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In this paper we review how to construct scalar field theories in two-dimensional space-time that support
kink or bouncelike solutions starting from solvable Salinger equations. Three different Sctilmger poten-
tials are analyzed. We obtain two new models starting from the Morse and Scarf Il hyperbolic potentials, i.e.
the U(¢) = ¢2In%(¢?) andU(¢) = ¢p?cogIn(4?) models, respectively. Also we give a closed expression for the
(renormalized kink quantum mass corrections in the case of the second model and evaluate it numerically.
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I. INTRODUCTION do this, we make use of the fact that the first quantum cor-
rections around static soliton-like solutions are given by a
Solitons are solutions of nonlinear equations that have thene-dimensional Schdinger equation(SE) and that the
following fundamental properties: their profile is stable, theground state eigenfunction of this SE is equal to the spatial
energy associated with them is finite and also they behave aferivative of the kink-like solution. Also we will be inter-
particles in the sense that multisolitonic solutions behave agsted in the construction of models that permit lump-like
independent one-soliton solutions as time goes to infldily  solutions. In this case we use the fact that the first excited
Also, there is a less restricted class of solutions for nonlineagigenfunction of the SE is equal to the spatial derivative of
equations that has the same properties of solitonic solutiorgie lump-like solution. In both cases the eigenvalue of these
except the property of retaining their shape after collision. Ineigenfunctions is zero and this is the reason why they are
this case such solutions are called solitary waves. In generghlled zero mode eigenfunctions. We call stable and unstable
solitons can exist in anyd+ 1)-dimensional space-time. In models the models that permit, respectively, kink and lump-
the (1+1)-dimensional case, the static solutions are calledike (or bounce-lik¢ solutions.
kinks. These solutions link two degenerate trivial vacua of In the case of stable models the SE describes the excited
the theory. An important property of these solutions is thatstates of the soliton quantum state as well as the scattering of
they remain stable when quantum corrections are taken intparticles by the soliton quantum state. Also the quantum
account. On the other hand, there are solutions that beconmmass correctiorfat orderz) for the soliton quantum state is
unstable when quantum corrections are taken into accoungiven in terms of the eigenvalues of the B In the case of
These solutions are called lumps or bounces. unstable models, the decay rate of the false vac(innthe
In 1+ 1 dimensions any scalar field-theoretical model isso-called thin wall approximatioris given in terms of the
renormalizable. In order to render the theory finite it sufficeseigenvalues of the SE]. Anyway, in both cases, in order to
to use a normal ordering prescription. But, as is well knownobtain analytical information it will be necessary that the SE
one of the main interests in (11)-dimensional quantum be exactly solvable. Then it will be interesting to obtain
field theory is the possibility of understanding their nonper-field-theoretical models starting from exactly solvable SE’s
turbative aspects. And this is the reason why we should naince in this case we have a chance to perform analytical
consider arbitrary models, since we will not be always ablecalculations. We believe this fact was first stressed in Ref.
to perform a nonperturbative analysis. One of the nonperturf5]. More recently, using supersymmetric quantum mechan-
bative aspects is the solitonic sector of a model. In this sed¢s this research program was continued in Rggsand[7].
tor, there are some mode(the so-called integrable modgls For other interesting references see, for instaf@g)] and
that can be solved exactly at the classical and quantum levdl10]. We would like to stress that previously to these works,
The best known example is the sine-Gordon md@¢l On  in Ref.[11], the author suggested the construction of solito-
the other hand, the (1) ¢* kink model admits exact kink- nic profiles using isospectral Hamiltonians.
like solutions at the classical level and admits an analytical The organization of this paper is the following: In Sec. Il
treatment at the semiclassical level; i.e. we can computeve show how to construct scalar field theory models from
guantum corrections at ordér. In this paper we are inter- zero mode solutions. In Sec. Il we analyze the models that
ested in the construction of models of this type. In order toarise from the Rosen-Morse Il hyperbolic potential. In Secs.
IV and V we perform the same analysis for the Morse and
the Scarf Il hyperbolic potentials, respectively. In Sec. VI we

*Email address: gflores@cbpf.br give a renormalized expression for the quantum mass correc-

TPermanent address: Centro Brasileiro de Pesquisas Fisicas, Rions for the model constructed in Sec. V and evaluate it
de Janeiro, RJ 22290-180, Brazil. Email address: numerically. Conclusions are given in Sec. VII. The reader
svaiter@Ins.mit.edu, nfuxsvai@cbpf.br that is more interested in the computation of quantum mass
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an equation that is known as the Bogomol'nyi condition
[12]. From Eq.(2.9) it is straightforward to obtain the kinks

\ / \ or lumps(we denote them a&.) by solving the integral

X
1 2 [} 3 4\ ¢ X—Xo= o )d—¢ (2.9
V2U(¢)
(a) (b) . .
and inverting it.
FIG. 1. (a) U(¢) with two degenerate vacua aflg) with a false Next, we can consider the first quantum corrections
vacuum. around the classical static field configuration. For such pur-

pose, we expand the time-dependent figlc,t) around the
corrections can go directly to Sec. VI. Throughout this papestatic field configuration, i.e¢(X,t)=¢(x)+ n(x,t), re-
we use the words kink and soliton as synonymous. Also welace it in Eq.(2.1) and retaining only quadratic terngthis
use natural unité =c=1. approximation is valid at ordet) in » we obtain the fol-
lowing Lagrangian:

II. CONSTRUCTING THE FIELD THEORY MODELS 2

d<n
dt?

