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Quantum field theory of three flavor neutrino mixing and oscillations with CP violation
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We study in detail the quantum field theory of mixing among three generations of Dirac fer(miurisi-
nos. We construct the Hilbert space for the flavor fields and determine the generators of the mixing transfor-
mations. By use of these generators, we recover all the known parametrizations of the three flavor mixing
matrix and we find a number of new ones. The algebra of the currents associated with the mixing transforma-
tions is shown to be a deformedi(3) algebra, whelC P violating phases are present. We then derive the exact
oscillation formulas, exhibiting new features with respect to the usual dgbBsand T violation are also
discussed.
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I. INTRODUCTION oscillation formulas, which account fa€P violation and

. reduce to the corresponding quantum-mechanical ones in the
In recent years, there has been much progress in the UB3 |ativistic limit

derstanding of flavor mixing in quantum field thediQFT) The paper is organized as follows. In Sec. Il we construct
[1-17]. The original discovery of the unitary inequivalence yhe Wilpert space for three flavor mixed fermions. In Sec. Il
of the mass and the flavor representations in QEJl has  \ye stydy the various parametrization of the unitary 3
prompted further investigations on fermion mixif@-8] as  mixing matrix obtained by use of the algebraic generators. In
well as on boson mixing8—13). It has emerged that the rich gec. |v we study the currents and charges for three flavor
nonperturbative vacuum structure associated with field miXmixing, which are then used in Sec. V to derive the exact
ing leads to relevant modification of the flavor oscillation neutrino oscillation formulas. Finally in Sec. VGP and T
formulas, exhibiting new features with respect to the usualiolations in QFT neutrino oscillations are discussed. Section
quantum-mechanical oneld8]. Some topologically non- VIl is devoted to conclusions. In the Appendixes we give
trivial features, such as the occurrence of a geoméseery-  some useful formulas and a discussion of the arbitrary mass
Anandan phase in field mixing has been also pointed outparametrization in the expansion of flavor fields as recently

[19]. reported in[7,8].
In this paper we study in detail the case of three flavor
fermion (neutring mixing. This is not a simple extension of Il. THREE-FLAVOR FERMION MIXING

the previous resultgl—3] since the existence of @P vio-

lating phase in the parametrization of the three flavor mixingd
matrix introduces novel features which are absent in the two" <
flavor case. We determine the generators of the mixing trans-
formations and, by use of them, we recover the known pa- LX) =W (X)(id— M)W (x), (1)
rametrizations of the three flavor mixing matrix and find a

number of new ones. We construct the flavor Hilbert space,

for which the ground statéflavor vacuum turns out to be a where\lfsz(ve,v#,vT) andM=M" is the mixed mass ma-
generalized coherent state. We also study the algebraic strugix.

ture of currents and charges associated with the mixing trans- Among the various possible parametrizations of the mix-
formations and we find that, in the presenceCd? violation,  ing matrix for three fields, we choose to work with the fol-
it is that of a deformedu(3). Theconstruction of the flavor lowing one since it is the familiar parametrization of the
Hilbert space is an essential step in the derivation of exadCabibbo-Kobayashi-Maskaw@&KM) matrix [20,21]:

We start by considering the following Lagrangian density
scribing three Dirac fields with a mixed mass term:

C1€C13 S12C13 SEEN

W (X)=UV (X)=| —S12C23~ C15523518'°  C1Co3— S12525512€'°  SCaz | Wi(X), (2
S12523— C12C23515€' 0 —C138p3— S1C235138'0  C2Caz
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with ¢;; = cos}; and sIl sing;, 6;; being the mixing angle ot . . ik

betweeny; ,v; and W = (vy,v;,v3). Vi(X):Z fd klug i(Dagitoly (DA% 1€, (9)
Using Eq.(2) we diagonalize the quadratic form of Eq.

(1), which then reduces to the Lagrangian for three Diragyith i=1,2,3, alsoup ;(t) = e okt Ui, vkt = el okt Vkis

fields, with massesn;, my, andmg: and ;= Vk%+m?. The vacuum for the mass eigenstates is
_ denoted by0),: ark,i|0)m=,8rk,i|0)m=0. The anticommuta-
LX) =V y1(x)(14=Mg) ¥ n(X), (3) tion relations are the usual ones; the wave function orthonor-
mality and completeness relations are those of Rif.
whereMy=diag(my,m,,mz). The main result of Ref1] is the unitary inequivalencgn
Following Ref.[1] we construct the generator for the mix- the infinite volume limi} of the vacua for the flavor fields
ing transformation(2) and definé and for the fields with definite masses. There such an in-
equivalence was proved for the case of two generations; sub-
vAX)=G, H () rA(X)Gy(t), (4)  sequently, in Ref[5], a rigorous general proof of such in-

equivalence for any number of generations has been given
(see also Ref.13]). Thus we do not need to repeat here such

where (1) =(e,1),(1.2),(.3), and a proof and we define the thHmvor vacuumas

Go(t) =Gox(1)G13(t) Gyat), ©) 10(1))=G,(1)|0) . (10)
where The form of this state is considerably more complicated
then the one for two generations. Whés 0, the generator
Grat)=exd 1. 11)], G, is an element of th&U(3) group(see Sec. IYand the

flavor vacuum is classified as &1J(3) generalized coherent
state ‘ala Perelomov[23]. A nonzeroCP violating phase

Loty= | d3x[o! _ ot , 6 introduces an interesting modification of the algebra associ-
1alt) J X[v1(X)v2(X) = va(X)va(x)] © ated with the mixing transformations E@): we discuss this
in Sec. IV.

