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Quantum field theory of three flavor neutrino mixing and oscillations with CP violation
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We study in detail the quantum field theory of mixing among three generations of Dirac fermions~neutri-
nos!. We construct the Hilbert space for the flavor fields and determine the generators of the mixing transfor-
mations. By use of these generators, we recover all the known parametrizations of the three flavor mixing
matrix and we find a number of new ones. The algebra of the currents associated with the mixing transforma-
tions is shown to be a deformedsu(3) algebra, whenCP violating phases are present. We then derive the exact
oscillation formulas, exhibiting new features with respect to the usual ones.CP and T violation are also
discussed.
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I. INTRODUCTION

In recent years, there has been much progress in the
derstanding of flavor mixing in quantum field theory~QFT!
@1–17#. The original discovery of the unitary inequivalenc
of the mass and the flavor representations in QFT@1#, has
prompted further investigations on fermion mixing@2–8# as
well as on boson mixing@8–13#. It has emerged that the ric
nonperturbative vacuum structure associated with field m
ing leads to relevant modification of the flavor oscillatio
formulas, exhibiting new features with respect to the us
quantum-mechanical ones@18#. Some topologically non-
trivial features, such as the occurrence of a geometric~Berry-
Anandan! phase in field mixing has been also pointed o
@19#.

In this paper we study in detail the case of three fla
fermion ~neutrino! mixing. This is not a simple extension o
the previous results@1–3# since the existence of aCP vio-
lating phase in the parametrization of the three flavor mix
matrix introduces novel features which are absent in the t
flavor case. We determine the generators of the mixing tra
formations and, by use of them, we recover the known
rametrizations of the three flavor mixing matrix and find
number of new ones. We construct the flavor Hilbert spa
for which the ground state~flavor vacuum! turns out to be a
generalized coherent state. We also study the algebraic s
ture of currents and charges associated with the mixing tr
formations and we find that, in the presence ofCP violation,
it is that of a deformedsu(3). Theconstruction of the flavor
Hilbert space is an essential step in the derivation of ex
0556-2821/2002/66~2!/025033~12!/$20.00 66 0250
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oscillation formulas, which account forCP violation and
reduce to the corresponding quantum-mechanical ones in
relativistic limit.

The paper is organized as follows. In Sec. II we constr
the Hilbert space for three flavor mixed fermions. In Sec.
we study the various parametrization of the unitary 333
mixing matrix obtained by use of the algebraic generators
Sec. IV we study the currents and charges for three fla
mixing, which are then used in Sec. V to derive the ex
neutrino oscillation formulas. Finally in Sec. VI,CP andT
violations in QFT neutrino oscillations are discussed. Sect
VII is devoted to conclusions. In the Appendixes we gi
some useful formulas and a discussion of the arbitrary m
parametrization in the expansion of flavor fields as recen
reported in@7,8#.

II. THREE-FLAVOR FERMION MIXING

We start by considering the following Lagrangian dens
describing three Dirac fields with a mixed mass term:

L~x!5C̄ f~x!~ i ]”2M!C f~x!, ~1!

whereC f
T5(ne ,nm ,nt) andM5M† is the mixed mass ma

trix.
Among the various possible parametrizations of the m

ing matrix for three fields, we choose to work with the fo
lowing one since it is the familiar parametrization of th
Cabibbo-Kobayashi-Maskawa~CKM! matrix @20,21#:
C f~x!5UCm~x!5S c12c13 s12c13 s13e
2 id

2s12c232c12s23s13e
id c12c232s12s23s13e

id s23c13

s12s232c12c23s13e
id 2c12s232s12c23s13e

id c23c13

D Cm~x!, ~2!
©2002 The American Physical Society33-1
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with ci j 5cosuij and si j 5sinuij , u i j being the mixing angle
betweenn i ,n j andCm

T 5(n1 ,n2 ,n3).
Using Eq.~2! we diagonalize the quadratic form of Eq

~1!, which then reduces to the Lagrangian for three Di
fields, with massesm1 , m2, andm3:

L~x!5C̄m~x!~ i ]”2Md!Cm~x!, ~3!

whereMd5diag(m1 ,m2 ,m3).
Following Ref.@1# we construct the generator for the mi

ing transformation~2! and define1

ns
a~x![Gu

21~ t !n i
a~x!Gu~ t !, ~4!

where (s,i )5(e,1),(m,2),(t,3), and

Gu~ t !5G23~ t !G13~ t !G12~ t !, ~5!

where

G12~ t ![exp@u12L12~ t !#,

L12~ t !5E d3x@n1
†~x!n2~x!2n2

†~x!n1~x!#, ~6!

G23~ t ![exp@u23L23~ t !#,

L23~ t !5E d3x@n2
†~x!n3~x!2n3

†~x!n2~x!#, ~7!

G13~ t ![exp@u13L13~d,t !#,

L13~d,t !5E d3x@n1
†~x!n3~x!e2 id2n3

†~x!n1~x!eid#.

~8!

It is evident from the above form of the generators that
phased is unavoidable for three field mixing, while it can b
incorporated in the definition of the fields in the two-flav
case.

The free fieldsn i ( i 51,2,3) can be quantized in the usu
way @22# ~we uset[x0):

1Let us consider, for example, the generation of the first row of
mixing matrixU. We have~see also Appendix B! ]ne/]u2350; and
]ne /]u135G12

21G13
21@n1 ,L13#G13G125G12

21G13
21e2 idn3G13G12,

thus

]2ne /]u13
2 52ne⇒ne5 f ~u12!cosu131g~u12!sinu13;

with the initial conditions@from Eq. ~4!#: f (u12)5neuu1350 and
g(u12)5]ne /]u13uu13505e2 idn3. We also have

]2f~u12!/]u13
2 52 f ~u12!⇒ f ~u12!5Acosu121Bsinu12

with the initial conditions A5neuu505n1 and B
5] f (u12)/]u12uu505n2, andu5(u12,u13,u23).
02503
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n i~x!5(
r
E d3k@uk,i

r ~ t !ak,i
r 1v2k,i

r ~ t !b2k,i
r† #eik•x, ~9!

with i 51,2,3, alsouk,i
r (t)5e2 ivk,i tuk,i

r , vk,i
r (t)5eivk,i tvk,i

r ,
andvk,i5Ak21mi

2. The vacuum for the mass eigenstates
denoted byu0&m : ak,i

r u0&m5bk,i
r u0&m50. The anticommuta-

tion relations are the usual ones; the wave function orthon
mality and completeness relations are those of Ref.@1#.

