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Completeness and consistency of renormalization group flows
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We study different renormalization group flows for scale-dependent effective actions, including exact and
proper-time renormalization group flows. These flows have a simple one-loop structure. They differ in their
dependence on the full field-dependent propagator, which is linear for exact flows. We investigate the inherent
approximations of flows with a nonlinear dependence on the propagator. We check explicitly that standard
perturbation theory is not reproduced. We explain the origin of the discrepancy by providing links to exact
flows both in closed expressions and in given approximations. We show that proper-time flows are approxi-
mations to Callan-Symanzik flows. Within a background field formalism, we provide a generalized proper-time
flow, which is exact. Implications of these findings are discussed.
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I. INTRODUCTION

Renormalization group~RG! methods are an essential in
gredient in the study of nonperturbative problems in co
tinuum and lattice formulations of quantum field theo
Over the last decade increasing interest has been devot
particular formulations of RG flows, which have one ma
property in common: they all can be written as a sim
one-loop equation in the full field-dependent propaga
Their one-loop structure is very useful because it allows
to encompass technical complications due to overlapp
loop integrations known from standard perturbation the
and Schwinger-Dyson equations. Another important stren
of these RG flows is based on their flexibility, when it com
to truncations of the full problem under investigation. Th
makes all the different sets of RG equations interesting
situations where one has to resort to approximations bec
the full problem is too hard to attack. For nonperturbat
effects at strong coupling or large correlation lengths, s
an approach is essentially unavoidable.

Despite their close similarity, the various RG flows with
one-loop structure differ qualitatively in important aspec
The RG flows depend on the precise implementation o
regularization, typically given by momentum or operator c
offs. Furthermore, some RG flows are known to beexact, as
they can be derived from first principles, mainly done with
a path integral representation. Prominent examples for s
one-loop exact flows1 are Exact RG~ERG! flows @1–4#.
These flows, which we use as reference points in the pre

*Email address: Daniel.Litim@cern.ch
†Email address: jmp@theorie3.physik.uni-erlangen.de
1From now on, we refer to renormalization group flows with

one-loop structure as ‘‘one-loop flows.’’ Exact flows with a on
loop structure are referred to as ‘‘one-loop exact flows.’’ Th
should not to be confused with a one-loop approximation~i.e., one-
loop exact flows arenot one-loop approximations of some exa
flow!.
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paper, are closely related to other well-known exact flo
like Wilsonian flows @5#, Wegner-Houghton flows@6# and
Callan-Symanzik flows@7#. The strength of exact RG flow
is that systematic approximations of the integrated flow c
respond to systematic approximations to the full quant
theory. This allows us to devise optimization conditio
@8–10#, which resolve the problem of the spurious regula
dependence@8–12#.

In turn, some one-loop RG flows have been deriv
within the philosophy of a one-loop improvement. This i
cludes the proper-time RG flows@13,14# and RG flows based
on an operator cutoff@15#. The similarity between the differ-
ent one-loop flows with one-loop exact flows has fuel
hopes that the scenario just described for exact flows ma
valid in general. Therefore, it is important to either establ
that a given flow is exact, or, if not, what approximation
an exact flow it represents. This is at the root for the pred
tive power of the formalism. So far, this question has be
studied within the derivative expansion@16#. A first account
of a more general analysis was given in@17#, where we com-
pared the perturbative expansions of different one-lo
flows.

In the present work we give a general analysis of
problems mentioned above. A detailed study of the followi
one-loop and one-loop exact flows is provided: ERG flow
Callan-Symanzik flows, and generalizations thereof, prop
time flows, and one-loop flows based on an operator regu
ization. We show that one-loop exact flows depend linea
on the full field-dependent propagator. A general one-lo
flow does not have this structure. As a consequence,
show that integrated nonexact flows deviate from stand
perturbation theory at the first nontrivial order, i.e., two loo
Additionally, we relate proper-time flows to the Callan
Symanzik flow, and—in given approximations—to ER
flows. We also discuss the possibility of an exact map
tween ERG and proper-time flows. Based on these findin
we presentgeneralizedproper-time flows, which are exact.

It proves helpful to introduce two properties of RG flow
which we refer to ascompletenessandconsistency. Consider
©2002 The American Physical Society30-1
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a general flow defined by an initial effective action given
some initial scaleL, and a flow equation connecting it wit
the full quantum effective action at a vanishing cutoff sca
Then we define that a flow isconsistent, if its flow equation
connects an explicitly known initial effective action with th
full quantum effective action, and a consistent flow iscom-
plete, if the initial effective action is trivial, namely the clas
sical action.

As the initial effective action of a complete flow is trivia
all quantum fluctuations result from integrating the flo
equation. Well-known examples of complete flows a
Callan-Symanzik flows and ERG flows. In turn, for a cons
tent flow, in general, parts of the quantum fluctuations
already contained in the initial effective action. The latter h
to be known explicitly.2 Important examples for consisten
flow are ERG flows with a nontrivial initial effective action
For thermal field theories, this concerns scenarios where
tial effective actions stem from perturbative dimensional
duction @12#, or thermal RG flows within the ERG frame
work as provided in@3# and @18#. In the latter, only therma
fluctuations are integrated by the flow while the quant
fluctuations have already been integrated out and are pa
the initial effective action.

The outline of the paper is as follows. In Sec. II, as
introduction of the methods, we discuss consistency
completeness for ERG flows. We argue that general one-
exact flows must depend linearly on the full propagator. T
result is derived in Appendix A. Then we sketch the deriv
tion of ERG flows from first principles and explicitly show
their completeness within perturbation theory. Generali
tions to consistent ERG flows, in particular at finite tempe
ture, are briefly discussed.

In Sec. III we study proper-time flows. We sketch the
derivation as one-loop improved RG equations. Then
prove that these flows are in general incomplete. We prov
explicit expressions for the regulator-dependent devia
from complete flows at two loop. We also give their link
Callan-Symanzik flows. It is argued that a proper-time flo
is not a consistent flow. These findings are illustrated wit
a simple example.

In Sec. IV we discuss consistency and completeness
flows derived from a multiplicative regularization of the on
loop momentum integral. By explicitly calculating the two
loop contributions of the integrated flow we show that the
flows are neither complete nor consistent.

In Sec. V we devise maps between given approximati
of proper-time flows and ERG flows. In addition, we sho
how the proper-time regularization has to be generalized
order to turn the flow into a complete and consistent flo
This is based on generalized proper-time regulators and
volves the use of the background field method.

In Sec. VI we close with a discussion of the main resu
and their implications regarding the predictive power of t
different RG flows.

Some more technical aspects are summarized in the
pendixes. In Appendix A it is shown that a general one-lo

2This subtlety is discussed in Sec. III D.
02503
t

.

-
e
s

i-
-

of

d
op
s
-

-
-

e
e
n

n

or

e

s

in
.
n-

s

p-
p

exact flow for the effective action can only depend linea
on the full propagator. This result is used at various place
the main body of the work. In Appendix B we study Calla
Symanzik flows and generalizations thereof. Proper-ti
flows can be seen as approximations to generalized Ca
Symanzik flows. In Appendix C we compute explicitly th
two-loop effective action from a generalized Calla
Symanzik flow. This result is used in Sec. III for comparis
with a specific proper-time flow. In Appendix D we derive
recursion relation for the two-loop effective action within th
standard proper-time RG. This result is used in Sec. III.

II. EXACT RENORMALIZATION GROUP

In this section we discuss the concepts of completen
and consistency at the example of ERG equations. Prio
this, we comment on the general structure of one-loop ex
flows. A general exact flow is the flow of some operat
insertion within the theory. The expectation values of mo
than two fields involve multiloop contributions. Thus, insis
ing on the one-loop nature of the flow, one is bound to
insertion which is at most quadratic in the fields. Otherwi
the corresponding exact flow would also contain higher-lo
contributions. We conclude that an exact flow with a on
loop structure must dependlinearly on the full propagator
@17#. More details are given in Appendix A.

A. Derivation

The usual starting point is the generating functional of
theory at hand, where a cutoff termDSk@f# is added to the
classical action. Here we discuss a theory with a scalar fi
and a general interaction; the generalization to arbitrary fi
content is straightforward. We have

Zk@J#5E df expS 2S@f#2DSk@f#1E ddxJf D ,

~2.1!

whered counts space-time dimensions. This leads to the fl
equation

] tZk@J#52^] tDSk@f#&J . ~2.2!