Gos(t)=exy 03 o5(1) ], By use ofGy(t), the flavor fields can be expanded as

S(X)= d3k[ul (el () +0" ()BT (D)]e*X
Los(t)= f B3 w30 va(X) = vE0) va(x)], o " 2 f (O ekol) T (08 k()]

(11)

Ga(t)=exf 613k 15(8,1)], with (o,i)=(e,1),(x,2),(r, 3) The flavor annihilation op-

erators are defined aSak A=G,y (t)akI o(t) and
B S()=Gy (1) B iGy(t). They clearly act as annihila-
L1 5,t)=f d3x[ vI(x) vy(x)e” 10— vg(x) vi(x)e?]. tors for the flavor vacuum Ed10). For further reference, it
) is useful to list explicitly the flavor annihilation or creation
operators(see also Ref[1]). In the reference framek
=(0,0Jk|) the spins decouple and their form is particularly

It is evident from the above form of the generators that th imple:

phases is unavoidable for three field mixing, while it can be
Ln;soerporated in the definition of the fields in the two-flavor af (1) =C1L1aaf 1+ Slzcla[Uii’ﬁ(t)aL,2+ ferIz(t)ﬂrjk,z]
The free fieldsy; (i=1,2,3) can be quantized in the usual +e7 195, JUKs (D aj 5+ €' Vi) B 4, (12
way [22] (we uset=Xg): _
g (1) =(C1oCo5— €'%5158,5813) vy

_ io
et us consider, for example, the generation of the first row of the (S12C23+ €°C15573813)
- k k
mixing matrlxu We have(see also Appendlx Bave/aezg 0; and % [Ulz(t)ark,l_ ervlz(t)Br—Tk,l
Ivel3015= G153 G153 v1,L13]G13G1,= G153 Gg'e v3G Gy, ) ) )
thus +553C1d U3 (1) ay 5 €'Vq(1) BT 3], (13

Preldbhz= — ve=> ve="1(01,)COSO 5+ g( H15)SiN Oi3;

r _ r i 8
. - y t)=CyC — (€155t €'95,,C
with the initial conditions[from Eq. (4)]: f(615)=wve|y, o and i, (1) = Corati 3™ (CuSoa 12625513)
9(012) =vel 30145 —o=€"°vs. We also have X [U'és(t)aL,z— erV§3(t),Br_Tk'2

PH(012)]9035= — T (01)=T(61,) = Acosd; ,+ Bsin 6 i
(01219613 (019=1(612) 12 NG, +(Sy5805— 9'5012C23313)

with  the initial  conditions A=v|,—o=v; and B K ; ok it

=6’f(6’12)/8012|9:0= Vo, and 0:(012,013,023). X[Ul3(t)ak,1_ € V13(t)ﬁ—k,l]’ (14)
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TABLE |. The values of masses and mixing angles used for

plots.
my my ms 017 013 03 )
1 200 3000 wl4 wl4 wl4 wl4

Bl e()=C1L138" 1
+512013[U|i§(t)ﬁr—k,2_ 5rVIIz(t)arkT2]
+e'%s,{Uk3 (OB 3~ G'Vis(t)aLTs]. (15

BLy (1) =(C1Lo5— e 19515555139 B k.2
— (S1Co3+ €' %C158,5513)

X[US() B kit € Vi 2(t)01

+523013[U23(t)ﬁfk,3_5rvlé3 aks] (16)
B (1) =C2C13B" y 5~ (C15Sp3+ € '951C5519)

><[U§3(t),8[k2+e’V'§3(t)arkT2

+ (515803~ € °CC3512)

XU By 1+ €' Vi af]. (17)

These operators satisfy canonida@ntjcommutation rela-
tions at equal times. The main difference with respect to their
“naive” quantum-mechanical counterparts is in the anoma-

lous terms proportional to the;; factors. In fact,Uik]- andVikj
are Bogoliubov coefficients defined as:

Vk |Vk|e'(“’kj+“’kl)t U:(j(t):|U:(j|ei(“’k’j_“’k'i)t
(18)
[ @it M\ Y wy g my) V2
Uijl=
J Zwk,i 2wk,j
% K =cod&l) (19
(it m)(wy;+m;) !
N e T
0.3 ’M\lk \ -------------- \‘{\_'A/?kLs:o
"’/’ )/ .A/I2( AN
0.2
0.1 N:;k
____l_ _____ /;:f"\
Ao N,
= 1__ 10 100 1000 10;)00

FIG. 1. Plot of the condensation densiti&% in function of k|
for the values of parameters as in Table I.
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.k.|: wk’i+mi 1/2 wk’j-l—mj 12
L 2wk’i Zwk,j
( Mo M _siwe) e
(oj+m)  (wy;+m) g
U2+ Vi P=1 (21)
wherei,j=1,2,3 andj>i. The following identities hold:
VE(DVES (1) + US55 (DU () = UL),

VE(D UK (1) — UK () VEL() = — VEL(t)