The main result of Ref.@1# is the unitary inequivalence~in
the infinite volume limit! of the vacua for the flavor fields
and for the fields with definite masses. There such an
equivalence was proved for the case of two generations;
sequently, in Ref.@5#, a rigorous general proof of such in
equivalence for any number of generations has been g
~see also Ref.@13#!. Thus we do not need to repeat here su
a proof and we define the theflavor vacuumas

u0~ t !& f[Gu
21~ t !u0&m . ~10!

The form of this state is considerably more complicat
then the one for two generations. Whend50, the generator
Gu is an element of theSU(3) group~see Sec. IV! and the
flavor vacuum is classified as anSU(3) generalized coheren
state a` la Perelomov@23#. A nonzeroCP violating phase
introduces an interesting modification of the algebra ass
ated with the mixing transformations Eq.~2!: we discuss this
in Sec. IV.

By use ofGu(t), the flavor fields can be expanded as

ns~x!5(
r
E d3k@uk,i

r ~ t !ak,s
r ~ t !1v2k,i

r ~ t !b2k,s
r† ~ t !#eik•x,

~11!

with (s,i )5(e,1),(m,2),(t,3). The flavor annihilation op-
erators are defined asak,s

r (t)[Gu
21(t)ak,i

r Gu(t) and
b2k,s

r† (t)[Gu
21(t)b2k,i

r† Gu(t). They clearly act as annihila
tors for the flavor vacuum Eq.~10!. For further reference, it
is useful to list explicitly the flavor annihilation or creatio
operators ~see also Ref.@1#!. In the reference framek
5(0,0,uku) the spins decouple and their form is particular
simple:

ak,e
r ~ t !5c12c13ak,1

r 1s12c13@U12
k* ~ t !ak,2

r 1e rV12
k ~ t !b2k,2

r† #

1e2 ids13@U13
k* ~ t !ak,3

r 1e rV13
k ~ t !b2k,3

r† #, ~12!

ak,m
r ~ t !5~c12c232eids12s23s13!ak,2

r

2~s12c231eidc12s23s13!

3@U12
k ~ t !ak,1

r 2e rV12
k ~ t !b2k,1

r† #

1s23c13@U23
k* ~ t !ak,3

r 1e rV23
k ~ t !b2k,3

r† #, ~13!

ak,t
r ~ t !5c23c13ak,3

r 2~c12s231eids12c23s13!

3@U23
k ~ t !ak,2

r 2e rV23
k ~ t !b2k,2

r† #

1~s12s232eidc12c23s13!

3@U13
k ~ t !ak,1

r 2e rV13
k ~ t !b2k,1

r† #, ~14!

e
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b2k,e
r ~ t !5c12c13b2k,1

r

1s12c13@U12
k* ~ t !b2k,2

r 2e rV12
k ~ t !ak,2

r† #

1eids13@U13
k* ~ t !b2k,3

r 2e rV13
k ~ t !ak,3

r† #, ~15!

b2k,m
r ~ t !5~c12c232e2 ids12s23s13!b2k,2

r

2~s12c231e2 idc12s23s13!

3@U12
k ~ t !b2k,1

r 1e rV12
k ~ t !ak,1

r† #

1s23c13@U23
k* ~ t !b2k,3

r 2e rV23
k ~ t !ak,3

r† #, ~16!

b2k,t
r ~ t !5c23c13b2k,3

r 2~c12s231e2 ids12c23s13!

3@U23
k ~ t !b2k,2

r 1e rV23
k ~ t !ak,2

r† #

1~s12s232e2 idc12c23s13!

3@U13
k ~ t !b2k,1

r 1e rV13
k ~ t !ak,1

r† #. ~17!

These operators satisfy canonical~anti!commutation rela-
tions at equal times. The main difference with respect to th
‘‘naive’’ quantum-mechanical counterparts is in the anom
lous terms proportional to theVi j factors. In fact,Ui j

k andVi j
k

are Bogoliubov coefficients defined as:

Vi j
k ~ t !5uVi j

k uei (vk, j 1vk,i )t, Ui j
k ~ t !5uUi j

k uei (vk, j 2vk,i )t

~18!

uUi j
k u5S vk,i1mi

2vk,i
D 1/2S vk, j1mj

2vk, j
D 1/2

3S 11
uku2

~vk,i1mi !~vk, j1mj !
D5cos~j i j

k ! ~19!

TABLE I. The values of masses and mixing angles used
plots.

m1 m2 m3 u12 u13 u23 d

1 200 3000 p/4 p/4 p/4 p/4

FIG. 1. Plot of the condensation densitiesN i
k in function of uku

for the values of parameters as in Table I.
02503
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uVi j
k u5S vk,i1mi

2vk,i
D 1/2S vk, j1mj

2vk, j
D 1/2

3S uku
~vk, j1mj !

2
uku

~vk,i1mi !
D5sin~j i j

k ! ~20!

uUi j
k u21uVi j

k u251 ~21!

wherei , j 51,2,3 andj . i . The following identities hold:

V23
k ~ t !V13

k* ~ t !1U23
k* ~ t !U13

k ~ t !5U12
k ~ t !,

V23
k ~ t !U13

k* ~ t !2U23
k* ~ t !V13

k ~ t !52V12
k ~ t !

