonian for the unperturbed system is

[x,y]=i6,

1, L, 1, 1 2
=ﬁ(px+py)+§mw x—ﬁepy

one would expect ordinary commutative space to emerge in

the limit 6—0. In many field theoretical and quantum me- +
chanical problems, however, the passage from the noncom-
mutative space to its commutative limit hast appeared to

be smooth9-12]. The literature is replete with expressions
where 6 appears in the denominator. The simplest system is
the two-dimensional harmonic oscillator. As in commutative
space, this quantum mechanical problem is again exactly +y?)

solvable[13—16, and the spectrum is in fact smooth in the

commutative limit, but the literature is not very clear about Mw?6

the situation: there seems to be a lack of smoothness in the ~ 57 (XPy=YPo. (€)
generic casgl7,18. For a clarification of this limit, we will

first review the two-dimensional harmonic oscillator and|; is convenient to set (118+mA2w?/8k2)=1/2M and

then go over to a perturbation+y?)? to see if the smooth- 42— M2, One can introduce the ladder operators through
Py )
X )

1 ,\?
y+ﬁ9px) }

1 mbé2w?
2m ' g

1
(Pi+ Py +5 mo?(x?

ness survives. The anharmonic problem cannot be solveghe equations
iPx - MQ
Tval N\ va

exactly even in commutative space. But a perturbative treat-
ness of the9— 0 limit. It is interesting to note that the com-
oo IMQ B ipy
Y 2h MQ)’

mutative oscillator here involves a degenerate perturbation

problem, while the noncommutative one is hondegenerate. i

Let us write the two-dimensional anharmonic oscillator a— /MQ( " Py
Y N 24

ment shows that the quartic terms do not destroy the smooth- MO
2=\ g

potential in the form MQ
1 L o + 1 /MQ# +
FMOZ (X257 + a3+ )2, ) X=Nowa@tad PV g (@ad,
B h + B 1 /MQ# +
*Email address: muthu@theory.saha.ernet.in y= ZMQ(ay+ ay), py_i_ 2 (ay—ay).
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In terms of these operators the unperturbed Hamiltonian =

takes the form
Huo=%Q(ala+ala,+1)

MQZ20
2i

(aiay— a;r,ax). (5
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y—>ﬁw(nx+ ny+1). (12

ny.n
Let us now introduce a perturbation of the foenx?+ y?)2.
In terms of the ladder operators,

. | & f 1 M :
*“Nama' @ &)= 7V g (&3

In view of the Schwinger representation for the angular mo-

mentum,
1
J,= E(a;ray+ alay),

J zi(aTa —a'a,)
2 2i \Ix%y yIx/o

J =£(a*a —ala,) (6)
3 2 L IxEx yy/s

the partala,—ala, in Hyo is seen to be @,. Under the

unitary transformation

1 (1 —i ) ay
= — ) s 7
2li —1/\ay @
in which this piece takes the diagonal fori2, the Hamil-
tonian becomes

ay

ay

Huo=%0(a,'a, +a) a)+1)
MQZ29
)

(ay'a;—ay'a)). (8)

If Ny=a,'a, and Ny=a,'a, are the transformed number

operators of the harmonic oscillators in tkeandy direc-
tions, respectively, one can write

A MQ2%6 . .
HHoth(NX+Ny+1)—T(NX—Ny). 9)
The eigenvalues of the unperturbed Hamiltonian are there-
fore
20
Ep, o, = ANty + 1) = ——(n,=ny), (10

wheren, ,n, are non-negative integers. In termsmandw,
the eigenvalues can be written as

5\ 112
EC  =mw?k? ! +0— (ny+n,+1)
Ny Ny meZhZ 4h4 X y
mw?6
- T(nx_ ny)- (11)

A h T 1 /MQH2 T
But under the unitary transformatidid),
L1 [ # IMQ 62
*“2\Nma~ V&
i [& MQ?\
2\ Vmat VT &

=pB(a,+a,") —iy(a;—a;"),

a,’

