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We study different renormalization group flows for scale-dependent effective actions, including exact and
proper-time renormalization group flows. These flows have a simple one-loop structure. They differ in their
dependence on the full field-dependent propagator, which is linear for exact flows. We investigate the inherent
approximations of flows with a nonlinear dependence on the propagator. We check explicitly that standard
perturbation theory is not reproduced. We explain the origin of the discrepancy by providing links to exact
flows both in closed expressions and in given approximations. We show that proper-time flows are approxi-
mations to Callan-Symanzik flows. Within a background field formalism, we provide a generalized proper-time
flow, which is exact. Implications of these findings are discussed.
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[. INTRODUCTION paper, are closely related to other well-known exact flows
like Wilsonian flows[5], Wegner-Houghton flow$6] and
Renormalization groupRG) methods are an essential in- Callan-Symanzik flow$7]. The strength of exact RG flows
gredient in the study of nonperturbative problems in con-s that systematic approximations of the integrated flow cor-
tinuum and lattice formulations of quantum field theory.respond to systematic approximations to the full quantum
Over the last decade increasing interest has been devotedtteeory. This allows us to devise optimization conditions
particular formulations of RG flows, which have one main[8-10], which resolve the problem of the spurious regulator
property in common: they all can be written as a simpledependencé8—12].
one-loop equation in the full field-dependent propagator. In turn, some one-loop RG flows have been derived
Their one-loop structure is very useful because it allows ugvithin the philosophy of a one-loop improvement. This in-
to encompass technical complications due to overlappingludes the proper-time RG floW43,14 and RG flows based
loop integrations known from standard perturbation theoryon an operator cutoffl5]. The similarity between the differ-
and Schwinger-Dyson equations. Another important strengt&nt one-loop flows with one-loop exact flows has fueled
of these RG flows is based on their flexibility, when it comeshopes that the scenario just described for exact flows may be
to truncations of the full problem under investigation. Thisvalid in general. Therefore, it is important to either establish
makes all the different sets of RG equations interesting fofhat a given flow is exact, or, if not, what approximation to
situations where one has to resort to approximations becaug@ exact flow it represents. This is at the root for the predic-
the full problem is too hard to attack. For nonperturbativetive power of the formalism. So far, this question has been
effects at strong coupling or large correlation lengths, suctstudied within the derivative expansi¢h6]. A first account
an approach is essentially unavoidable. of a more general analysis was giver] I7], where we com-
Despite their close similarity, the various RG flows with a pared the perturbative expansions of different one-loop
one-loop structure differ qualitatively in important aspects.flows.
The RG flows depend on the precise implementation of a In the present work we give a general analysis of the
regularization, typically given by momentum or operator Cut_problems mentioned above. A detailed study of the following
offs. Furthermore, some RG flows are known todxact as  One-loop and one-loop exact flows is provided: ERG flows,
they can be derived from first principles, mainly done within Callan-Symanzik flows, and generalizations thereof, proper-
a path integral representation. Prominent examples for sudiime flows, and one-loop flows based on an operator regular-
one-loop exact flowsare Exact RG(ERG) flows [1—4]. ization. We show that one-loop exact flows depend linearly

These flows, which we use as reference points in the preseff the full field-dependent propagator. A general one-loop
flow does not have this structure. As a consequence, we

show that integrated nonexact flows deviate from standard
*Email address: Daniel.Litim@cern.ch perturbation theory at the first nontrivial order, i.e., two loop.
"Email address: jmp@theorie3.physik.uni-erlangen.de Additionally, we relate proper-time flows to the Callan-
From now on, we refer to renormalization group flows with a Symanzik flow, and—in given approximations—to ERG
one-loop structure as “one-loop flows.” Exact flows with a one- flows. We also discuss the possibility of an exact map be-
loop structure are referred to as “one-loop exact flows.” This tween ERG and proper-time flows. Based on these findings,
should not to be confused with a one-loop approximatian, one- ~ We presengeneralizedoroper-time flows, which are exact.
loop exact flows areot one-loop approximations of some exact It proves helpful to introduce two properties of RG flows
flow). which we refer to agompletenesandconsistencyConsider
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a general flow defined by an initial effective action given atexact flow for the effective action can only depend linearly
some initial scale\, and a flow equation connecting it with on the full propagator. This result is used at various places in
the full quantum effective action at a vanishing cutoff scale.the main body of the work. In Appendix B we study Callan-
Then we define that a flow isonsistentif its flow equation ~ Symanzik flows and generalizations thereof. Proper-time
connects an explicitly known initial effective action with the flows can be seen as approximations to generalized Callan-
full quantum effective action, and a consistent floncan- ~ Symanzik flows. In Appendix C we compute explicitly the
plete if the initial effective action is trivial, namely the clas- two-loop effective action from a generalized Callan-
sical action. Symanzik flow. This result is used in Sec. Ill for comparison

As the initial effective action of a complete flow is trivial, With a specific proper-time flow. In Appendix D we derive a
all quantum fluctuations result from integrating the flow récursion relatlon_for the two-!oop effeptlve action within the
equation. Well-known examples of complete flows areStandard proper-time RG. This result is used in Sec. Il
Callan-Symanzik flows and ERG flows. In turn, for a consis-
tent flow, in general, parts of the quantum fluctuations are [l. EXACT RENORMALIZATION GROUP
already contained in the initial effective action. The latter has

to be known explicitly? Important examples for consistent . ; i
flow are ERG flows with a nontrivial initial effective action. and consistency at the example of ERG equations. Prior 1o
this, we comment on the general structure of one-loop exact

For thermal field theories, this concerns scenarios where iniz

tial effective actions stem from perturbative dimensional re_flows. A general exact flow is the flow of some operator

duction [12], or thermal RG flows within the ERG frame- insertion within the theory. The expectation values of more

work as provided i3] and[18]. In the latter, only thermal than two fields involve multiloop contributions. Thus, insist-
fluctuations are integrated by the flow while the quantum!ng on the qne-]oop nature of the. ﬂpw, one Is bound to an
sertion which is at most quadratic in the fields. Otherwise,

fluctuations have already been integrated out and are part . o
e corresponding exact flow would also contain higher-loop

the initial effective action. N .
The outline of the paper is as follows. In Sec. II, as ancontrlbutlons. We conclude that an exact flow with a one-
' op structure must deperthearly on the full propagator

introduction of the methods, we discuss consistency an 7 M detail i i A dix A
completeness for ERG flows. We argue that general one-lo |- More details are given in Appendix A.

exact flows must depend linearly on the full propagator. This o
result is derived in Appendix A. Then we sketch the deriva- A. Derivation

tion of ERG flows from first principles and explicitly show  The ysual starting point is the generating functional of the
their completeness within perturbation theory. Generalizagheory at hand, where a cutoff teriS,[ ¢] is added to the
tions to consistent ERG flows, in particular at finite tempera-jassical action. Here we discuss a theory with a scalar field

ture, are briefly discussed. . ~and a general interaction; the generalization to arbitrary field
In Sec. Il we study proper-time flows. We sketch their -gntent is straightforward. We have

derivation as one-loop improved RG equations. Then we
prove that these flows are in general incomplete. We provide g
explicit expressions for the regulator-dependent deviation Zk[J]:f d¢exp{—$[¢]—ASk[¢]+f d X‘]d’)'
from complete flows at two loop. We also give their link to (2.1
Callan-Symanzik flows. It is argued that a proper-time flow
is not a consistent flow. These findings are illustrated withinwhered counts space-time dimensions. This leads to the flow
a simple example. equation
In Sec. IV we discuss consistency and completeness for
flows derived from a multiplicative regularization of the one- HZ [I]=— (0 AS[ P]);- (2.2
loop momentum integral. By explicitly calculating the two-
loop contributions of the integrated flow we show that theseAn insertionAS,[ ¢] at most quadratic in the fields guaran-
flows are neither complete nor consistent. tees the one-loop structure of the corresponding flow. Hence,
In Sec. V we devise maps between given approximationsve choose taAS,[ ¢]= 3 [d/x¢$R¢, whereR is an infrared
of proper-time flows and ERG flows. In addition, we show (IR) regulator function depending on an IR sc&leFunc-
how the proper-time regularization has to be generalized itions R(q?) have to satisfy a number of conditions in order
order to turn the flow into a complete and consistent flowto provide an infrared regularization for the effective propa-
This is based on generalized proper-time regulators and irgator, and to ensure that the flq.6) interpolates between
volves the use of the background field method. an initial (classical action in the UV and the full quantum
In Sec. VI we close with a discussion of the main resultseffective action in the IR. The necessary condition&RQrare
and their implications regarding the predictive power of thesummarized as
different RG flows.

