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Noncommutative oscillators and the commutative limit
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It is shown in first order perturbation theory that anharmonic oscillators in noncommutative space behave
smoothly in the commutative limit just as harmonic oscillators do. The noncommutativity provides a method
for converting a problem in degenerate perturbation theory to a nondegenerate problem.
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In the last few years theories in noncommutative sp
@1–5# have been studied extensively. While the motivati
for this kind of space with noncommuting coordinates
mainly theoretical, it is possible to look experimentally f
departures from the usually assumed commutativity am
the space coordinates@6–8#. So far no clear departure ha
been found, but it is clear that any experiment can only p
vide a bound on the amount of noncommutativity, and t
more precise experiments in the future can reveal a sm
amount. Meanwhile, there are some theoretical issues w
have arisen in the course of these investigations. If one c
the noncommutativity parameteru, so that two noncommut
ing spatial coordinatesx̂,ŷ satisfy the relation

@ x̂,ŷ#5 iu,

one would expect ordinary commutative space to emerg
the limit u→0. In many field theoretical and quantum m
chanical problems, however, the passage from the nonc
mutative space to its commutative limit hasnot appeared to
be smooth@9–12#. The literature is replete with expression
whereu appears in the denominator. The simplest system
the two-dimensional harmonic oscillator. As in commutati
space, this quantum mechanical problem is again exa
solvable@13–16#, and the spectrum is in fact smooth in th
commutative limit, but the literature is not very clear abo
the situation: there seems to be a lack of smoothness in
generic case@17,18#. For a clarification of this limit, we will
first review the two-dimensional harmonic oscillator a
then go over to a perturbation (x̂21 ŷ2)2 to see if the smooth-
ness survives. The anharmonic problem cannot be so
exactly even in commutative space. But a perturbative tr
ment shows that the quartic terms do not destroy the smo
ness of theu→0 limit. It is interesting to note that the com
mutative oscillator here involves a degenerate perturba
problem, while the noncommutative one is nondegenera

Let us write the two-dimensional anharmonic oscilla
potential in the form

1

2
mv2~ x̂21 ŷ2!1a~ x̂21 ŷ2!2. ~1!
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The noncommuting coordinates can be expressed in term
commuting coordinates and their momenta in the form

x̂5x2
1

2\
upy ,

ŷ5y1
1

2\
upx . ~2!

The Hamiltonian for the unperturbed system is

HHO5
1

2m
~px

21py
2!1

1

2
mv2~ x̂21 ŷ2!

5
1

2m
~px

21py
2!1

1

2
mv2F S x2

1

2\
upyD 2

1S y1
1

2\
upx

2D 2G
5S 1

2m
1

mu2v2

8\2 D ~px
21py

2!1
1

2
mv2~x2

1y2!

2
mv2u

2\
~xpy2ypx!. ~3!

It is convenient to set (1/2m1mu2v2/8\2)[1/2M and
mv2[MV2. One can introduce the ladder operators throu
the equations

ax5AMV

2\ S x1
ipx

MV D , ax
†5AMV

2\ S x2
ipx

MV D ,

ay5AMV

2\ S y1
ipy

MV D , ay
†5AMV

2\ S y2
ipy

MV D ,

x5A \

2MV
~ax1ax

†!, px5
1

i
AMV\

2
~ax2ax

†!,

y5A \

2MV
~ay1ay

†!, py5
1

i
AMV\

2
~ay2ay

†!.

~4!
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In terms of these operators the unperturbed Hamilton
takes the form

HHO5\V~ax
†ax1ay

†ay11!

2
MV2u

2i
~ax

†ay2ay
†ax!. ~5!

In view of the Schwinger representation for the angular m
mentum,

J15
1

2
~ax

†ay1ay
†ax!,

J25
1

2i
~ax

†ay2ay
†ax!,

J35
1

2
~ax

†ax2ay
†ay!, ~6!

the partax
†ay2ay

†ax in HHO is seen to be 2iJ2. Under the
unitary transformation

S ax

ay
D 5

1

A2
S 1 2 i

i 21D S ax8

ay8
D , ~7!

in which this piece takes the diagonal form 2iJ38 , the Hamil-
tonian becomes

HHO5\V~ax8
†ax81ay8

†ay811!

2
MV2u

2
~ax8

†ax82ay8
†ay8!. ~8!

If N̂x5ax8
†ax8 and N̂y5ay8

†ay8 are the transformed numbe
operators of the harmonic oscillators in thex and y direc-
tions, respectively, one can write

HHO5\V~N̂x1N̂y11!2
MV2u

2
~N̂x2N̂y!. ~9!

The eigenvalues of the unperturbed Hamiltonian are th
fore

Enx ,ny

0 5\V~nx1ny11!2
MV2u

2
~nx2ny!, ~10!

wherenx ,ny are non-negative integers. In terms ofm andv,
the eigenvalues can be written as

Enx ,ny

0 5mv2\2S 1

m2v2\2
1

u2

4\4D 1/2

~nx1ny11!