U12
k ~ t !U23

k ~ t !2V12
k* ~ t !V23

k ~ t !5U13
k ~ t !,

U23
k ~ t !V12

k ~ t !1U12
k* ~ t !V23

k ~ t !5V13
k ~ t !

V12
k* ~ t !V13

k ~ t !1U12
k* ~ t !U13

k ~ t !5U23
k ~ t !,

V12
k ~ t !U13

k ~ t !2U12
k ~ t !V13

k ~ t !52V23
k ~ t !, ~22!

j13
k 5j12

k 1j23
k , j i j

k 5arctan~ uVi j
k u/uUi j

k u!. ~23!

As already observed in Ref.@1# we remark that, in contras
with the case of two-flavor mixing, the condensation den
ties are now different for particles of different masses:

N 1
k5 f^0~ t !uNa1

k,r u0~ t !& f5 f^0~ t !uNb1

k,r u0~ t !& f

5s12
2 c13

2 uV12
k u21s13

2 uV13
k u2, ~24!

N 2
k5 f^0~ t !uNa2

k,r u0~ t !& f5 f^0~ t !uNb2

k,r u0~ t !& f

5u2s12c231eidc12s23s13u2uV12
k u21s23

2 c13
2 uV23

k u2,

~25!

N 3
k5 f^0~ t !uNa3

k,r u0~ t !& f5 f^0~ t !uNb3

k,r u0~ t !& f

5u2c12s231eid s12c23s13u2uV23
k u21us12s23

1eidc12c23s13u2uV13
k u2. ~26!

We plot in Fig. 1 the condensation densities for sam
values of parameters as given in Table I.2

III. THE PARAMETRIZATIONS OF THE THREE-FLAVOR
MIXING MATRIX

In Sec. II we have studied the generator of the mixi
matrix U of Eq. ~2!. However, this matrix is only one of the
various forms in which a 333 unitary matrix can be param
eterized. Indeed, the generator Eq.~5! can be used for gen
erating such alternative parametrizations. To see this, le
first define in a more general way the generatorsGi j includ-
ing phases for all of them:

2Here and in the following plots, we use the same~energy! units
for the values of masses and momentum.

r
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G12~ t ![exp@u12L12~d12,t !#,

L12~d12,t !5E d3x@n1
†~x!n2~x!e2 id12

2n2
†~x!n1~x!eid12#, ~27!

G23~ t ![exp@u23L23~d23,t !#,

L23~d23,t !5E d3x@n2
†~x!n3~x!e2 id23

2n3
†~x!n2~x!eid23#, ~28!
02503
G13~ t ![exp@u13L13~d13,t !#,

L13~d13,t !5E d3x@n1
†~x!n3~x!e2 id13

2n3
†~x!n1~x!eid13#. ~29!

Six different matrices can be obtained by permuting the
der of theGi j ~useful relations are listed in Appendix A! in
Eq. ~5!. We obtain
G1[G23G13G12

U15S c12c13 s12c13e
2 id12 s13e

2 id13

2s12c23e
id122s23s13c12e

i (d132d23) c12c232s23s13s12e
2 i (d232d131d12) s23c13e

2 id23

2s13c12c23e
id131s12s23e

i (d121d23) 2c23s13s12e
i (d132d12)2s23c12e

id23 c23c13

D ~30!

G2[G23G12G13

U25S c12c13 s12e
2 id12 s13c12e

2 id13

2s12c13c23e
id122s23s13e

i (d132d23) c12c23 2s13c23s12e
i (d122d13)1s23c13e

2 id23

2s13c23e
id131s12s23c13e

i (d121d23) 2c12s23e
id23 c23c131s12s13s23e

i (d121d232d13)
D ~31!

G3[G13G23G12

U35S c12c131s13s23s12e
i (d122d131d23) s12c13e

2 id122s13s23c12e
i (d232d13) s13c23e

2 id13

2s12c23e
id12 c12c23 s23e

2 id23

c13s23s12e
i (d231d12)2s13c12e

id13 2c13s23c12e
id232s12s13e

i (d132d12) c23c13

D ~32!

G4[G13G12G23

U45S c12c13 s12c13c23e
2 id122s13s23e

i (d232d13) s12s23c13e
2 i (d121d23)1s13c23e

2 id13

2s12e
id12 c12c23 s23c12e

2 id23

2c12s13e
id13 2c13s23e

id232s12c23s13e
i (d132d12) c23c132s12s23s13e

2 i (d121d232d13)
D ~33!

G5[G12G13G23

U55S c12c13 s12c23e
2 id122s13c12s23e

2 i (d132d23) s13c12c23e
2 id131s12s23e

2 i (d121d23)

2s12c13e
id12 c12c231s12s23s13e

i (d122d131d23) s23c12e
2 id232s12c23s13e

i (d122d13)

2s13e
id13 2c13s23e

id23 c23c13

D ~34!

G6[G12G23G13

U65S c12c132s12s23s13e
2 i (d121d232d13) s12c23e

2 id12 c12s13e
2 id131s12s23c13e

2 i (d121d23)

2c12s23s13e
i (d132d23)2s12c13e

id12 c12c23 c12s23c13e
2 id232s12s13e

i (d122d13)

2c23s13e
id13 2s23e

id23 c23c13

D . ~35!
3-4
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The above matrices are generated for a particular se
initial conditions, namely for those of Eq.~4!. The freedom
in the choice of the initial conditions reflects the possibil
of obtaining other unitary matrices from the above ones
permuting rows and columns and by multiplying row or co
umns for a phase factor.

We thus can easily recover all the existing parametri
tions of the CKM matrix@21,24–29#: the Maiani parametri-
zation @24,27# is obtained fromU1 by settingu12→u, u13
→b, u23→g, d12→0, d13→0, d23→2d; the Chau-Keung
parametrization@24,28# is recovered fromU1 by settingd12
→0 andd23→0; the Kobayashi-Maskawa@21,24# is recov-
ered fromU5 by settingu12→u2 , u13→u1 , u23→u3 , d12
→2d, d13→0 andd23→0, u i→ 3

2 p2u i , with i 51,2,3, and
multiply the last column for (21); the Anselm parametriza
tion @24,29# is obtained fromU1 by settingu12↔u13, then
d12→0, d13→0, u12→p1u12, u13→p2u13, u23→ 3

2 p
1u23, exchanging the second and third column and mu
plying the last row for (21).