An insertionDSk@f# at most quadratic in the fields guara
tees the one-loop structure of the corresponding flow. Hen
we choose toDSk@f#5 1

2 *ddxfRf, whereR is an infrared
~IR! regulator function depending on an IR scalek. Func-
tions R(q2) have to satisfy a number of conditions in ord
to provide an infrared regularization for the effective prop
gator, and to ensure that the flow~2.6! interpolates between
an initial ~classical! action in the UV and the full quantum
effective action in the IR. The necessary conditions onRk are
summarized as

lim
q2/k2→0

Rk~q2!.0, ~2.3!

lim
k2/q2→0

Rk~q2!50, ~2.4!
0-2
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COMPLETENESS AND CONSISTENCY OF . . . PHYSICAL REVIEW D 66, 025030 ~2002!
lim
k→L

Rk~q2!→`. ~2.5!

whereL is an ultraviolet~UV! scale. Equation~2.3! guaran-
tees thatRk provides an IR regulator, because massl
modes are effectively cut off. The second condition~2.4!
ensures that the regulator is removed in the IR limitk→0
and that the theory is unchanged for momentum modes
q2@k2. The condition~2.5! ensures that the correct initia
condition is reached for limk→L Gk5SL . Here,L is the ini-
tial ~UV! scale.

The effective action is defined as the Legendre trans
mation Gk@f#5*ddxJf2 ln Zk@f#2DSk@f#. This leads to a
simple form of the flow equation forGk . From Eq.~2.2! we
get for the flow of the effective action

] tGk@f#5 1
2 Tr ~Gk

~2!1Rk!
21] tRk , ~2.6!

where

Gk
~2!@f#~p,q!5

d2Gk@f#

df~p!df~q!
~2.7!

and the trace denotes a sum over all momenta and ind
t5 ln k. The ERG flow is linear in the full propagator, a
required for an exact one-loop flow. It is IR finite due to E
~2.3! and UV finite due to Eq.~2.4!.

B. Completeness

It is well known that perturbation theory is contained
ERG flows. The first use of this approach was to simpl
proofs of perturbative renormalizability@1#. The UV bound-
ary conditionGL is the classical action. All quantum fluctua
tions are integrated out along the flow. Therefore, the E
flow has to be complete. An explicit check of completene
is provided by successively integrating the given flow eq
tion perturbatively order by order and comparing the resul
standard perturbation theory. Such a check is useful for flo
which lack a derivation from first principles. There, it als
provides some insight in the structure of the deviations. H
we perform this check for the ERG up to two loops. It serv
as an introduction to the methods used later.

In order to simplify the subsequent expressions, we in
duce a short-hand notation by writingApqrs̄
[A(p,q,r ,s,...) for momentum variablesp,q,r,s,..., and re-
peated indices correspond to a momentum integration

AqpBpq8[~AB!qq85E ddp

~2p!d A~q,p!B~p,q8!. ~2.8!

As an example we rewrite the ERG equation~2.6! in this
notation,

FIG. 1. Graphical representation of the ERG equation~2.6!.
02503
s

th

r-

es,

.

G
s
-
o
s

re
s

-

] tGk5
1

2 S 1

Gk
~2!1RD

pq

] tRqp . ~2.9!

A simple graphical representation for Eq.~2.9! is given by
Fig. 1.

The closed line in Fig. 1 represents the full field
dependent propagator (G (2)@f#1R)21 and the crossed circle
stands for the insertion] tR. According to Fig. 1, or Eq.~2.9!,
the ERG equation has a simple one-loop structure, wh
should not be confused with a standard perturbative loop
it contains the full propagator. The explicit calculations a
most easily carried out within the graphical representati
We introduce the graphical notation as given in Fig. 2.

The precise expression for the propagatorG@f# in Fig. 2
depends on the flow studied. The line in Fig. 2 stands for
field-dependent perturbative propagator (S(2)@f#1R)21, in
contrast to Fig. 1. The vertices are the classical ones, but
with full field dependence.

Now let us write the effective action within a loop expan
sion

G5S1 (
n51

`

DGn , ~2.10!

where S is the classical action andDGn comprises the
nth-loop order. At one loop, the integrated flow is

DG15DG1,L1E
L

k dk8

k8
] t8Gk8U

one loop

5DG1,L1 1
2 @ ln~S~2!1R!#qquL

k . ~2.11!

The expression on the right-hand side of Eq.~2.11! ap-
proaches the full one-loop effective action fork→0. The
subtraction atL provides the necessary UV renormalizatio
together withDG1,L . As the latter only encodes renormaliza
tion effects, we drop it from now on. For the two-loop ca
culation we also needDG1

(2) , which follows from Eq.~2.11!
as

FIG. 2. Graphical representation of the propagatorG@f#, the

~classical!n-point verticesS(n)@f#, and the insertions] tR[Ṙ and
R.

FIG. 3. Graphical representation of Eq.~2.12!. The subtracted
diagrams~double lines! are defined in Fig. 4.
0-3
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DANIEL F. LITIM AND JAN M. PAWLOWSKI PHYSICAL REVIEW D 66, 025030 ~2002!
DG1,qq8
~2!

5 1
2 ~Gpp8Sp8pqq8

~4!
2Gpp8Sp8rq

~3! Grr 8Sr 8pq8
~3!

!L
k .

~2.12!

Again, the indicesq andq8 stand for the external momenta
Thus,DG1

(2) consists of two~subtracted! graphs. Its graphica
representation is given in Fig. 3. The double lines stand
subtracted~finite! diagrams. They are introduced in Fig. 4

Clearly the subtraction atL leads to a renormalization o
the diagrams. For our purpose these terms are not intere
since they only provide the details of the renormalizat
procedure. Here, however, we are only interested in
graphical structure of the perturbation series, including
combinatorial factors. For this purpose the structure of
subtractions is irrelevant. In other words, we want to foc

FIG. 4. Graphical representation of subtracted diagrams.
scale dependence of the perturbative propagator~full line! is due to
the regulator termRk , hence the indexk or L.
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In most results, both graphical and equations, we will o
mention them implicitly.

The two-loop contribution to the effective action is

DG25
1

2 EL

k dk8

k8
DG1,pq

~2! ] t8Gqp , ~2.13!

where

Gqp5S 1

S~2!1RD
pq

. ~2.14!

Now one uses that the onlyk dependence ofDG1 or its
derivatives with respect to the fields comes from the pro
gatorsG within the loops. Graphically,] tG is given in Fig. 5.
This enables us to write Eq.~2.13! as a totalt derivative. As
in the one-loop case, fork50 we approach the usual pertu
bation theory with the correct combinatorial factors. We g

e

FIG. 6. The integrand in curly brackets of Eq.~2.15!, first line.
DG25E
L

k dk8

k8 H 1

4
~Gpp8Sp8pqq8

~4!
2Gpp8Sp8rq

~3! Grr 8Sr 8pq8
~3!

!L
k ] t8Gq8qJ

5E
L

k dk8

k8

1

4
] t8H 1

2
Gpp8Sp8pqq8

~4! Gq8q2
1

3
Gpp8Sp8rq

~3! Grr 8Sr ,pq8
~3! Gq8q2subtractionsJ

5F1

8
Gpp8Spp8qq8

~4! Gq8q2
1

12
Gpp8Sp8qq8

~3! GqrSprr 8
~3! Gr 8q8G

ren.

, ~2.15!
the
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where the subscript ‘‘ren’’ indicates that these are renorm
ized diagrams due to the subtractions atL. Note that the
sunset diagram in Eq.~2.15! is completely symmetric unde
permutations of the propagators, which has lead to the fa
1
3; schematically written as (G)2] tG5 1

3 ] t(G)3. For illustra-
tion we present in Fig. 6 the diagrams for the term in cu
brackets in the first line in Eq.~2.15!. Employing the identity
displayed in Fig. 5 the expression in Fig. 6 is easily rewrit
as a totalt derivative. The calculation presented in Eq.~2.15!
is most easily carried out this way~see Fig. 7!. This analysis
can be easily extended to any loop order. The integrands
always be rewritten as totalt derivatives. Thus, the result i
independent of the regulatorR.

FIG. 5. Graphical representation of] tG52G(] tR)G. The k
dependence ofG is only due to the explicitk dependence ofRk .
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C. Consistent ERG flows

Some applications of the ERG are such that a part of
quantum fluctuations are already contained in the init
theory: in these cases, the initial effective action is not trivi
Let us mention two examples. First, it is possible to relax t
condition ~2.5! on the cutoff, thus starting at a point, wher
some~large! momentum fluctuations are already integrat
out. The control about truncations to the starting point is ve
good. The neglection of power counting irrelevant terms
the perturbative regime should only inflict deviations of th

FIG. 7. Two-loop contribution to the effective action as given b
Eq. ~2.15!, last line.
0-4
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COMPLETENESS AND CONSISTENCY OF . . . PHYSICAL REVIEW D 66, 025030 ~2002!
order (k2/L2)n at some IR scalek!L. Pivotal for such a
picture to work is theexactnessof the flow itself.

Second, another important example is ERG flows for fi
theories at finite temperature. Proposals have been put
ward that rely on decoupling quantum fluctuations and th
mal fluctuations@3#. Here, the flow equation displays an in
tegrating out of the latter ones whereas the initial effect
action contains the quantum fluctuations. Of course, this
ture only works in particular situations where a neglection
the quantum fluctuations is feasible or in regimes where t
contributions to the effective action at zero temperature
well under control. We conclude that the applicability of co
sistent ERG flows hinges on their exactness. This is an
portant statement in view of the applicability of other R
flows.