L=L[¢c]+f dx ;

In this section we briefly review how to construct scalar
field theory models starting from solvable Sctfirger equa-

tions. We start from a Lagrangian d?
50 TS T e0]] 7] (2.9
dx
1
L=fdx 50u¢ d=U(P)], 21D As a next step, we use the expansiom(x,t)

=3,0n(t) ¥n(x), and choosing the complete bagig,} as

whereu=0,1 andU(¢) is a density potential having at least solutions of the Schinger equation

two degenerate absolute minima as showed in Fig. dr a
local minima(a false vacuumas showed in Fig. (b). The
classical equation of motion for static configurations are
given from Eq.(2.1)

2

d
— 5 TUec(X)]

dx?

Pn(X)=0in(x),  (2.6)

we reduce the Lagrangian given by Eg.5) to

d? 1o .
d—x(f=U’<¢>- @2 L=Lldc]+5 2 (a7— i), 2.7

Equation(2.2) can be analyzed making use of a particle me_From Eq.(2.7) we see that the problem is reduced to a sys-

chanical analogy. Suppose thatdescribes the position of a tem of uncoupled harmonic oscillators. Now, the quantiza-
particle andx is the time. Consequently, E@2.2) is the tion program can be implementéalt 7 ordey in a standard

equation of motion of a particle in a conservative potential way. In particular, thebarg zero point energy is given by

—U(¢). In order to analyze Eq2.2) we have to take into [1]

account only the possible trajectories of the “particle” in the 1

inverted potential. We are interested only in solutions with a H=H[ ¢ ]+ > > o, (2.8
finite energy, in other words, solutions that have a finite in- n

terval of motion in¢ but that are not oscillatory. From the
inverted potential-U(¢) depicted in Fig. (a) it is easy to
see that such a requirement is satisfied only for the motio
that takes place between the absolute minima given by poin
1 and 2. Using the same argument for the case described by d

Fig. 1(b) we see that the only allowed motion is that which P(x)= d_¢°(x)' (2.9
starts in point 3, bounces in 4 and returns to point 3. In the X

first case the static soIl_Jtiorj is know as a kink, while in theFrorn Fig. 1a) one can see thati(dx) ¢, (the velocity in the
second case such solution is called a lump or a bounce. Fromarticle mechanical analogys zero only in the limitsx—
Figs. 1@ and 1b) we see that these solutions are integrals of ¥s Y

> : . . . +o; i.e. the zero mode eigenfunction has no nodes and then
motion with zero energy, using the particle mechanical analihe 220 is the lowest eigenvalue. All the's are real and
ogy. Then, from Eq(2.2) we obtain @ 9 '

consequently the kink remain stable when quantum correc-
tions are taken into account. On the other hand, from Fig.
1(b) one can see thatd(dx)¢. is zero for some finitex

=Xg In the returning point 4(we can always choose this

Taking the derivative of Eq2.2) it is easy to show that Eq.
r(12'6) admits a zero modea?=0) solution with eigenfunc-
flon given by

1
2

do)\?
&> =U(¢), 2.3
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point by translational invariance as correspondingxtp Vv
=0). In this case the the zero mode eigenfunction has a
node, and therw?=0 is not the lowest eigenvalue. There
exist one negative eigenvalu€<0 and then one imaginary
w. In this situation, the lump becomes unstable by quantum
corrections. In this case E€R.8) has no direct physical in-
terpretation, but its imaginary part signalizes the decay of the
false vacuuni13,14]. \/ X
In both cases, to go further we have to solve a one-
dimensional SE that in general cannot be solved analytically.
Instead of trying to solve general SE’s, we can adopt a dif- FIG. 2. The Rosen-Morse Il hyperbolic potential.
ferent approach. We can start from an exactly solvable SE to
obtain the field theory model associated with it. The steps iwhere\? is the first excited eigenvalue associated Wiix)
this program are the following: first, solve E.9) for andm is a mass scale factor. The above relation between
de(X), V(x) andU"[ ¢.(x)] in the case of unstable models is nec-
essary in order to satisfy the requirement that the first excited
¢C(X)=fxl/f()/)dy- (2.10 Sﬁjgfunction associated with"[ ¢.(x)] has zero eigen-

The second one is to invert ER.10 with respect tox

obtainingx=x( ). Third, we replace Eq2.9) in Eq. (2.3 Ill. THE ROSEN-MORSE Il HYPERBOLIC POTENTIAL

to obtainU (¢.): As we have discussed in the preceding section, the Rosen-
d’ Morse Il hyperbolic potential is given by
c 2
V(x)=A?+ — — ————+2Btanhx),
A% coslf(x)

Finally we can remove the subscript,” obtaining in this
way the scalar field-theoretic model. Since the zero mode |B|<AZ. (3.1
eigenfunction(x), as given by Eq(2.9), is not normalized
we shall obtain the field-theoretic models modulo the cou-This potential is showed in Fig. 2 assumiBg>0. This po-
pling constants. With the functional form &f(¢) in hand tential admits discrete and continuous eigenfunctions. The
we can choose the coupling constants adequately. This is tliiscrete eigenfunctions and eigenvalues are given, respec-
reason why in many places we will drop out deliberatelytively, by [15]
some numerical factors. b b2 (ab

In the following sections we will construct field-theoretic Un(X)=(1=y)¥2(1+y)"2 PEP)(y) (3.2
models starting from integrable SE’s with three different po-
tentials[15]: the Rosen-Morse Il hyperbolic potential and

B? B?
B2 A(A+1 2 N2 (pA_m24 2
V(X)=A2+E—(T(;+28tanr(x), A=A (A-n) +A2 (A—m)2’
cosif(x

In Eg. (3.2 we have a=A—n+B/(A—n), b=A—-n
—B/(A—n), y=tanh§) and P{*P)(y) are the Jacobi poly-