In this section we discuss the concepts of completeness

Some more technical aspects are summarized in the ap- lim R(g?>0, (2.3
pendixes. In Appendix A it is shown that a general one-loop q?/k?>—0
lim Ry(q?=0, (2.4
°This subtlety is discussed in Sec. Il D. k2/q2—0
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FIG. 2. Graphical representation of the propagd®pis], the

(classicaln-point verticesS™[ ¢], and the insertiong,R=R and
R

FIG. 1. Graphical representation of the ERG equaf®®).

lim Ry (q?)— . (2.5
k—A

whereA is an ultraviolet(UV) scale. Equatiori2.3) guaran-

tees thatR, provides an IR regulator, because massless _ }

modes are effectively cut off. The second conditigh4) 2\r@+R

ensures that the regulator is removed in the IR likiit 0 pa

and that the theory is unchanged for momentum modes wita simple graphical representation for EQ.9) is given by

g°>k?. The condition(2.5) ensures that the correct initial Fig. 1.

condition is reached for ligjy. , I'k=S, . Here, A is the ini- The closed line in Fig. 1 represents the full field-

tial (UV) scale. dependent propagatoF ([ ¢]+ R) ~* and the crossed circle
The effective action is defined as the Legendre transforstands for the insertioR. According to Fig. 1, or E(2.9),

mationT'[ ¢]=[d?xJp—In Z{#]-AS{H]. This leads to a the ERG equation has a simple one-loop structure, which

simple form of the flow equation fdr,. From Eq.(2.2) we  should not be confused with a standard perturbative loop as

Rqp- 2.9

get for the flow of the effective action it contains the full propagator. The explicit calculations are
. @ . most easily carried out within the graphical representation.
A @]=2Tr (I + R ™Ry, (260 we introduce the graphical notation as given in Fig. 2.

The precise expression for the propagagprp] in Fig. 2

where depends on the flow studied. The line in Fig. 2 stands for the
. T [ 6] field-dependent perturbative propagatsézé[d?]ﬂL R)" %, in
I'[él(p.a)= 5 5 (2.7  contrast to Fig. 1. The vertices are the classical ones, but also
$(p)o(q) with full field dependence.

and the trace denotes a sum over all momenta and indices, NOW let us write the effective action within a loop expan-

t=Ink. The ERG flow is linear in the full propagator, as sion

required for an exact one-loop flow. It is IR finite due to Eg. o

(2.3 and UV finite due to Eq(2.4). =S+ E AT,, (2.10
n=1

B. Completeness ) ) . )
where S is the classical action and\I’,, comprises the

It is well known that perturbation theory is contained in nh_oop order. At one loop, the integrated flow is
ERG flows. The first use of this approach was to simplify

proofs of perturbative renormalizabiliff]. The UV bound- kdk'

ary conditionI", is the classical action. All quantum fluctua- A=Al 5+ J;T 29

tions are integrated out along the flow. Therefore, the ERG one loop

flow has to be complete. An explicit check of completeness — AT, \+ In(s@+ R)]qqm. (2.10)

is provided by successively integrating the given flow equa-

tion perturbatively order by order and comparing the result torpo expression on the right-hand side of E8.1) ap-
standard perturbation theory. Such a check is useful for ﬂOWBroaches the full one-loop effective action flor-0. The
which lack a derivation from first principles. There, it also g,piraction at\ provides the necessary UV renormalization,
provides some insight in the structure of the deviations. Her?ogether WithAT; , . As the latter only encodes renormaliza-
we perform this check for the ERG up to two loops. It serves;g, effects, we drop it from now on. For the two-loop cal-

as an introduction to the methods used later. ___culation we also needT'{¥), which follows from Eq.(2.11)
In order to simplify the subsequent expressions, we intro-

duce a short-hand notation by writingA,qs.. as
=A(p,q.r,s,...) for momentum variablep,qr,s,..., and re-

peated indices correspond to a momentum integration l
dp , E -
ququ’E(AB)qq’:f 2m)° A(q,p)B(p,q"). (2.9
As an example we rewrite the ERG equati¢h6) in this FIG. 3. Graphical representation of E@.12. The subtracted

notation, diagrams(double line$ are defined in Fig. 4.
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k A
_ 1
= - -1 — +
Q-0Q-Q al
k A
O _ @ B @ FIG. 6. The integrand in curly brackets of E@.15), first line.

on diagrams, which are evaluatedkagven for subdiagrams.

FIG. 4. Graphical representation of subtracted diagrams. Th&" Most results, both graphical and equations, we will only
scale dependence of the perturbative propagéttirline) is due to ~ Mention them implicitly.

the regulator ternR,, hence the indek or A. The two-loop contribution to the effective action is
1 (kdk’
(2) _1 (4) (3) (3)  \k _ 2
Arlqu’_E(Gpp'sp’pqq’_Gpprsp’qu”'S”pq')A('Z 12 Arz—ifA_k, Argvgq&tqup, (213

Again, the indicesj andq’ stand for the external momenta. Where
Thus,AT'{?) consists of twasubtractetigraphs. Its graphical
representation is given in Fig. 3. The double lines stand for
subtractedfinite) diagrams. They are introduced in Fig. 4.

Clearly the subtraction at leads to a renormalization of
the diagrams. For our purpose these terms are not interestifdpw one uses that the only dependence ofAI'; or its
since they only provide the details of the renormalizationderivatives with respect to the fields comes from the propa-
procedure. Here, however, we are only interested in th@atorsG within the loops. Graphically},G is given in Fig. 5.
graphical structure of the perturbation series, including thelhis enables us to write E§2.13 as a totak derivative. As
combinatorial factors. For this purpose the structure of then the one-loop case, fde=0 we approach the usual pertur-
subtractions is irrelevant. In other words, we want to focusation theory with the correct combinatorial factors. We get

1
S?+R

(2.19

qu

Pq

kdk' [1
=| — (4) (3) (3) kK
AFZ_ fA k/ {Z(GPP’Sp’pCIQ'_GPP'Sp/qurr’ r’pq')Aﬁt’Gq'q]

kdk' 1 1

= | — > 0u{5Gpp S (G —EG S G, /S¥ Gy q— subtraction
A k' 47| 277PP PppagCa’a 3 PR P prg Y pg A’

1
— (4)
—[—Gpp,s G

1
(3) (3)
8 pp’qq’ Gpp'sp’qq’Gqu G”} ) (2.15
ren

Q'q_l_z prr/ 2r'q

where the subscript “ren” indicates that these are renormal- C. Consistent ERG flows

ized diagrams d_ue to the _subtractionszhtNote that the Some applications of the ERG are such that a part of the
sunset diagram in Ed2.19 is completely symmetric under , antym fluctuations are already contained in the initial

permutations of the propagators, which has lead to the factqfeory: in these cases, the initial effective action is not trivial.
5, schematically written as®)“a,G=35d,(G)". For illustra- | ot 45 mention two examples. First, it is possible to relax the
tion we present in Fig. 6 the diagrams for the term in curly ongition (2.5) on the cutoff, thus starting at a point, where

brackets in the first line in Eq2.15. Employing the identity  gome (Jarge momentum fluctuations are already integrated
displayed in Fig. 5 the expression in Fig. 6 is easily rewritten, + The control about truncations to the starting point is very
as a totat derivative. The calculation presented in E2.15 good. The neglection of power counting irrelevant terms in

is most easily carried out this wagee Fig. 7. This analysis  the perturbative regime should only inflict deviations of the
can be easily extended to any loop order. The integrands can

always be rewritten as totalderivatives. Thus, the result is

independent of the regulatét. [ l % ___l_ @ ]
8
Oy —— = — —'®— 12 ren.