III. PROPER-TIME RENORMALIZATION GROUP

In the remaining part of the paper we discuss one-lo
improved RG flows. In this section we consider so-cal
proper-time RG flows. We show that proper-time flows
general do not reproduce the perturbative loop expans
The consequences for approximations and predictive po
are discussed.

A. Derivation

The starting point is the equation for the one-loop effe
tive action

GL
one loop5Scl1

1
2 Tr ln S~2!. ~3.1!

The trace in Eq.~3.1! is ill defined and requires an UV regu
larization. Oleszczuk proposed an UV regularization
means of a Schwinger proper-time representation of the t
@19#:

GL
one loop5Scl2

1

2 E ds

s
f ~L,s!Tr exp~2sScl

~2!!. ~3.2!

The regulator functionf (L,s) provides an UV cutoff. Send
ing the UV scale tò should reduce Eq.~3.2! to the standard
Schwinger proper-time integral@20#. This happens for the
boundary conditionf (L→`,s)51. Equation~3.2! can be
turned into a simple flow equation by also adding an IR sc
k, replacingf (L,s)→ f k(L,s). A flow equation with respec
to the infrared scalek ~andt5 ln k! has been proposed as@13#

] tGk@f#52
1

2 E0

` ds

s
@] t f k~L,s!#Tr exp~2sGk

~2!!.

~3.3!

Here, the classical action has been replaced by the sc
dependent effective actionGk on the right-hand side of Eq
~3.3!. This is the philosophy of a one-loop improvement.
Eq. ~3.3! only the explicit scale dependence due to the re
lator term is considered. There are a few conditions impo
on the proper-time regulator. The UV behavior remains
changed if lims→0 f k(L,s)50. It is required that
02503
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lim
s→`

f kÞ0~L,s!50 ~3.4!

lim
k→L

f k~L,s!50, ~3.5!

lim
L→`

f k50~L,s!51. ~3.6!

The condition~3.4! ensures that the theory is infrared reg
larized, as the limits→` corresponds to the limit of vanish
ing momentum. The condition~3.5! ensures that the flow
starts off from the initial conditionGL . Finally, the condition
~3.6! ensures that the proper-time regularization reduces
the usual Schwinger proper-time regularization fork50.
From now on, we only consider regulatorsf k(L,s) of the
form

f k~L,s!5 f ~L2s!2 f ~k2s!

with

lim
x→`

f ~x!51 and lim
x→0

f ~x!50. ~3.7!

It is easily checked thatf k(L,s) as defined in Eq.~3.7! sat-
isfies the conditions summarized in Eqs.~3.4!–~3.6!.

B. Completeness

Next we show that a general proper-time flow does
depend linearly on the full propagator. We expand a gen
proper-time flow in the following basis set of regulator fun
tions f:

f ~x;m!5
G~m,x!

G~m!
, ~3.8a!

] t f ~x;m!5
2

G~m!
xme2x. ~3.8b!

Here,x5k2s andG(m,x)5*0
xdttm21e2t denotes the incom-

plete G function. The functionsf (x;m) have the limits as
demanded in Eq.~3.7!. The set~3.8! spans the space of a
cutoffs with an IR behavior controlled by the terme2x serv-
ing as a mass. These flows cover all proper-time flows t
have been studied in the literature@13,21,14,22–27,16,28–
30#. General proper-time flows~fixed by choosing] t f ! are
given by linear combinations of the basis functions~3.8!.
Now we consider the flow for a specific value ofm. Inserting
Eq. ~3.8! in Eq. ~3.3!, we find

] tGk5TrE
0

` ds

s

~sk2!m

G~m!
exp2s~Gk

~2!1k2!. ~3.9!

The trace in Eq.~3.9! can be written in terms of the~normal-
ized! eigenfunctionsCn of Gk

(2) with

Gk
~2!Cn5lnCn . ~3.10!

This leads to
0-5
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] tGk5(
n
E

0

` ds

s

~sk2!m

G~m!
exp2s~ln1k2!. ~3.11!

For commuting the sum overn and thes integration we have
used that the eigenvalues obeyln1k2>0 ;n. This condi-
tion is not a restriction as it has to hold for a well-defin
proper-time flow~3.9!. A similar condition also applies to
ERG flows~2.6!: Gk

(2)1Rk>0. By performing thes integra-
tion we arrive at

] tGk5(
n

S k2

ln1k2D m

5TrS k2

Gk
~2!1k2D m

. ~3.12!

The operator kernel inside the trace is themth power of a
Callan-Symanzik kernel. Exact flows, as discussed in de
in Appendix A, have a linear dependence on the full pro
gator. Hence, Eq.~3.12! is not exact formÞ1. Furthermore,
the functional dependence of Eq.~3.12! on G (2) depends on
the regularization. This signals that the deviation of a gen
proper-time flow from an exact flow is regularization depe
dent, which is studied next.

C. Proper-time flows at two loop

We study the deviation of integrated proper time flo
from perturbation theory at two loop. We derive relatio
between flows for generalm andm1n, wheren is an integer
andm is arbitrary. At one loop the integrated flow equatio
~3.12! results in

DG1,m5E
L

k dk8

k8
] t8Gk8uone loop

5
1

2m
TrF S k82

Gk8
~2!D m

3 2F1S m,m;m11;2
k82

Gk8
~2!D G

L

k

, ~3.13!

where pFq(x,y;z;w) is the generalized hypergeometric s
ries. For integerm, pFq can be summed up and there is
simpler representation

DG1,m5E
L

k dk8

k8
] t8Gk8uone loop

5
1

2
Tr F ln~Gk8

~2!
1k82!

2 (
n51

m21
1

n S k82

Gk8
~2!

1k82D nG
L

k

. ~3.14!

For k→0 both formulas reproduce the one-loop effecti
action 1

2 @Tr ln(Gk
(2)1k2)#ren. ForkÞ0 we also have additiona

terms as opposed to the one-loop integral of an ERG flow
Eq. ~2.11!. These terms arem dependent. For generalm the
difference betweenDG1,m andDG1,m21 is given by
02503
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DG1,m2DG1,m2152
1

2~m21!
@Tr~Gk82!m21#L

k ,

~3.15!

with G5(S(2)1k2)21. The right-hand side vanishes fork
→0. At two loop, we can relate flows withm and m85m
1n, wheren is integer. The details are given in Appendix D
The key result is the recursive relation

DG2,m2DG2,m215
1

2 È
0 dk

k
Tr F ~Gk2!m21G

d2

~df!2

3Tr ~Gk2!m21GS~2!G , ~3.16!

apart from irrelevant terms from the different renormaliz
tion procedures for the two flows. A similar relation wa
already presented in@17#. It is connected to Eq.~3.16! by a
partial integration, see Appendix D. Using Eq.~3.16! recur-
sively, we find

DG2,m5DG2,m2n1
1

2 (
l 5m2n

m21 È0 dk

k

3Tr F ~Gk2! lG
d2

~df!2 Tr ~Gk2! lGS~2!G .
~3.17!

The difference~3.17! depends on arbitrarily high powers o
the fields and does not vanish. Equation~3.17! provides a
constructive proof that proper-time flows, in general, a
nonexact. Let us assume for a moment that the proper-t
flow for a particularm0 is exact. Then it follows from Eq.
~3.17! that all flows with m5m01n for integer n are not
exact, because the corresponding terms~3.17! do not vanish
identically in the fields. This has an immediate conseque
for flows with integerm: The Callan-Symanzik flow (m
51) is exact. Therefore any flow with integerm.1, or any
linear combination thereof, is not exact.

Let us close with two comments. We have foun
regulator-dependent terms at two loop. Hence, the pro
time flow ~3.3! does not represent a totalt derivative. One
could think that the proper-time flow~3.3! is improved by
also taking into account thet derivative ofGk

(2) ,

] tGk52
1

2 E0

` ds

s
Tr @] t f k~L,s!2s fk~L,s!] tGk

~2!#

3exp~2sGk
~2!!. ~3.18!

The flow equation~3.18! is, in contrast to Eq.~3.3!, a totalk
derivative. Its end point does not depend on the regular
tion. However, the end point is the functionalG which solves
G5Scl1Tr ln G(2)uren. This equation is not satisfied by th
full effective action.

A second comment concerns another extention of prop
time flows, discussed in Appendix B. Consider the flow
0-6
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] tGk2 (
n51

m21

Fn,m] t
n11Gk5Tr S k2

Gk
~2!1k2D m

1Tr Fk@] tGk
~2! ,...,] t

m21Gk
~2!;Gk

~2!#.

~3.19!

The coefficientsFn,m andFk are defined in Appendix B. The
flow ~3.19! is exact andGk obeys the usual Callan-Symanz
equation. The first term in Eq.~3.19! is the standard proper
time flow ~3.12!. The new terms in Eq.~3.19! are propor-
tional to the flow ofGk

(2) and to higher-order scale deriva
tives of Gk .