U1 USS(1) — Vi3 (D) V() = Uk4(1),
US4(t) V(1) + U3 (D V(1) = Vi4(1)
VA3 (D VEL(D) + UK () UAy() = Uk4(D),

VAL U1 — UK () VEL() = — Vi(D), (22)

Eg= €+ &5, & =arctard|V|/|US]). (23

As already observed in Refl] we remark that, in contrast
with the case of two-flavor mixing, the condensation densi-
ties are now different for particles of different masses:

Ni=(O(INET0(t)) = (OB NfT|O(t))¢

= 7,054 Vo 2+ 574 V42, (24)
NE=(O(D|NEI|0(t)) = (O(D)NfT|O(t))¢
=| = S12Coat €°C18,5814 % Vi | 2+ S334 V542,
(25

NE= (O(D|NE!|0(t)) = (O(1) INf|O(1) )¢
= | — 15803+ €951,C03814 ?| V5 2+ |13

+€'%C1,C3519%| V34 2. (26)
We plot in Fig. 1 the condensation densities for sample
values of parameters as given in Tabfe .

Ill. THE PARAMETRIZATIONS OF THE THREE-FLAVOR
MIXING MATRIX

In Sec. Il we have studied the generator of the mixing
matrix I/ of Eq. (2). However, this matrix is only one of the
various forms in which a 3 unitary matrix can be param-
eterized. Indeed, the generator Ef) can be used for gen-
erating such alternative parametrizations. To see this, let us
first define in a more general way the generat@ysinclud-
ing phases for all of them:

Here and in the following plots, we use the safeaergy units
for the values of masses and momentum.
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GaAt)=exd 0151 612,1) ],
L12(512,t)=f ng[VI(X)Vz(X)e_le

— v (X)vy(x)e' %12,

Gos(t)=exg O3l 23( 623,1) 1,

L23(523,t)=j dx[v3(X) va(x)e 02

— vl(X) vo(x) €' %23,

G1=G23G136G1»

C1C13
Up=| —S12€23" 12— S53815C1 €' (915~ 229
— 5130120038 P13+ S5 5€' (9121 929

Go=G23G1,G13

C12€C13
U,=| — S12C13C23€' 12— Spa5 6! (2137 929
—514Co38' 13+ 51,5,5C €' (P12 929

G3=G13G23G1

C12C13+ S135051.€' (712 9137 929
U= —S1,C09€' %12

PHYSICAL REVIEW D66, 025033 (2002

Gag(t)=exd 013 13(d13,1) ],

Lis( S1.0) = f X[ V() va(x) €01

(27)
— i) vi(x)e' ). (29
Six different matrices can be obtained by permuting the or-
der of theG;; (useful relations are listed in Appendix) An
(28)  Eq.(5). We obtain
S1Cie 012 SRR
C1olog—SpaS1aS1.8 (P2 213701 sp0q007 10 (30)

i(815- 6 i
— C3S135126' (137919 — 5,50 0123 C23C13

S S1aC1e 7' 12
C12C23 — $15C9357 €' (612~ 619 ¢ SyiC1 ! 53 (31)
—C125p5€' %8 CpCygt $155135pae! (Y121 %237 019

~is i(8yg— —is
S12C198 1 912— 5138,C16' (9237919 50,0711

C12C23 Sy (32

i(8,at 6 is is i(819— 6
C135238156' (9237 919 — 51,0161 13— C135,3C1.€' 23— 51,85/ (7137 212 Cy3C13

G4=G13G1,Go3

C12C13 S1C13Coa8 712 5155, (%237 919 55,0140 (9127 920 45,0 00013

is
Up=| —S1£°12 C12C23

SpaC1e 0% (33

is is i(815- 6 (8ot Spy
—C155158' %13 — 135730 928 510551 (7137910 CpCyg—Sp58p58y58 (9127 %237 019

Gs5=G1,G13G23

—is (856 “is Ci(8ypt S
C12C13 S12C2e€ 1912 5150185y (213792 540, Cpge 1013+ 58y (9127929
Us=| —S12€1'%12  C1sCos+ Sy8pa813e' (P12 2137 029 SpaC128 23— S1 o8 €' (9127 213 (34)
— 558213 — 135,30 023

Ge=G1,G23G13

C12C13— S15S518 (P12 9237 219
Us=| — C158p3815€' (9137929 — 5 .¢ 461 912
— CpaS136' 013

C23C13

S12Cog€ 1912 €810 134 515850 50 (9127 929
Cifos  CiSpCia "2— S8y (12 %9 | (35)
— 5y 723 C23C13
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The above matrices are generated for a particular set of

initial conditions, namely for those of E¢4). The freedom

in the choice of the initial conditions reflects the possibility
of obtaining other unitary matrices from the above ones by
permuting rows and columns and by multiplying row or col-

umns for a phase factor.