From the above analysis it is clear that a number of n
parametrizations of the mixing matrix can be generated
that a clear physical meaning can be attached to eac
them, by considering the order in which the generatorsGi j
act and the initial conditions used for getting that particu
matrix.

IV. CURRENTS AND CHARGES FOR THREE-FLAVOR
FERMION MIXING

In this section we study the currents associated with
Lagrangians Eqs.~3! and~1!. To this end, let us consider th
transformations acting on the triplet of free fields with d
ferent massesCm , in the line of Ref.@4#.

L is invariant under globalU(1) phase transformations o
the typeCm8 5eiaCm : as a result, we have the conservati
of the Noether charge Q5*d3xI0(x) @with I m(x)
5C̄m(x)gmCm(x)# which is indeed the total charge of th
system~i.e. the total lepton number!.

Consider then theSU(3) global transformations acting o
Cm :

Cm8 ~x!5eia j F jCm~x!, j 51,2, . . . ,8, ~36!

with a j real constants,F j5
1
2 l j being the generators o

SU(3) andl j the Gell-Mann matrices@20#.
The Lagrangian is not generally invariant under Eq.~36!

and we obtain, by use of the equations of motion,

dL~x!5 ia j C̄m~x!@F j ,Md#Cm~x!52a j]mJm, j
m ~x!

Jm, j
m ~x!5C̄m~x!gmF jCm~x!, j 51,2, . . . ,8. ~37!

It is useful to list explicitly the eight currents~we suppress
spacetime dependence!:
02503
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Jm,1
m 5

1

2
@ n̄1gmn21 n̄2gmn1#,

Jm,2
m 52

i

2
@ n̄1gmn22 n̄2gmn1#

Jm,3
m 5

1

2
@ n̄1gmn12 n̄2gmn2#,

Jm,4
m 5

1

2
@ n̄1gmn31 n̄3gmn1#

Jm,5
m 52

i

2
@ n̄1gmn32 n̄3gmn1#,

Jm,6
m 5

1

2
@ n̄2gmn31 n̄3gmn2#

Jm,7
m 52

i

2
@ n̄2gmn32 n̄3gmn2#,

Jm,8
m 5

1

2A3
@ n̄1gmn11 n̄2gmn222n̄3gmn3#. ~38!

The related chargesQm, j (t)[*d3x Jm, j
0 (x) satisfy thesu(3)

algebra@Qm, j (t),Qm,k(t)#5 i f jklQm,l(t). Note that only two
of the above charges are time independent, namelyQm,3 and
Qm,8 . We can thus define the combinations

Q1[
1

3
Q1Qm,31

1

A3
Qm,8 , ~39!

Q2[
1

3
Q2Qm,31

1

A3
Qm,8 , ~40!

Q3[
1

3
Q2

2

A3
Qm,8 , ~41!

Qi5(
r
E d3k~ak,i

r† ak,i
r 2b2k,i

r† b2k,i
r !, i 51,2,3.

~42!

These are nothing but the Noether charges associated
the non-interacting fieldsn1 , n2, andn3: in the absence of
mixing, they are the flavor charges, separately conserved
each generation.

As already observed in Sec. II, in the case whenCP is
conserved (d50), the mixing generator Eq.~5! is an element
of the SU(3) group and can be expressed in terms of
above charges as

Gu~ t !ud505ei2u23Qm,7(t)ei2u13Qm,5(t)ei2u12Qm,2(t). ~43!

Following Ref.@4# we can now perform theSU(3) transfor-
mations on the flavor tripletC f and obtain another set o
currents for the flavor fields:

C f8~x!5eia j F j C f~x!, j 51,2, . . . ,8, ~44!

which leads to

dL~x!5 ia jC̄ f~x!@F j ,M#C f~x!52a j]mJf , j
m ~x!,
3-5
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Jf , j
m ~x!5C̄ f~x!gmF jC f~x!, j 51,2, . . . ,8. ~45!

Alternatively, the same currents can be obtained by apply
on theJm, j

m (x) the mixing generator Eq.~5!:

Jf , j
m ~x!5Gu

21~ t !Jm, j
m ~x!Gu~ t !, j 51,2, . . . ,8. ~46!

The related chargesQf , j (t) [ *d3x Jf , j
0 (x) still close the

su(3) algebra. Due to the off-diagonal~mixing! terms in the
mass matrixM, Qf ,3(t) andQf ,8(t) are time dependent. Thi
implies an exchange of charge betweenne , nm andnt , re-
sulting in the flavor oscillations.

In accordance with Eqs.~44!–~41!, we define theflavor
chargesfor mixed fields as

Qe~ t ![
1

3
Q1Qf ,3~ t !1

1

A3
Qf ,8~ t !, ~47!

Qm~ t ![
1

3
Q2Qf ,3~ t !1

1

A3
Qf ,8~ t !, ~48!

Qt~ t ![
1

3
Q2

2

A3
Qf ,8~ t !, ~49!

with Qe(t)1Qm(t) 1 Qt(t)5Q. These charges have
simple expression in terms of the flavor ladder operators

Qs~ t !5(
r
E d3k@ak,s

r† ~ t !ak,s
r ~ t !2b2k,s

r† ~ t !b2k,s
r ~ t !#,

~50!

with s5e,m,t,because of the connection with the Noeth
charges of Eq.~42! via the mixing generator:Qs(t)
5Gu

21(t)QiGu(t). Notice also that the operatorDQs(t)
[Qs(t)2Qi with (s,i )5(e,1),(m,2),(t,3) describes how
much the mixing violates the~lepton! charge conservation
for a given generation.

