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Constructing bidimensional scalar field theory models from zero mode fluctuations
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In this paper we review how to construct scalar field theories in two-dimensional space-time that support
kink or bouncelike solutions starting from solvable Schro¨dinger equations. Three different Schro¨dinger poten-
tials are analyzed. We obtain two new models starting from the Morse and Scarf II hyperbolic potentials, i.e.
theU(f)5f2ln2(f2) andU(f)5f2cos2ln(f2) models, respectively. Also we give a closed expression for the
~renormalized! kink quantum mass corrections in the case of the second model and evaluate it numerically.
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I. INTRODUCTION

Solitons are solutions of nonlinear equations that have
following fundamental properties: their profile is stable, t
energy associated with them is finite and also they behav
particles in the sense that multisolitonic solutions behave
independent one-soliton solutions as time goes to infinity@1#.
Also, there is a less restricted class of solutions for nonlin
equations that has the same properties of solitonic solut
except the property of retaining their shape after collision
this case such solutions are called solitary waves. In gen
solitons can exist in any (d11)-dimensional space-time. I
the (111)-dimensional case, the static solutions are ca
kinks. These solutions link two degenerate trivial vacua
the theory. An important property of these solutions is t
they remain stable when quantum corrections are taken
account. On the other hand, there are solutions that bec
unstable when quantum corrections are taken into acco
These solutions are called lumps or bounces.

In 111 dimensions any scalar field-theoretical model
renormalizable. In order to render the theory finite it suffic
to use a normal ordering prescription. But, as is well know
one of the main interests in (111)-dimensional quantum
field theory is the possibility of understanding their nonp
turbative aspects. And this is the reason why we should
consider arbitrary models, since we will not be always a
to perform a nonperturbative analysis. One of the nonper
bative aspects is the solitonic sector of a model. In this s
tor, there are some models~the so-called integrable models!
that can be solved exactly at the classical and quantum le
The best known example is the sine-Gordon model@2#. On
the other hand, the (111) f4 kink model admits exact kink-
like solutions at the classical level and admits an analyt
treatment at the semiclassical level; i.e. we can comp
quantum corrections at order\. In this paper we are inter
ested in the construction of models of this type. In order
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do this, we make use of the fact that the first quantum c
rections around static soliton-like solutions are given by
one-dimensional Schro¨dinger equation~SE! and that the
ground state eigenfunction of this SE is equal to the spa
derivative of the kink-like solution. Also we will be inter
ested in the construction of models that permit lump-li
solutions. In this case we use the fact that the first exc
eigenfunction of the SE is equal to the spatial derivative
the lump-like solution. In both cases the eigenvalue of th
eigenfunctions is zero and this is the reason why they
called zero mode eigenfunctions. We call stable and unst
models the models that permit, respectively, kink and lum
like ~or bounce-like! solutions.

In the case of stable models the SE describes the exc
states of the soliton quantum state as well as the scatterin
particles by the soliton quantum state. Also the quant
mass correction~at order\) for the soliton quantum state i
given in terms of the eigenvalues of the SE@3#. In the case of
unstable models, the decay rate of the false vacuum~in the
so-called thin wall approximation! is given in terms of the
eigenvalues of the SE@4#. Anyway, in both cases, in order t
obtain analytical information it will be necessary that the S
be exactly solvable. Then it will be interesting to obta
field-theoretical models starting from exactly solvable SE
since in this case we have a chance to perform analyt
calculations. We believe this fact was first stressed in R
@5#. More recently, using supersymmetric quantum mech
ics this research program was continued in Refs.@6# and@7#.
For other interesting references see, for instance,@8,9# and
@10#. We would like to stress that previously to these wor
in Ref. @11#, the author suggested the construction of soli
nic profiles using isospectral Hamiltonians.

The organization of this paper is the following: In Sec.
we show how to construct scalar field theory models fro
zero mode solutions. In Sec. III we analyze the models t
arise from the Rosen-Morse II hyperbolic potential. In Se
IV and V we perform the same analysis for the Morse a
the Scarf II hyperbolic potentials, respectively. In Sec. VI w
give a renormalized expression for the quantum mass cor
tions for the model constructed in Sec. V and evaluate
numerically. Conclusions are given in Sec. VII. The read
that is more interested in the computation of quantum m

Rio
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G. FLORES-HIDALGO AND N. F. SVAITER PHYSICAL REVIEW D66, 025031 ~2002!
corrections can go directly to Sec. VI. Throughout this pa
we use the words kink and soliton as synonymous. Also
use natural units\5c51.

II. CONSTRUCTING THE FIELD THEORY MODELS

In this section we briefly review how to construct sca
field theory models starting from solvable Schro¨dinger equa-
tions. We start from a Lagrangian

L5E dxS 1

2
]mf ]mf2U~f! D , ~2.1!

wherem50,1 andU(f) is a density potential having at lea
two degenerate absolute minima as showed in Fig. 1~a! or a
local minima~a false vacuum! as showed in Fig. 1~b!. The
classical equation of motion for static configurations a
given from Eq.~2.1!

d2f

dx2
5U8~f!. ~2.2!

Equation~2.2! can be analyzed making use of a particle m
chanical analogy. Suppose thatf describes the position of
particle andx is the time. Consequently, Eq.~2.2! is the
equation of motion of a particle in a conservative potent
2U(f). In order to analyze Eq.~2.2! we have to take into
account only the possible trajectories of the ‘‘particle’’ in th
inverted potential. We are interested only in solutions wit
finite energy, in other words, solutions that have a finite
terval of motion inf but that are not oscillatory. From th
inverted potential2U(f) depicted in Fig. 1~a! it is easy to
see that such a requirement is satisfied only for the mo
that takes place between the absolute minima given by po
1 and 2. Using the same argument for the case describe
Fig. 1~b! we see that the only allowed motion is that whi
starts in point 3, bounces in 4 and returns to point 3. In
first case the static solution is know as a kink, while in t
second case such solution is called a lump or a bounce. F
Figs. 1~a! and 1~b! we see that these solutions are integrals
motion with zero energy, using the particle mechanical an
ogy. Then, from Eq.~2.2! we obtain

1

2 S df

dx D 2

5U~f!, ~2.3!