FIG. 5. Graphical representation 6{G=—G(d;R)G. The k FIG. 7. Two-loop contribution to the effective action as given by
dependence of is only due to the explicik dependence dRy . Eq. (2.15, last line.
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order k?/A?)" at some IR scal&<A. Pivotal for such a lim fi.o(A,s)=0 (3.4)
picture to work is theexactnes®f the flow itself. S0

Second, another important example is ERG flows for field
theories at finite temperature. Proposals have been put for- lim f (A,s)=0, (3.5
ward that rely on decoupling quantum fluctuations and ther- k—A
mal fluctuationd 3]. Here, the flow equation displays an in- )
tegrating out of the latter ones whereas the initial effective lim fi_o(A,5)=1. (3.6

A—oo

action contains the quantum fluctuations. Of course, this pic-

ture only works in particular situations where a neglection ofrpg congition(3.4) ensures that the theory is infrared regu-
the quantum fluctuations is feasible or in regimes where theif, ied  as the limit— o corresponds to the limit of vanish-

contributions to the effective action at zero temperature ar?ng momentum. The conditiof3.5) ensures that the flow

well under control. We conclude that the applicability of CON-starts off from the initial conditiod’ , . Finally, the condition

sistent ERG flows hinges on their exactness. This is an img3 g ensures that the proper-time regularization reduces to
portant statement in view of the applicability of other RG the usual Schwinger proper-time regularization for 0.
flows. From now on, we only consider regulatoig(A,s) of the

form
I1l. PROPER-TIME RENORMALIZATION GROUP

— 2c) 2
In the remaining part of the paper we discuss one-loop fi(A,8)=T(A%S) =T (k)

improved RG flows. In this section we consider so-calledip

proper-time RG flows. We show that proper-time flows in

general do not reproduce the perturbative loop expansion. lim f(x)=1 and limf(x)=0. (3.7
The consequences for approximations and predictive power X—o0 x—0

are discussed. ) ) ] )
It is easily checked that,(A,s) as defined in Eq(3.7) sat-

. isfies the conditions summarized in E§3.4)—(3.6).
A. Derivation
The starting point is the equation for the one-loop effec- B. Completeness

tive action _
Next we show that a general proper-time flow does not

ree loop_ Syt 3TrinS?, (3.2 depend linearly on the full propagator. We expand a general
proper-time flow in the following basis set of regulator func-

The trace in Eq(3.1) is ill defined and requires an UV regu- tionsf:

larization. Oleszczuk proposed an UV regularization by T'(m,x)
means of a Schwinger proper-time representation of the trace f(x;m)= S (3.83
[19]: '(m)
one loop_ 1 ds 2) . f(x;m)= 2 xMe X (3.8b
re —sd—if ?f(A,s)Trexp(—sstl ). (3.2 e T'(m) - :

Here,x=k?s andI"(m,x) = [§dtt™ ‘e~ ' denotes the incom-
plete I' function. The functionsf(x;m) have the limits as
demanded in Eq(3.7). The set(3.8) spans the space of all

The regulator functiori(A,s) provides an UV cutoff. Send-
ing the UV scale toe should reduce Eq3.2) to the standard
Schwinger prop(_ar—time integral0]. This _happens for the cutoffs with an IR behavior controlled by the teen* serv-
boundary COﬂthIOﬂf(AHOO,S)-Zl. Equat|on(3_.2) can be ing as a mass. These flows cover all proper-time flows that
turned into a simple flow equation by also adding an IR Scalenave been studied in the literatuf#3,21,14,22—27,16,28—

k, replacingf (A,s)—f(A,s). A flow equation with respect 30]. General - : :
) > . proper-time flow&ixed by choosings,f ) are
to the infrared scalk (andt=In k) has been proposed E3] given by linear combinations of the basis functiof3s8).

1 ds Now we consider the flow for a specific valuerof Inserting
O»)tl—‘k[ d)]: _ EJ' [&tfk(A,S)]Tr exq_sl—‘(kZ))_ Eq (38) In Eq (33), we find

o S
oI _—|er—dS—(S ) exp—S(F(2)+k2) (3 9)
vk o S F(II) K ' '

o

(3.3

Here, the classical action has been replaced by the scale-

dependent effective actiohi, on the right-hand side of Eq. The trace in Eq(3.9) can be written in terms of th@ormal-
(3.3). This is the philosophy of a one-loop improvement. Inized) eigenfunctions¥ , of r(kz) with

Eq. (3.3 only the explicit scale dependence due to the regu-

lator term is considered. There are a few conditions imposed FPW =\ ¥,. (3.10
on the proper-time regulator. The UV behavior remains un-

changed if lim_ o fi (A,s)=0. It is required that This leads to
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»ds (sk’)™ )
(7trk=Z J EXp—S()\n-H( ) (31]) Arl'm_AFl’m,]_: -

— r2ym—17k
~ Jo s T(m) [Tr(GK'9)™ 1%,

(3.19

2(m—1)

For commuting the sum overand thes integration we have

used that the eigenvalues obkey+k?=0 Vn. This condi- Wwith G=(S®?+k? 1. The right-hand side vanishes f&r
tion is not a restriction as it has to hold for a well-defined —0. At two loop, we can relate flows witm andm’=m
proper-time flow(3.9). A similar condition also applies to +n, wherenis integer. The details are given in Appendix D.
ERG flows(2.6): I'\®¥+ R,=0. By performing thesintegra-  The key result is the recursive relation

tion we arrive at )

(6¢)°

2

2 2
I +k

(Gk2)mflG

m

AT AT ! fo—dkT
m o2m— Al om-1=75 r
=Tr 2 ).k

(3.12

k2
a ' =
ok ; ()\n+k?

XTr(GkH)™1GS?|, (3.1

The operator kernel inside the trace is tinéh power of a
Callan-Symanzik kernel. Exact flows, as discussed in detail
in Appendix A, have a linear dependence on the full propaapart from irrelevant terms from the different renormaliza-
gator. Hence, Eq3.12) is not exact form+ 1. Furthermore, tion procedures for the two flows. A similar relation was
the functional dependence of E@®.12 on I'® depends on already presented if17]. It is connected to Eq3.16) by a
the regularization. This signals that the deviation of a genergpartial integration, see Appendix D. Using E§.16) recur-
proper-time flow from an exact flow is regularization depen-sively, we find

dent, which is studied next.
m—1

1 0dk
C. Proper-time flows at two loop Alym=ATom-nt §|=§m:7n - k
We study the deviation of integrated proper time flows )
from perturbation theory at two loop. We o!erive_ relations XTr| (GK)'G 2Tr(Gk2)IGS(2)}_
between flows for generah andm+n, wheren is an integer (6¢)
andm is arbitrary. At one loop the integrated flow equation 3.17)

(3.12 results in
The difference(3.17) depends on arbitrarily high powers of

Kk !
Arl’mzf (:(—Il(at,rk,|one loop the fields and does not vanish. Equati@l? provides a
A constructive proof that proper-time flows, in general, are
1 K2\ m nonexact. Let us assume for a moment that the proper-time
= _Tr{(ﬁ) flow for a particularm, is exact. Then it follows from Eq.
2m 1w (3.17 that all flows with m=my+n for integern are not

K exact, because the corresponding teft47) do not vanish

. (3.13 lidentically in the fields. This has an immediate consequence
for flows with integerm: The Callan-Symanzik flow r
=1) is exact. Therefore any flow with integer>1, or any

where ,F4(x,y;z;w) is the generalized hypergeometric se-linéar combination thereof, is not exact.

ries. For integem, ,F, can be summed up and there is a L€t us close with two comments. We have found

12
X oFq mym;m+1;— W)

K’

A

simpler representation regulator-dependent terms at two loop. Hence, the proper
time flow (3.3) does not represent a totaderivative. One
kdk’ could think that the proper-time floWB.3) is improved by
ATy = fAT 9t/ Tr | one 100p also taking into account thiederivative of'{?),
L () 12 ol @
=5 Tr{In(l}; +k'2) l==3 | 5 TrlafdA,9)=shi(A,8)al"]
m-1 4 K2\ x exp(—sI'(?)). (3.18
& e (@14 18 s
k’ A The flow equation(3.18 is, in contrast to Eq(3.3), a totalk

derivative. Its end point does not depend on the regulariza-
For k—0 both formulas reproduce the one-loop effectivetion. However, the end point is the functiodaivhich solves
action3[ TrIn(I'®+k?)],en. Fork+0 we also have additional T'=S,+TrinT®)|,.,. This equation is not satisfied by the
terms as opposed to the one-loop integral of an ERG flow, cfull effective action.
Eqg. (2.11). These terms arm dependent. For general the A second comment concerns another extention of proper-
difference betweedI'; ,, andAI'; ,,_; is given by time flows, discussed in Appendix B. Consider the flow
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m—1 2
ANEDS Fn,ma?Jrle:Tr(
A=1

m
.