We thus can easily recover all the existing parametriza-

tions of the CKM matrix{21,24-29: the Maiani parametri-
zation [24,27] is obtained fromi/; by setting 6,,— 6, 613
— B, 03—y, 615—0, 813—0, 5,3— — &; the Chau-Keung
parametrization24,28 is recovered froni{; by settingd;,
—0 and 8,3—0; the Kobayashi-Maskaw®21,24] is recov-
ered fromiUs by setting 61— 05, 013— 01, 05— 03, 51
— =0, 513—>O and523—>0, ei—>%7T_ Gi s withi= 1,2,3, and
multiply the last column for {1); the Anselm parametriza-
tion [24,29 is obtained fromi4; by setting 6,,< 6,3, then
817—0, 813—0, O—m+ 601, O13—7— 613, O3—am

PHYSICAL REVIEW D 66, 025033 (2002

1 — _
3#1,125[7/1?’””2“‘ voyHre],
| — .
J/nﬁ,zz - E[Vﬂ’#’/z_ vy ]
1 — _
J‘n‘n,szz[Vﬂ’MVl— vy s,
H 1- .
me4:§[ vy vt vayHvg]
I P — o
Jms=— 5[”17’””3_ v3y*vy],

1 _
‘J;ntn,(s:i[ vy vt vy,

[ _
+ 6,3, exchanging the second and third column and multi- N E[vzy’wg,— vy s,

plying the last row for (1).

From the above analysis it is clear that a number of new
parametrizations of the mixing matrix can be generated and
that a clear physical meaning can be attached to each of

them, by considering the order in which the genera®ys

1 — _ _
J%,SZ_\/—[VW“’&"‘V27’“V2_2V37”V3]- (39

2.3
The related charge®, ;(t)=fd%x J9, ;(x) satisfy thesu(3)

act and the initial conditions used for getting that partiCUIaralgebra[Q (0,00 ())]=if Q. (1). Note that only two
m, | 1m, ] m, .

matrix.

IV. CURRENTS AND CHARGES FOR THREE-FLAVOR
FERMION MIXING

of the above charges are time independent, nai@gly and
Qmg. We can thus define the combinations

In this section we study the currents associated with the

Lagrangians Eq43) and(1). To this end, let us consider the
transformations acting on the triplet of free fields with dif-

ferent masse¥ ,,, in the line of Ref[4].
L is invariant under globdl (1) phase transformations of

the typeW/ =e'“¥ : as a result, we have the conservation

of the Noether chargeQ=/d3xI%(x) [with 1#(x)

=W (X) Y*¥ ()] which is indeed the total charge of the

system(i.e. the total lepton numbgr
Consider then th& U(3) global transformations acting on
P,

v (x)=e9Fiv (x), j=1.2,...,8, (36)

with «; real constantsF;= %)\j being the generators of
SU(3) and\; the Gell-Mann matrice§20].

The Lagrangian is not generally invariant under E2f)
and we obtain, by use of the equations of motion,

SLX)=ia; W y(X)[Fj Mgl ¥ () = — a3, 3% (X)
37

)=V () YFP(x), j=12,....8.

It is useful to list explicitly the eight currentsve suppress
spacetime dependence

QlE%QJFQm,sJr %Qm,& (39
1 1
Q2=3Q~Qms* ﬁQm,Sv (40)
QaE%Q— %Qm,& (41
QiZEr f d*k(afaf = B iBLc),  1=123.
(42)

These are nothing but the Noether charges associated with
the non-interacting fields,, v,, andvs: in the absence of
mixing, they are the flavor charges, separately conserved for
each generation.

As already observed in Sec. I, in the case wi@R is
conserved §=0), the mixing generator E@5) is an element
of the SU(3) group and can be expressed in terms of the
above charges as

Gyl(1)] 5= €202 1D gi201:0ms(Vel2010ma0) | (43)
Following Ref.[4] we can now perform th&U(3) transfor-
mations on the flavor tripletr'; and obtain another set of
currents for the flavor fields:
Wi (x) =€ We(x), 8,

=12, ... (44)

which leads to

SLX) =i oW (X[ F} MW (X) = — a;d,I¥(X),

025033-5
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I =W(x)y"F¥¢(x), j=12,....8. (45) 0 © 0 L 10 0
x,=|0 0 —ie7| Jg=——=[0 1 o0
Alternatively, the same currents can be obtained by applying 0 ie-i% 0 V3 00 -2

on theJf ;(x) the mixing generator Eq5): (51)
J;fj(x)=G;1(t)J’r¢,Y]-(x)G,,(t), j=1,2,...,8. (46) These are normalized as the Gell-Mann matrices\ ;i)
=20 - We define as usual the algebraic generators:
The related charge®; ;(t) = fd3x J?'J-(x) still close the
su(3) algebra. Due to the off-diagon@hixing) terms in the E=
mass matriXM, Qs 5(t) andQ; g(t) are time dependent. This ane
implies an exchange of charge between v, andv,, re-
sulting in the flavor oscillations.
In accordance with Eqg44)—(41), we define theflavor
chargesfor mixed fields as

j=1,....8. (52)

The above generators E®2) do not close theu(3) algebra
unless the conditions,+ 85+ 8;=0 is imposed|[cf. Eq.

(53], i.e. if one of the three phases is fixed in terms of the
remaining two. Such a request is clearly incompatible with

the parametrizations of the mixing matrices of Secs. Il and

1 1 : . _
- Il [cf., e.g., the discussion after E@5); we have the cor-
)= + 1)+ t), 4 .
Qe(=3Q+Qral) \/§Qf'8( ) “n respondence(5,, 55,57} +{ 812, 813,503 ]. For the matrix
(2), as already observed, it impligs=0.