FIG. 1. ~a! U(f) with two degenerate vacua and~b! with a false
vacuum.
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an equation that is known as the Bogomol’nyi conditi
@12#. From Eq.~2.3! it is straightforward to obtain the kinks
or lumps~we denote them asfc) by solving the integral

x2x05Efc(x) df

A2U~f!
~2.4!

and inverting it.
Next, we can consider the first quantum correctio

around the classical static field configuration. For such p
pose, we expand the time-dependent fieldf(x,t) around the
static field configuration, i.e.f(x,t)5fc(x)1h(x,t), re-
place it in Eq.~2.1! and retaining only quadratic terms~this
approximation is valid at order\) in h we obtain the fol-
lowing Lagrangian:

L5L@fc#1E dxF1

2

d2h

dt2

2
1

2
hS 2

d2

dx2
1U9@fc~x!# D hG . ~2.5!

As a next step, we use the expansionh(x,t)
5(nqn(t)cn(x), and choosing the complete basis$cn% as
solutions of the Schro¨dinger equation

F2
d2

dx2
1U9@fc~x!#Gcn~x!5vn

2cn~x!, ~2.6!

we reduce the Lagrangian given by Eq.~2.5! to

L5L@fc#1
1

2 (
n

~ q̇n
22vn

2qn
2!. ~2.7!

From Eq.~2.7! we see that the problem is reduced to a s
tem of uncoupled harmonic oscillators. Now, the quanti
tion program can be implemented~at \ order! in a standard
way. In particular, the~bare! zero point energy is given by
@1#

H5H@fc#1
1

2 (
n

vn . ~2.8!

Taking the derivative of Eq.~2.2! it is easy to show that Eq
~2.6! admits a zero mode (v250) solution with eigenfunc-
tion given by

c~x!5
d

dx
fc~x!. ~2.9!

From Fig. 1~a! one can see that (d/dx)fc ~the velocity in the
particle mechanical analogy! is zero only in the limitsx→
6`; i.e. the zero mode eigenfunction has no nodes and t
the v250 is the lowest eigenvalue. All thev ’s are real and
consequently the kink remain stable when quantum cor
tions are taken into account. On the other hand, from F
1~b! one can see that (d/dx)fc is zero for some finitex
5x0 in the returning point 4~we can always choose thi
1-2
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CONSTRUCTING BIDIMENSIONAL SCALAR FIELD . . . PHYSICAL REVIEW D66, 025031 ~2002!
point by translational invariance as corresponding tox0
50). In this case the the zero mode eigenfunction ha
node, and thenv250 is not the lowest eigenvalue. The
exist one negative eigenvaluev2,0 and then one imaginar
v. In this situation, the lump becomes unstable by quan
corrections. In this case Eq.~2.8! has no direct physical in
terpretation, but its imaginary part signalizes the decay of
false vacuum@13,14#.

In both cases, to go further we have to solve a o
dimensional SE that in general cannot be solved analytic
Instead of trying to solve general SE’s, we can adopt a
ferent approach. We can start from an exactly solvable S
obtain the field theory model associated with it. The step
this program are the following: first, solve Eq.~2.9! for
fc(x),

fc~x!5Ex

c~y!dy. ~2.10!

The second one is to invert Eq.~2.10! with respect tox
obtainingx5x(fc). Third, we replace Eq.~2.9! in Eq. ~2.3!
to obtainU(fc):

U~fc!5
1

2 H dfc

dx J 2

5
1

2
$c0@x~fc!#%

2. ~2.11!

Finally we can remove the subscript ‘‘c,’’ obtaining in this
way the scalar field-theoretic model. Since the zero m
eigenfunctionc(x), as given by Eq.~2.9!, is not normalized
we shall obtain the field-theoretic models modulo the c
pling constants. With the functional form ofU(f) in hand
we can choose the coupling constants adequately. This is
reason why in many places we will drop out deliberate
some numerical factors.

In the following sections we will construct field-theoret
models starting from integrable SE’s with three different p
tentials@15#: the Rosen-Morse II hyperbolic potential

V~x!5A21
B2

A2
2

A~A11!

cosh2~x!
12Btanh~x!,

uBu,A2, ~2.12!

the Morse potential

V~x!5A21B2exp~2x!2B~2A11!exp~x! ~2.13!

and finally the Scarf II hyperbolic potential

V~x!5A21
~B22A22A!

cosh2~x!
1B~2A11!

tanh~x!

cosh~x!
.

~2.14!

Before constructing the field theory models starting fro
these potentials, we would like to clarify about the exa
relation betweenV(x) and U9@fc(x)# that appears in Eq
~2.6!. For all the above potentials the ground state eigenfu
tion has zero eigenvalue@15#. Then, in the case of stabl
models we haveU9@fc(x)#5m2V(mx) and in the case o
unstable models we haveU9@fc(x)#5m2@V(mx)2l2#,
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a

m

e

-
y.
f-
to
in

e

-

he

-

t

c-

wherel2 is the first excited eigenvalue associated withV(x)
and m is a mass scale factor. The above relation betw
V(x) andU9@fc(x)# in the case of unstable models is ne
essary in order to satisfy the requirement that the first exc
eigenfunction associated withU9@fc(x)# has zero eigen-
value.

III. THE ROSEN-MORSE II HYPERBOLIC POTENTIAL

As we have discussed in the preceding section, the Ro
Morse II hyperbolic potential is given by

V~x!5A21
B2

A2
2

A~A11!

cosh2~x!
12B tanh~x!,

uBu,A2. ~3.1!