Let us now come back to the algebra of the currents
cludingCP violating phases. To this end, we consider a g
eralization of the Gell-Mann matrices~we use a tilde for
denoting the modified quantities including phases!:

l̃15S 0 eid2 0

e2 id2 0 0

0 0 0
D , l̃25S 0 2 ieid2 0

ie2 id2 0 0

0 0 0
D ,

l̃35S 1 0 0

0 21 0

0 0 0
D , l̃45S 0 0 e2 id5

0 0 0

eid5 0 0
D

l̃55S 0 0 2 ie2 id5

0 0 0

ieid5 0 0
D , l̃65S 0 0 0

0 0 eid7

0 e2 id7 0
D ,
02503
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l̃75S 0 0 0

0 0 2 ieid7

0 ie2 id7 0
D , l̃85

1

A3 S 1 0 0

0 1 0

0 0 22
D .

~51!

These are normalized as the Gell-Mann matrices: tr(l jlk)
52d jk . We define as usual the algebraic generators:

F̃ j5
1

2
l̃ j , j 51, . . . ,8 . ~52!

The above generators Eq.~52! do not close thesu(3) algebra
unless the conditiond21d51d750 is imposed@cf. Eq.
~53!#, i.e. if one of the three phases is fixed in terms of t
remaining two. Such a request is clearly incompatible w
the parametrizations of the mixing matrices of Secs. II a
III @cf., e.g., the discussion after Eq.~35!; we have the cor-
respondence$d2 ,d5 ,d7%↔$d12,d13,d23%#. For the matrix
~2!, as already observed, it impliesd50.

The F̃ j satisfy a deformedsu(3) algebra with deformed
commutation relations given by

@ F̃2 ,F̃5#5
i

2
F̃7e2 iD(F̃32A3F̃8),

@ F̃2 ,F̃7#52
i

2
F̃5e2 iD(F̃31A3F̃8), @ F̃5 ,F̃7#5

i

2
F̃2e2iDF̃3

@ F̃1 ,F̃4#5
i

2
F̃7e2 iD(F̃32A3F̃8),

@ F̃1 ,F̃7#52
i

2
F̃4e2 iD(F̃31A3F̃8), @ F̃4 ,F̃7#5

i

2
F̃1e2iDF̃3

@ F̃1 ,F̃5#52
i

2
F̃6e2 iD(F̃32A3F̃8),

@ F̃1 ,F̃6#5
i

2
F̃5e2 iD(F̃31A3F̃8), @ F̃5 ,F̃6#52

i

2
F̃1e2iDF̃3

@ F̃2 ,F̃4#5
i

2
F̃6e2 iD(F̃32A3F̃8),

@ F̃2 ,F̃6#52
i

2
F̃4e2 iD(F̃31A3F̃8), @ F̃4 ,F̃6#5

i

2
F̃2e2iDF̃3

~53!

whereD[d21d51d7. The other commutators are the usu
su(3) ones. ForD50, thesu(3) algebra is recovered.

It is useful to look at the deformed algebra in terms of t
raising and lowering operators, defined as@20#

T̃6[F̃16 i F̃ 2 , Ũ6[F̃66 i F̃ 7 , Ṽ6[F̃46 i F̃ 5 .
~54!

We also define

T̃3[F̃3 , Ũ3[
1

2
~A3F̃82F̃3!, Ṽ3[

1

2
~A3F̃81F̃3!.

~55!
3-6
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Then the only deformed commutators are the following on

@ T̃1 ,Ṽ2#52Ũ2e2iDŨ3, @ T̃1 ,Ũ1#5Ṽ1e22iDṼ3,

@Ũ1 ,Ṽ2#5T̃2e2iDT̃3. ~56!

V. NEUTRINO OSCILLATIONS

The oscillation formulas are obtained by taking expec
tion values of the above charges on the~flavor! neutrino
state. Consider for example an initial electron neutrino s
defined asune&[ak,e

r† (0)u0& f ~for a discussion on the correc
definition of flavor states see Refs.@2,3,11#!. Working in the
Heisenberg picture, we obtain

Q k,s
r ~ t ![^nruQs~ t !unr&2 f^0uQs~ t !u0& f

5u$ak,s
r ~ t !,ak,r

r† ~0!%u21u$b2k,s
r† ~ t !,ak,r

r† ~0!%u2,

~57!
02503
s:
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Q k,s
r̄ ~ t ![^n̄ruQs~ t !un̄r&2 f^0uQs~ t !u0& f

52u$bk,s
r ~ t !,bk,r

r† ~0!%u22u$a2k,s
r† ~ t !,bk,r

r† ~0!%u2,

~58!

where u0& f[u0(0)& f . Overall charge conservation is obv
ously ensured at any time:Qk,e(t)1Qk,m(t)1Qk,t(t)51.
We remark that the expectation value ofQs cannot be taken
on vectors of the Fock space built onu0&m , as shown in
Refs. @2,3,11#. Also we observe thatf^0uQs(t)u0& fÞ0, in
contrast with the two-flavor case@3,8#. We introduce the fol-
lowing notation:

D i j
k [

vk, j2vk,i

2
, V i j

k [
vk,i1vk, j

2
.

Then the oscillation~in time! formulas for the flavor charges
on an initial electron neutrino state, follow as
Q k,e
e ~ t !512sin2~2u12!cos4u13@ uU12

k u2sin2~D12
k t !1uV12

k u2sin2~V12
k t !#2sin2~2u13!cos2u12@ uU13

k u2sin2~D13
k t !

1uV13
k u2sin2~V13

k t !#2sin2~2u13!sin2u12@ uU23
k u2sin2~D23

k t !1uV23
k u2sin2~V23

k t !#, ~59!

Q k,m
e ~ t !52J

CP
@ uU12

k u2sin~2D12
k t !2uV12

k u2sin~2V12
k t !1~ uU12

k u22uV13
k u2!sin~2D23

k t !1~ uV12
k u22uV13

k u2!sin~2V23
k t !