The IEJ- satisfy a deformedu(3) algebra with deformed

1 1
Qﬂ(t)EgQ—Qf,3(t)+ﬁQf,8(t), (48 commutation relations given by
H)==Q—— t), 49 ) )
Q()=3Q \/§Qf,8() (49 s T L
[F21F7]:_§F5e iA(Fg+ Fg), [F5,F7]=§F262|AF3
with Q¢(t) +Q,(t) + Q,(t)=Q. These charges have a .
simple expression in terms of the flavor ladder operators: [F F4]— iA(I~:3—\e“§I~:8),
3 rt . ~ B .
Q1) E fd K[ ap! (D (1) = By (DB (D], [|~:l,l~:7]:_'§|~:4e—iA(F3+v‘§Fg)l [E.F 7]_ E 6?4

(50)
- - e =
with o=e, u, 7,because of the connection with the Noether[F1,Fs]=— EFaef'A(Ff“gFS),
chargles of EQ.(42) via the mixing generator:Q,(t)
=G, (1)Q;iGy(t). Notice also that the operatakQ(t) ~ = I~ iAFat 3F ~ =~ = Suf
—Q,(1)—Q; with (o) =(e,1),(1,2),(=3) describes how [Fl*Fﬁ]ZEFSe A(FaTEFe), [Fs,Fel=— 5F 1747
much the mixing violates th@lepton charge conservation
for a given generation. [ ,, 4]_ iA(E3—\s‘§E8),
Let us now come back to the algebra of the currents in-

cluding CP violating phases. To this end, we consider agen- T
eralization of the Gell-Mann matriceve use a tilde for [F2,F6]=—§F4e"A(F3”3F8), [F,F e]_ F e?iAFs
denoting the modified quantities including phases

(53
0 €% 0 0 —ie'2 0
X,=| e 0 0of, X,=|ie ' 0 0], whereA= 6,+ &5+ &7. The other commutators are the usual
su(3) ones. ForA =0, thesu(3) algebra is recovered.
0 0 0 0 0 0 It is useful to look at the deformed algebra in terms of the
raising and lowering operators, defined[a6]
1 0 0 0 e %
Xa=| 0 -1 0|, X,=| 0 0 O T.=F,*iF,, U.=Fg*iF;, V.=F,*iFs
0 o €% 0 0 (54)
We also define
0 0 —ie'% 0 © 0
. ~ = ~ 1 - ~ 1 .
Rs=| 0 0 0 | Xe={0 o0 e To=Fs, Us=5(3Fe—Fa), Vo=3(3Fe+Fa).
iel% 0 0 0 e 0 (55)

025033-6
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Then the only deformed commutators are the following ones: Qﬁ,g(t)5<7p|Qg(t)|7p>— {0]Q,(1)|0Y;
[T, .V ]1=-0_e"Y%, [T, ,0,]=V e 2%, = —{ BV, B (02— {a"y (1), B (0)}2,

[ =T P8, (56) (58)

(@]
<1

+ 1

where |0);=|0(0));. Overall charge conservation is obvi-
V. NEUTRINO OSCILLATIONS ously ensured at any timedy o(t) + Q ,(t) + Qy (t)=1.
The oscillation formulas are obtained by taking expectaYVe remark that the expectation value@f cannot be taken
tion values of the above charges on tifavon neutrino  ON vectors of the Fock space built d0)y,, as shown in
state. Consider for example an initial electron neutrino stat&efs. [2,3,11. Also we observe that0|Q,(t)|0);#0, in
defined ag Ve>EaLTe(0)|0>f (for a discussion on the correct con.trast Wlth the two-flavor ca$8,8]. We introduce the fol-
definition of flavor states see Ref,3,11). Working in the  10Wing notation:

Heisenberg picture, we obtain
Ak = Pkl Pk K _ @kiT @
ko(D=(v,|Qu(D)]¥,) — 0] Q(1)[0)f = 2 ij= 2

_ r rt 2 rt rt 2
= ek oV, i (OB o (1), e (0N} Then the oscillatiorin time) formulas for the flavor charges,
(57 on an initial electron neutrino state, follow as

QF (1) =1=SiM(26019)c08' 01 U *SiMP(Azt) + |V, Sin?(Q1) ] - Sin(2013)c0S 614 |U 14 *sin’(A )
+|Vig%SinP(Qat) ] = Sin(2013) Sin’ 61 |U 54 *SirP(A5) +| Va3 *sin’(Q34) ], (59)
QE,M(U:ZJCP[|U§2|25”‘(2AI§20_ VEoI2Sin(2Q,t) + (|U,? = [V ®) sin(2A5:) + (| Vi,|* — Vi) sin(2054)
— US4 Zsin(2AK1) + VK 2sin(2Q% 1) ]+ coS 6, 55IN6: 4 COSS SIN(2 61,)SIN(26,3)
+4 cog0,,5IN 0155iM? 05][ | UK 2sirP(AX 1) + [V 2sirP (0]
— O 0,55iN014 COSS SIN(201,) SIN(2 055) — 4 SirP 01,8iN O158IMF O3] | U4 2SInP(AK ) + | Vi 2SIl (Q541) ]
+ €0 0,35IN( 2 01,)[ (COS B3 SINP H,5SirF 0;3)SIN(2 615) + COSE €O 2 0;,)SiN B;55IN(26,3) ]
X[|USZSirP(AL) + Vs (Q54)], (60)
QF ()= —2J_[|U}2sin(2A%5) — Vi) 2sin(205,t) + (|U, 2~ [Vid 2 sin(2A%4) + (| Vi, — | Vig D) sin(2054)
—|UXg%sin(2AK ) +| VK4 2sin(2QK ) ] — coS 0,35in 64 cOSS SIN(201,)SIN(265)
—4 c0Z 0,551 0,108 05][ | U1 *Sinf (A ) +[ Vgl *sin(Qf4t) ]
+c0S 0,55iN 014 COSS SIN(2 01)SIN(26,3) + 4 Sirf 01,5IN 61,605 O] | UK 2sin?(AK )
+ |V 2SIl (Q5,t) ]+ cOS 0,58IN( 2 61,) [ (SinP O p5— SinP 01560 6,5)SIN(261,)
— 086 cog 201,)SiN 01:5IN( 2 6,5 [ |UK,2sinP(AK,1) + | V5, 2sir(Q5,0)], (61)