This potential is showed in Fig. 2 assumingB.0. This po-
tential admits discrete and continuous eigenfunctions. T
discrete eigenfunctions and eigenvalues are given, res
tively, by @15#

cn~x!5~12y!a/2~11y!b/2 Pn
(a,b)~y! ~3.2!

and

ln
25A22~A2n!21

B2

A2
2

B2

~A2n!2
,

n50,1,2, . . . ,A. ~3.3!

In Eq. ~3.2! we have a5A2n1B/(A2n), b5A2n
2B/(A2n), y5tanh(x) and Pn

(a,b)(y) are the Jacobi poly-
nomials@16#. The continuous~scattering! eigenfunctions be-
have asymptotically as~assumingB.0)

ck~x!5H eik2x1ake
2 ik2x, x→2`

bke
2kx, x→`

for A222B,lk
2,A212B ~3.4a!

ck~x!5H eik2x1cke
2 ik2x, x→2`

dke
ik1x, x→`

for A212B,lk
2,` ~3.4b!

and where the continuous eigenvalueslk
2 are expressed in

terms ofk2 , k1 andk, respectively, by

FIG. 2. The Rosen-Morse II hyperbolic potential.
1-3
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lk
25k2

2 1~A222B!, ~3.5!

lk
25k1

2 1~A212B!, ~3.6!

and

lk
252k21~A212B!. ~3.7!

The coefficientsak , bk , ck and dk that appear in Eqs
~3.4b! can be computed exactly@17#.

To construct field-theoretic models that support kink-li
solutions~stable models! from the above potential, we hav
to work with the ground state, the zero node eigenfunct
c0(x). On the other hand, to construct field theory mod
that support lump-like solutions we have to consider
eigenfunction with one nodec1(x).

A. Stable models

To obtain the kinks from the potential given by Eq.~3.1!
we have to integrate the ground state eigenfunctionc0(x)
that can be obtained from Eq.~3.2! taking n50:

c0~x!5~12y!a/2~11y!b/2. ~3.8!

Using the above expression in Eq.~2.10! we obtain

fc~x!5E tanh(x)~12y!a/2~11y!b/2

12y2
dy, ~3.9!

and from Eq.~2.11! we obtain, forU(fc),

U~fc!5~12y!a~11y!b. ~3.10!

In general, the integral in Eq.~3.9! cannot be performed
analytically. Consequently, we restrict ourselves to the
lowing cases.

1. BÄ0

In this casea5b5A, and Eqs.~3.9!, ~3.10! become, re-
spectively,

fc~x!5E tanh(x)

~12y2!(A22)/2dy, ~3.11!

U~fc!5~12y2!A. ~3.12!

The integral in Eq.~3.11! can be performed in terms of e
ementary functions only for theA integer. ForA51, we
obtain

fc~x!5sin21~y!. ~3.13!

Solving the above equation and substituting in Eq.~3.12! we
obtain ~after deleting the subscriptc)

U~f!5
1

2
@12cos~2f!#, ~3.14!
02503
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i.e. we recover the sine-Gordon model. ForA52, we obtain
from Eq. ~3.11! y5fc(x) and using this result in Eq.~3.12!
we get

U~f!5~f221!2, ~3.15!

i.e. we recover thef4 kink model. As we have mentioned th
integral given by Eq.~3.11! can be computed for any intege
value ofA. But for A.2 the resulting expression cannot b
inverted, and then it will not be possible to recover the fie
theoretical model for this case. We would like to stress
following point. We are considering the case in whichV(x)
52A(A11)/cosh2(x) for A integer. Such potentials hav
both discrete and continuous modes with the advantage
property of being reflectionless. The first quantum corr
tions for the~bare! mass of the kinks are given by Eq.~2.8!
after subtracting the zero point energy of the trivial vacuu
To sum the continuous modes we have to know the den
of states that can be given in terms of the phase shift of
one-dimensional scattering problem. In general this sum
logarithmically divergent and we need to renormalize t
theory. But in two-dimensional scalar field theories such
vergences can be eliminated using a normal ordering
scription only. This property was used in Ref.@18# to find a
finite result for the quantum corrections to the mass of
static solitons. Moreover, in the case of reflectionless pot
tials, the authors obtained the quantum mass corrections
in terms of the discrete eigenvalues of the associated
Then in the present case it will be possible to obtain the k
quantum mass corrections without explicit knowledge of
theoretical models that permit such kink solutions. This ta
has been done in Ref.@19#.

2. BÅ0

In this caseaÞb. We can rewrite Eq.~3.9! as

fc~x!5E tanh(x)

~12y!(a22)/2~11y!(b22)/2dy.

~3.16!

Choosing (a22)/25r and (b22)/25s, we have

fc~x!5E tanh(x)

~12y!r~11y!sdy. ~3.17!

Let us consider the case in whichr 50. Then, from Eq.
~3.17! we obtain

fc~x!5@11tanh~x!#s11, ~3.18!

which can be solved fory5tanh(x). Replacing this solution
in Eq. ~3.10! we obtain

U~f!5f2~22f1/(s11)!2. ~3.19!

We see that for the values ofs such that 1/(s11) is fraction-
ary, we will have in some cases@for example, when 1/(s
11)51/2# complex values forU(f). For such values ofs,
we can redefinef1/(s11) as (f2)1/2(s11) to makeU(f) a
real-valued function, but in this way we will generate disco
1-4
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tinuities in the derivatives ofU(f). If we takes such that
1/(s11)52l , with l integer, we get

U~f!5f2~22f2l !2, ~3.20!

i.e. we obtain a polynomial field-theoretical model with thr
degenerate vacua. The casel 51 is thef6 model with three
degenerate vacua. This model was considered in Ref.@20#,
where the author obtained an expression for the renormal
mass of the soliton. It is interesting to point out that in R
@4#, the authors obtained the same kink-like solutions as
ciated with this model by studying the vacuum decay rate
the massivef3D

6 model in the thin wall approximation. If we
set 1/(s11)5(2l 11) with an l integer we get

U~f!5f2~22f2l 11!2, ~3.21!

i.e. we obtain polynomial field-theoretic models with tw
degenerate vacua. The casel 51 is thef8 model with two
degenerate vacua that was obtained also in Ref.@7#. If we
consider the case in whichs50, we obtain the same con
figurations as that in the caser 50. If we consider the case in
which both r and s are integers we can still integrate E
~3.17!, but in this case it will not be possible to invert th
resulting expression.