2uU13
k u2sin~2D13

k t !1uV13
k u2sin~2V13

k t !#1cos2u13sinu13@cosd sin~2u12!sin~2u23!

14 cos2u12sinu13sin2u23#@ uU13
k u2sin2~D13

k t !1uV13
k u2sin2~V13

k t !#

2cos2u13sinu13@cosd sin~2u12!sin~2u23!24 sin2u12sinu13sin2u23#@ uU23
k u2sin2~D23

k t !1uV23
k u2sin2~V23

k t !#

1cos2u13sin~2u12!@~cos2u232sin2u23sin2u13!sin~2u12!1cosd cos~2u12!sinu13sin~2u23!#

3@ uU12
k u2sin2~D12

k t !1uV12
k u2sin2~V12

k t !#, ~60!

Q k,t
e ~ t !522J

CP
@ uU12

k u2sin~2D12
k t !2uV12

k u2sin~2V12
k t !1~ uU12

k u22uV13
k u2!sin~2D23

k t !1~ uV12
k u22uV13

k u2!sin~2V23
k t !

2uU13
k u2sin~2D13

k t !1uV13
k u2sin~2V13

k t !#2cos2u13sinu13@cosd sin~2u12!sin~2u23!

24 cos2u12sinu13cos2u23#@ uU13
k u2sin2~D13

k t !1uV13
k u2sin2~V13

k t !#

1cos2u13sinu13@cosd sin~2u12!sin~2u23!14 sin2u12sinu13cos2u23#@ uU23
k u2sin2~D23

k t !

1uV23
k u2sin2~V23

k t !#1cos2u13sin~2u12!@~sin2u232sin2u13cos2u23!sin~2u12!

2cosd cos~2u12!sinu13sin~2u23!#@ uU12
k u2sin2~D12

k t !1uV12
k u2sin2~V12

k t !#, ~61!
ces
ns
the
where we used the relations~22! and ~23!. We also intro-
duced the Jarlskog factorJ

CP
defined as@30#

J
CP

[Im~uiauj buib* uj a* !, ~62!

where theui j are the elements of mixing matrixU and i
Þ j ,aÞb. In the parametrization Eq.~2!, J

CP
is given by
J
CP

5
1

8
sind sin~2u12!sin~2u13!cosu13sin~2u23!. ~63!

Evidently, J
CP

vanishes if u i j 50,p/2 and/or d50,p: all

CP–violating effects are proportional to it.
The above oscillation formulas are exact. The differen

with respect to the usual formulas for neutrino oscillatio
are in the energy dependence of the amplitudes and in
3-7
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additional oscillating terms. Foruku@Am1m2, we have
uUi j

k u2→1 anduVi j
k u2→0 and the traditional~Pontecorvo! os-

cillation formulas are approximately recovered. Indeed,
sufficiently small time arguments, a correction to the Po
tecorvo formula is present even in the relativistic limit.

In Appendix B the oscillation formulas for the flavo
charges on an initial electron anti-neutrino state are giv
We plot in Figs. 2 and 4 the QFT oscillation formula
Q k,e

e (t) andQ k,m
e (t) as a function of time, and in Figs. 3 an

5 the corresponding Pontecorvo oscillation formu
Pe→e

k (t) andPe→m
k (t). The time scale is inT12 units, where

T125p/D12
k is, for the values of parameters of Table I, t

largest oscillation period.

VI. CP AND T VIOLATIONS IN NEUTRINO
OSCILLATIONS

In this section we consider the oscillation inducedCP and
T violation in the context of the present QFT framework. L
us first briefly recall the situation in QM:3 there, theCP
asymmetry between the probabilities of two conjugate n
trino transitions, due toCPT invariance and unitarity of the
mixing matrix, is given as@25#

D̂
CP

rs~ t ![Pns→nr
~ t !2Pn̄s→ n̄r

~ t !, ~64!

wheres,r5e,m,t. The T violating asymmetry can be ob
tained in a similar way as@25#

D̂
T

rs~ t ![Pns→nr
~ t !2Pnr→ns

~ t !

5Pns→nr
~ t !2Pns→nr

~2t !. ~65!

The relationshipD̂
CP

rs(t)5D̂
T

rs(t) is a consequence ofCPT

invariance.
The corresponding quantities in QFT have to be define

the framework of the previous section, i.e. as expecta

3We use here a ‘‘caret’’ for QM quantities. For notational simpli
ity, we also suppress momentum indices where unnecessary.

FIG. 2. Plot of the QFT oscillation formula:Q k,e
e (t) as a func-

tion of time for k555 and parameters as in Table I.
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values of the flavor charges on states belonging to the fla
Hilbert space. We thus have, for theCP violation,

D
CP

rs~ t ![Q k,s
r ~ t !1Q k,s

r̄ ~ t ! ~66!

5u$ak,s
r ~ t !,ak,r

r† ~0!%u21u$b2k,s
r† ~ t !,ak,r

r† ~0!%u2

2u$a2k,s
r† ~ t !,bk,r

r† ~0!%u22u$bk,s
r ~ t !,bk,r

r† ~0!%u2.

~67!

We have

(
s

D
CP

rs50, r,s5e,m,t, ~68!

which follows from the fact that (sQs(t)5Q and

^nruQunr&51 and^n̄ruQun̄r&521.
We can calculate theCP asymmetry Eq.~66! for a spe-

cific case, namely for the transitionne→nm . We obtain

FIG. 3. Plot of the QM oscillation formula:Pe→e
k (t) as a func-

tion of time for k555 and parameters as in Table I.

FIG. 4. Plot of the QFT oscillation formula:Q k,m
e (t) as a func-

tion of time for k555 and parameters as in Table I.
3-8
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D
CP

em~ t !54J
CP

@ uU12
k u2sin~2D12

k t !2uV12
k u2sin~2V12

k t !