2
mv2u

2
~nx2ny!. ~11!

These eigenvalues are generically nondegenerate. In the
u→0 they smoothly reduce to the standard degenerate
pression
02770
n

-

e-

it
x-

Enx ,ny

0 →\v~nx1ny11!. ~12!

Let us now introduce a perturbation of the forma( x̂21 ŷ2)2.
In terms of the ladder operators,

x̂5A \

2MV
~ax1ax

†!2
1

i
AMVu2

8\
~ay2ay

†!,

ŷ5A \

2MV
~ay1ay

†!1
1

i
AMVu2

8\
~ax2ax

†!.

~13!

But under the unitary transformation~7!,

x̂5
1

2 SA \

MV
2AMVu2

4\ D ax8
†

1
i

2 SA \

MV
1AMVu2

4\ D ay8
†,

5b~ax81ax8
†!2 ig~ay82ay8

†!, ~14!

where b[ 1
2 (A\/MV2AMVu2/4\) and g[ 1

2 (A\/MV
1AMVu24\). One also has

ŷ5 ib~ax82ax8
†!2g~ay81ay8

†!. ~15!

Hence,

~ x̂21 ŷ2!54b2ax8
†ax814g2ay8

†ay812~b21g2!

24ibgax8ay814ibgax8
†ay8

†. ~16!

This is a nondiagonal operator in the basis in which
unperturbed eigenstates of the Hamiltonian are diagonal,
its effect on the eigenvalues can be studied in first or
perturbation theory. In view of the nondegeneracy of the
perturbed eigenvalues, it is sufficient to calculate the exp
tation values of (x̂21 ŷ2)2 in the statesunx ,ny&. Thus,

a^nx ,nyu~ x̂21 ŷ2!2unx ,ny&5a@16b4nx~nx11!

116g4ny~ny11!132b2g2~nx

1ny!164b2g2nxny14~b4

1g4!124b2g2#. ~17!

The expression on the right-hand side gives the first or
correction to the eigenvalues caused by the anharmonicit
the u→0 limit, b,g behave smoothly and this correctio
goes over smoothly to a finite value:

Enx ,ny

1 →aS \

mv D 2

~nx
21ny

214nxny13nx13ny12!.

~18!

The smooth transition should make it obvious that the sa
correction must be obtained in the case of the commuta
anharmonic oscillator. However, the eigenvalues of
1-2
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unperturbed commutative oscillator are degenerate, so it
be more convincing if the agreement is shown explicitly af
doing a degenerate perturbation theory calculation.

In the commutative caseu50, both b,g reduce to
1
2 A\/mv[b0. The operator of interest is

~x21y2!

54b0
2~ax8

†ax81ay8
†ay8112 iax8ay81 iax8

†ay8
†!,

~19!

where the unitarily transformed ladder operators are used
ease of comparison with the previous calculation. The ma
element of the square of this operator has to be calcul
between degenerate eigenstates of the unperturbed H
tonian. Any choice of basis for the degenerate states is
missible: it is convenient to use the eigenstates
ax8

†ax8 ,ay8
†ay8 instead of the untransformed number operato

Thus, states with different values ofnx ,ny but the same val-
ues of nx1ny are to be considered. Now (x21y2)2unx ,ny&
contains the states unx ,ny&,unx22,ny22&,unx12,ny
12&,unx21,ny21&,unx11,ny11&. Out of these, only
unx ,ny& has the original value ofnx1ny , while all the other
states have different values. Thus, although the operato
interest is not completely diagonal in the energy basis, i
diagonal in the subspace of states with fixednx1ny . The
diagonal value is
ys

h-

ja

gh
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16b0
4@~nx1ny11!21~nx11!~ny11!1nxny#

5S \

mv D 2

~nx
21ny

214nxny13nx13ny12!. ~20!

These diagonal values are also the eigenvalues of the ma
so that the correction to the degenerate unperturbed en
eigenvalue isa(\/mv)2(nx

21ny
214nxny13nx13ny12),

which agrees with theu→0 limit ~18! of the noncommuta-
tive calculation. One could also carry out the calculation
the untransformed occupation number basis, where the
trix in the space of the degenerate eigenvectors is not d
onal to begin with, but on diagonalization, the same eig
values are obtained.

Thus, not only the exactly solvable harmonic oscillat
but even the first order perturbation theory result for the
genvalues of the two-dimensional noncommutative anh
monic oscillator behave smoothly in the commutative lim
It is conceivable that, as is widely believed, all problem
may not show this smoothness. But there clearly is a clas
Hamiltonians, not just an isolated Hamiltonian, whose eig
values have a smoothu dependence.

A by-product of this demonstration is the emergence o
method of handling the degenerate perturbation the
through conversion to a nondegenerate problem. This h
pens through the introduction of the parameteru, which can
be regarded as a mathematical trick from the point of view
commutative theory. The calculation may be done for no
zerou and then the limitu→0 taken.

We would like to thank Ashok Chatterjee for his questio
and suggestions about theu→0 limit.
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