Before constructing the unstable models we would like
comment about the stable models constructed in this sec
As we have commented in the Introduction, the continuo
solutions of the SE describe the scattering of particles~asso-
ciated with the trivial vacua! by the soliton quantum stat
@3#. The ~squared! mass of the particles are given b
U9@fc(6`)# since the asymptotic values of the kink sol
tion are equal to the trivial vacua of the theory. Setting
mass scale factorm51 we can identify the mass of the pa
ticles with V(6`) ~in this case we havevk

25lk
2). In the

case of the models associated with the Rosen-Morse II
perbolic potential, the scattering data can be obtained f
Eqs. ~3.4b!. For B50 this potential is symmetric (k25k1

and the particles have the same mass,m25A2), and only the
solutions forA2,lk

2,` make sense. In this case, for theA
integer the potential is reflectionless (ck50). Then, in the
case of the sine-Gordon (A51) andf4 kink (A52) models,
incoming particles fromx→2` are completely transmitted
to x→`. The only effect of the scattering is the appearan
of a phase shift in their wave functions (dk5eid(k)). For B
Þ0 ~the case of thef6 and f8 kink models! the ~squared!
mass of the particles is different and given bym2

2 5(A2

22B), m1
2 5(A212B). The scattering picture in this case

as follows: incoming particles fromx→2` with ~squared!
energiesvk

2 , such thatm2
2 ,vk

2,m1
2 , are completely re-

flected by the soliton quantum state into particles of the sa
mass. On the other hand, incoming particles fromx→2`
with energies such thatvk

2.m1
2 , are scattered by the solito

quantum state into transmitted and reflected particles of
ferent masses. The transmitted particles have massm1 while
the reflected particles have massm2 equal to the mass of th
incoming particles. Note that Eq.~3.4b! only describes the
scattering of particles incoming fromx→2`. For the scat-
02503
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tering of particles incoming fromx→` the solution is quali-
tatively similar to the case in whichvk

2.m1
2 but is quanti-

tatively different@30#.
In the next section we will analyze the unstable mod

~bounces!.

B. Unstable models

In this case the bounce-like solutions are obtained in
grating then51 case of Eq.~3.2!:

c1~x!5~12y!a/2~11y!b/2@~a1b12!y1a2b#;
~3.22!

then integrating the above equation we obtain

fc~x!

5E tanh(x)~12y!a/2~11y!b/2@~a1b12!y1a2b#

12y2
dy,

~3.23!

and the field-theoretical unstable models are given by

U~f!5~12y!a~11y!b@~a1b12!y1a2b#2.
~3.24!

We can perform the integration in Eq.~3.23! in the following
cases.

1. BÄ0

In this casea5b. Consequently we have, forc1(x),

c1~x!52A
sinh~x!

coshA~x!
, ~3.25!

and the integral in Eq.~3.23! can be easily performed. W
obtain

fc~x!5
1

coshA21~x!
. ~3.26!

Solving in the above equation fory5tanh(x) and substituting
in Eq. ~3.24! we obtain the field-theoretic models describ
by the class of density potentials

U~f!5~A21!f2~12f2/(A21)!. ~3.27!

For A52 we have the unstablef4 model. This model has
been used in Ref.@21# as a field-theoretic model for the stud
of the kinematics of first order phase transitions. ForA53
we obtain the unstablef3 model. This last model has bee
used as a laboratory for computing the decay rate of a sys
trapped in a false vacuum@22#. Also, recently thef3 model
has been used as an exactly solvable toy model for tach
condensation in string field theory@23#. We have to stress
that we must assumeA.0 to guarantee the normalizabilit
of c1(x). In Ref. @7#, the authors considered the caseA5
21 and obtained the Liouville model@24#. But in this case it
is easy to see that the classical solutions that meet or le
1-5
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G. FLORES-HIDALGO AND N. F. SVAITER PHYSICAL REVIEW D66, 025031 ~2002!
the unique asymptotic vacuum have an infinite energy,
is, such solutions are not lumps.

2. BÅ0

In this caseaÞb and the integral given by Eq.~3.23! can
be written as

fc~x!5~b1a12!E tanh(x)y~12y!a/2~11y!b/2

12y2
dy

1~a2b!E tanh(x)~12y!a/2~11y!b/2

12y2
dy. ~3.28!

The above integral can be performed for some particular
ues ofa,b but the resulting expression is not invertible, a
in this case we cannot recover the unstable field-theore
models.

C. The A\` limit

The SE given by

F2
d2

dx2
1A1

B2

A3
2

~A11!

cosh2~x/AA!
1

2B

A
tanh~x/AA!Gcn~x!

5ln
2cn~x!, ~3.29!

can be put in the form given by Eq.~3.1! makingx5AAz. In
this case the eigenvaluesln

2 are given by

ln
25

1

A FA22~A2n!21
B2

A2
2

B2

~A2n!2G ,

n50,1,2, . . . ,A. ~3.30!