V(x)=AZ%+B2exp(2x) —B(2A+ 1)exp(x) (2.13 nomials[16]. The continuougscattering eigenfunctions be-
have asymptotically aGssumingd>0)

the Morse potential

and finally the Scarf Il hyperbolic potential

d*+ae kX x——o
B2—A2—A W)= -«
V(x)=A%+ ;JFB(zA 1) anix) b,  x—e
cosH(x) oshx) ) s
(2.14 for A®—2B<\<A“+2B (3.43
Before constructing the field theory models starting from kX e k% X— — 0
these potentials, we would like to clarify about the exact (X)) = ik, x
. . dke| +7, X— 0
relation betweerV(x) and U"[ ¢.(x)] that appears in Eq.
(2.6). For all the above potentials the ground state eigenfunc- for A%+ ZB<)\ﬁ<oo (3.4b

tion has zero eigenvalugl5]. Then, in the case of stable
models we have)"[ ¢.(x)]=m?V(mx) and in the case of and where the continuous eigenvaqu% are expressed in
unstable models we have&)"[ ¢ (x)]=m?[V(mx)—\?2], terms ofk_, k, andx, respectively, by
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N2=k? +(A%-2B), (3.5

N2=k2 +(A%+2B), (3.6
and

N2=— K%+ (A%+2B). (3.7

The coefficientsa,, by, ¢, and d, that appear in Egs.
(3.4b can be computed exactfL7].

PHYSICAL REVIEW D66, 025031 (2002

i.e. we recover the sine-Gordon model. FPor 2, we obtain
from Eq. (3.1 y= ¢.(x) and using this result in Eq3.12
we get

U(¢)=(¢*—1)% (3.15

i.e. we recover the* kink model. As we have mentioned the
integral given by Eq(3.11) can be computed for any integer
value of A. But for A>2 the resulting expression cannot be
inverted, and then it will not be possible to recover the field-
theoretical model for this case. We would like to stress the

To construct field-theoretic models that support kink—likefonov\,ing point. We are considering the case in whi¢{x)
solutlons(gtable modelsfrom the above potentlal_, we havg = —A(A+1)/cosR(x) for A integer. Such potentials have
to work with the ground state, the zero node eigenfunctionyoty discrete and continuous modes with the advantageous
o(x). On the other hand, to construct field theory modelsyyoperty of being reflectionless. The first quantum correc-
that support lump-like solutions we have to consider thejons for the(bare mass of the kinks are given by E(.8)

eigenfunction with one nodé(x).

A. Stable models

To obtain the kinks from the potential given by H8.1)
we have to integrate the ground state eigenfunctig(x)
that can be obtained from E¢B.2) takingn=0:

Yo(X)=(1—y)¥*(1+y)""2 (3.8
Using the above expression in EQ.10 we obtain
be(X)= Jtaﬂh(X)(l_y)aIZ(l;L y)b’2dy, (3.9
1-y
and from Eq.(2.11) we obtain, forU(¢,),
U(do)=(1-y)*(1+y)". (3.10

In general, the integral in Eq3.9 cannot be performed
analytically. Consequently, we restrict ourselves to the fol-

lowing cases.

1. B=0

In this casea=b=A, and Egs(3.9), (3.10 become, re-
spectively,

be(X)= ftanh(X)(l— y?)A-2Ady, (3.11

U(go)=(1-yHA (3.12

The integral in Eq(3.11) can be performed in terms of el-

ementary functions only for thé integer. ForA=1, we
obtain

be(x)=sin"(y). (3.13

Solving the above equation and substituting in 412 we
obtain (after deleting the subscrigf

1
U(¢)=5[1-cog2¢)], (3.14

after subtracting the zero point energy of the trivial vacuum.
To sum the continuous modes we have to know the density
of states that can be given in terms of the phase shift of the
one-dimensional scattering problem. In general this sum is
logarithmically divergent and we need to renormalize the
theory. But in two-dimensional scalar field theories such di-
vergences can be eliminated using a normal ordering pre-
scription only. This property was used in RE8] to find a
finite result for the quantum corrections to the mass of the
static solitons. Moreover, in the case of reflectionless poten-
tials, the authors obtained the quantum mass corrections only
in terms of the discrete eigenvalues of the associated SE.
Then in the present case it will be possible to obtain the kink
guantum mass corrections without explicit knowledge of the
theoretical models that permit such kink solutions. This task
has been done in Rgf19].

2. B#0
In this casea#b. We can rewrite Eq(3.9) as

tanh(x)
pe0= [ 1y DRy Ry,
(3.1
Choosing &—2)/2=r and b—2)/2=s, we have

tanh(x)
p00= [ amyyaiyray. @17
Let us consider the case in whiagh=0. Then, from Eq.
(3.17 we obtain

dc(x)=[1+tank(x)]>*, (3.18
which can be solved foy=tanh{). Replacing this solution
in EQ. (3.10 we obtain

U(¢):¢2(2_¢1/(S+1))2.

We see that for the values such that 1/6+ 1) is fraction-
ary, we will have in some casd$or example, when 14
+1)=1/2] complex values fotJ (). For such values af,
we can redefingp/ct1) as () Y261 to makeU(¢) a
real-valued function, but in this way we will generate discon-

(3.19
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tinuities in the derivatives obJ(¢). If we takes such that tering of particles incoming from— o the solution is quali-

1/(s+1)=2I, with | integer, we get tatively similar to the case in which?>m? but is quanti-
tatively different[30].
U(¢)=p?(2— ¢?)?, (3.20 In the next section we will analyze the unstable models
(bounces.
i.e. we obtain a polynomial field-theoretical model with three
degenerate vacua. The cdsel is the $® model with three B. Unstable models
degenerate vacua. This model was considered in [i26f, In this case the bounce-like solutions are obtained inte-

where the author obtained an expression for the renorm51liz<9(5h,[ing then=1 case of Eq(3.2):

mass of the soliton. It is interesting to point out that in Ref.