I =

k

I +k?
+TrR Lo, o0 T2 T2,
(3.19
FIG. 8. Graphical representation for the proper-time RG equa-
The coefficients,, ,, andF, are defined in Appendix B. The tion (3.21). The proper-time flow3.12), for integerm, corresponds
flow (3.19 is exact and”, obeys the usual Callan-Symanzik to a loop withm propagator lines anth insertionsk?. It reduces to
equation. The first term in E¢3.19 is the standard proper- the CS flow[Eq. (B1)] for m=1.
time flow (3.12. The new terms in Eq(3.19 are propor- _
tional to the flow of '(® and to higher-order scale deriva- With

tives of I'y. 1

e

We have shown that proper-time flows are not completey,o two-loop contribution is
We are left with the question whether proper-time flows are
consistent. In this case the initial effective actiop is non- kdk’ 5
trivial and must be known explicitly. Let us first argue that Al'p= —ZJ rAF(lyq)qr(G k'?GK'?G)gq. (3.24
any flow trivially represents an exact flow by the following A
construction. The initial effective actioh, is given as a
function of the flow and the full effective actidn, by

Gqq = (3.23

D. Consistency aq’

In Eqg. (3.29), it is understood thaG (3.23 depends ork’
under the integral. FronB.22), we obtain

Adk
FA[FO]:FO"'J — 'l ol (3.20 @ _1 (4) (3) (3)
o k™ AFl,qq’:E[GPP’(SD’DCM'_ or1qCr g
At least within a loop expansion this is possible, ra®op +(GK'2G),,
order contributions td", depend on the flow to loop order PP
n—1. The only condition for the global construction is the x(s;‘quq,—zsf:)qu”/ ohg)]i - (3.29

existence of flow trajectories from the full effective actibp

toI", . For such a scenario to be applicable, the initial effec-Notice the difference to Eq2.12). Graphically, Eq(3.25 is

tive action(3.20) has to be known explicitly. Then the flow is given in Fig. 9, where we resort to the definitions in Fig. 4.

consistent. If the initial condition is not known explicitly, the Lines represent field-dependent perturbative propagators,

flow cannot be integrated. This consideration implies thawertices represent field-dependent classical vertices.

proper-time flows are not consistent: the flow is not com- In comparison to the ERG result for the one-loop propa-

plete, and we do not have any further information adout gator in Fig. 3 there are two additional diagrams in Fig. 9.

except the trivial one encoded in E.20. This observation Inserting Eq.(3.25 into Eg.(3.24), we end up with

makes it interesting to investigate possible enhancements of i
roper-time flows, which is done in Sec. V. kdk’

prop AT ,= fAT{—[Gpp,(siﬁgqq,—sﬁiqe,,,si?gq,)]';

E. Example Gk
X(GK'“GK'“G)q/
We illustrate our findings with a simple example by con- ( Jara

sideringm=2. A short account of this calculation was al- —[(Gk’ZG)pp,(S(‘f) ,_25<3;)r Grr,sﬁ” 01K
ready given if17]. In the condensed notation introduced in P pad . P
Sec. 11 B, the proper-time flow witm=2 is X (GK'2GK'?G) g/} (3.26
k* The integrand in Eq(3.26 has the graphical representation
o= TPz (321 given in Fig. 10.

a4 Next, we compare our findings with a generalized Callan-

where the kernel is the square of a Callan-Symanzik kernePymanzik flow(C1) discussed in Appendix C. This flow is

andq denotes momenta. The flow is depicted in Fig. 8. TheSxact. It differs from the proper-time flou8.21) only by

line in Fig. 8 stands for the full field-dependent propagator

(T'@+k?)~1 the crossed square stands for the inserton 1
This has to be compared with the ERG flow in Fig. 1. 2 B + -2

The one-loop contribution from the integrated flg8v21)

can be read off fron§3.14) as FIG. 9. The one-loop correction to the propagaidi? for the
. ) 2 1o specific flow(3.21). Notice the two additional terms which appear
AT’y =3[In(k +5 )]qq_ik qu (3.22 in comparison to the ERG flow, cf. Fig. 3.
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of the integrand is that of the sunset graph where all propa-
gators have been substituted by their squares.

- + - + To be more explicit, consider a massiyé theory with
massM and quartic interaction 1/4!f d%¢*. The contribu-
tion of the nonstandard diagram to the propagator is obtained

after taking the second derivative with respect to the fields in

FIG. 10. The integrand in Eq3.26). See Eq(C4) and Fig. 15 Eq. (3.27) at ¢=0. We find

for comparison.

loop t tional to the flowI"{?). Graphically, th Azfodk dq _d < <

oop terms proportional to the flowI"\=’. Graphically, the - q 47T T T T 77
difference between the flows is given by the second term in = K ) (2m)7 (2m)7 (KM g7 (KM%
Fig. 14. At two loop, we compare the integrands as given in K2

Fig. 10 and Fig. 15, respectively. The first two terms in Fig. X(k2+ M2+ (1+q=p)27" (3.28

15 and Fig. 10 agree whereas the last two terms are different.
More specifically, the last two terms in Fig. 15 ha®&°G as
the bottom line, whereas we ha@k’Gk?G in Fig. 10. It is
this difference which makes it impossible to rewrite the in-
tegrand in Eq(3.26) as a total derivative.

Now, let us expand Eq3.26) about the correct two-loop
result(2.15. After some algebra, we arrive at

The integrand is strictly positive. Hence the integral is non-
vanishing. Moreover, it has a nontrivial momentum depen-
dence. This can be seen by evaluating the limpitsO0 and
p—o. For p—0 we are left with a nonvanishing constant.
For p—« the expression in Eq3.28 vanishes.

1 IV. MULTIPLICATIVE REGULARIZATION
Arz%—spp,s(‘” G

8 p'pag’ ~a’d In this section we discuss a recent suggestion for a one-
loop improved RJ15], which is based on an operator regu-
-~ iG ® g ,s¥ &, larization of the one-loop effective action. The starting point
12 7PPTpirg T pgt AT e of [15] is the regularized form of the one-loop effective ac-
' tion,
—Efkd—k,(ek’ze) S, (GK'2G)
2 /4 K PP'Zp'rq I’ rgne 100 1Tr(p In S12)). (4.1
X Sl(,:?:qu(Gk/zG)q’q- (3.27)  Here,p provides a regularization of the otherwise ill-defined

trace in EQ.(4.1). In the limit k—O0 the regularization is

A simple consistency check on E(8.27 is to take its de- "eémoved ang— 1. Taking thet=In k derivative of Eq(4.D

rivative with respect tok. This leads to the kemel of Eq. @nd using the condensed notation introduced in &f)

(3.26). The first line in Eq(3.27) corresponds to the correct €ads to

two-loop result. The second line denotes the deviation from one loop_ 1 )

standard perturbation theory. The integrand in the second oIy =32(INS%)qq dtPqrq- (4.2

line of Eq.(3.27) is the nonstandard diagram depicted in Fig.

11. The second term on the right-hand side of 27 is  Again one resorts to the idea of a one-loop improvement and

the term on the right-hand side of the recursive relatiorsubstitutess®® on the right-hand side of E¢4.2) with r.

(3.16 for m=2 [see also Appendix C, Eq&C7) and(C8)].  This leads to the final form of the one-loop improved flow,

The last term on the right-hand side .27 cannot be

absorbed in renormalization constants. It contains arbitrary d=3%(In F(kz))qq/(?tpq/q. 4.3

powers in fields and momenta and does not integrate to zero

in the limit k— 0 andA —. For massive theories both lim- The factorization of the regulatgrmakes numerical as well

its are safe. This term displays a nontrivial deviation of theas analytical calculations easily accessible. In IRES)], the

present proper-time flow from perturbation theory. The formflow (4.3) has been studied to leading order in the derivative
expansion. As the flow4.3) depends on the logarithm of

S I'®), it cannot be exact.
A We would like to understand the structure of the deviation

more explicitly and compute the two-loop effective action.
The one-loop effective action is

kdk’ Lins® k
ATy = fAvﬁt’rk’lone loop— E(lns )aq'Pa'g A'
m (4.4

FIG. 11. The nonstandard term in E§.27). See also Eq(C7). The two-loop effective action is
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1 1 precisely this form of the regularization which is ultimately
= S responsible for the mismatch with standard perturbation
4 4 theory beyond one loop.

. . . . V. EXACT PROPER-TIME FLOWS
FIG. 12. The integrand of Eq4.6), first line. Notice that the

insertionsp and d,p are always attached to a vertex. In this section we relate proper-time flows to exact flows,
both, within given approximations and as closed formal ex-
1 (kdk’ pressions.
AFZZE fA?AFqu’Gq’p&t’ppq' (45)

A. Proper-time representation of ERG flows

We have already introduced a representation of proper-
time flows which is quite close to the ER@Gee Sec. III B.
Let us now investigate a proper-time representation of ERG
equations. This allows us to study the map from ERG to
proper-time flows more directly as done [ii6]. We start

where G=1/S?). We rewrite the expression on the right-
hand side of Eq(4.5) as a total derivative using that the only
k dependence ofI'{?) is given byp. We finally get

kdk’ (1 @ with the ERG(2.6) which can be rewritten as
AFZZ J’AT ZGpp/pp/rSrpqq,
L ‘ ol =1Tr atka dsexp—s(I'?+Ry). (5.1
0
- ZGpp’pp’rSE?qu”SS(s?))q’) Gq’s’&t/Ps’q
A It is easy to see that the flow equatitdl) is well defined in
1 " both the ultraviolet and the infrared. We now turn E.1)
=[§(pG)pp,Sp,pqq,(pG)q,q into

1 (3) (3) 9, =Efwd—STr(F [SR;sI'@]exp—sI'(?) (5.2

- g(pG)pp’Sp'qurr’Sr’pq’(pG)q’q . (46) thk 2 o S k ! k k '

ren.