Note that whenA→` the number of eigenvalues goes
infinity. If we keepB fixed and take the limitA→` in the
above equations we obtain

F2
d2

dx2
2112x2Gcn~x!5ln

2cn~x! ~3.31!

and

ln
252n, n50,1,2 ~3.32!

i.e. we obtain the SE for an harmonic oscillator. In order
obtain a stable field theory model we consider the grou
state eigenfunction given by

c0~x!5e2x2/2, ~3.33!

which allows us to obtain the kink-like solution

fc~x!5Ex

e2y2/2dy

5erf~x/A2!. ~3.34!
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Since the error function cannot be inverted, it will be n
possible to obtain the field theory model associated with
SE. We remark here that although Eq.~3.34! cannot be in-
verted it is possible to obtain the field theory model impl
itly in terms of other fields. This was done in Ref.@25# where
the field is redefined in terms of the so-called tachyon fie
Note that in this caseV(6`)5`. But from this one cannot
conclude that the mass of the particles associated with
quantum fluctuations around the trivial vacua is infinity.
this case we cannot speak about particles since in this
we do not have continuous solutions, i.e. there are no s
tions that behave asymptotically as plane waves.

In order to obtain the unstable model, we consider the fi
excited eigenfunction, given by

c1~x!5xe2x2/2, ~3.35!

which implies that the unstable field theory model will b
given by the density potential

U~fc!5
1

2
$c1@x~fc!#%

2

5@x~fc!#
2e2[x(fc)] 2

. ~3.36!

In this case the bounce profile is obtained easily,

fc~x!5Ex

ye2y2
dy

5e2x2/2. ~3.37!

Inverting the above equation and using the resulting exp
sion in Eq.~3.36! we get

U~f!52f2ln f2, ~3.38!

a field-theoretical unstable model that has been considere
Ref. @26# as a field-theoretical toy model for tachyon conde
sation in superstring field theory.

IV. THE MORSE POTENTIAL: THE f2ln2
„f2

… MODEL

The Morse potential is given by

V~x!5A21B2exp~2x!2B~2A11!exp~x!. ~4.1!

This potential is showed in Fig. 3. Also in this case the
has discrete and continuous solutions. The discrete eig
functions and eigenvalues are given, respectively, by

cn~x!5yA2ne2y/2Ln
2A22n~y!, y52Bex, ~4.2!

and

ln
25A22~A2n!2, n50,1,2, . . . ,A, ~4.3!

while the continuous~scattering! solutions behave asymp
totically as
1-6
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ck~x!5H eikx1ake
2 ikx, x→2`,

bke
2kx, x→`,

~4.4!

where the continuous eigenvalueslk
2 are expressed in term

of k andk, respectively, by

lk
25k21A2, ~4.5!

lk
252k21A2. ~4.6!

Also in this case the coefficientsak , bk can be computed
exactly @17#.

In order to obtain the stable field-theoretical models
work with the ground state eigenfunctionc0 that can be
obtained from Eq.~4.2! taking n50,

c0~x!5yAe2y/2, ~4.7!

from which we can obtain the kink

fc~x!5E2Bex

yA21e2y/2dy. ~4.8!

The stable field-theoretic models are now given by

U~f!5y2Ae2y. ~4.9!

The integral in Eq.~4.8! can be performed only for integerA.
For A51 we obtain

fc~x!5exp~2Bex!, ~4.10!

from which, solving fory52Bex and replacing in Eq.~4.9!
we obtain

U~f!5f2ln2~f2!. ~4.11!

We have plotted the above density potential in Fig. 4, wh
we see that there are three minima. One of which is loca
at f50, i.e. we haveU8(0)50. At this point we have
U9(0)5` and also all the higher derivatives are infinit
Although the integral in Eq.~4.8! can be done forA
52,3, . . . it is notpossible to invert the resulting expressio
to obtain the field-theoretical models in this cases. Also
this case it is not possible to construct unstable models.

FIG. 3. The Morse potential.
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In the present case the scattering of particles by the s
ton quantum state as given by Eq.~4.4! is totally different
than that in the case of the sine-Gordon andf4 kink models.
Particles with squared massV(2`) incoming from x→
2` are totally reflected by the soliton quantum state in
particles of the same mass. In this case the soliton quan
state acts as an impenetrable barrier. Since forx→` the
solutions do not behave as plane waves, we cannot inter
V(`)5` as the squared mass of particles associated w
the trivial vacuumfc(`)50, as given by Eq.~4.10!. This
also can be concluded from Eq.~4.6!, where we see tha
there is no Einstein-type dispersion relation. We have to
mark that this phenomenon also occurs for the models c
structed in Sec. III A withBÞ0 ~for example, in thef6 and
f8 models!. Particles incoming fromx→2` with energy
such thatm2

2 ,vk
2,m1

2 are totally reflected by the soliton
quantum state. For the model with the density potential giv
by Eq.~4.11! this happens for all energies. Then, in the pre
ence of a soliton quantum state, particles can exist only
x→2` ~of course, if we consider the anti-soliton quantu
state particles can exist only forx→`). Also we remark that
particles associated with the trivial vacua are defined o
perturbatively, i.e. we expand the density potential arou
one of the trivial vacua,fv , and identify the squared mas
with U9(fv) and when this is infinity the perturbative expa
sion is not possible and then in this case we cannot sp
about particles.

The density potential given by Eq.~4.11! can be redefined
in such a way that there will appear coupling constants in
model. Since we have constructed this field theory mo
starting from a SE with a free parameter (A51 andB arbi-
trary!, and since we can rescale field and coordinates in
Lagrangian~thus eliminating two coupling constants!, we
conclude that the density potential given by Eq.~4.11! can be
redefined with no more than three coupling constants.
redefine Eq.~4.11! with two coupling constants as

U~f!5
m2

8
f2ln2S a2f2

9m4 D , ~4.12!

where we have chosen the numerical factors adequa
SolvingU8(f)50 we obtain that the three absolute minim
are located at the pointsf50 andf56f0, where

FIG. 4. The density potentialU(f) given by Eq.~4.11!.
1-7
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f05
3m2

a
. ~4.13!