[4], the authors obtained the same kink-like solutions asso- 4, (x)=(1-y)¥(1+y)*(a+b+2)y+a—b];
ciated with this model by studying the vacuum decay rate in 3.22
the massiveﬁgD model in the thin wall approximation. If we

set 1/6+1)= (21 +1) with anl integer we get then integrating the above equation we obtain

U(9)= 22— §7 1) @oy P
tanh() (1—y)¥2(1+y)* (a+b+2)y+a—b]
i.e. we obtain polynomial field-theoretic models with two :f 1—y2 dy,
degenerate vacua. The cdsel is the ¢® model with two y
degenerate vacua that was obtained also in R@f.If we (3.23

consider the case in whics=0, we obtain the same con-
figurations as that in the case: 0. If we consider the case in
which bothr ands are integers we can still integrate Eq. —(1_\na b _h12
(3.17), but in this case it will not be possible to invert the U(d)=(1-y)*(1+y)[(atb+2)y+a-b] '(3‘24)
resulting expression.

Before constructing the unstable models we would like towe can perform the integration in E.23 in the following
comment about the stable models constructed in this sectiogases.
As we have commented in the Introduction, the continuous
solutions of the SE describe the scattering of partiteso- 1. B=0
ciated with the trivial vacuaby the soliton quantum state
[3]. The (squared mass of the particles are given by

and the field-theoretical unstable models are given by

In this casea=b. Consequently we have, faf,(x),

U"[ ¢p.(£)] since the asymptotic values of the kink solu- sinh(x)
tion are equal to the trivial vacua of the theory. Setting the P (X)=2A———, (3.25
mass scale factan=1 we can identify the mass of the par- cosH(x)

ticles with V(*+) (in this case we have?=\?2). In the
case of the models associated with the Rosen-Morse |l h .
perbolic potential, the scattering data can be obtained fron‘?btaln

Egs. (3.4b. For B=0 this potential is symmetrick(. =k,

and the particles have the same mass=A?), and only the bu(X)= —————
solutions forA?<\2<e make sense. In this case, for the ¢ cosH' " 1(x)
integer the potential is reflectionless, &0). Then, in the o ] o
case of the sine-Gordo& 1) andé* kink (A=2) models, _Solvmg in the above _equathn fgr= tanhéf) and substltutlng
incoming particles fronx— — are completely transmitted I Eq. (3.24 we obta_m the flel_d—theoretlc models described
to x—o. The only effect of the scattering is .tﬁr(lke) appearance?y the class of density potentials

of a phase shift in their wave functiond =€ °")). For B AL 204 L 2IA-1

#0 (the case of the® and ¢ kink model$ the (squared U($)=(A-1)¢*(1-¢"4D). (327
mass of the particles is different and given by =(A?  For A=2 we have the unstablé* model. This model has
—2B), m? =(A%+2B). The scattering picture in this case is been used in Ref21] as a field-theoretic model for the study
as follows: incoming particles from— —c with (squaredl  of the kinematics of first order phase transitions. Bor 3
energiesw;, such thatm® <wi<m?, are completely re- we obtain the unstable® model. This last model has been
flected by the soliton quantum state into particles of the samased as a laboratory for computing the decay rate of a system
mass. On the other hand, incoming particles frem —  trapped in a false vacuufi22]. Also, recently thep® model

with energies such that§> m? , are scattered by the soliton has been used as an exactly solvable toy model for tachyon
guantum state into transmitted and reflected particles of difeondensation in string field theof23]. We have to stress
ferent masses. The transmitted particles have maswhile  that we must assum&>0 to guarantee the normalizability
the reflected particles have mams equal to the mass of the of ¢4(x). In Ref.[7], the authors considered the ca&e
incoming particles. Note that Eq3.4b only describes the —1 and obtained the Liouville modgR4]. But in this case it
scattering of particles incoming from— — . For the scat- is easy to see that the classical solutions that meet or leave

);imd the integral in Eq(3.23 can be easily performed. We

(3.2

025031-5



G. FLORES-HIDALGO AND N. F. SVAITER PHYSICAL REVIEW D66, 025031 (2002

the unique asymptotic vacuum have an infinite energy, thaince the error function cannot be inverted, it will be not

is, such solutions are not lumps. possible to obtain the field theory model associated with this
SE. We remark here that although E&.34) cannot be in-
2. B#0 verted it is possible to obtain the field theory model implic-

itly in terms of other fields. This was done in REZ5] where

the field is redefined in terms of the so-called tachyon field.

Note that in this cas®¥(*)=0o0. But from this one cannot

conclude that the mass of the particles associated with the

quantum fluctuations around the trivial vacua is infinity. In

1-y? this case we cannot speak about particles since in this case

tanh) (1— y) 321+ y)PP2 we do not have continuous_ solutions, i.e. there are no solu-
+(a— b)f dy. (3.28 fions that behave asymptotically as plane waves. .