D. Consistency

We have shown that proper-time flows are not comple
We are left with the question whether proper-time flows
consistent. In this case the initial effective actionGL is non-
trivial and must be known explicitly. Let us first argue th
any flow trivially represents an exact flow by the followin
construction. The initial effective actionGL is given as a
function of the flow and the full effective actionG0 by

GL@G0#5G01E
0

L dk

k
] tGk@G0#. ~3.20!

At least within a loop expansion this is possible, asn-loop
order contributions toGL depend on the flow to loop orde
n21. The only condition for the global construction is th
existence of flow trajectories from the full effective actionG0
to GL . For such a scenario to be applicable, the initial eff
tive action~3.20! has to be known explicitly. Then the flow i
consistent. If the initial condition is not known explicitly, th
flow cannot be integrated. This consideration implies t
proper-time flows are not consistent: the flow is not co
plete, and we do not have any further information aboutGL ,
except the trivial one encoded in Eq.~3.20!. This observation
makes it interesting to investigate possible enhancemen
proper-time flows, which is done in Sec. V.

E. Example

We illustrate our findings with a simple example by co
sidering m52. A short account of this calculation was a
ready given in@17#. In the condensed notation introduced
Sec. II B, the proper-time flow withm52 is

] tGk5S k4

~Gk
~2!1k2!2D

qq

, ~3.21!

where the kernel is the square of a Callan-Symanzik ker
andq denotes momenta. The flow is depicted in Fig. 8. T
line in Fig. 8 stands for the full field-dependent propaga
(G (2)1k2)21, the crossed square stands for the insertionk2.
This has to be compared with the ERG flow in Fig. 1.

The one-loop contribution from the integrated flow~3.21!
can be read off from~3.14! as

DG15 1
2 @ ln~k21S~2!!#qq2 1

2 k2Gqq ~3.22!
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Gqq85S 1

S~2!1k2D
qq8

. ~3.23!

The two-loop contribution is

DG2522E
L

k dk8

k8
DG1,qq8

~2!
~Gk82Gk82G!q8q . ~3.24!

In Eq. ~3.24!, it is understood thatG ~3.23! depends onk8
under the integral. From~3.22!, we obtain

DG1,qq8
~2!

5
1

2
@Gpp8~Sp8pqq8

~4!
2Sp8rq

~3! Grr 8Sr 8qq8
~3!

!

1~Gk82G!pp8

3~Sp8pqq8
~4!

22Sp8rq
~3! Grr 8Sr 8pq8

~3!
!#L

k . ~3.25!

Notice the difference to Eq.~2.12!. Graphically, Eq.~3.25! is
given in Fig. 9, where we resort to the definitions in Fig.
Lines represent field-dependent perturbative propagat
vertices represent field-dependent classical vertices.

In comparison to the ERG result for the one-loop prop
gator in Fig. 3 there are two additional diagrams in Fig.
Inserting Eq.~3.25! into Eq. ~3.24!, we end up with

DG25E
L

k dk8

k8
$2@Gpp8~Sp8pqq8

~4!
2Sp8rq

~3! Grr 8Sr 8pq8
~3!

!#L
k

3~Gk82Gk82G!q8q

2@~Gk82G!pp8~Sp8pqq8
~4!

22Sp8rq
~3! Grr 8Sr 8pq8

~3!
!#L

k

3~Gk82Gk82G!q8q%. ~3.26!

The integrand in Eq.~3.26! has the graphical representatio
given in Fig. 10.

Next, we compare our findings with a generalized Calla
Symanzik flow~C1! discussed in Appendix C. This flow is
exact. It differs from the proper-time flow~3.21! only by

FIG. 8. Graphical representation for the proper-time RG eq
tion ~3.21!. The proper-time flow~3.12!, for integerm, corresponds
to a loop withm propagator lines andm insertionsk2. It reduces to
the CS flow@Eq. ~B1!# for m51.

FIG. 9. The one-loop correction to the propagatorDG1
(2) for the

specific flow~3.21!. Notice the two additional terms which appea
in comparison to the ERG flow, cf. Fig. 3.
0-7
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loop terms proportional to the flow] tGk
(2) . Graphically, the

difference between the flows is given by the second term
Fig. 14. At two loop, we compare the integrands as given
Fig. 10 and Fig. 15, respectively. The first two terms in F
15 and Fig. 10 agree whereas the last two terms are differ
More specifically, the last two terms in Fig. 15 haveGk2G as
the bottom line, whereas we haveGk2Gk2G in Fig. 10. It is
this difference which makes it impossible to rewrite the i
tegrand in Eq.~3.26! as a total derivative.

Now, let us expand Eq.~3.26! about the correct two-loop
result ~2.15!. After some algebra, we arrive at

DG25F1

8
Gpp8Sp8pqq8

~4! Gq8q

2
1

12
Gpp8Sp8rq

~3! Grr 8Sr 8pq8
~3! Gq8qG

ren.

2
1

2 EL

k dk8

k8
~Gk82G!pp8Sp8rq

~3!
~Gk82G!rr 8

3Sr 8pq8
~3!

~Gk82G!q8q . ~3.27!

A simple consistency check on Eq.~3.27! is to take its de-
rivative with respect tok. This leads to the kernel of Eq
~3.26!. The first line in Eq.~3.27! corresponds to the correc
two-loop result. The second line denotes the deviation fr
standard perturbation theory. The integrand in the sec
line of Eq.~3.27! is the nonstandard diagram depicted in F
11. The second term on the right-hand side of Eq.~3.27! is
the term on the right-hand side of the recursive relat
~3.16! for m52 @see also Appendix C, Eqs.~C7! and ~C8!#.
The last term on the right-hand side of~3.27! cannot be
absorbed in renormalization constants. It contains arbitr
powers in fields and momenta and does not integrate to z
in the limit k→0 andL→`. For massive theories both lim
its are safe. This term displays a nontrivial deviation of t
present proper-time flow from perturbation theory. The fo

FIG. 10. The integrand in Eq.~3.26!. See Eq.~C4! and Fig. 15
for comparison.

FIG. 11. The nonstandard term in Eq.~3.27!. See also Eq.~C7!.
02503
in
n
.
nt.

-

d
.

n

ry
ro

e

of the integrand is that of the sunset graph where all pro
gators have been substituted by their squares.

To be more explicit, consider a massivef4 theory with
massM and quartic interaction 1/4!l*ddxf4. The contribu-
tion of the nonstandard diagram to the propagator is obtai
after taking the second derivative with respect to the fields
Eq. ~3.27! at f50. We find

l2 È0 dk

k E ddq

~2p!d

ddl

~2p!d

k2

~k21M21q2!2

k2

~k21M21 l 2!2

3
k2

„k21M21~ l 1q2p!2
…

2 . ~3.28!

The integrand is strictly positive. Hence the integral is no
vanishing. Moreover, it has a nontrivial momentum depe
dence. This can be seen by evaluating the limitsp→0 and
p→`. For p→0 we are left with a nonvanishing constan
For p→` the expression in Eq.~3.28! vanishes.

IV. MULTIPLICATIVE REGULARIZATION

In this section we discuss a recent suggestion for a o
loop improved RG@15#, which is based on an operator reg
larization of the one-loop effective action. The starting po
of @15# is the regularized form of the one-loop effective a
tion,

Gk
one loop5 1

2 Tr~r ln S~2!!. ~4.1!

Here,r provides a regularization of the otherwise ill-define
trace in Eq.~4.1!. In the limit k→0 the regularization is
removed andr→1. Taking thet5 ln k derivative of Eq.~4.1!
and using the condensed notation introduced in Eq.~2.8!
leads to

] tGk
one loop5 1

2 ~ ln S~2!!qq8] trq8q . ~4.2!

Again one resorts to the idea of a one-loop improvement
substitutesS(2) on the right-hand side of Eq.~4.2! with Gk

(2) .
This leads to the final form of the one-loop improved flow

] tGk5 1
2 ~ ln Gk

~2!!qq8] trq8q . ~4.3!

The factorization of the regulatorr makes numerical as wel
as analytical calculations easily accessible. In Ref.@15#, the
flow ~4.3! has been studied to leading order in the derivat
expansion. As the flow~4.3! depends on the logarithm o
G (2), it cannot be exact.

We would like to understand the structure of the deviat
more explicitly and compute the two-loop effective actio
The one-loop effective action is

DG15E
L

k dk8

k8
] t8Gk8uone loop5S 1

2
~ ln S~2!!qq8rq8qD

L

k

.

~4.4!

The two-loop effective action is
0-8
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DG25
1

2 EL

k dk8

k8
DG1,qq8

~2! Gq8p] t8rpq , ~4.5!

where G51/S(2). We rewrite the expression on the righ
hand side of Eq.~4.5! as a total derivative using that the on
k dependence ofDG1

(2) is given byr. We finally get

DG25E
L

k dk8

k8 S 1

4
Gpp8rp8rSrpqq8

~4!