in order to facilitate the comparison of ERG flows to proper-
For k=0, the two-loop result(4.6) is independent of the time flows(3.3). Here, the operatdf,[A,B] is given as
regularization. The integrand in E¢.6) has the graphical
representation given in Fig. 12. Figure 13 shows the two- FUA;B]=(aA)exp{—A+K[—(A+B),B]}, (5.3
loop contribution of the flow(4.3), corresponding to the last
line in Eq.(4.6) atk=0.

o

(=)" 1

The combinatorial factor for the sunset graph is not the K[AB]:HZI n+ipiS=1 n
correct one. How does this come about? In the ERG case, 14 p
one deals with expressions which are, qualitatively, of the i=1
form (G)"9,G=[1/(n+1)]4,(G)"**. Stated differentlyall n o 0
propagators are regularized. In the RG equati®B), there «T1 (adA)P (adB) I[A] 5.4
: . - ; N 1 ' '
is one regulator insertiorp for eachloop, regardless, how =1 Pit ai:

many propagators are contained in the loop. The first dia-
gram in Fig. 12 contains two loops and two propagatorswhere adB[A]=[B,A] and (adB)°[A]=A. Equations
leading to the correct combinatorial factor in Fig. 13. The(5.3 and (5.4) can be deduced from the Baker-Campbell-
sunset diagram contains two loops but three propagator$jausdorff formula:
therefore, the combinatorial factor comes out too bigiby

To sum up, in contrast to ERG flows which are based
upon a regularization of the full inverse propagator, the one-
loop improved flow(4.3) is based on a regularization of the The term K[ —s(I'{?’+R),sR] vanishes for[I'{*),R]=0.
logarithm of the full inverse propagator. This choice has Now we compare the representati@?) of ERG flows with
been motivated in order to facilitate computations, and tcproper-time flows(3.3. We already know that proper-time

find simple expressions for the flow. As it turns out, it is flows and ERG flows are not equivalent. Comparing the ker-
nels, this information is encoded in

8 8 which states that no field- and momentum-independent func-
T€N.  4ion f can be found to match the right-hand side of Ex6).

FIG. 13. The two-loop effective action derived from Eg¢.3,  Indeed, the right-hand side carries physical information
and as given by the last line of E(#.6). about the theory due tB(kz)[¢].

eAtBFKIABlg-B_ oA (5.5
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Still, there are two options left to overcome E@.6). gltdi2 ro

y
First, the expressions in Eq5.6) are integration kernels. ﬁtfk(A,S)=—m 7yd/2(07tRk)
Within given approximations, the integrals could agree de- 0
spite the kernels being qualitatively different. This possibility xexg —s(Re+Y)], (5.12

is worked out in Sec. V B. Second, one may consider gener-

alized proper time regulators, by allowing for an additionalEquation(5.12 defines a magR,— f (R). Thus it is guar-

dependence oh{?. This is addressed in Sec. V C. anteed that there is always a functibpcorresponding to a

choice ofR. Next, we show that the opposite is not the case.
Equation (5.12 fixes the behavior off (R) for s—0,

which is the UV limit ands— o, which is the IR limit. We

Next, we study ERG and proper-time flows to lowest or-restrict ourselves to regulators with a constant IR limit:
der in a derivative expansion, where wave function renorR(x— 0)«k?. Moreover, we demand that

malizations are not present. Here, we explicitly map regula-

B. Derivative expansion

tors R,— [ R¢]. The inverse map does not exist in general. min[y+R(y)]=cok? with ¢c,>0. (5.13
In [16], a similar analysis was performed on the level of the y
threshold functions. The effective action in this approxima-

Equation(5.13 implies that we have an IR regularization. If
we would takec,=<0 we introduce poles in the momentum
g integration of the ERG. Thus, E@5.13 leads to an exclu-
Fk[‘ﬁ]:f d°x[ 9,4, ¢+ Ui(¢)] (5.7 sion of wildly fluctuating regulator®. With Eq. (5.13 we
deduce the following limit behavior dfi(R,s):

tion is

and, consequently, lim| 3, (R, 5)| < %2 exp — scok?)C[RY, (5.14
s—0
[T ¢1(p?) = p?+ Ui(4). (5.9
lim | a,f(R,s)| <s%2" ! exp( —scok?)C[R], (5.15
The scale-dependent part of the effective action is the poten- 5~
tial U,. We only consider constant fields, in the flow. In
. L where
this approximation, we have
5 1 = dy
[1{2) 6],R1=0 59 CIRI= g7z | sk (610

which implies that~ in Eq. (5.2) depends only oiR,. Then  and the exponential factor in E(b.14) is subleading and has
we cast the ERG equation in a proper-time form, also usin@nly been introduced for symmetry reasons. These limits
Eq. (5.3 only make sense fo€[R]<« (no infrared divergent cut-
offs). Infrared divergent cutoffs, including the sharp cutoff,
1 »ds are even more severely limited in the infrared for «.
3trk:§TfJo ?S(atRk)qu_SR() Only if f, obeys both limits(5.14 and (5.15, the corre-
sponding regulatoR, exists. Here, the relevant limit is
xexgd —s(p?+Up)] —, i
It is left to investigate the le of the constant,. We
B 19 f* ds f“ dy . R assume to have found a regulatigR,s) which precisely
“27), s 13,y Y (9iRy) matches the boundary value of the IR limft;,(R,s— )
=c;s%2" L exp(—cosk). The UV behavior is irrelevant for
the integration of the flow. The normalizatiory follows

exp—sUy, (5.10 from the conditiong3.4)—(3.6), leading to

xexp{ —s[Ru(y) +Yy1}

) g Z(COSkZ)d/2+1
where ()4 is the volume of thed sphere over (2)% Qg4 foi(RS) = ————
=2[(2m)¥?I'(d/2)]~* andy=q?. This has to be compared I'(d/2+1)
with Eq. (3.3 in this approximation. After performing the
momentum integration in Eq3.3) we get

exp(—cosk?). (5.1

Since Eq.(5.17) depends only on the producgk?, we can
reabsorlc, in the infrared scale and set it to org,=1.
Next we verify some of the explicit examples given ear-
P szlﬂdfmd—s[s‘d’za fL(A,S)Jexp(—sUl) lier in [16]. We insert several cutoffs into the right-hand side
tkg s v k of Eq. (5.12) (x=sk?) to find the proper-time analogues. For
(5.1)  the optimized regulatd9], the sharp cutoff and the masslike
regulator

Equations(5.10 and (5.11) are identical for the following
choice off,: RP(0%) = (k*~ g% 6(k*— ), (5.18
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R q?) = lim co(k?—qg?), (5.19 R(q3) =R (5.27)
C—
In order not to spoil the one-loop structure of the ERG flow
RE*tq?) =k?, (5.20  equationR, cannot depend on tHall propagating field. The
) ) only admissible dependence Bf, on I'{*) comes via back-
we find the proper-time analogues as ground fields. For details of a background field formulation

of the ERG(for gauge theorigswe refer the reader t(81—

4 . . o
afr(A,S)=— — X321 ey x, 52 33]. Here we mention the important facts by restricting our-
(A== 5 I'(d/2) - (6.21 selves to a scalar theory: in the background field formalism,
the full field ¢= ¢+ ¢ is split into the background fielg
f(A,S) = 2 w2 exp— X, (5.22 and _the ﬂuctualion fieldp. ThE effective action d_eper_1ds pn
I'(dr2) the fields¢ and ¢, I'y=T',[ ¢, #]. As the propagating field is
, the regulatorR, can only depend o' ([ ¢, %], where
i f(A,S)=—xexp—X. (5.23 ¢ g K oL L& 9]

IO ¢,6]:=5T [ $,61/(54)% The cutoff term depends on

The optimal cutoff{9] precisely matches both limit5.14) ¢ and it follows thatl'y[ ¢, ¢]# ' ¢] for k#0. Finally
and(5.19 (for co=1). In this sense it is an extremum of the such a flow depends also %F(kz)[¢,¢]- For the explicit
allowed space ofy. form of the flow notice that the operatt{A,B] in Eq. (5.3

In summary, there is only a narrow window for proper- vanishes fof A,B]=0. Hence, a vanishing commutator
time regulatord, which are images of ERG regulatdRsWe

find that regulatord (R,s) are generally given by [T ,R]=0 (5.28
d2+1  2xMh(m) implies that the operatdf, in Eq. (5.2) becomes under the
4f (R,s)= L/z dmwexp(—x) trace
with FilsRd=(sdR)exp(—sR)
a2+1 =—2s(I?R = R-30"?'R")exp( — sRy).
fd/z dmb(m)=1. (5.29 (5.29