1—y? In order to obtain the unstable model, we consider the first
excited eigenfunction, given by
The above integral can be performed for some particular val-

In this casea# b and the integral given by E¢3.23 can
be written as

tar'W)y(1—y)é""’(1+y)"’2d

d(X)=(b+a+ 2)f

ues ofa,b but the resulting expression is not invertible, and ,j,l(x)zxe*XZ/Z, (3.39
in this case we cannot recover the unstable field-theoretical
models. which implies that the unstable field theory model will be

given by the density potential
C. The A— o limit

. 1
The SE given by U(de) = §{¢1[X(¢c)]}2
d? B2 (A+1) 2B R ,
— E +A+ E — m'f' Ttanr(x/ A) | ¢ (X) =[x( ¢C)]Zef[x(¢c)] ) (3.36
zy\ﬁwn(x), (3.29 In this case the bounce profile is obtained easily,

can be put in the form given by E¢.1) makingx=\Az. In I Ry

: : : de(x)= | ye ' dy
this case the e|genvalua§ are given by

1 B2 B2 —e X2 3.3
M= x| AP (A=) — - 1t (337
AT (A=) Inverting the above equation and using the resulting expres-
n=0,1,2...<A. (3.30  sion in Eq.(3.36 we get
Note that whenA—o the number of eigenvalues goes to U(¢)=— ¢?In ¢?, (3.38
infinity. If we keepB fixed and take the limiA—o in the i ) ) .
above equations we obtain a field-theoretical unstable model that has been considered in
Ref.[26] as a field-theoretical toy model for tachyon conden-
2 sation in superstring field theory.
— o2 IR0 =AR 0 (33D
X IV. THE MORSE POTENTIAL: THE  ¢2In?(¢® MODEL

and The Morse potential is given by

Na=2n, n=0,1,2 (3.32 V(x)=A%+B?%exp(2x)— B(2A+ 1)exp(x). (4.1

i.e. we obtain the SE for an harmonic oscillator. In order t0Thjs potential is showed in Fig. 3. Also in this case the SE
obtain a stable field theory model we consider the grounghas discrete and continuous solutions. The discrete eigen-

state eigenfunction given by functions and eigenvalues are given, respectively, by
do(x) =€ X", (3.33 Pa(X)=yA e V2R () y=2B€, (4.2
which allows us to obtain the kink-like solution and
¢C(X):fxefy2/zdy N2=A2—(A-n)?,  n=012...<A, (4.3

while the continuougscattering solutions behave asymp-
=erf(x/\/2). (3.34 totically as
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FIG. 3. The Morse potential.

eikx+ ake—ikx,
bke_KX,

X— —®

4.9

(X)) = oo

where the continuous eigenvalu)e% are expressed in terms

of k and k, respectively, by
Ng=k*+AZ, (4.5
N2=— K%+ A2, (4.6)

Also in this case the coefficients,, b, can be computed
exactly[17].

PHYSICAL REVIEW D66, 025031 (2002

-0 0 ¢

[0 (O]

FIG. 4. The density potentidl (¢) given by Eq.(4.11).

In the present case the scattering of particles by the soli-
ton quantum state as given by Ed.4) is totally different
than that in the case of the sine-Gordon afckink models.
Particles with squared masé(—o) incoming from x—

—o are totally reflected by the soliton quantum state into
particles of the same mass. In this case the soliton quantum
state acts as an impenetrable barrier. Sincexfere the
solutions do not behave as plane waves, we cannot interpret
V(o)= as the squared mass of particles associated with
the trivial vacuume()=0, as given by Eq(4.10. This

also can be concluded from E(.6), where we see that
there is no Einstein-type dispersion relation. We have to re-
mark that this phenomenon also occurs for the models con-

In order to obtain the stable field-theoretical models westructed in Sec. Il A wittB+0 (for example, in thep® and

work with the ground state eigenfunctiafy, that can be
obtained from Eq(4.2) takingn=0,

Yo(x)=y"e V2, 4.7)
from which we can obtain the kink
&
be(X)= f A tgyizgy, 4.9

The stable field-theoretic models are now given by
U(p)=y*e.

The integral in Eq(4.8) can be performed only for integét
For A=1 we obtain

d(X)=exp —Be€Y), (4.10

from which, solving fory=2Be* and replacing in Eq(4.9
we obtain

4.9

U(¢)=¢%In*(¢?). (4.1

¢ model3. Particles incoming fromx— —o with energy
such thatm? <w2<m? are totally reflected by the soliton
quantum state. For the model with the density potential given
by Eqg.(4.1) this happens for all energies. Then, in the pres-
ence of a soliton quantum state, particles can exist only for
x— —o (of course, if we consider the anti-soliton quantum
state particles can exist only far— ). Also we remark that
particles associated with the trivial vacua are defined only
perturbatively, i.e. we expand the density potential around
one of the trivial vacuag,, and identify the squared mass
with U”(¢,) and when this is infinity the perturbative expan-
sion is not possible and then in this case we cannot speak
about particles.

The density potential given by E¢.11) can be redefined
in such a way that there will appear coupling constants in the
model. Since we have constructed this field theory model
starting from a SE with a free parameték=1 andB arbi-
trary), and since we can rescale field and coordinates in the
Lagrangian(thus eliminating two coupling constaintswve
conclude that the density potential given by E411) can be
redefined with no more than three coupling constants. We
redefine Eq(4.11) with two coupling constants as

We have plotted the above density potential in Fig. 4, where
we see that there are three minima. One of which is located
at =0, i.e. we haveU’(0)=0. At this point we have
U”(0)=0o and also all the higher derivatives are infinity.
Although the integral in Eq.(4.8) can be done forA
=2,3,... itis notpossible to invert the resulting expression where we have chosen the numerical factors adequately.
to obtain the field-theoretical models in this cases. Also, inSolvingU’(¢)=0 we obtain that the three absolute minima
this case it is not possible to construct unstable models. are located at the poinig=0 and ¢ = = ¢, where

(4.12

a2¢2
am* )

2
U(¢>=%¢2In2<
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FIG. 5. The Scarf Il hyperbolic potential.
_3m2 4.1
Bo=—— (4.13
Using Eq.(4.12 in Eqg. (2.2) we obtain
3m? .
pe(X) = £ ——exp(— g" Moy, (4.14

We have two pairs of kink and anti-kink solutions that can
link ¢=—¢g and =0 or =0 and = ¢5. One can see
easily thatU”(+ ¢o) =m?, i.e.m? is the squared mass of the

PHYSICAL REVIEW D66, 025031 (2002

U

A./\/\./ |

FIG. 6. The density potentidl () given by Eq.(5.10.