Using Eq.~4.12! in Eq. ~2.2! we obtain

fc~x!56
3m2

a
exp~2e6m(x2x0)!. ~4.14!

We have two pairs of kink and anti-kink solutions that c
link f52f0 and f50 or f50 andf5f0. One can see
easily thatU9(6f0)5m2, i.e. m2 is the squared mass of th
particles associated with the quantum fluctuations around
trivial vacua at the points6f0. As was mentioned for the
vacuum atf50 we cannot speak about particles. Using E
~4.12! we can see that the masses of the kinks~anti-kinks!
solutions given by Eq.~4.14! are the same and given~clas-
sically! by

H@fc#5E
2`

`

dxH 1

2 S dfc

dx D 2

1
m2

8
fc

2F lnS a2fc
2

9m4 D G 2J
5

9m6

2a2E2`

`

dx e6mxexp~22e6mx!

5
9m5

4a2
. ~4.15!

V. THE SCARF II HYPERBOLIC POTENTIAL:
THE U„f…Äf2cos2ln„f2

… MODEL

The Scarf II hyperbolic potential is given by

V~x!5A21
~B22A22A!

cosh2~x!
1B~2A11!

tanh~x!

cosh~x!
.

~5.1!

This potential is showed in Fig. 5. In this case the discr
eigenfunctions and eigenvalues are given, respectively, b

FIG. 5. The Scarf II hyperbolic potential.
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cn~x!5~ i !n~11y2!2A/2e2B tan21(y)

3Pn
( iB2A21/2,2 iB2A21/2)~y!,

y5sinh~x!, ~5.2!

and

ln
25A22~A2n!2, n50,1,2, . . . ,A, ~5.3!

while the ~scattering! continuous eigenfunctions behave a
ymptotically as

ck~x!5H eikx1ake
2 ikx, x→2`,

bke
ikx, x→`,

~5.4!

where the continuous eigenvalues are given by

lk
25k21A2. ~5.5!

Also in this caseak and bk can be computed exactly@17#.
They are equal, respectively, to the reflection and transm
sion coefficient amplitudes@in Eqs.~6.12! and~6.13! we give
them with a mass scale factorm#.

In order to obtain the stable field-theoretical models
work with the zero node eigenfunction, obtained from E
~5.2! taking n50

c0~x!5~11y2!2A/2e2B tan21(y). ~5.6!

Then the field-theoretic models are given by

U~f!5~11y2!2Ae22B tan21(y). ~5.7!

Integrating Eq.~5.6! we obtain, forfc ,

fc~x!5Esinh(x)

~11y2!2(A11)/2e2B tan21(y)dy. ~5.8!

The above integral can be performed analytically only wh
A51. In this case we obtain

fc~x!5e2B tan21sinh(x), ~5.9!

solving for y5sinh(x) and replacing in Eq.~5.7! we obtain

U~f!5f2cos2S 1

2B
ln f2D . ~5.10!

In Fig. 6 we have plotted this density potential forf.0 and

FIG. 6. The density potentialU(f) given by Eq.~5.10!.
1-8
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under the assumptionB.0. As in the case of the Mors
potential in this case it is not possible to construct unsta
models.

For the model with density potential given by Eq.~5.10!
we have the following picture about the scattering of t
particles by the soliton quantum state: From Eq.~5.4! we see
that the particles are scattered by the soliton quantum s
into reflected and transmitted particles of the same m
V(2`)5V(`). Equation~5.4! only describes the scatterin
of particles incoming from the left. For particles incomin
from the right the picture is qualitatively the same. But sin
the potential is nonsymmetric the scattering is different qu
titatively @30#.

Redefining the density potential given by Eq.~5.10! with
adequate coupling constants we can write

U~f!5
1

2
m2B2f2cos2F 1

2B
lnS a2f2

9m4 D G . ~5.11!

This model has infinitely degenerate trivial vacua at
pointsf56fn with fn given by

fn5
3m2

a
expS 2n11

2
pBD , n50,61,62, . . . .

~5.12!

The kinks and anti-kinks are obtained using Eq.~2.2!,

fc~x!56
3m2

a
exp@npB6B tan21sinh~mx!#,

n50,61,62, . . . , ~5.13!

where the solutions with (6) signs in the exponents corre
spond to the kinks–anti-kinks solutions, respectively,
each value ofn and for each sign that appears in front. W
have an infinite number of kinks and anti-kinks that link t
infinite number of trivial vacua. This reminds us in som
sense of the sine-Gordon model. But contrary to the s
Gordon model, where all the~one! solitonic sectors describ
the same physics, in the present model it is not the case.
example, if we compute the~classical! masses of the kinks
~or anti-kinks! we obtain

H@fc#5E
2`

`

dxH 1

2 S dfc

dx D 2

1
1

2
m2B2f2cos2F lnS a2f2

9m4 D G J
5

9m6B2e2Bnp

a2

3E
2`

`

dx
exp@62B tan21sinh~mx!#

cosh2~mx!

5
9m5B2e2Bnp

a2
I ~B!, ~5.14!
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whereI (B) is given by

I ~B!5E
21

1

ds e2B sin21(s). ~5.15!

From Eq.~5.14! we see clearly that the masses are differ
for different values ofn.

Before leaving this section we would like to make th
following remark: Expanding the density potential given
Eq. ~5.11! ~for simplicity we chooseB51/2) around one of
the trivial vacua we obtain

U~w!5
m2

2
w26

a

6
e2(1/4)(2n11)pw32

1

4!

a2

m2
e2(1/2)(2n11)pw4

1
~256!

~81!6!

a4

m6
e2(2n11)pw61O~e24(2n11)p!, ~5.16!

where w5(f6fn). From this equation we see that forn
→`, U(w)5(m2/2)w2, i.e. in the perturbative sector~for
n→`) the model becomes free.