For other proper-time regulators there is no correspondind this case, the representatiti2) simplifies tremendously.
ERG regulatoR. The upper boundam,,,,=d/2+1 follows  Equation(5.28 holds trivially at¢= ¢, whereRy is a func-
from the IR limit (5.15. The lower boundaryn,,=d/i2 is  tion of I'{*[ #,$]. The flow is

the demand of UV finiteness. It can be relaxedrig;,=1,
thus including Callan-Symanzik flows as a boundary. , [*ds @
t?tl“k[¢>,¢]=zfo < TTRdSRITT &, 4111
C. Generalized proper-time flows and background fields

xexp( —s[\P[ b, ¢]) (5.30

Finally we derive ayeneralizedproper-time flow which is

both consistent and complete. Since Ef6) cannot be sat- . . . .
isfied, we seek a convenient generalization of the proper\fvi'\t/re]n':lk)g'ven by Eq.(5.29. The corresponding ERG flow is
time regulator. As we cannot get rid of the operator depen-g y
dence on the right-hand side of E&.6) we have to allow 1 1
for field- and momentum-dependent functiah$,(A,s). A ol b, p]l==Tr

key property of a proper-time flow8.3) is that the operator ' 2 T[]+ R h.0]1]

trace only depends on the operafdf®). Maintaining this % 2)

simple structure, and allowing for a field- and momentum- IRINEL .41 (531

dependent regulator leads to

In summary, the following picture has emerged: we have
(2) defined a generalized proper-time flow for an effective action
HTAS) = i A STICT. (525 ased on ?he backgroSndpfield formalism. It differs from the
Such a generalized proper-time flow is equivalent to an ERt@ndard one by terms proportional ad'(®). These terms
flow, if make the flow consistent and complete. It can be mapped to
an ERG flow at vanishing fluctuation fields. The flow equa-
| tion is not closed because it depends B[ #,4]. The
of A, ST P ]=F[sR;s?]. (5.26  output of the flow equation i, ¢,¢] and does not entail
the information forl"(*)[ ¢, ], which requires the derivative
In order to satisfy Eq(5.26), the regulatoiR, must depend with respect to the first argument. The background field de-
solely onl“(kz) and itst derivative, pendence is controlled by a separate equafR?33. The
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flow (5.31), apart from being an interesting subject by its flows to proper-time flows and discussed their properties. It
own right, gives a clear definition on the limits of proper- has also been shown that higher orders of the derivative ex-
time flows. pansion cannot be mapped onto ERG flows.

Third, we constructedgeneralized proper-time flows
(5.30. These flows can be mapped in a closed form to spe-
cific ERG flows, which established both completeness and

We have studied the completeness and consistency of digonsistency for Eq(5.30. Similar to the generalized Callan-
ferent one-loop RG flows. We summarize the main resultsSymanzik flow, they differ from the standard proper-time
and their implications. flow only through higher-order terms proportional to the flow

Consistency and completeness of flows are directly reof I'{#). This philosophy, however, applies only within a
lated to the propagator dependence of the flow, which, for alvackground field method.
exact flow, has to be linear. The linearity is important for a  These results have important implications. Most notably,
recursive perturbative integration of the flow. For exactthey make the intrinsic approximation of a proper-time flow
flows, the integrated flow at a given loop order contains theexplicit. This makes it possible to link approximations to
same diagrams with identical combinatorial factors as stanproper-time flow to approximations to the full theory and
dard perturbation theory. ERG flows at two-loop served as aallows us to discuss predictive power within the formalism.
illustration of these facts. For its applications, it is important to know how results

For proper-time flows, we have shown that they are nobased on standard proper-time flows are affected by the ad-
complete. This result is based, first, on a structural analysiditional terms. For example, ford3scalar theories at criti-
of the proper-time flow. When written in the for(8.12, itis  cality, a particular proper-time flof16,27 has lead to criti-
apparent that the functional dependence of the flow on theal exponents, which agree remarkably well with experiment
full propagator is nonlinear—except when it matches theor Monte Carlo simulations. From the present analysis, it
Callan-Symanzik flow. Second, we have formally integratedemerged that the underlying exact flow contains additional
the flow up to two-loop order. As a result, we have explicitly contributions already to leading order in a derivative expan-
established that the integrated proper-time flow deviatesion. These terms are expected to modify the physical pre-
from perturbation theory. The deviation of fully integrated dictions, and it remains to be seen whether these corrections
proper-time flows(when the cutoff is removedrom fully are quantitatively large or small. We hope to report on this
integrated exact flows turns out to be regulator dependentssue in near future.

Proper-time flows are also not consistent because it is not
known beforehand which part of perturbation theory is miss-
ing along the flow.

An analogous analysis has been applied to the one-loop D.F.L. thanks the Institute for Theoretical Physics lIl,
improved flow(4.3). We found that Eq(4.3) is neither com-  University of Erlangen, and J.M.P. thanks CERN for hospi-
plete nor consistent for an arbitrary regulator. The maintality and financial support. The work of D.F.L. has been
structural reason for this fact is that the flow depends logasupported by the European Community through the Grant
rithmically on the full propagator foany regulator, and not No. HPMF-CT-1999-00404.
linearly. This structure entails that, first, the perturbative loop
expansion does not lead to the correct combinatorial factors,
and, second, that the deviation from perturbation theory is
independent on the regulator. This last property is in marked

contrast to proper-time flows. There, we have seen that the In this paper we have discussed renormalization group
functional dependence of the flow &%) is regulator depen-  flows whose striking feature is their one-loop nature. It is
dent, as is, consequently, the deviation from perturbatiorprecisely this property which facilitates numerical imple-
theory. mentations, as we need not to cope with overlapping inte-

Links between proper time flows and exact flows havegrals. In this appendix we derive the most general form of
been discussed in Sec. V. This enabled us to provide inforone_k)op flows that arexact We consider one-loop flows
mation about the inherent approximation they represent tiith the general form
exact flows. We established links between exact flows and
standard proper-time flows along three different lines.

First, we provided an explicit equation for the deviation of
proper-time flows from Callan-Symanzik flows. This devia-
tion is given by the difference between E¢B4) and(3.12. Wherefk[l“(kz)](p,q) is a smooth function of its arguments. It
Essentially, proper-time flows lack additional contributionsdepends both explicitly and implicitly, via'(¥, on mo-
from two sources. There are additional one-loop terms promenta. We demand thdt,_, is the full quantum effective
portional to scale derivatives df{?), and a sum of higher action. The structure of flows given by EGA1) covers all
scale derivatives of . flows discussed in the literature and in the present work.

Second, it is possible to relate proper-time flows to exaciNote thatf, may also have some intrinsic dependence on
flows within specific approximations. To leading order in therunning couplings and vertices of the theory. Trivially there
derivative expansion, we derived explicit maps from ERGare no overlapping momentum integrals in E41).

VI. DISCUSSION

ACKNOWLEDGMENTS

APPENDIX A: STRUCTURE OF ONE-LOOP EXACT
FLOWS

ko Dl p1=Tr [ T2)], (A1)
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As it stands, a flow of the for{Al) can be derived 5 1 5
within a one-loop improvement philosophy. Thépjust en- H —W[S,J]=f (W(pl,q)—)
codes the information of the cutoff procedure at one loop. =1 63(py) a\I $(q)
We want to know what restrictions are posed upgnf we n P ST
demand that EqA1) is anexactflow, i.e., a flow which has x[] =——W|S,d= _} (A5)
a first-principle derivation, say from a path integral represen- i=2 6J(pi) X

tation of the theory. The path we take is the following. First, ) .
we derive the most general form of flows for the functional COnsequenthany expectation valueA4), expressed in terms

Z. Then we discuss convenient parametrizations of sucRf I'x and its derivatives, fon>2 contains multiloop terms.

flows. Finally we translate our findings to flows of the effec- This leads to the first important result: flows, which are exact

tive actionl', via a Legendre transform. already at one loop can only involve expectation values of at
Let us consider the functiona[ S,J]. The first argument MOSt two fields. ,

of Z indicates the classical action, about which the theory is However, the argument above did not make use of the

quantized. A general flow a[ S,J] can be described by the form _of the classical actiol$ entering the exponent in the

flow of an operator insertio®, depending on a cutoff scale Path integral. We can always use a redefinitiorSais fol-

k. We define lows:

kOl plexp— S ¢])
Z[S,J;Ok]:fd(ﬁOk[(b]eXF{_S[(ﬁ]-}_f ¢J> (A2) ~
. Jp H(p)O(P1.Pa) (p2)

In particular, we demand lign,o O, [ ¢1=1. In this limit, Eq. _
(A2) reduces tZ[ S,J;1]=Z[S,J], the full generating func- xexp—(F o]1+ O 1)}, (AB6)
tional. The flow ofZ[S,J;0,] is given by g R
where O, depends on the choice @¥, and O,. Take ERG
flows as an example. Her®,=expif$Re¢. ChoosingO,
=3kdR we haveO,=13f $R¢. Note that in generady is
highly nonlocal. We conclude that general flows can be writ-
. (A3) ten as one-loop exact flow with

ka Z[S,J: O] = f dokad Ol ¢]