P =()"(1+Yy?) ~Al2g-Btan (y)

X PE]iB—A—l/Z,—iB—A—l/Z)(y)’

y=sinh(x), (5.2

and
Na=AZ—(A—-n)?,

n=0,12...<A, (5.3

while the (scattering continuous eigenfunctions behave as-
ymptotically as

particles associated with the quantum fluctuations around the

trivial vacua at the pointst ¢y. As was mentioned for the
vacuum atp=0 we cannot speak about particles. Using Eq.
(4.12 we can see that the masses of the kirdasti-kinksg
solutions given by Eq(4.14 are the same and giveilas-
sically) by

2
o 1/d¢c\?> m? ) a2¢§
H[d)c]—f_de|§( dX) +?¢c In W
om® (= . .
:; dx e ™exp —2e™ ™)
o —

B 9m°®
4a%

(4.195

V. THE SCARF Il HYPERBOLIC POTENTIAL:
THE U(¢)= ¢p?cosIn(¢?) MODEL

The Scarf Il hyperbolic potential is given by

(B2—A2

A)
cosH(x)

tanh(x)
coshx) ’

V(x)=A%+ +B(2A+1)

(5.9

eikx+ake—ikx, X— — 00
P(X)= bkeikx, X300, (5.9
where the continuous eigenvalues are given by
N2=k?+ A2, (5.5

Also in this casea, andb, can be computed exact[yL7].
They are equal, respectively, to the reflection and transmis-
sion coefficient amplitudgsn Egs.(6.12 and(6.13 we give
them with a mass scale factor].

In order to obtain the stable field-theoretical models we
work with the zero node eigenfunction, obtained from Eq.
(5.2 takingn=0

Yo(X) = (1+y?) " M2g Bran o), (5.6
Then the field-theoretic models are given by
U()=(1+y?) Ae 2Bt "0, (5.7

Integrating Eq.(5.6) we obtain, fore,,
sinhtq 2\ —(A+1)/2,—Btan 1
pe0= [ gy e vre Bun gy s

The above integral can be performed analytically only when
A=1. In this case we obtain
d’c(x) — efB tan~ 1sinh(x), (5.9)

solving fory=sinh() and replacing in Eq(5.7) we obtain

U(¢)= ¢p*cos (5.10

1
Eln d)z)

This potential is showed in Fig. 5. In this case the discrete

eigenfunctions and eigenvalues are given, respectively, by

In Fig. 6 we have plotted this density potential ¥6r-0 and

025031-8
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under the assumptioB>0. As in the case of the Morse wherel(B) is given by
potential in this case it is not possible to construct unstable
models.

For the model with density potential given by E§.10 1(B)= fl ds &8s ko)
we have the following picture about the scattering of the _ '
particles by the soliton quantum state: From Exq4) we see
that the particles are scattered by the soliton quantum state
into reflected and transmitted particles of the same mas$rom Eq.(5.14 we see clearly that the masses are different
V(—=)=V(). Equation(5.4) only describes the scattering for different values oh.
of particles incoming from the left. For particles incoming  Before leaving this section we would like to make the
from the right the picture is qualitatively the same. But sincefollowing remark: Expanding the density potential given by
the potential is nonsymmetric the scattering is different quangq. (5.11) (for simplicity we chooséB=1/2) around one of

titatively [30]. the trivial vacua we obtain
Redefining the density potential given by E§.10 with

adequate coupling constants we can write

(5.19

a?¢? U(cp)=m—2<p2+ge’(1’4)(2”“)”<p3 iaze (W2)(2n+ 1) ;0
U(¢)— m?B?¢p?cos —In o | | (5.11 2776 4! m2
m
. o . (256) B B
This model has infinitely degenerate trivial vacua at the —e @nt1)m 64 O(e~ 42t )my (516
points ¢=* ¢,, with ¢, given by (81)6'
_3m? p(2n+1 B) 01490
Pn=— &P 5 7mB|, n=0x1=2,.... where o= (¢ =+ ¢,,). From this equation we see that for

(512  —o, U(e)=(m?/2)¢?, i.e. in the perturbative sectdfor

) o . ) n—oo) the model becomes free.
The kinks and anti-kinks are obtained using E2}2),

2

3m )
P(X)= iTexp[ant B tan lsinhimx)], VI. KINK QUANTUM MASS CORRECTIONS
IN THE U(¢)= ¢p*cogin(¢?) MODEL

n=0x1%2..., (5.13 As we have said in the Introduction, we have constructed

scalar field theory models starting from solvable SE’s since

where the solutions withX) signs in the exponents corre- thi h h i i i
spond to the kinks—anti-kinks solutions, respectively, for'l tNIS case we have a chance fo compute quantum correc-

each value oh and for each sign that appears in front. We tions. In this section we give a closed expression,(Ed5,

have an infinite number of kinks and anti-kinks that link thef(:r tr:edlqnlthuanturg_ mass t‘?orre:ﬁ'(t)a Int th? hn:r(])del con-
infinite number of trivial vacua. This reminds us in some STUCt€d IN the preceding section e stépat e ex-

sense of the sine-Gordon model. But contrary to the sine ception of a final integrationare done analytically and only