where we used the relatiori82) and (23). We also intro- 1 _ _ _
duced the Jarlskog factdr, defined ag30] Jcp= gSiNasin(2012)SIN(26,3)c0S0155IN(263).  (63)
JCPEIm(uiaujﬁui*ﬁu}‘a), (62 Evidently, J_, vanishes if 6;=0,7/2 and/or =0, all

CP-violating effects are proportional to it.
The above oscillation formulas are exact. The differences
where theu;; are the elements of mixing matri4 and i with respect to the usual formulas for neutrino oscillations
#j,a# B. In the parametrization Eq2), Jep is given by are in the energy dependence of the amplitudes and in the

025033-7



BLASONE, CAPOLUPO, AND VITIELLO PHYSICAL REVIEW D66, 025033 (2002

1 1
(D) PE.(t)
0.5 0.5
0.5 1 0.5 1
t/Ti t/Tie
. k
FIG. 2. Plot of the QFT oscillation formulad ¢ (t) as a func- ~ FIG. 3. Plot of the QM oscillation formulaP._¢(t) as a func-
tion of time fork=55 and parameters as in Table I. tion of time fork=55 and parameters as in Table I.

additional oscillating terms. Fotk|>\m;m,, we have values of the flavor charges on states belonging to the flavor
|Uik,-|2—>1 and|V:‘j|2—>0 and the traditionalPontecorvpos-  Hilbert space. We thus have, for tiP violation,
cillation formulas are approximately recovered. Indeed, for
sufficiently small time arguments, a correction to the Pon- —
tecorvo formula is present even in the relativistic limit. APT(1)= QL (1) + QL (1) (66)
In Appendix B the oscillation formulas for the flavor
charges on an initial electron anti-neutrino state are given.

We plot in Figs. 2 and 4 the QFT oscillation formulas =|{aL’U(t),aLTP(0)}|2+|{3[Tk’g(t),arkjrp(o)}|2

Qi (1) andQg ,(t) as a function of time, and in Figs. 3 and " o ) r " .
5 the corresponding Pontecorvo oscillation formulas —{a o (0, B (0} = {Bi o (1), Bi , (0)}].
P _o(t) andPg_ ,(t). The time scale is if;, units, where 67)

To= w/A'{Z is, for the values of parameters of Table I, the
largest oscillation period.
We have
VI. CP AND T VIOLATIONS IN NEUTRINO
OSCILLATIONS

po— =
In this section we consider the oscillation inducgg and ; Acp 0. po=emur (68)

T violation in the context of the present QFT framework. Let

us first briefly recall the situation in QM:there, theCP

asymmetry between the probabilities of two conjugate neuwhich follows from the fact thatX, Q. (t)=Q and
trino transitions, due t€ P T invariance and unitarity of the (v,1Qv,)=1 and<7p|Q|7p>= —1.

mixing matrix, is given a$25] We can calculate th€P asymmetry Eq(66) for a spe-
. cific case, namely for the transition.— v, . We obtain
Ag‘;(t)zPuﬁup(t)—Pjﬁjp(t), (64)

.
whereo,p=e,u,7. The T violating asymmetry can be ob- ¢ ()
tained in a similar way ag25]

Are(y=P, ., ()=P, _, (1)
T o P P o

=P, ., (D=P, _, (~1). (65) o5l

The relationshipd#(t)=Ar7(t) is a consequence @&PT
invariance.

The corresponding quantities in QFT have to be defined in
the framework of the previous section, i.e. as expectation

1
/T

3We use here a “caret” for QM quantities. For notational simplic-  FIG. 4. Plot of the QFT oscillation formula® E‘#(t) as a func-
ity, we also suppress momentum indices where unnecessary. tion of time fork=55 and parameters as in Table I.
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pe 0| A (t)

e—p

-0.5

1 -1
t/Tm
FIG. 7. Plot of the QMCP asymmetry&i’;(t), as a function of

. . K
FIG. 5. Plot of the QM oscillation formula? time for k=55 and parameters as in Table 1.

?e_,(t) as a func-
tion of time fork=55 and parameters as in Table I.

) _ sponding standard QM quantity is plotted for the same val-
AS(t)=43_[|ULI%sin(2A4 1) — | Vi, *sin(201) ues of parameters.