XeXF{—S[(ﬁ]-FJ' ¢J

KaZ[ S+ Oy, J;C
Thus, a general flow of is just given by the expectation HZLST OO

value (kg Oy #1)s ;. However, expectation values @f" R
with n>2 involve multiloop contributions in the full propa- :f dé . #(P1) O(P1,P2) $(P2)
gator. This can be seen as follows: We expahd ¢] in 1

powers of¢. Terms in the expansion have the form ~
Xexp —S+O+ | #J]. (A7)
n
< f k&koﬁ”)(pl,...,pn)ﬂ ¢(pi)> . Our findings can be summarized in the following statement:
PisebPn =1 S.J Any flow—if represented as a one-loop exact flow Far of

the form (Al)—depends linearly on the full propagator. In
This expectation value can be written in terms of theconsequence, the most general form for the functipis
Schwinger functionaWW[ S,J]=InZ[SJ] as

o 1
fk[F(2>](p1,pz)=quk(plmm(q,pz), (A8)

whereT', is the Legendre transform of WS+, ,J]. Fi-

_ nally, we mention that only those functior8, which are
Xexy{ S[¢]+f d)‘J) polynomial in the fields, have simple properties foroe.
n Furthermore, the functional'y matches simple boundary
:j Oﬁn)(pl, ,Dn)H _‘S conditions only if® is quadratic in the fields. These require-
DyseePn 6J(pi) ments are met for ERG flows.
X expW[ S,J]. (A4)
APPENDIX B: GENERALIZED CALLAN-SYMANZIK

Thus it depends on all functional derivativé$\V/ ()" with FLOWS
i=n. Next we check how EqA4) is expressed in terms of In this appendix we discuss RG flows based on a mass
the full propagator ['®) 1= §°W/(8J)?. The propagator term R=k?. The resulting flow is a Callan-SymanzilcS)
enters in the recursive relation flow [7]. This flow can be brought into the more standard
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form of the Callan-Symanzik equation in case we had intro-
duced anomalous dimensions. On the basis of the CS flow +
we construct flows which are similar in form to proper-time

flows. We restrict ourselves to the discussion of massive

theories in order to avoid some particular problems with ~FIG. 14. Graphical representation of E&1). The black box
massless ones. Massless theories can be dealt with as wélgnotes the insertiofd,I'{?) . The second term corresponds to the
but the additional problems are of no relevance for our purdifference with respect to the proper-time fl¢@21), given in Fig.
poses. 8.

Employing the notation introduced earlier, the CS flow is
simply given by and I'y obeys the CS equation. This is important for the
iterative calculations done in Appendix C.

This example can be extended to arbitrary sums of deriva-
tives (9, +=,¢,d;) . Integrals of these flows always result
in the effective action due to the first tefl", .. This can be
We stress that the CS flow is not precisely an ERG flow agised to define the following flow:
defined above since it fails to satisfy conditi¢h5). In par-
ticular, the CS flow does not admits the Wilsonian interpre-
tation of the flow: in contrast to the ERG case, at every fixed N+l
scalek, the momentum integration is not regularized in the A= zl Fomde " T
UV and all momenta contribute to the flow. There is the
necessity of an additional UV renormalization of the flow,
not required for the ERG. This problem has been discussed :Tr<r(k2)+k2
in detail in[3]. For the present purposes we can neglect this
intricacy. (B4)

The integrated CS flouB1) gives the full quantum effec-
tiye action. Lgt us now address a slightly different flow, Here, F,[0,...,0x]=0 and F, m:_lzm:nl(lﬁ)lzn_li
given by the difference of the CS flow and the flow of the CS ’ i
flow,

k2

I +k?

(B1)

m—1

2 m

+TrEfo0? ... o 1@ T2

for n>1 and Fl,mz%Ei":ll(lﬁ). F\ is given by the terms

proportional to g\I'{*) with i=1,... m—1 contained in

1, 1 K2 SIF, i T . By construction, the flowB4) is an ex-

(%‘5(91 I'y= 1—5(% wa act flow. Again, as for the integrated flo(B2) [see Eq.
K (B3)], the integral of Eq(B4) is the full effective action:

k2 2

=Tt =—=
P+K2

m—1 m—1 odk

k2 1—‘A_ 2 Fn,ma?rk|k:A_ Z Fn,mf Ta{Hle
il a2 62 " " !
2 (I'P+k?)? m-1 K2

=To— > Fomd? Tr =T,. (B5)
n=1

k=0

Equation(B2) represents a flow for (2 9,)T. Such a flow I +k?
trivially escapes the linearity constraint on general one-loop
exact flows derived in Appendix A. It involves higher deriva-
tives of a genera| 0ne-|00p exact flow with resped&_t@'his The integrated flow is the full effective action, as the addi-
is signalled by the term proportional &I'(?) on the right- tional terms are proportional to powerslIdt. Moreover, the
hand side. Consequently it does not match the allowed strudnitial effective action tends to the classical action far
ture on the right-hand side of E¢A1). Note, however, that —, Subject to a properly chosen renormalization. We have
I', satisfies the CS equation in agreement with Appendix AShown in Sec. lil that the first term of E¢B4) represents a
Integrating the flow displayed in E¢B2) leads to the effec- 9eneric proper-time flow — [17] Hence,
tive action. Fork—0, we arrive at TR .00 T TP+ 2F, oy TT#0  repre-
sents the unavoidable deviation of a proper-time flow from

1 odk 1 an exact flow.
Fy— Eatrk|k:/\+ JAT((?F E&tz)rk
1{ k2 APPENDIX C: EXAMPLE
=To— 5| Tr=z—=| =To. (B3)
o 2 Fﬂ2)+ k? k=0 0 In this appendix we calculate the two-loop contribution of
the generalized CS flow as introduced in Appendix B rfor
The initial condition for such a flow(B2) is I'y  =2. This serves as a reference point for the proper-time flow

—30TJk=a, which tends to the classical action fdt  with m=2, discussed in Sec. Il E. The line of reasoning is
—. Such a flow is complete. However, we emphasize thatinalogous to the one presented in Sec. Il B. In the condensed
the right-hand side of EqB2) depends ol’(?) and4,I'(*)  notation introduced there, the flofB2) is given by
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1, k*
"2t rEer
1

aq - g + _ 2 +
+5 2) a . (CY) g

2 (2) 2
(I +k%) aq

FIG. 15. The integrand in curly brackets of EG4). See Fig. 8
The right-hand side of EqC1) has the graphical represen- for a comparison with the standard proper time flow fio+ 2.
tation given in Fig. 14.

Expanding Eq(C1) in loop orders we arrive at Combining Egs(C2), (C3), and(C4) leads us to
AT fkdk’(a laz)r
2= | | =50 | T . kdk’

Ak 2 two loop AT = fAT[—[G (S(p4)pqq _sé3>qu s<r3|)0q ¥
kdk’

J - ( 2AT) (GK'2GK'2G)p X(GK'?GK'?G) g

1

1 —2(GK2G) (S —28% G,.S3 )

+§(Gk’2G)pqﬁt,F(k",’)pq) (C2) 2 PP’ Sprpag T £ prrg 2 S /pg

The hat inAT", indicates that\I', has a diagrammatic ex- X(Gk/ZG)q’q]‘ (€S

pansions different fromAT',. Note also that on the right-

hand sideATI’; is the one of the CS flowB1). Now we use ) ) ) ) )

that We rewrite the integrand in EGC5) in terms of total deriva-
tives with respect to the scale paramdtekgain a graphical
representation for the integrand is helpful, cf. Fig. 15, where

2 4 3 the definitions of Fig. 2 and Fig. 4 have been used with
Ar(lziq = _[GPP (S(p )pqq _SE) "rq S(r ;p )]A’ ) atR=2k2 andR=Kk?2, ’ ’
Using Fig. 5, we rewrite Fig. 15 in terms of total deriva-
tives. Inserting the simple graphical derivative in EG5)

o\ g= = (GK2G) 5 (Shaqr — 2S5 1Grr Siing)- (C4 we end up with

k.q’q p'pqg’ p'rq

k "1
[ (4) (3) (3) , .
AFZ_I e (45t’[Gpp (Sprpaq ™ SprrgCrrrStpg ) (GK 2G)qrq]—subtractmn};

kdk' (1
| — ! (4) a3 (3) 12 _ ;
fA o [Zem,,(sp,pqq Si14Grr Sihg ) (GK'2G) g g subtracnon}s

1 1
:[8 GPP’Sp paq’ /Gqrg~ TZGPP’Sp qu”’ quq’q (C6)
ren.