2
1

4
Gpp8rp8rSrr 8q

~3! Gr 8sSspq8
~3! D

L

k

Gq8s8] t8rs8q

5F1

8
~rG!pp8Sp8pqq8

~4!
~rG!q8q

2
1

8
~rG!pp8Sp8rq

~3! Grr 8Sr 8pq8
~3!

~rG!q8qG
ren.

. ~4.6!

For k50, the two-loop result~4.6! is independent of the
regularization. The integrand in Eq.~4.6! has the graphical
representation given in Fig. 12. Figure 13 shows the tw
loop contribution of the flow~4.3!, corresponding to the las
line in Eq. ~4.6! at k50.

The combinatorial factor for the sunset graph is not t
correct one. How does this come about? In the ERG ca
one deals with expressions which are, qualitatively, of
form (G)n] tG5@1/(n11)#] t(G)n11. Stated differently,all
propagators are regularized. In the RG equation~4.3!, there
is one regulator insertionr for each loop, regardless, how
many propagators are contained in the loop. The first d
gram in Fig. 12 contains two loops and two propagato
leading to the correct combinatorial factor in Fig. 13. T
sunset diagram contains two loops but three propagat
therefore, the combinatorial factor comes out too big by3

2.
To sum up, in contrast to ERG flows which are bas

upon a regularization of the full inverse propagator, the o
loop improved flow~4.3! is based on a regularization of th
logarithm of the full inverse propagator. This choice ha
been motivated in order to facilitate computations, and
find simple expressions for the flow. As it turns out, it

FIG. 12. The integrand of Eq.~4.6!, first line. Notice that the
insertionsr and] tr are always attached to a vertex.

FIG. 13. The two-loop effective action derived from Eq.~4.3!,
and as given by the last line of Eq.~4.6!.
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precisely this form of the regularization which is ultimate
responsible for the mismatch with standard perturbat
theory beyond one loop.

V. EXACT PROPER-TIME FLOWS

In this section we relate proper-time flows to exact flow
both, within given approximations and as closed formal e
pressions.

A. Proper-time representation of ERG flows

We have already introduced a representation of prop
time flows which is quite close to the ERG~see Sec. III B!.
Let us now investigate a proper-time representation of E
equations. This allows us to study the map from ERG
proper-time flows more directly as done in@16#. We start
with the ERG~2.6! which can be rewritten as

] tGk5 1
2 Tr ] tRkE

0

`

dsexp2s~Gk
~2!1Rk!. ~5.1!

It is easy to see that the flow equation~5.1! is well defined in
both the ultraviolet and the infrared. We now turn Eq.~5.1!
into

] tGk5
1

2 E0

` ds

s
Tr ~Fk@sRk ;sGk

~2!#exp2sGk
~2!! ~5.2!

in order to facilitate the comparison of ERG flows to prope
time flows ~3.3!. Here, the operatorFk@A,B# is given as

Fk@A;B#5~] tA!exp$2A1K@2~A1B!,B#%, ~5.3!

K@A,B#5 (
n51

`
~2 !n

n11 (
pi1qi>1

1

11(
i 51

n

pi

3)
i 51

n
~ad A!pi

pi !

~ad B!qi

qi !
@A#, ~5.4!

where adB@A#5@B,A# and (adB)0@A#5A. Equations
~5.3! and ~5.4! can be deduced from the Baker-Campbe
Hausdorff formula:

eA1B1K@A,B#e2B5eA. ~5.5!

The term K@2s(Gk
(2)1R),sR# vanishes for@Gk

(2) ,R#50.
Now we compare the representation~5.2! of ERG flows with
proper-time flows~3.3!. We already know that proper-tim
flows and ERG flows are not equivalent. Comparing the k
nels, this information is encoded in

] t f k~L,s!ÞFk@sRk ;sGk
~2!#, ~5.6!

which states that no field- and momentum-independent fu
tion f can be found to match the right-hand side of Eq.~5.6!.
Indeed, the right-hand side carries physical informat
about the theory due toGk

(2)@f#.
0-9
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Still, there are two options left to overcome Eq.~5.6!.
First, the expressions in Eq.~5.6! are integration kernels
Within given approximations, the integrals could agree
spite the kernels being qualitatively different. This possibil
is worked out in Sec. V B. Second, one may consider ge
alized proper time regulators, by allowing for an addition
dependence onGk

(2) . This is addressed in Sec. V C.

B. Derivative expansion

Next, we study ERG and proper-time flows to lowest
der in a derivative expansion, where wave function ren
malizations are not present. Here, we explicitly map regu
tors Rk→ f k@Rk#. The inverse map does not exist in gener
In @16#, a similar analysis was performed on the level of t
threshold functions. The effective action in this approxim
tion is

Gk@f#5E ddx@]mf]mf1Uk~f!# ~5.7!

and, consequently,

Gk
~2!@f#~p2!5p21Uk9~f!. ~5.8!

The scale-dependent part of the effective action is the po
tial Uk . We only consider constant fieldsf0 in the flow. In
this approximation, we have

†Gk
~2!@f0#,R‡50 ~5.9!

which implies thatFk in Eq. ~5.2! depends only onRk . Then
we cast the ERG equation in a proper-time form, also us
Eq. ~5.3!

] tGk5
1

2
TrE

0

` ds

s
s~] tRk!exp~2sRk!

3exp@2s~p21Uk9!#

5
1

4
VdE

0

` ds

s S sE
0

` dy

y
yd/2~] tRk!

3exp$2s@Rk~y!1y#% D exp~2sUk9!, ~5.10!

where Vd is the volume of thed sphere over (2p)d, Vd
52@(2p)d/2G(d/2)#21 andy5q2. This has to be compare
with Eq. ~3.3! in this approximation. After performing the
momentum integration in Eq.~3.3! we get

] tGk5
1

4
VdE

0

` ds

s
@s2d/2] t f k~L,s!#exp~2sUk9!

~5.11!

Equations~5.10! and ~5.11! are identical for the following
choice of f k :
02503
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] t f k~L,s!52
s11d/2

G~d/2!
E

0

` dy

y
yd/2~] tRk!

3exp@2s~Rk1y!#, ~5.12!

Equation~5.12! defines a mapRk→ f k(R). Thus it is guar-
anteed that there is always a functionf k corresponding to a
choice ofR. Next, we show that the opposite is not the ca

Equation ~5.12! fixes the behavior off k(R) for s→0,
which is the UV limit ands→`, which is the IR limit. We
restrict ourselves to regulators with a constant IR lim
R(x→0)}k2. Moreover, we demand that

min
y

@y1R~y!#5c0k2 with c0.0. ~5.13!

Equation~5.13! implies that we have an IR regularization.
we would takec0<0 we introduce poles in the momentu
integration of the ERG. Thus, Eq.~5.13! leads to an exclu-
sion of wildly fluctuating regulatorsR. With Eq. ~5.13! we
deduce the following limit behavior off k(R,s):

lim
s→0

u] t f k~R,s!u,sd/211 exp~2sc0k2!C@R#, ~5.14!

lim
s→`

u] t f k~R,s!u,sd/211 exp~2sc0k2!C@R#, ~5.15!

where

C@R#5
1

G~d/2!
E

0

` dy

y12d/2 ] tR~y!. ~5.16!

and the exponential factor in Eq.~5.14! is subleading and ha
only been introduced for symmetry reasons. These lim
only make sense forC@R#,` ~no infrared divergent cut-
offs!. Infrared divergent cutoffs, including the sharp cuto
are even more severely limited in the infrared fors→`.
Only if f k obeys both limits~5.14! and ~5.15!, the corre-
sponding regulatorRk exists. Here, the relevant limit iss
→`.

It is left to investigate the roˆle of the constantc0 . We
assume to have found a regulatorf k(R,s) which precisely
matches the boundary value of the IR limit:f ext(R,s→`)
5cfs

d/211 exp(2c0sk2). The UV behavior is irrelevant for
the integration of the flow. The normalizationcf follows
from the conditions~3.4!–~3.6!, leading to

f ext~R,s!5
2~c0sk2!d/211

G~d/211!
exp~2c0sk2!. ~5.17!

Since Eq.~5.17! depends only on the productc0k2, we can
reabsorbc0 in the infrared scale and set it to one,c051.

Next we verify some of the explicit examples given ea
lier in @16#. We insert several cutoffs into the right-hand si
of Eq. ~5.12! (x5sk2) to find the proper-time analogues. Fo
the optimized regulator@9#, the sharp cutoff and the masslik
regulator

Rk
opt~q2!5~k22q2!u~k22q2!, ~5.18!
0-10
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Rk
sharp~q2!5 lim

c→`

cu~k22q2!, ~5.19!

Rk
mass~q2!5k2, ~5.20!

we find the proper-time analogues as

] t f k~L,s!52
4

d

1

G~d/2!
xd/211 exp2x, ~5.21!

] t f k~L,s!5
2

G~d/2!
xd/2 exp2x, ~5.22!

] t f k~L,s!52x exp2x. ~5.23!