+(| U2 [ Vi?)sin(2A54
(JUL* = [Vid*)sin(2A54) VIl. CONCLUSIONS
K 12 |\/K 12)ai K 4y (11K [2i k
(V"= [Vid9)sin(20z4) — U3 *sin(2A14) In this paper we have discussed the mixing (Birac)
n |V§3|25in(2953t)], (69) fermionic fields in quantum field theory for the case of three
flavors withC P violation. We constructed the flavor Hilbert
and Ai;(t): _Az;;(t)_ As already observed for oscillation SPace and studied the currents and charges for mixed fields

formulas, high-frequency oscillating terms and I3090“ubov_(neutrino$. The algebraic structure associated with the mix-

- > - . . ing for the case of three generation turned out to be that of a
coefficients in the oscillation amplitudes appear in E&f) o .
as a QFT correction to the OM formula, deformed su(3) algebra, when &P violating phase is

The definition of the QFT analogue of tHBviolating ~ Present

) . : - We have then derived all the known parametrization of
quantity Eq.(65) is more delicate. Indeed, deﬂmmgT 35 the three flavor mixing matrix and a number of new ones. We

— e H . .
A%=Q (1)~ Qg(t) does not seem to work, since we ob- haye shown that these parametrizations actually reflect the

tain A% —A®"#0 in contrast toCPT conservation. group theoretical structure of the generator of the mixing
A more consistent definition of the time-reversal violation transformations.
in QFT is then By use of the flavor Hilbert space, we have calculated the

exact QFT oscillation formulas, a generalization of the usual
AFT"f(t)E L (O—=QR(—1), po=eu,r. (70 QM.Po_ntecorvo formulas. The comparison between the g)gact
oscillation formulas and the usual ones has been explicitly
With such definition, the equalith??(t)=Ar’(t) follows _exhibited for sample \_/alue_zs of the neutrino.masseg and mix-
— T cP ings. CP and T violation induced by neutrino oscillations
from Qf ,(—t)=—0F (). have also been discussed.

We plot in Fig. 6 theCP asymmetry Eq(69) for sample We remark that the corrections introduced by the present
values of the parameters as in Table I. In Fig. 7 the correformalism to the usual Pontecorvo formulas are in principle
experimentally testable. The fact that these corrections may
be quantitatively below the experimental accuracy reachable
at the present state of the art in the detection of the neutrino
oscillations does not justify neglecting them in the analysis
of the particle mixing and oscillation mechanism. The exact
oscillation formulas here derived are the result of a math-
ematically consistent analysis which cannot be ignored in a
correct treatment of the field mixing phenomenon. As we
have seen above, our formalism accounts for all the known
parametrizations of the mixing matrix and explains their ori-
gin and their reciprocal relations, thus unifying the phenom-
enological proposals scattered in the literature where such
parametrizations have been presented. Moreover, our formal-
ism clearly points to the truly nonperturbative character of

FIG. 6. Plot of the QFTCP asymmetryA?(t), as a function of  the particle mixing phenomenon. A lot of physics must be
time for k=55 and parameters as in Table I. there waiting to be discovered.

1
A% (t)

-1
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ACKNOWLEDGMENTS APPENDIX A: ANTI-NEUTRINO OSCILLATION
FORMULAS
The present research has been carried out in the
framework of the ESF network COSLAB and we acknowl- If we consider an initial electron anti-neutrino state de-
edge partial financial support also by INFN, INFM and fined as|ve>z,8LTe(0)|0>f, we obtain the anti-neutrino os-
EPSRC. cillation formulas as

Q8 J()=— Q% (1), (A1)

Qkﬂ(t) 23 _[|U,I%sin(2A%5t) — Vi 2sin(2Q5,t) + (|U% 2~ | Vig ) sin(2A54)
+ (V2= VEJ2)sin(2054) — UK, 2sin(2AK) + | VK 2sin(2Q% )]
— COS 0,55iN 014 COSS SIN(261,)SIN(20,3) + 4 COZ 01,5iN B;55iM O] [ | UK 4 2sirP(AK )
+ VK 2Sir?(Q5t) 1+ co 0,55in 614 COSS SIN(201,)SIN(20,3) — 4 Sirf 01,5iN 015iM 03]
X[|UK42siP(AKSt) + | Vg 2SinP(Q54t) ] — coS 0138IN( 2 0,,)[ (COS 0,5~ SirP 6,58iF 03) SIN(2 6,,)
+C085 €0 261,)SiN 0155102 0,9) [ |UK,| 2SIl (A K1) + | VK| 2sirf(QK1)], (A2)

QF (1)=—2J_[|USJ?sin(2%) — |V, 2sin 20 + (|UK2~ [VE4?)sin(2454)
+(|VEJ2= [VEJD)sin( 20k — UK 2sin(2A K1) + | VE 2sin( 20 1)]
+c0S 0135iN 6,4 COSS SIN(261,)SIN(2 055) — 4 COZ 61,5iN 015608 O3] | UK 2sirP(AK )
+ VX4 2sirP(Q5,t)]— co6,55in 614 COSS SIN(2 6015)SIN(2 65) + 4 SirP61,5iN 61500 053]
X[ |UKH2sirP(AK ) + | VE4 2SIl (Q5a) 1 — COS 0158IN( 2 01,)[ (SINP B3~ Sir? 61400 6,5)SIN(2 61)