This is the correct two-loop result as displayed in E315. In order to arrive at Eq.C6) we made use of the fact that the total
derivative term in the first line of Ec{CG) vanishes ak=0. The second line can be written as a tatdérivative by noticing
that in the present case k?» G=—14,G. It reduces the second line of EGC6) to the first line of Eq(2.15. This proof of
perturbative completeness can be extended to arbitrary high orders within the loop expansion.

This offers an alternative way to arrive at the red@i27). We study the difference of the integrated flg@2) to the
integrated proper-time flow in E¢3.26). The difference between the two flows is given by

. kdk’
AFZ—AFzz—fAT{(Gk’ZG)pp (Syhaq — 2SummgGrr S 7h e ) (GK'2GK'2G) g}

4 [2 (GK2G) |25~ 6,82 |(GKk20) (o))
A k' PP\ 2 Zp’paq’ “p’rq 7 Srpg’ a'q
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modulo subtractions. EquatiofC7) can also be deduced

from the recursive relation betwee ", andAT',,_; as dis-
played in Appendix D, Eqs(D8) and (D9). If the proper-
time flow was complete the difference would vanish since odk pmo1 2

the CS flow is complete. After some straightforward algebra —(m- DLTTV(GK )™ TGAL . (D3)
this leaves us with the following consistency condition:

1 (odk
ATopn==7% LTTr(G k)M 1Ga AT

, If we could substituteAT'2) by AT{?)_, in the second term

O%AFz—Af“z on the right-hand side of E4D3), this term would just be
AT, -1, as can be seen from E(@1). To that end notice
__l=dk ., (3) (a2 (3) that
== fo T(Gk G)ppSyiig(CGK G/ Sy
(GkZ)m_ (Gk2)m—l: _ (Gk2)m—leg2)
X(GK?G)qrq, (Cy L
which is not satisfied. Using Eq6C6) and (C8) leads us to = mﬁt(ekz)m L. (D4

the representatiofB8.27) of the proper-time flow.

With Eq. (D4) it is possible to express the one-loop contri-
APPENDIX D: RECURSIVE RELATIONS bution AT’ , in terms of AT’y ,_; and a one-loop term:

In this appendix we derive two-loop recursive relations 1
for proper-time flows for valuesr andm’ that differ by an ATy =AF qm1— —[Tr(Gk’Z)m—l]‘;\, (D5)
integer. These relations make the scheme-dependent devia- 2(m—1)

(
tion from perturbation theory explicit. The result is used in )
Sec. IIl. Alternatively, Eqg.(D5) can be read off from Eq3.13, or

The equation for the two-loop contribution to a flow with more easily for integem from Eq.(3.14. Using Eq.(D4) in
parametem is the second term on the right-hand side of H9@), this term
takes the form

AT +EJ'Oﬂ(Tr(Gk2)m1G i Tr(Gk*)™1
22 ).k (66)° '

with G=(S®+k?) 1. Equation(D1) can be rewritten in (D6)
terms of AI'; ,_; and loop terms. In the following it is un-

derstood that integrals betwe&s0 andk= of total de- Next, we consider the first contribution on the right-hand
rivatives proportional tok? vanish up to renormalization. side of Eq.(D3), where we use

Now we use that

0dk 2\m, (2)
AT p=—m TTI’(GK) GAFlym, (D1)

52

—M(GK)"G=14[(GK)™ 1G] aIAFfr’)n:(ad)) Tr (GK)™. (D7)
—(m—1)(GK)™'G. (D2 . . . : .

Combining the first term in Eq.D3), using Eq.(D7), with

Using also a partial integration we get from E@®1) and the second term in EqD6), and making use of the first
(D2) equation in Eq(D4), we arrive at the recursive relation

2
(6¢)°

apart from irrelevant terms from the different renormalization procedures for the two flows. Eq(8poannot be written
as the integral of a total derivative. We can, however, perform a partial integration wsfad (% —ATE) )
=—-Tr(Gk?)™ 1GS?). Employing also Eq(D5), we end up with

1 (odk
AFz,m—AFzm_lzzLTTr[(GkZ)m1G Tr(sz)ml(SS(Z)}, (D8)

2

(sz)m(%G—k‘z)%zTr(sz)m‘l , (D9)

1 (odk
Arzym_AFZ’m,]_:E fwTTr

which has been given previously [d7]. The different forms could prove useful when discussing the terms dropped in a
specific proper-time flow. Finally, E4D8) can be used to write down a general relation between flowsmwyitn’ that differ
by an integem. We have
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m—1

1 odk 2
AT, =AT oyt = D, f—Tr
’ ’ 21Zmen Jo K

(6¢)°

The differencgD10) depends on arbitrarily high powers of the fields and does not integrate to zero. Similar relations also exist
for nonzerok, but then we also have contributions that integrate to zero as they are total derivatives of terms proportional to
k2.

(GKY'G Tr(Gk?»)'GS?|. (D10)

[1] J. Polchinski, Nucl. PhysB231, 269 (1984. [17] D. F. Litim and J. M. Pawlowski, Phys. Rev. &, 081701R)
[2] C. Wetterich, Phys. Lett. B01, 90 (1993; U. Ellwanger, Z. (2002.
Phys. C62, 503(1994; T. R. Morris, Int. J. Mod. Phys. ®,  [18] M. D’Attanasio and M. Pietroni, Nucl. PhysB498 443
2411 (1994 (1997.
[3] D. F. Litim and J. M. Pawlowski, hep-th/9901063. [19] M. Oleszczuk, Z. Phys. 84, 533 (1994).

[20] J. Schwinger, Phys. Re82, 664 (195)).
[21] R. Floreanini and R. Percacci, Phys. Lett3B6, 205 (1995.
[22] B. J. Schéer and H. Pirner, Nucl. Phy#A660, 439 (1999.

[4] J. Berges, N. Tetradis, and C. Wetterich, Phys. R&3 223
(2002; C. Bagnuls and C. Bervillieiipid. 348 91 (2002).

[5] K. G. Wilson and I. G. Kogut, Phys. Refi2, 75 (1974). [23] J. Meyer, G. Papp, H. J. Pirner, and T. Kunihiro, Phys. Rev. C
[6] F. J. Wegner and A. Houghton, Phys. Rev8A401 (1973. 61, 035202(2000.
[7]C. G. Callan, Phys. Rev. [2, 1541 (1970; K. Symanzik,  [24] G. Papp, B. J. Sclier, H. J. Pirner, and J. Wambach, Phys.
Commun. Math. Physl8, 227 (1970. Rev. D61, 096002(2000.
[8] D. F. Litim, Phys. Lett. B486, 92(2000; Int. J. Mod. Phys. A [25] O. Bohr, B. J. Sclfar, and J. Wambach, Int. J. Mod. Phys. A
16, 2081(2001). 16, 3823(2001). .
[9] D. F. Litim, Phys. Rev. D64, 105007(2001). [26] A. Bonanno and D. Zappal®hys. Lett. B504 181 (2001.
[10] D. F. Litim, J. High Energy Physl1, 059(2001); Nucl. Phys. ~ [27] M. Mazza and D. Zappaj@hys. Rev. D64, 105013(2001.
B631, 128 (2002. [28] D. Zappala Phys. Lett. A290, 35 (2001); hep-th/0202167.

[11] R. D. Ball, P. E. Haagensen, J. I. Latorre, and E. Moreno Phys[.zg] J. Meyer, K. Schwenzer, H. J. Pirner, and A. Deandrea, Phys.

Lett. B 347, 80(1995: D. F. Litim, ibid. 393 103(1997: J. I. Lett. B 526 79 (200.

[30] B. J. Schéer, O. Bohr, and J. Wambach, Phys. Rev.6B,

Latorre and T. R. Morris, J. High Energy Phyl4, 004(2000. 105008(2002.
[12] F. Freire and D. F. Litim, Phys. Rev. £4, 045014(2001. [31] M. Reuter and C. Wetterich, Nucl. PhyB417, 181 (1994
[13] S. B. Liao, Phys. Rev. [33, 2020(1996. [32] D. F. Litim and J. M. Pawlowski, Phys. Lett. B35 181
[14] S. B. Liao, Phys. Rev. 36, 5008(1997). (1998: Nucl. Phys. B (Proc. Supp). 74, 325 (1999:
[15] S. B. Liao, C. Y. Lin, and M. Strickland, hep-th/0010100. hep-th/0203005.
[16] D. F. Litim and J. M. Pawlowski, Phys. Lett. B16, 197 [33] F. Freire, D. F. Litim, and J. M. Pawlowski, Phys. Lett4B5
(2002). 256 (2000; Int. J. Mod. Phys. AL6, 2035(2001).

025030-17