Gordon model, where all th@ne solitonic sectors describe the final integration is evaluated numerically. . .
the same physics, in the present model it is not the case. For The first(bare quantum corrections for the kink mass is
example, if we compute thélassical masses of the kinks given by

(or anti-kinkg we obtain

2 1 1
H[¢c] j dX[ (dd(ic) AMbarezzg wn_zzk: w(k), (61)

a2¢2
In( 9m4>

1
+3 m?B?¢$?cos

] where w, is given from Eq.(2.6), while w)= \k?+m? are
the free soliton modes and given from E.6) with
U"[ ¢o(x)] replaced byU”(+ ¢,)=m?. Equation(2.6) has

_ 9m°B2e?"™ discrete and continuous eigenvalues. The number of discrete
a2 modes are finite and we denote themwgs The continuous
modes are given bys(k)=\k?+m?. We note that these
» ) exd = 2B tan sin(mx)] continuous modes are equaldxﬁ, but from this one cannot
X _w X cosi(mx) conclude that Eq(6.1) is equal to the sum over the discrete

modes only. The reason is thaﬂ and w(k) have different

densities of states. We can divide E§.1) into a sum over

discrete modes and an integral over a continuum, represent-
1(B), (5.14 ; :

ing the latter in terms of the phase shift,

9m5 BZeZB nir
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1 > =dk d 1 s = dk d
(6.8
where §(k), the phase shift, is given by o .
Now we subtract from the phase shift its first Born approxi-
mation (this is equivalent to subtracting the tadpole graph,
1 see[28]). We must then add it back and we adopt the simple
(k)= 57 In desS(k). (63 renormalization condition that the countertertmich will
be present in the bare classical masancel the tadpole
graph and perform no additional finite renormalization be-
yond this cancellation. This renormalization prescription in
equivalent to a normal ordering prescription for the field op-
T(k) —R*(K)T(k)/T*(k) erators(see, for example, Reff18]). With this choice there is
S(k) = R . (6.4  nothing to add back and it is understood that the parameters
(k) T(k) - :
that will appear are the renormalized ones and then we can

) ) drop out the subscripbare The first Born approximation
where R(k) and T(k) are, respectively, the reflection and 5%(k) for the phase shift is given by

transmission coefficient amplitudes associated with the one-
dimensional scattering problem described by the continuous 1 (=
solutions of Eq.(2.6). Since the phase shift in general be- SY(k)=— —kf dx{U"[ ¢p(x)]—m?}. (6.9
haves like 1K for k—o we can see that the kink quantum 2k )
mass corrections given by E€6.2) are logarithmically di- ) oo o
vergent. Then we have to renormalize such expression ifNen subtracting this first Born approximation from E88)
order to obtain a finite physically meaningful quantity. In the W& obtain
present paper we use a method developed in [R&fs-29 to
give a finite renormalized expression for the kink quantum AM= % 2 (w;—m)
j

In the above equatioB8(k), the S matrix is given by[30]

mass corrections. In order to write a finite renormalized ex-

pression for Eq(6.2) the basic idea is to subtract from the

phase shift its first Born approximation. Since the first Born n fx%[w(k)—m]i[ﬁ(k)— SYK)]
approximation for the phase shift behaves likk this sub- 027 dk '
traction cancels the ultraviolet divergence. But the Born ap- 6.10
proximation is singular fok=0, and in order to overcome :

this infrared di\{ergenpe, beforg making such subtraction O"Riote that the method described here is restricted to models
uses the _one—dlmenspn_al Levinson theof&al. In the case for which the associated Scliinger potentials are finite and

of potentials that are finite and such thet—c)=V(x) the such thatV(—)=V(«) since for such cases the Levinson

one-dimensional Levinson theorem states {34 theorem is valid and also the integration in E8}9) is finite.
This is accomplished in the cases of the sine-Gordongthd
5(0)=nm— m (6.5) kink models and also for the model constructed in the pre-
2’ ' ceding section. Since the quantum mass correction for the
kinks of sine-Gordon ang* kink models are already know,
wheren is the number of bound states. This includes the halin the present paper we compute only the quantum mass
bound state ¢2=m?) that corresponds t&=0, counted corrections for the kinks of the model constructed in the
with a factor3. For example, in the free case we have thatpreceding section.
5(k)=0 everywhere and in this case we have a half bound Using Egs.(5.11) and(5.13 we find that
state with the wave function equal to a constant. We can

rewrite Eq.(6.2) by adding and subtractingy/4, obtaining (B2-2) ___tanimx)

1 m dk d cosr?(mx)+ cosiimx) |’
2 R Jarn iR (6.1
AMpare=7 ; 0= +fo 5— (k) g 8(k), (6.6

Note that as expected this potential is the cAsel of Eq.
(5.1) with a mass scale factor. For this potential the reflection
and transmission coefficient amplitudes are given, respec-
tively, by [17]

U ¢c(x)]=m?+m?

where now in the sum ovémwe are including the half bound
state with a3 contribution. We can rewrite Eq6.5) as

=dk d 1 ;
0=, 1+ | — (k) —=. 6. . sinh(B)
5 Jo 7 ko3 (-7 R(K) = = T(K) o (612

Subtractingm/2 times this equation from E¢6.6) we obtain  and

025031-10
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1 1
F(—l—ik/m)F(Z—ik/m)F(EIiB—ik/m)F(EiiB—ik/m)

T(k)= , (6.13

F(—ik/M)F(l—ik/m)Fz(%—ik/m)

where the signst in Eq. (6.12) refer to the kink and anti-kink-like solutions, respectively. Using &qgl11) in Eq. (6.9 we
obtain