VI. KINK QUANTUM MASS CORRECTIONS
IN THE U„f…Äf2cos2ln„f2

… MODEL

As we have said in the Introduction, we have construc
scalar field theory models starting from solvable SE’s sin
in this case we have a chance to compute quantum cor
tions. In this section we give a closed expression, Eq.~6.15!,
for the kink quantum mass correction in the model co
structed in the preceding section. All the steps~with the ex-
ception of a final integration! are done analytically and only
the final integration is evaluated numerically.

The first ~bare! quantum corrections for the kink mass
given by

DMbare5
1

2 (
n

vn2
1

2 (
k

vk
0 , ~6.1!

wherevn is given from Eq.~2.6!, while vk
05Ak21m2 are

the free soliton modes and given from Eq.~2.6! with
U9@fc(x)# replaced byU9(6fn)5m2. Equation~2.6! has
discrete and continuous eigenvalues. The number of disc
modes are finite and we denote them asv j . The continuous
modes are given byv(k)5Ak21m2. We note that these
continuous modes are equal tovk

0 , but from this one canno
conclude that Eq.~6.1! is equal to the sum over the discre
modes only. The reason is thatvk

0 and v(k) have different
densities of states. We can divide Eq.~6.1! into a sum over
discrete modes and an integral over a continuum, repres
ing the latter in terms of the phase shift,
1-9
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DMbare5
1

2 (
j

v j1E
0

` dk

2p
v~k!

d

dk
d~k!, ~6.2!

whered(k), the phase shift, is given by

d~k!5
1

2i
ln detS~k!. ~6.3!

In the above equationS(k), theS matrix is given by@30#

S~k!5S T~k! 2R* ~k!T~k!/T* ~k!

R~k! T~k!
D , ~6.4!

where R(k) and T(k) are, respectively, the reflection an
transmission coefficient amplitudes associated with the o
dimensional scattering problem described by the continu
solutions of Eq.~2.6!. Since the phase shift in general b
haves like 1/k for k→` we can see that the kink quantu
mass corrections given by Eq.~6.2! are logarithmically di-
vergent. Then we have to renormalize such expressio
order to obtain a finite physically meaningful quantity. In t
present paper we use a method developed in Refs.@27–29# to
give a finite renormalized expression for the kink quant
mass corrections. In order to write a finite renormalized
pression for Eq.~6.2! the basic idea is to subtract from th
phase shift its first Born approximation. Since the first Bo
approximation for the phase shift behaves like 1/k this sub-
traction cancels the ultraviolet divergence. But the Born
proximation is singular fork50, and in order to overcome
this infrared divergence, before making such subtraction
uses the one-dimensional Levinson theorem@30#. In the case
of potentials that are finite and such thatV(2`)5V(`) the
one-dimensional Levinson theorem states that@30#

d~0!5np2
p

2
, ~6.5!

wheren is the number of bound states. This includes the h
bound state (v25m2) that corresponds tok50, counted
with a factor 1

2 . For example, in the free case we have th
d(k)50 everywhere and in this case we have a half bou
state with the wave function equal to a constant. We
rewrite Eq.~6.2! by adding and subtractingm/4, obtaining

DMbare5
1

2 (
j

v j2
m

4
1E

0

` dk

2p
v~k!

d

dk
d~k!, ~6.6!

where now in the sum overj we are including the half bound
state with a1

2 contribution. We can rewrite Eq.~6.5! as

05(
j

11E
0

`dk

p

d

dk
d~k!2

1

2
. ~6.7!

Subtractingm/2 times this equation from Eq.~6.6! we obtain
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DMbare5
1

2 (
j

~v j2m!1E
0

` dk

2p
@v~k!2m#

d

dk
d~k!.

~6.8!

Now we subtract from the phase shift its first Born appro
mation ~this is equivalent to subtracting the tadpole grap
see@28#!. We must then add it back and we adopt the sim
renormalization condition that the counterterms~which will
be present in the bare classical mass! cancel the tadpole
graph and perform no additional finite renormalization b
yond this cancellation. This renormalization prescription
equivalent to a normal ordering prescription for the field o
erators~see, for example, Ref.@18#!. With this choice there is
nothing to add back and it is understood that the parame
that will appear are the renormalized ones and then we
drop out the subscriptbare. The first Born approximation
d1(k) for the phase shift is given by

d1~k!52
1

2kE2`

`

dx$U9@fc~x!#2m2%. ~6.9!

Then subtracting this first Born approximation from Eq.~6.8!
we obtain

DM5
1

2 (
j

~v j2m!

1E
0

` dk

2p
@v~k!2m#

d

dk
@d~k!2d1~k!#.

~6.10!

Note that the method described here is restricted to mo
for which the associated Schro¨dinger potentials are finite an
such thatV(2`)5V(`) since for such cases the Levinso
theorem is valid and also the integration in Eq.~6.9! is finite.
This is accomplished in the cases of the sine-Gordon andf4

kink models and also for the model constructed in the p
ceding section. Since the quantum mass correction for
kinks of sine-Gordon andf4 kink models are already know
in the present paper we compute only the quantum m
corrections for the kinks of the model constructed in t
preceding section.

Using Eqs.~5.11! and ~5.13! we find that

U9@fc~x!#5m21m2F ~B222!

cosh2~mx!
73B

tanh~mx!

cosh~mx!G ,

~6.11!

Note that as expected this potential is the caseA51 of Eq.
~5.1! with a mass scale factor. For this potential the reflect
and transmission coefficient amplitudes are given, resp
tively, by @17#

R~k!56T~k!
sinh~pB!

cosh~pk/m!
, ~6.12!

and
1-10
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T~k!5

G~212 ik/m!G~22 ik/m!GS 1

2
7 iB2 ik/mDGS 1

2
6 iB2 ik/mD

G~2 ik/M !G~12 ik/m!G2S 1

2
2 ik/mD , ~6.13!

where the signs6 in Eq. ~6.12! refer to the kink and anti-kink-like solutions, respectively. Using Eq.~6.11! in Eq. ~6.9! we
obtain

d1~k!52
m2

k
~B222!. ~6.14!