The optimal cutoff@9# precisely matches both limits~5.14!
and~5.15! ~for c051!. In this sense it is an extremum of th
allowed space off k .

In summary, there is only a narrow window for prope
time regulatorsf k which are images of ERG regulatorsR. We
find that regulatorsf k(R,s) are generally given by

] t f k~R,s!5E
d/2

d/211

dm
2xmb~m!

G~m!
exp~2x!

with

E
d/2

d/211

dmb~m!51. ~5.24!

For other proper-time regulators there is no correspond
ERG regulatorR. The upper boundarymmax5d/211 follows
from the IR limit ~5.15!. The lower boundarymmin5d/2 is
the demand of UV finiteness. It can be relaxed tommin51,
thus including Callan-Symanzik flows as a boundary.

C. Generalized proper-time flows and background fields

Finally we derive ageneralizedproper-time flow which is
both consistent and complete. Since Eq.~5.6! cannot be sat-
isfied, we seek a convenient generalization of the prop
time regulator. As we cannot get rid of the operator dep
dence on the right-hand side of Eq.~5.6! we have to allow
for field- and momentum-dependent functions] t f k(L,s). A
key property of a proper-time flow~3.3! is that the operator
trace only depends on the operatorGk

(2) . Maintaining this
simple structure, and allowing for a field- and momentu
dependent regulator leads to

] t f k~L,s!→] t f k@L,s;Gk
~2!#. ~5.25!

Such a generalized proper-time flow is equivalent to an E
flow, if

] t f k@L,s;Gk
~2!#5

!

Fk@sRk ;sGk
~2!#. ~5.26!

In order to satisfy Eq.~5.26!, the regulatorRk must depend
solely onGk

(2) and itst derivative,
02503
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Rk~q2!→Rk@Gk
~2!#. ~5.27!

In order not to spoil the one-loop structure of the ERG flo
equation,Rk cannot depend on thefull propagating field. The
only admissible dependence ofRk on Gk

(2) comes via back-
ground fields. For details of a background field formulati
of the ERG~for gauge theories! we refer the reader to@31–
33#. Here we mention the important facts by restricting o
selves to a scalar theory: in the background field formalis
the full field f5f̄1w is split into the background fieldf̄
and the fluctuation fieldw. The effective action depends o
the fieldsf andf̄, Gk5Gk@f,f̄#. As the propagating field is
w, the regulatorRk can only depend onGk

(2)@f̄,f̄#, where

Gk
(2)@f,f̄#ªd2Gk@f,f̄#/(df)2. The cutoff term depends on

f̄ and it follows thatGk@f,f̄#ÞGk@f# for kÞ0. Finally
such a flow depends also on] tGk

(2)@f̄,f̄#. For the explicit
form of the flow notice that the operatorK@A,B# in Eq. ~5.3!
vanishes for@A,B#50. Hence, a vanishing commutator

@Gk
~2! ,Rk#50 ~5.28!

implies that the operatorFk in Eq. ~5.2! becomes under the
trace

Fk@sRk#5~s] tRk!exp~2sRk!

522s~Gk
~2!R82R2 1

2 ] tGk
~2!R8!exp~2sRk!.

~5.29!

In this case, the representation~5.2! simplifies tremendously.
Equation~5.28! holds trivially atf̄5f, whereRk is a func-
tion of Gk

(2)@f̄,f̄#. The flow is

] tGk@f,f#5 1
2 E

0

` ds

s
Tr Fk@sRk†Gk

~2!@f,f#‡#

3exp~2sGk
~2!@f,f#! ~5.30!

with Fk given by Eq.~5.29!. The corresponding ERG flow is
given by

] tGk@f,f#5
1

2
Tr

1

Gk
~2!@f,f#1Rk†Gk

~2!@f,f#‡

3] tRk†Gk
~2!@f,f#‡ . ~5.31!

In summary, the following picture has emerged: we ha
defined a generalized proper-time flow for an effective act
based on the background field formalism. It differs from t
standard one by terms proportional to] tG

(2). These terms
make the flow consistent and complete. It can be mappe
an ERG flow at vanishing fluctuation fields. The flow equ
tion is not closed because it depends onGk

(2)@f,f#. The
output of the flow equation isGk@f,f# and does not entai
the information forGk

(2)@f,f#, which requires the derivative
with respect to the first argument. The background field
pendence is controlled by a separate equation@32,33#. The
0-11
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flow ~5.31!, apart from being an interesting subject by
own right, gives a clear definition on the limits of prope
time flows.

VI. DISCUSSION

We have studied the completeness and consistency of
ferent one-loop RG flows. We summarize the main res
and their implications.

Consistency and completeness of flows are directly
lated to the propagator dependence of the flow, which, fo
exact flow, has to be linear. The linearity is important for
recursive perturbative integration of the flow. For exa
flows, the integrated flow at a given loop order contains
same diagrams with identical combinatorial factors as s
dard perturbation theory. ERG flows at two-loop served as
illustration of these facts.

For proper-time flows, we have shown that they are
complete. This result is based, first, on a structural anal
of the proper-time flow. When written in the form~3.12!, it is
apparent that the functional dependence of the flow on
full propagator is nonlinear—except when it matches
Callan-Symanzik flow. Second, we have formally integra
the flow up to two-loop order. As a result, we have explici
established that the integrated proper-time flow devia
from perturbation theory. The deviation of fully integrate
proper-time flows~when the cutoff is removed! from fully
integrated exact flows turns out to be regulator depend
Proper-time flows are also not consistent because it is
known beforehand which part of perturbation theory is mi
ing along the flow.

An analogous analysis has been applied to the one-
improved flow~4.3!. We found that Eq.~4.3! is neither com-
plete nor consistent for an arbitrary regulator. The m
structural reason for this fact is that the flow depends lo
rithmically on the full propagator forany regulator, and not
linearly. This structure entails that, first, the perturbative lo
expansion does not lead to the correct combinatorial fact
and, second, that the deviation from perturbation theory
independent on the regulator. This last property is in mar
contrast to proper-time flows. There, we have seen that
functional dependence of the flow onG (2) is regulator depen-
dent, as is, consequently, the deviation from perturba
theory.

Links between proper time flows and exact flows ha
been discussed in Sec. V. This enabled us to provide in
mation about the inherent approximation they represen
exact flows. We established links between exact flows
standard proper-time flows along three different lines.

First, we provided an explicit equation for the deviation
proper-time flows from Callan-Symanzik flows. This devi
tion is given by the difference between Eqs.~B4! and~3.12!.
Essentially, proper-time flows lack additional contributio
from two sources. There are additional one-loop terms p
portional to scale derivatives ofGk

(2) , and a sum of higher
scale derivatives ofGk .

Second, it is possible to relate proper-time flows to ex
flows within specific approximations. To leading order in t
derivative expansion, we derived explicit maps from ER
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flows to proper-time flows and discussed their properties
has also been shown that higher orders of the derivative
pansion cannot be mapped onto ERG flows.

Third, we constructedgeneralized proper-time flows
~5.30!. These flows can be mapped in a closed form to s
cific ERG flows, which established both completeness a
consistency for Eq.~5.30!. Similar to the generalized Callan
Symanzik flow, they differ from the standard proper-tim
flow only through higher-order terms proportional to the flo
of Gk

(2) . This philosophy, however, applies only within
background field method.

These results have important implications. Most notab
they make the intrinsic approximation of a proper-time flo
explicit. This makes it possible to link approximations
proper-time flow to approximations to the full theory an
allows us to discuss predictive power within the formalis
For its applications, it is important to know how resul
based on standard proper-time flows are affected by the
ditional terms. For example, for 3d scalar theories at criti-
cality, a particular proper-time flow@16,27# has lead to criti-
cal exponents, which agree remarkably well with experim
or Monte Carlo simulations. From the present analysis
emerged that the underlying exact flow contains additio
contributions already to leading order in a derivative exp
sion. These terms are expected to modify the physical p
dictions, and it remains to be seen whether these correct
are quantitatively large or small. We hope to report on t
issue in near future.

ACKNOWLEDGMENTS

D.F.L. thanks the Institute for Theoretical Physics I
University of Erlangen, and J.M.P. thanks CERN for hos
tality and financial support. The work of D.F.L. has be
supported by the European Community through the Gr
No. HPMF-CT-1999-00404.