1 m2 2
84 (k)= ~ - (B2~2). (6.14

Now, since by construction the above model possesses only one discrete eigenvalue equal to zero, and (&ih@)-HGsl4)
in Eq. (6.10 we obtain after some algebraic manipulations,

AM 1 (=dg q 1 |T(1/2-iB—iq)I'(1/2+iB—iq)I'%(1/2+iq)| B2
—:———f — —In —— — — |+ —. (6.15
m m Jo2m JgZ+ 1|21 |T(1/2+iB+iq)T(1/2—iB+iq)['3(1/2—iq)| d

The integration in the above equation cannot be done and-or this model we have a behavior for the scattering of par-
lytically but, for B=0 it vanishes, and in this case we obtain ticles by the soliton quantum state totally different from the
scattering of the particles by the solitons of the sine-Gordon
and ¢* kink models: particles are totally reflected by the
soliton quantum state. Although for this model we have not
computed the quantum corrections for the kink mass we be-
a result equal to the first quantum corrections for the kinklieve that the transmissionless property of the Morse poten-
mass in the sine-Gordon model. This result is expected sinagal will be of utility in solving this problem. Regarding

in Sec. Il we have shown that for such a case we recover thphysical applications, for example, this field-theoretical
sine-Gordon model starting from the potential given by Eq.model could be used to describe some physical situation for
(6.11) with B=0. For other values dB we can perform the tachyon condensation in superstring field theory, since this
integration only numerically. We have performed the integraimodel possesses one of the known properties of the tachyon
tion given by Eq.(6.15 numerically and plotted the result. effective action: Absence of plane wave solutions around the
This is shown in Fig. 7. From our numerical calculation we minima[31].

conclude that the quantum correction for the kink mass is In the case of the modet’co<In(¢?) constructed in Sec.
negative. We observe from Fig. 7 that the quantum correctioV we have been able to compute the kink quantum mass
for the kink mass becomes more negative for increa8ing corrections. Note that in deriving E¢6.10 we used the
Also sinceAM is real we conclude that the kink remains Levinson theorem stated in terms of the total phase shift,
stable(as expected by constructipwhen quantum correc- §(k). In Ref.[27] the authors refer to the Levinson theorem

AM(B=0)=—2, (6.16

tions are taken into account. separately for the symmetric and antisymmetric scattering
channels. In the present case this is not possible, since the
VIl. CONCLUSIONS decomposition of the phase shift in terms of symmetric and

antisymmetric scattering channels is possible only when the

In this paper we have obtained stable and unstable (Bchralinger potential is symmetrig30]. As we have previ-
+1) scalar models starting from exactly solvable SE’s. In

this way we have obtained two our knowledgge new
stable models that permit kink-like solutions. Starting from -°-32¢
the Morse potential we have obtained the mo@éln?(4?)
and starting from the Scarf Il hyperbolic potential we have
have obtained the model( ¢) = ¢2cosin(4?). Note that we
have analyzed only SE’s that reduce to hypergeometric or~
confluent hypergeometric equatiofib]. It will be interest-

ing to analyze othefmore complicated differential equa-
tions, for example the Heun or Lame equations and searct
for possible interesting field-theoretical models. 0.2 0.4 0.6 0.8 \1

-0.3251

0.331

-0.335

Note that the model constructed starting from the Morse
potential does not depend on the param&giEq. (4.11).
This can be easily understood from E4g.1), where we can
eliminate the parametd® making a translatiox— x—In B. FIG. 7. AM/m as function ofB.

-0.345
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ously mentioned, in the cad®=0 the kink quantum mass (5.11): in the perturbative sectaaround the vacuum with
correction is equal to the kink quantum mass correction im—) the theory is free but in the solitonic sector it is not,
the sine-Gordon model. From this one can expect to recovahe particles are scattered by the soliton quantum state. We
the sine-Gordon model fromp2cosin(¢?) taking the limit  do not know any other model in which this fact also occurs.
B—0 adequately. Actually this is not the case. The reason i&lso we would like to comment about the utility of this
that in deducing Eq(5.10 we have multipliedB by Eq.  method in testing some approximate and numerical methods
(5.9), introducing in this way(when B—0) an ambiguity. that have been developed in order to compute quantum cor-
Then, in this model, the ca®=0 only make sense as an rections around static field configurations. See for example
approximation for the kink quantum mass correction for[32]. Note that our computation is analytical; only a final
small B. Also from Eq.(6.14 we can see that wheB= V2 integration is done numerically and this numerical integra-
we haves'(k)=0 and in this cas\M,,,.=AM, i.e. at tion can be done easily. Although our calculation is not exact
order# the quantum correction for the kink mass is free ofit is precise, and then the present model can be used to test
divergences. Note that from E¢6.9) this will happen for the efficiency of numerical or approximate methods. Fre-
any model whereU"[ ¢.(x)]—m? is antisymmetric inx. quently, the sine-Gordon angf* kink models are used to test
Also we would like to call attention to the following fact: these methods, but as the authors claim, in many cases these
note that Eq(6.11) is independent ofi (the index that labels approximate or numerical methods pass the test because of
the locations of the perturbative vagu®emembering that the peculiarity of these models, i.e. the reflectionless prop-
the one-dimensional scattering problem described by therty of the Schrdinger potential$32] associated with these
continuous solutions of Ed2.6) is physically interpreted as models.

the scattering of the usual particles by the soliton quantum

state(s_ee[3]), we see th_at usual particles |.nter.act in the same ACKNOWLEDGMENTS

way with all the solitonic sector@hese solitonic sectors are

indexed withn). But in the final part of Sec. V we remarked  G.F.H. would like to thank N. Graham for interesting dis-
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