Now, since by construction the above model possesses only one discrete eigenvalue equal to zero, and using Eqs.~6.12!–~6.14!
in Eq. ~6.10! we obtain after some algebraic manipulations,

DM

m
52

1

p
2E

0

` dq

2p

q

Aq211
H 1

2i
lnFG~1/22 iB2 iq !G~1/21 iB2 iq !G2~1/21 iq !

G~1/21 iB1 iq !G~1/22 iB1 iq !G2~1/22 iq !
G1

B2

q J . ~6.15!
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The integration in the above equation cannot be done a
lytically but, for B50 it vanishes, and in this case we obta

DM ~B50!52
m

p
, ~6.16!

a result equal to the first quantum corrections for the k
mass in the sine-Gordon model. This result is expected s
in Sec. III we have shown that for such a case we recover
sine-Gordon model starting from the potential given by E
~6.11! with B50. For other values ofB we can perform the
integration only numerically. We have performed the integ
tion given by Eq.~6.15! numerically and plotted the resul
This is shown in Fig. 7. From our numerical calculation w
conclude that the quantum correction for the kink mass
negative. We observe from Fig. 7 that the quantum correc
for the kink mass becomes more negative for increasingB.
Also sinceDM is real we conclude that the kink remain
stable~as expected by construction! when quantum correc
tions are taken into account.

VII. CONCLUSIONS

In this paper we have obtained stable and unstable
11) scalar models starting from exactly solvable SE’s.
this way we have obtained two~to our knowledge! new
stable models that permit kink-like solutions. Starting fro
the Morse potential we have obtained the modelf2ln2(f2)
and starting from the Scarf II hyperbolic potential we ha
have obtained the modelU(f)5f2cos2ln(f2). Note that we
have analyzed only SE’s that reduce to hypergeometric
confluent hypergeometric equations@15#. It will be interest-
ing to analyze other~more complicated! differential equa-
tions, for example the Heun or Lame equations and sea
for possible interesting field-theoretical models.

Note that the model constructed starting from the Mo
potential does not depend on the parameterB, Eq. ~4.11!.
This can be easily understood from Eq.~4.1!, where we can
eliminate the parameterB making a translationx→x2 ln B.
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For this model we have a behavior for the scattering of p
ticles by the soliton quantum state totally different from t
scattering of the particles by the solitons of the sine-Gord
and f4 kink models: particles are totally reflected by th
soliton quantum state. Although for this model we have n
computed the quantum corrections for the kink mass we
lieve that the transmissionless property of the Morse pot
tial will be of utility in solving this problem. Regarding
physical applications, for example, this field-theoretic
model could be used to describe some physical situation
tachyon condensation in superstring field theory, since
model possesses one of the known properties of the tach
effective action: Absence of plane wave solutions around
minima @31#.

In the case of the modelf2cos2ln(f2) constructed in Sec
V we have been able to compute the kink quantum m
corrections. Note that in deriving Eq.~6.10! we used the
Levinson theorem stated in terms of the total phase sh
d(k). In Ref. @27# the authors refer to the Levinson theore
separately for the symmetric and antisymmetric scatter
channels. In the present case this is not possible, since
decomposition of the phase shift in terms of symmetric a
antisymmetric scattering channels is possible only when
Schrödinger potential is symmetric@30#. As we have previ-

FIG. 7. DM /m as function ofB.
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ously mentioned, in the caseB50 the kink quantum mas
correction is equal to the kink quantum mass correction
the sine-Gordon model. From this one can expect to reco
the sine-Gordon model fromf2cos2ln(f2) taking the limit
B→0 adequately. Actually this is not the case. The reaso
that in deducing Eq.~5.10! we have multipliedB by Eq.
~5.9!, introducing in this way~when B→0) an ambiguity.
Then, in this model, the caseB50 only make sense as a
approximation for the kink quantum mass correction
small B. Also from Eq.~6.14! we can see that whenB5A2
we haved1(k)50 and in this caseDMbare5DM , i.e. at
order\ the quantum correction for the kink mass is free
divergences. Note that from Eq.~6.9! this will happen for
any model whereU9@fc(x)#2m2 is antisymmetric inx.
Also we would like to call attention to the following fac
note that Eq.~6.11! is independent ofn ~the index that labels
the locations of the perturbative vacua!. Remembering tha
the one-dimensional scattering problem described by
continuous solutions of Eq.~2.6! is physically interpreted as
the scattering of the usual particles by the soliton quan
state~see@3#!, we see that usual particles interact in the sa
way with all the solitonic sectors~these solitonic sectors ar
indexed withn). But in the final part of Sec. V we remarke
that for n→` the theory~around the trivial vacuum withn
→`) becomes free in the perturbative sector. Then we
an interesting peculiarity in the model described by E
ys

J
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~5.11!: in the perturbative sector~around the vacuum with
n→`) the theory is free but in the solitonic sector it is no
the particles are scattered by the soliton quantum state.
do not know any other model in which this fact also occu
Also we would like to comment about the utility of thi
method in testing some approximate and numerical meth
that have been developed in order to compute quantum
rections around static field configurations. See for exam
@32#. Note that our computation is analytical; only a fin
integration is done numerically and this numerical integ
tion can be done easily. Although our calculation is not ex
it is precise, and then the present model can be used to
the efficiency of numerical or approximate methods. F
quently, the sine-Gordon andf4 kink models are used to tes
these methods, but as the authors claim, in many cases
approximate or numerical methods pass the test becaus
the peculiarity of these models, i.e. the reflectionless pr
erty of the Schro¨dinger potentials@32# associated with these
models.
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