—C0SSC0Y26015)SINO13SIN(2653) ][ |U75|“SI t)+|V7i,Si t)]. A3
§201)8IN 0158IN(26,9) [| U *sin?(A 1) + [V *sin?(Q1t) ] (A3)
|
APPENDIX B: USEFUL FORMULAS FOR THE G (1) v¥(X) Gal 1) = »2(X), (B4)
GENERATION OF THE MIXING MATRIX
In deriving thel/. mixing matrices of Secs. Il and IlI, we G153 (D P§(X)Ggt) = pi(X)Ciat v§(X)e ™ 71353,
use the following relationships: (BS)
[v5(X),La]=v5(x)e %12, [1§(x),L3]=0, G (D) rF(X)Grat) = vi(X)Crot v5(X)€ %1255, (
B6)
[v§(x),L1a]=v§(x)e™ 13, (B1) .
_ Ga3 (1) V5 (X) Gaalt) = v3(X) Cogt v3(X) €285,
[¥5(x),L1a]=—vi(x)€' %22, (B7)
[v5(X),Log] = v§(x)e 1923, [15(x),L1g]=0, (B2) G13 (DY) G =w5(X), (B8)
[v3(X),L12]=0, [v3(x),Lag]= —VS(X)e‘523, Glzl(t)Vz GiAt)=v3(X)C1o— Vf(x)emlzslz: (89)
B9
[v5(X),L1a]= — vi(x)€'%13, (B3) _ .
Gaa (1) ¥5(X) Gag(t) = 15 (X) Cog— 15 (X) € 2353,
and (B10)
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G5 (1) v5(X)Gag(t) = v§(X) 15— v(X) €' o135 4, As already noticed in Ref3], the flavor charge operators
(B11)  are the Casimir operators for the Bogoliubov transformation
(C2), i.e. they are free from arbitrary mass parameters:

G () V§(X)Giyt) =vs. (B12)  Q,(t)=Q,(t). This is obvious also from the fact that they
can be expressed in terms of flavor fie[dse Ref][8]).
APPENDIX C: ARBITRARY MASS PARAMETRIZATION Physical quantities should not carry any dependence on
AND PHYSICAL QUANTITIES the u,: in the two—flavor case, it has been shof@j that

the expectation values of the flavor charges on the neutrino

In Refs. [6,7] it was noticed that expanding the flavor states are free from the arbitrariness. For three generations,
fields in the same basis as ﬂﬁﬁee) fields with definite the question is more subtle due to the presence ofCtRe
massegcf. Eq. (11)] is actually a special choice, and that a yjolating phase. Indeed, in Rdf] it has been found that the
more general possibility exists. In other words, in the expangorresponding generalized quantities depend on the arbitrary
sion Eq.(11) one could use eigenfunctions with arbitrary mass parameters.
massesu,,, and therefore not necessarily the same as the | order to understand better the nature of such a depen-
masses which appear in the Lagrangian. On this basis, thgence, we consider the identity
authors of Refs|[6,7] have generalized the Blasone-Vitiello

(BV) formalism by writing the flavor fields as @@ (t)|T/f>=<¢|J(0)Q (1)371(0)] )

vy(X)= Z f ALl ek (1) + vy B o (D], =(¥1Qu(D)] ) +(¥I[3(0),Q,()1I"*(0)[ ).

(1) (€4
valid on any vector|) of the flavor Hilbert spacdat t

whereu, andv, are the helicity eigenfunctions with mass —0) F h lici ion fai(0 hat th
M. We denote by a tilde the generalized flavor operators ). From the explicit expression fdi(0) we see that the

introduced in Refs[6,7] in order to distinguish them from commutator [3(0).Q,(1)] vanishes for w,=m;, (p.j)
the ones in the BV formalism, E¢11). The expansion Eq. =(e.1),(1.2),(1.3). _ . .
(C1) is more general than the one in Ed1) since the latter It is thus tempting to define th@ffective) physical flavor

corresponds to the particular choige,=my,u,=m,,u., charges as:
=m;. Of course, the flavor fields in E4C1) and Eq.(11) = ohy .
are the same fields. The relation, given in Ré&7], be- QeI =Q,(1)=I"H(0)[I(0),Q,(1)]
tween the general flavor operators and the BV ones is = 3710)Q,(1)3(0), (C5)
~r r
~ak,a(t) i1 ( a:,a(t) )J O such that, for example,
Br_Tk’U.(t) i rfk,(r(t) Fo ~ =oh -
(v, Q5D [v,) = (¥, Qu(D)| ). (Co

— i k rt rt -
‘]/‘o(t)_ll:,[, eXp[l((,Zj) Eoil @io(VB=ko(D) It is clear that the operato®P"™t) does depend on the

arbitrary mass parameters and this dependence is such to
g r compensate the one arising from the flavor states. The choice
Bk"’(t)akv"(t)]}’ €3 of physical quantitiegflavor observablésas those not de-
) e ) pending on the arbitrary mass parameters is here adopted,
with (o,j)=(e,1),(x,2),(7,3).&,j=(x,— Xj)/2 and coly,  although different possibilities are explored by other authors,
=|k|/ s, ,coty=|K|/m; . For u,=m;, one hasl, ()=1.  see Refs[7,12,13.
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