(14)

where B=3(VAIMQ—MQ6/4k) and y=3(JVAIMQ
+MQ6¢%41). One also has

y=iB(a,—a")—y(a,+a;"). (15)
Hence,
(x*+y?)=4p%, a, +4y%a) a) +2( B2+ »?)
—4iByasa,+4iBya;'a;. (16)

This is a nondiagonal operator in the basis in which the

unperturbed eigenstates of the Hamiltonian are diagonal, but
its effect on the eigenvalues can be studied in first order
perturbation theory. In view of the nondegeneracy of the un-

perturbed eigenvalues, it is sufficient to calculate the expec-
tation values of X*+y?)? in the stategn,,n,). Thus,

a(ny, Ny (x2+y?)?n, ,ny) = [ 168%n,(n,+1)
+16y*ny(ny+1)+3282y2(ny
+n,)+6482y?n,n, +4(p*

(17)

The expression on the right-hand side gives the first order
correction to the eigenvalues caused by the anharmonicity. In
the 6—0 limit, B,y behave smoothly and this correction
goes over smoothly to a finite value:

+yh)+248%%].

A 2
= ,nyﬂa(ﬁ> (nZ+n2+4n,ny+3n,+3n,+2).
(18)

These eigenvalues are generically nondegenerate. In the limithe smooth transition should make it obvious that the same
60— 0 they smoothly reduce to the standard degenerate exorrection must be obtained in the case of the commutative

pression

anharmonic oscillator. However, the eigenvalues of the
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unperturbed commutative oscillator are degenerate, so it may 1633[(nx+ n,+ 1)%+(n,+ 1)(ny+1)+n,n,]

be more convincing if the agreement is shown explicitly after

doing a degenerate perturbation theory calculation. _ (_
In the commutative cas#=0, both 8,y reduce to me

$\VhImw= B,. The operator of interest is

2
(nZ+nZ+4n,n,+3n,+3ny+2).  (20)

These diagonal values are also the eigenvalues of the matrix,
so that the correction to the degenerate unperturbed energy
eigenvalue is a(h/mw)?(nZ+nJ+4an,n,+3n,+3n,+2),
(x2+y?) which agrees with th&—0 limit (18) of the noncommuta-
—AR2(a' Al 1 altal o tort tive calculation. One could also carry out the calculation in
=4pBy(ay actay'ay+1-iaa tia,'ay’), the untransformed occupation number basis, where the ma-
(19 trix in the space of the degenerate eigenvectors is not diag-
onal to begin with, but on diagonalization, the same eigen-
values are obtained.

Thus, not only the exactly solvable harmonic oscillator
where the unitarily transformed ladder operators are used fasut even the first order perturbation theory result for the ei-
ease of comparison with the previous calculation. The matriyyenvalues of the two-dimensional noncommutative anhar-
element of the square of this operator has to be calculateghonic oscillator behave smoothly in the commutative limit.
between degenerate eigenstates of the unperturbed Hamit-is conceivable that, as is widely believed, all problems
tonian. Any choice of basis for the degenerate states is pernay not show this smoothness. But there clearly is a class of
missible: it is convenient to use the eigenstates ofHamiltonians, not just an isolated Hamiltonian, whose eigen-
a;'ay,a;'a; instead of the untransformed number operatorsvalues have a smooth dependence.

Thus, states with different values of ,n, butthe same val- A by-product of this demonstration is the emergence of a
ues of n+n, are to be considered. Now{+ yz)zlnx,ny> method of hangilmg the degenerate perturbation ﬁheory
; _ - through conversion to a nondegenerate problem. This hap-
contains the states |n,,ny),|n,—2n,—2),[n+2n, _ , .
+2),|n,—1n,—1),|n,+1n,+1). Out of these, only pens through the introduction of the parameewhich can
x A y . be regarded as a mathematical trick from the point of view of
Iny.ny) has the original value af,+n,, while all the other

states have different values. Thus, although the operator @pmmutanve theory. The calculation may be done for non-

. . . . . zero 0 and then the limity—0 taken.

interest is not completely diagonal in the energy basis, it is

diagonal in the subspace of states with fixgg-n,. The We would like to thank Ashok Chatterjee for his questions
diagonal value is and suggestions about ti#e-0 limit.
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