APPENDIX A: STRUCTURE OF ONE-LOOP EXACT
FLOWS

In this paper we have discussed renormalization gro
flows whose striking feature is their one-loop nature. It
precisely this property which facilitates numerical impl
mentations, as we need not to cope with overlapping in
grals. In this appendix we derive the most general form
one-loop flows that areexact. We consider one-loop flows
with the general form

k]kGk@f#5Tr f k@Gk
~2!#, ~A1!

wheref k@Gk
(2)#(p,q) is a smooth function of its arguments.

depends both explicitly and implicitly, viaGk
(2) , on mo-

menta. We demand thatGk50 is the full quantum effective
action. The structure of flows given by Eq.~A1! covers all
flows discussed in the literature and in the present wo
Note that f k may also have some intrinsic dependence
running couplings and vertices of the theory. Trivially the
are no overlapping momentum integrals in Eq.~A1!.
0-12
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As it stands, a flow of the form~A1! can be derived
within a one-loop improvement philosophy. Then,f k just en-
codes the information of the cutoff procedure at one lo
We want to know what restrictions are posed uponf k if we
demand that Eq.~A1! is anexactflow, i.e., a flow which has
a first-principle derivation, say from a path integral repres
tation of the theory. The path we take is the following. Fir
we derive the most general form of flows for the function
Z. Then we discuss convenient parametrizations of s
flows. Finally we translate our findings to flows of the effe
tive actionGk via a Legendre transform.

Let us consider the functionalZ@S,J#. The first argument
of Z indicates the classical action, about which the theor
quantized. A general flow ofZ@S,J# can be described by th
flow of an operator insertionOk , depending on a cutoff scal
k. We define

Z@S,J;Ok#5E dfOk@f#expS 2S@f#1E fJD . ~A2!

In particular, we demand limk→0 Ok@f#51. In this limit, Eq.
~A2! reduces toZ@S,J;1#[Z@S,J#, the full generating func-
tional. The flow ofZ@S,J;Ok# is given by

k]kZ@S,J;Ok#5E dfk]kOk@f#

3expS 2S@f#1E fJD . ~A3!

Thus, a general flow ofZ is just given by the expectatio
value ^k]kOk@f#&S,J . However, expectation values offn

with n.2 involve multiloop contributions in the full propa
gator. This can be seen as follows: We expandOk@f# in
powers off. Terms in the expansion have the form

K E
p1 ,...,pn

k]kOk
~n!~p1 ,...,pn!)

i 51

n

f~pi !L
S,J

.

This expectation value can be written in terms of t
Schwinger functionalW@S,J#5 ln Z@S,J# as

E dfE
p1 ,...,pn

Ok
~n!~p1 ,...,pn!)

i 51

n

f~pi !

3expS 2S@f#1E fJD
5E

p1 ,...,pn

Ok
~n!~p1 ,...,pn!)

i 51

n
d

dJ~pi !

3expW@S,J#. ~A4!

Thus it depends on all functional derivativesd iW/(dJ) i with
i<n. Next we check how Eq.~A4! is expressed in terms o
the full propagator (G (2))215d2W/(dJ)2. The propagator
enters in the recursive relation
02503
.

-
,
l
h

is

)
i 51

n
d

dJ~pi !
W@S,J#5E

q
S 1

G~2! ~p1 ,q!
d

f~q! D
3)

i 52

n
d

dJ~pi !
WFS,J5

dG

dfG . ~A5!

Consequentlyanyexpectation value~A4!, expressed in terms
of Gk and its derivatives, forn.2 contains multiloop terms
This leads to the first important result: flows, which are ex
already at one loop can only involve expectation values o
most two fields.

However, the argument above did not make use of
form of the classical actionS entering the exponent in th
path integral. We can always use a redefinition ofS as fol-
lows:

k]kOk@f#exp~2S@f#!

5E
p1 ,p2

f~p1!Ôk~p1 ,p2!f~p2!

3exp$2~S@f#1Õk@f#!%, ~A6!

whereÕk depends on the choice ofÔk andOk . Take ERG

flows as an example. HereOk5exp 1
2*fRf. ChoosingÔk

5 1
2 k]kR we haveÕk5 1

2 *fRf. Note that in generalÕk is
highly nonlocal. We conclude that general flows can be w
ten as one-loop exact flow with

k]kZ@S1Õk ,J;Ôk#

5E dfE
p1 ,p2

f~p1!Ôk~p1 ,p2!f~p2!

3expS 2S1Õk1E fJD . ~A7!

Our findings can be summarized in the following stateme
Any flow—if represented as a one-loop exact flow forGk of
the form ~A1!—depends linearly on the full propagator. I
consequence, the most general form for the functionf k is

f k@G~2!#~p1 ,p2!5E
q
Ôk~p1 ,q!

1

G~2! ~q,p2!, ~A8!

whereGk is the Legendre transform of lnW@S1Õk ,J#. Fi-
nally, we mention that only those functionsÕ, which are
polynomial in the fields, have simple properties fork→`.
Furthermore, the functionalGk matches simple boundar
conditions only ifÕ is quadratic in the fields. These requir
ments are met for ERG flows.

APPENDIX B: GENERALIZED CALLAN-SYMANZIK
FLOWS

In this appendix we discuss RG flows based on a m
term R5k2. The resulting flow is a Callan-Symanzik~CS!
flow @7#. This flow can be brought into the more standa
0-13
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form of the Callan-Symanzik equation in case we had int
duced anomalous dimensions. On the basis of the CS
we construct flows which are similar in form to proper-tim
flows. We restrict ourselves to the discussion of mass
theories in order to avoid some particular problems w
massless ones. Massless theories can be dealt with as
but the additional problems are of no relevance for our p
poses.

Employing the notation introduced earlier, the CS flow
simply given by

] tGk5Tr
k2

Gk
~2!1k2 . ~B1!

We stress that the CS flow is not precisely an ERG flow
defined above since it fails to satisfy condition~2.5!. In par-
ticular, the CS flow does not admits the Wilsonian interp
tation of the flow: in contrast to the ERG case, at every fix
scalek, the momentum integration is not regularized in t
UV and all momenta contribute to the flow. There is t
necessity of an additional UV renormalization of the flo
not required for the ERG. This problem has been discus
in detail in @3#. For the present purposes we can neglect
intricacy.

The integrated CS flow~B1! gives the full quantum effec
tive action. Let us now address a slightly different flo
given by the difference of the CS flow and the flow of the C
flow,

S ] t2
1

2
] t

2DGk5S 12
1

2
] tDTr

k2

Gk
~2!1k2

5TrS k2

Gk
~2!1k2D 2

1
1

2
Tr

k2

~Gk
~2!1k2!2 ] tGk

~2! . ~B2!

Equation~B2! represents a flow for (12 1
2 ] t)Gk . Such a flow

trivially escapes the linearity constraint on general one-lo
exact flows derived in Appendix A. It involves higher deriv
tives of a general one-loop exact flow with respect tok. This
is signalled by the term proportional to] tGk

(2) on the right-
hand side. Consequently it does not match the allowed st
ture on the right-hand side of Eq.~A1!. Note, however, that
Gk satisfies the CS equation in agreement with Appendix
Integrating the flow displayed in Eq.~B2! leads to the effec-
tive action. Fork→0, we arrive at

GL2
1

2
] tGkuk5L1E

L

0 dk

k S ] t2
1

2
] t

2DGk

5G02
1

2 FTr
k2

Gk
~2!1k2G

k50

5G0 . ~B3!

The initial condition for such a flow ~B2! is GL

2 1
2 ] tGkuk5L , which tends to the classical action forL

→`. Such a flow is complete. However, we emphasize t
the right-hand side of Eq.~B2! depends onGk

(2) and ]kGk
(2)
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and Gk obeys the CS equation. This is important for t
iterative calculations done in Appendix C.

This example can be extended to arbitrary sums of der
tives (] t1(ncn] t

n)Gk . Integrals of these flows always resu
in the effective action due to the first term] tGk . This can be
used to define the following flow:

] tGk2 (
n51

m21

Fn,m] t
n11Gk

5Tr S k2

Gk
~2!1k2D m

1Tr Fk@] tGk
~2! ,...,] t

m21Gk
~2! ,Gk

~2!#.

~B4!

Here, Fk@0, . . . ,0;x#[0 and Fn,m52 1
2 ( i 5n

m21(1/i )Fn21,i

for n.1 andF1,m5 1
2 ( i 51

m21(1/i ). Fk is given by the terms
proportional to ] t

iGk
(2) with i 51, . . . ,m21 contained in

(n51
m21Fn,m] t

n11Gk . By construction, the flow~B4! is an ex-
act flow. Again, as for the integrated flow~B2! @see Eq.
~B3!#, the integral of Eq.~B4! is the full effective action:

GL2 (
n51

m21

Fn,m] t
nGkuk5L2 (

n51

m21

Fn,mE
L

0 dk

k
] t

n11Gk

5G02 (
n51

m21

Fn,m] t
n Tr

k2

Gk
~2!1k2U

k50

5G0 . ~B5!

The integrated flow is the full effective action, as the ad
tional terms are proportional to powers ofk2. Moreover, the
initial effective action tends to the classical action forL
→`, subject to a properly chosen renormalization. We ha
shown in Sec. III that the first term of Eq.~B4! represents a
generic proper-time flow @17#. Hence,
Tr Fk@] tGk

(2) ,...,] t
n21Gk

(2) ;Gk
(2)#1(Fn,m] t

n11GkÞ0 repre-
sents the unavoidable deviation of a proper-time flow fro
an exact flow.