1~ uU12
k u22uV13

k u2!sin~2D23
k t !

1~ uV12
k u22uV13

k u2!sin~2V23
k t !2uU13

k u2sin~2D13
k t !

1uV13
k u2sin~2V13

k t !#, ~69!

and D
CP

et (t)52D
CP

em(t). As already observed for oscillatio
formulas, high-frequency oscillating terms and Bogoliub
coefficients in the oscillation amplitudes appear in Eq.~69!
as a QFT correction to the QM formula.

The definition of the QFT analogue of theT-violating
quantity Eq.~65! is more delicate. Indeed, definingD

T
as

D
T

em[Q m
e (t)2Q e

m(t) does not seem to work, since we o

tain D
T

em2D
CP

emÞ0 in contrast toCPT conservation.
A more consistent definition of the time-reversal violati

in QFT is then

D
T

rs~ t ![Q k,s
r ~ t !2Q k,s

r ~2t !, r,s5e,m,t. ~70!

With such definition, the equalityD
T

rs(t)5D
CP

rs(t) follows

from Q k,s
r (2t)52Q k,s

r̄ (t).
We plot in Fig. 6 theCP asymmetry Eq.~69! for sample

values of the parameters as in Table I. In Fig. 7 the co

FIG. 5. Plot of the QM oscillation formula:Pe→m
k (t) as a func-

tion of time for k555 and parameters as in Table I.

FIG. 6. Plot of the QFTCP asymmetryD
CP

em(t), as a function of
time for k555 and parameters as in Table I.
02503
-

sponding standard QM quantity is plotted for the same v
ues of parameters.

VII. CONCLUSIONS

In this paper we have discussed the mixing of~Dirac!
fermionic fields in quantum field theory for the case of thr
flavors withCP violation. We constructed the flavor Hilber
space and studied the currents and charges for mixed fi
~neutrinos!. The algebraic structure associated with the m
ing for the case of three generation turned out to be that
deformed su(3) algebra, when aCP violating phase is
present.

We have then derived all the known parametrization
the three flavor mixing matrix and a number of new ones.
have shown that these parametrizations actually reflect
group theoretical structure of the generator of the mix
transformations.

By use of the flavor Hilbert space, we have calculated
exact QFT oscillation formulas, a generalization of the us
QM Pontecorvo formulas. The comparison between the ex
oscillation formulas and the usual ones has been explic
exhibited for sample values of the neutrino masses and m
ings. CP and T violation induced by neutrino oscillation
have also been discussed.

We remark that the corrections introduced by the pres
formalism to the usual Pontecorvo formulas are in princi
experimentally testable. The fact that these corrections m
be quantitatively below the experimental accuracy reacha
at the present state of the art in the detection of the neut
oscillations does not justify neglecting them in the analy
of the particle mixing and oscillation mechanism. The ex
oscillation formulas here derived are the result of a ma
ematically consistent analysis which cannot be ignored i
correct treatment of the field mixing phenomenon. As
have seen above, our formalism accounts for all the kno
parametrizations of the mixing matrix and explains their o
gin and their reciprocal relations, thus unifying the pheno
enological proposals scattered in the literature where s
parametrizations have been presented. Moreover, our for
ism clearly points to the truly nonperturbative character
the particle mixing phenomenon. A lot of physics must
there waiting to be discovered.

FIG. 7. Plot of the QMCP asymmetryD̂
CP

em(t), as a function of
time for k555 and parameters as in Table I.
3-9
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APPENDIX A: ANTI-NEUTRINO OSCILLATION
FORMULAS

If we consider an initial electron anti-neutrino state d
fined asun̄e&[bk,e

r† (0)u0& f , we obtain the anti-neutrino os
cillation formulas as
Q k,e
ē ~ t !52Q k,e

e ~ t !, ~A1!

Q k,m
ē ~ t !52J

CP
@ uU12

k u2sin~2D12
k t !2uV12

k u2sin~2V12
k t !1~ uU12

k u22uV13
k u2!sin~2D23

k t !

1~ uV12
k u22uV13

k u2!sin~2V23
k t !2uU13

k u2sin~2D13
k t !1uV13

k u2sin~2V13
k t !#

2cos2u13sinu13@cosd sin~2u12!sin~2u23!14 cos2u12sinu13sin2u23#@ uU13
k u2sin2~D13

k t !

1uV13
k u2sin2~V13

k t !#1cos2u13sinu13@cosd sin~2u12!sin~2u23!24 sin2u12sinu13sin2u23#

3@ uU23
k u2sin2~D23

k t !1uV23
k u2sin2~V23

k t !#2cos2u13sin~2u12!@~cos2u232sin2u23sin2u13!sin~2u12!

1cosd cos~2u12!sinu13sin~2u23!#@ uU12
k u2sin2~D12

k t !1uV12
k u2sin2~V12

k t !#, ~A2!

Q k,t
ē ~ t !522J

CP
@ uU12

k u2sin~2D12
k t !2uV12

k u2sin~2V12
k t !1~ uU12

k u22uV13
k u2!sin~2D23

k t !

1~ uV12
k u22uV13

k u2!sin~2V23
k t !2uU13

k u2sin~2D13
k t !1uV13

k u2sin~2V13
k t !#

1cos2u13sinu13@cosd sin~2u12!sin~2u23!24 cos2u12sinu13cos2u23#@ uU13
k u2sin2~D13

k t !

1uV13
k u2sin2~V13

k t !#2cos2u13sinu13@cosd sin~2u12!sin~2u23!14 sin2u12sinu13cos2u23#

3@ uU23
k u2sin2~D23

k t !1uV23
k u2sin2~V23

k t !#2cos2u13sin~2u12!@~sin2u232sin2u13cos2u23!sin~2u12!