APPENDIX C: EXAMPLE

In this appendix we calculate the two-loop contribution
the generalized CS flow as introduced in Appendix B form
52. This serves as a reference point for the proper-time fl
with m52, discussed in Sec. III E. The line of reasoning
analogous to the one presented in Sec. II B. In the conden
notation introduced there, the flow~B2! is given by

FIG. 14. Graphical representation of Eq.~C1!. The black box
denotes the insertion12 ] tGk

(2) . The second term corresponds to th
difference with respect to the proper-time flow~3.21!, given in Fig.
8.
0-14
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S ] t2
1

2
] t

2DGk5S k4

~Gk
~2!1k2!2D

qq

1
1

2 S k2

~Gk
~2!1k2!2D

qq8

] tGk,q8q
~2! . ~C1!

The right-hand side of Eq.~C1! has the graphical represen
tation given in Fig. 14.

Expanding Eq.~C1! in loop orders we arrive at

DĜ25E
L

k dk8

k8 S ] t82
1

2
] t8

2 DGk8U
two loop

5E
L

k dk8

k8 S 22DG1,pq
~2! ~Gk82Gk82G!qp

1
1

2
~Gk82G!pq] t8Gk8,pq

~2! D . ~C2!

The hat inDĜ2 indicates thatDĜ2 has a diagrammatic ex
pansions different fromDG2 . Note also that on the right
hand sideDG1 is the one of the CS flow~B1!. Now we use
that

DG1,qq8
~2!

5
1

2
@Gpp8~Sp8pqq8

~4!
2Sp8rq

~3! Grr 8Sr 8qp8
~3!

!#L
k , ~C3!

] tGk,q8q
~2!

52~Gk2G!pp8~Sp8pqq8
~4!

22Sp8rq
~3! Grr 8Sr 8pq8

~3!
!. ~C4!
02503
Combining Eqs.~C2!, ~C3!, and~C4! leads us to

DĜ25E
L

k dk8

k8 H 2@Gpp8~Sp8pqq8
~4!

2Sp8rq
~3! Grr 8Sr 8pq8

~3!
!#L

k

3~Gk82Gk82G!q8q

2
1

2
~Gk82G!pp8~Sp8pqq8

~4!
22Sp8rq

~3! Grr 8Sr 8pq8
~3!

!

3~Gk82G!q8qJ . ~C5!

We rewrite the integrand in Eq.~C5! in terms of total deriva-
tives with respect to the scale parametert. Again a graphical
representation for the integrand is helpful, cf. Fig. 15, whe
the definitions of Fig. 2 and Fig. 4 have been used w
] tR52k2 andR5k2.

Using Fig. 5, we rewrite Fig. 15 in terms of total deriva
tives. Inserting the simple graphical derivative in Eq.~C5!
we end up with

FIG. 15. The integrand in curly brackets of Eq.~C4!. See Fig. 8
for a comparison with the standard proper time flow form52.
al
DĜ25E
L

k dk8

k8 H 1

4
] t8@Gpp8~Sp8pqq8

~4!
2Sp8rq

~3! Grr 8Sr 8pq8
~3!

!~Gk82G!q8q#2subtractionsJ
2E

L

k dk8

k8 H 1

2
Gpp8~Sp8pqq8

~4!
2Sp8rq

~3! Grr 8Sr 8pq8
~3!

!~Gk82G!q8q2subtractionsJ
5F1

8
Gpp8Sp8pqq8

~4! Gq8q2
1

12
Gpp8Sp8rq

~3! Grr 8Sr 8pq8
~3! Gq8qG

ren.

~C6!

This is the correct two-loop result as displayed in Eq.~2.15!. In order to arrive at Eq.~C6! we made use of the fact that the tot
derivative term in the first line of Eq.~C6! vanishes atk50. The second line can be written as a totalt derivative by noticing
that in the present caseG k2 G52 1

2 ] tG. It reduces the second line of Eq.~C6! to the first line of Eq.~2.15!. This proof of
perturbative completeness can be extended to arbitrary high orders within the loop expansion.

This offers an alternative way to arrive at the result~3.27!. We study the difference of the integrated flow~C2! to the
integrated proper-time flow in Eq.~3.26!. The difference between the two flows is given by

DG22DĜ252E
L

k dk8

k8
$~Gk82G!pp8~Sp8pqq8

~4!
22Sp8rq

~3! Grr 8Sr 8pq8
~3!

!~Gk82Gk82G!q8q%

1E
L

k dk8

k8 H ~Gk82G!pp8S 1

2
Sp8pqq8

~4!
2Sp8rq

~3! Grr 8Sr 8pq8
~3! D ~Gk82G!q8qJ ~C7!
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modulo subtractions. Equation~C7! can also be deduce
from the recursive relation betweenDGm andDĜm21 as dis-
played in Appendix D, Eqs.~D8! and ~D9!. If the proper-
time flow was complete the difference would vanish sin
the CS flow is complete. After some straightforward alge
this leaves us with the following consistency condition:

0[
!

DG22DĜ2

52
1

2 E0

` dk

k
~Gk2G!pp8Sp8rq

~3!
~Gk2G!rr 8Sr 8pq8

~3!

3~Gk2G!q8q , ~C8!

which is not satisfied. Using Eqs.~C6! and ~C8! leads us to
the representation~3.27! of the proper-time flow.

APPENDIX D: RECURSIVE RELATIONS

In this appendix we derive two-loop recursive relatio
for proper-time flows for valuesm andm8 that differ by an
integer. These relations make the scheme-dependent d
tion from perturbation theory explicit. The result is used
Sec. III.

The equation for the two-loop contribution to a flow wi
parameterm is

DG2,m52mÈ0 dk

k
Tr ~Gk2!mGDG1,m

~2! , ~D1!

with G5(S(2)1k2)21. Equation ~D1! can be rewritten in
terms ofDG2,m21 and loop terms. In the following it is un
derstood that integrals betweenk50 andk5` of total de-
rivatives proportional tok2 vanish up to renormalization
Now we use that

2m~Gk2!mG5 1
2 ] t@~Gk2!m21G#

2~m21!~Gk2!m21G. ~D2!

Using also a partial integration we get from Eqs.~D1! and
~D2!
02503
e
a

ia-

DG2,m52
1

2 È
0 dk

k
Tr ~Gk2!m21G] tDG1,m

~2!

2~m21! È0 dk

k
Tr ~Gk2!m21GDG1,m

~2! . ~D3!

If we could substituteDG1,m
(2) by DG1,m21

(2) in the second term
on the right-hand side of Eq.~D3!, this term would just be
DG2,m21 , as can be seen from Eq.~D1!. To that end notice
that

~Gk2!m2~Gk2!m2152~Gk2!m21GS~2!

5
1

2~m21!
] t~Gk2!m21. ~D4!

With Eq. ~D4! it is possible to express the one-loop cont
bution DG1,m in terms ofDG1,m21 and a one-loop term:

DG1,m5DF1,m212
1

2~m21!
@Tr ~Gk82!m21#L

k . ~D5!

Alternatively, Eq.~D5! can be read off from Eq.~3.13!, or
more easily for integerm from Eq.~3.14!. Using Eq.~D4! in
the second term on the right-hand side of Eq.~D3!, this term
takes the form

DG2,m211
1

2 È
0 dk

k
Tr ~Gk2!m21G

d2

~df!2Tr ~Gk2!m21.

~D6!

Next, we consider the first contribution on the right-ha
side of Eq.~D3!, where we use

] tDG1,m
~2! 5

d2

~df!2 Tr ~Gk2!m. ~D7!

Combining the first term in Eq.~D3!, using Eq.~D7!, with
the second term in Eq.~D6!, and making use of the firs
equation in Eq.~D4!, we arrive at the recursive relation
in a
DG2,m2DG2m215
1

2 È
0 dk

k
Tr F ~Gk2!m21G

d2

~df!2 Tr ~Gk2!m21GS~2!G , ~D8!

apart from irrelevant terms from the different renormalization procedures for the two flows. Equation~D8! cannot be written
as the integral of a total derivative. We can, however, perform a partial integration using] t(DG1,m

(2) 2DG1,m21
(2) )

52Tr(Gk2)m21GS(2). Employing also Eq.~D5!, we end up with

DG2,m2DG2,m215
1

2 È
0 dk

k
Tr F ~Gk2!mS m

m21
G2k22D d2

~df!2 Tr ~Gk2!m21G , ~D9!

which has been given previously in@17#. The different forms could prove useful when discussing the terms dropped
specific proper-time flow. Finally, Eq.~D8! can be used to write down a general relation between flows withm, m8 that differ
by an integern. We have
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DG2,m5DG2,m2n1
1

2 (
l 5m2n

m21 È0 dk

k
Tr F ~Gk2! lG

d2

~df!2 Tr ~Gk2! lGS~2!G . ~D10!

The difference~D10! depends on arbitrarily high powers of the fields and does not integrate to zero. Similar relations als
for nonzerok, but then we also have contributions that integrate to zero as they are total derivatives of terms proport
k2.
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