2cosd cos~2u12!sinu13sin~2u23!#@ uU12
k u2sin2~D12

k t !1uV12
k u2sin2~V12

k t !#. ~A3!
APPENDIX B: USEFUL FORMULAS FOR THE
GENERATION OF THE MIXING MATRIX

In deriving theUi mixing matrices of Secs. II and III, we
use the following relationships:

@n1
a~x!,L12#5n2

a~x!e2 id12, @n1
a~x!,L23#50,

@n1
a~x!,L13#5n3

a~x!e2 id13, ~B1!

@n2
a~x!,L12#52n1

a~x!eid12,

@n2
a~x!,L23#5n3

a~x!e2 id23, @n2
a~x!,L13#50, ~B2!

@n3
a~x!,L12#50, @n3

a~x!,L23#52n2
a~x!eid23,

@n3
a~x!,L13#52n1

a~x!eid13, ~B3!

and
G23
21~ t !n1

a~x!G23~ t !5n1
a~x!, ~B4!

G13
21~ t !n1

a~x!G13~ t !5n1
a~x!c131n3

a~x!e2 id13s13,
~B5!

G12
21~ t !n1

a~x!G12~ t !5n1
a~x!c121n2

a~x!e2 id12s12,
~B6!

G23
21~ t !n2

a~x!G23~ t !5n2
a~x!c231n3

a~x!e2 id23s23,
~B7!

G13
21~ t !n2

a~x!G13~ t !5n2
a~x!, ~B8!

G12
21~ t !n2

a~x!G12~ t !5n2
a~x!c122n1

a~x!eid12s12,
~B9!

G23
21~ t !n3

a~x!G23~ t !5n3
a~x!c232n2

a~x!eid23s23,
~B10!
3-10



r

a
an
ry
th
t

lo

s
or

.

s
ion
rs:
y

on

rino
ions,

rary

en-

h to
oice

ted,
rs,

QUANTUM FIELD THEORY OF THREE FLAVOR . . . PHYSICAL REVIEW D 66, 025033 ~2002!
G13
21~ t !n3

a~x!G13~ t !5n3
a~x!c132n1

a~x!eid13s13,
~B11!

G12
21~ t !n3

a~x!G12~ t !5n3 . ~B12!

APPENDIX C: ARBITRARY MASS PARAMETRIZATION
AND PHYSICAL QUANTITIES

In Refs. @6,7# it was noticed that expanding the flavo
fields in the same basis as the~free! fields with definite
masses@cf. Eq. ~11!# is actually a special choice, and that
more general possibility exists. In other words, in the exp
sion Eq. ~11! one could use eigenfunctions with arbitra
massesms , and therefore not necessarily the same as
masses which appear in the Lagrangian. On this basis,
authors of Refs.@6,7# have generalized the Blasone-Vitiel
~BV! formalism by writing the flavor fields as

ns~x!5(
r
E d3k@uk,s

r ãk,s
r ~ t !1v2k,s

r b̃2k,s
r† ~ t !#eik•x,

~C1!

whereus and vs are the helicity eigenfunctions with mas
ms . We denote by a tilde the generalized flavor operat
introduced in Refs.@6,7# in order to distinguish them from
the ones in the BV formalism, Eq.~11!. The expansion Eq
~C1! is more general than the one in Eq.~11! since the latter
corresponds to the particular choiceme[m1 ,mm[m2 ,mt
[m3. Of course, the flavor fields in Eq.~C1! and Eq.~11!
are the same fields. The relation, given in Refs.@6,7#, be-
tween the general flavor operators and the BV ones is

S ãk,s
r ~ t !

b̃2k,s
r† ~ t !

D 5Jms

21~ t !S ak,s
r ~ t !

b2k,s
r† ~ t !

D Jms
~ t ! , ~C2!

Jms
~ t !5)

k,r
expH i (

(s, j )
js, j

k @ak,s
r† ~ t !b2k,s

r† ~ t !

1b2k,s
r ~ t !ak,s

r ~ t !#J , ~C3!

with (s, j )5(e,1),(m,2),(t,3),js, j
k [(xs

k 2x j
k)/2 and cotxs

k

5uku/ms ,cotxj
k5uku/mj . For ms[mj , one hasJms

(t)51.
k
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As already noticed in Ref.@3#, the flavor charge operator
are the Casimir operators for the Bogoliubov transformat
~C2!, i.e. they are free from arbitrary mass paramete
Q̃s(t)5Qs(t). This is obvious also from the fact that the
can be expressed in terms of flavor fields~see Ref.@8#!.

Physical quantities should not carry any dependence
the ms : in the two–flavor case, it has been shown@3# that
the expectation values of the flavor charges on the neut
states are free from the arbitrariness. For three generat
the question is more subtle due to the presence of theCP
violating phase. Indeed, in Ref.@7# it has been found that the
corresponding generalized quantities depend on the arbit
mass parameters.

In order to understand better the nature of such a dep
dence, we consider the identity

^c̃uQ̃s~ t !uc̃&5^cuJ~0!Qs~ t !J21~0!uc&

5^cuQs~ t !uc&1^cu@J~0!,Qs~ t !#J21~0!uc&.

~C4!

valid on any vectoruc& of the flavor Hilbert space~at t
50). From the explicit expression forJ(0) we see that the
commutator @J(0),Qs(t)# vanishes for mr5mj , (r, j )
5(e,1),(m,2),(t,3).

It is thus tempting to define the~effective! physical flavor
charges as:

Q̃s
phys~ t ![Qs~ t !2J21~0!@J~0!,Qs~ t !#

5J21~0!Qs~ t !J~0!, ~C5!

such that, for example,

^ñruQ̃s
phys~ t !uñr&5^nruQs~ t !unr&. ~C6!

It is clear that the operatorQ̃s
phys(t) does depend on the

arbitrary mass parameters and this dependence is suc
compensate the one arising from the flavor states. The ch
of physical quantities~flavor observables! as those not de-
pending on the arbitrary mass parameters is here adop
although different possibilities are explored by other autho
see Refs.@7,12,13#.
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