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Flow equation of quantum Einstein gravity in a higher-derivative truncation
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Motivated by recent evidence indicating that quantum Einstein gréa@&G might be nonperturbatively
renormalizable, the exact renormalization group equation of QEG is evaluated in a truncation of theory space
which generalizes the Einstein-Hilbert truncation by the inclusion of a higher-derivative RAmThe beta
functions describing the renormalization group flow of the cosmological constant, Newton’s constant, and the
R? coupling are computed explicitly. The fixed point properties of the 3-dimensional flow are investigated, and
they are confronted with those of the 2-dimensional Einstein-Hilbert flow. The non-Gaussian fixed point
predicted by the latter is found to generalize to a fixed point on the enlarged theory space. In order to test the
reliability of the R? truncation near this fixed point we analyze the residual scheme dependence of various
universal quantities; it turns out to be very weak. The two truncations are compared in detail, and their
numerical predictions are found to agree with a surprisingly high precision. Because of the consistency of the
results it appears increasingly unlikely that the non-Gaussian fixed point is an artifact of the truncation. If it is
present in the exact theory QEG is probably nonperturbatively renormalizable and “asymptotically safe.” We
discuss how the conformal factor problem of Euclidean gravity manifests itself in the exact renormalization
group approach and show that, in tR&truncation, the investigation of the fixed point is not afflicted with this
problem. Also the Gaussian fixed point of the Einstein-Hilbert truncation is analyzed; it turns out that it does
not generalize to a corresponding fixed point on the enlarged theory space.
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[. INTRODUCTION The effective average actidn,, regarded as a function of
k, interpolates between the ordinary effective actibn
Recently a lot of work on quantum Einstein gravity =lim,_ I'y and the bargclassical action S which is ap-

_(QE_G) went into constru_cting an gpp_ropriate exact renormal-proached fok— . The construction of, begins by adding
ization group(RG) equation(1,2], finding approximate solu- 5 |R cutoff term A, S to the classical action entering the
tions to it[3—7], and exploring their implications for black gandard Euclidean functional integral for the generating
hole physicd8,9] and cosmology10]. In particular, strong  fnctional W of the connected Green’s functions. The new
indications were found that QEG might be nonperturbativelypieceAkS introduces a momentum dependent (massjm
renormalizable. If so, it could have the status of a fundamean(pz) for each mode of the quantum field with momentum
tal, microscopic quanium theory of gravity. . p. Forp?>Kk?, the cutoff functionR,(p?) is assumed to van-

The basic tool used in these investigations is the effectiveg,, <5 that the high-momentum modes get integrated out un-
average action and its exact RG equafiad]. It is a con- suppressed. F@p?<Kk?, it behaves a®,(p?)«k?; hence the
tinuum analogue of Wilson's lattice renormalization group of ga|i-momentum modes are suppressed in the path integral
iterated block spin transformatiojd2]. Both in quantum by a mass termck?. Apart from a correction term which is
field theory and statistical mechanics the idea is to integratg explicitly [11], the effective average actiol, is

out all fluctuation modes which have momenta larger than a,; by the L dre t f f th dified fi
certain infrared(IR) cutoff k (“fast degrees of freedom); ?u“r/\i?ionyalvik egendre franstorm ot the modified generating

and to take account of those modes in an implicit way by the From this definition one can derive the exact RG equation

modified dynamics which they induce for the remaining fluc- : : T
tuations with momenta smaller th&n(the “slow degrees of Oobr?%led by’ In @ slightly symbolic notation it is of the

freedom”). In field theory this “renormalized” dynamics is

encoded in a scale dependent effective actiop, whose 1

dependence on the cutoff scadés governed by a functional kaD=TT TP+ R(—A) Kk Re(—A)]. (1.2
differential equation referred to as the “exact RG equation” 2

[13]. This equation gives rise to a flow on the space of all

actions(“theory space’). The functionall', defines an effec-  The right-hand sidéRHS) of this equation is a kind of “beta
tive field theory valid near the scale evaluated at the tree functional” which summarizes the beta functions for infi-
level, it describes all loop effects due to the high-momentunmitely many running couplings. Geometrically, it defines a
modes. The effective average action can be thought of as\eector field on theory space, the corresponding flow lines
kind of microscope with a variable resolution. At larfgehe  being the RG trajectoriele—T" .

physics at short distancds=1/k can be read off directly The functionall’,, enters this vector field via its Hessian
from I'y; at smallk we see a coarse-grained picture suitablel“(kz), i.e. the infinite-dimensional matrix of all second func-
for a simple description of structures with a large charactertional derivatives ofl", with respect to the dynamical, i.e.,
istic length scald =1/ [11]. non-background fields.
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In Eq. (1.1 thec-number argument aRy is replaced with  constantG, and the running cosmological constagt. The
the operator—A. The discrimination of high-“momentum”  simijlarity of Eq. (1.2) to the action of classical general rela-
vs low-“momentum” modes is performed according to the tjyity is accidental in a sense; improved truncations would
spectrum of this operator, i.p? is an eigenvalue of-A. I jnclude both higher powers of the curvature and nonlocal

simple theories where no gauge or diffeomorphis_m i”"a”'terms[18,6]. In Eq.(1.2) only the gauge fixing term depends
ance needs to be respectell, is the free LaplacianA T - it vanishes when we Sa —g
wy— Ipuv:

=d,0", whose eigenmodes are momentum eigenstates in tf8 Gur _ _
usual sense of the word. In Yang-Mills thedi4,15 it has The scale dependence Gf andA is most conveniently
proven convenient to use the background field formalismvisualized as a flow in tha-g plane wherey, =k~ *Gy and
[16,17 and to setA =D ,D* whereD, is the covariant de- A=\, /k’ are the dimensionless Newton constant and cos-
rivative in the background field. The background field tech-mological constant, respectively. Using the original cutoff of
nique plays a dual role in this context. Using a backgroundtype A’ [1] the system of equations fay, and A\, was
gauge fixing term makeE, a gauge invariant functional of derived in[1] and solved numerically if5]. In [2] a new

its argument, and usin@, in the cutoff leads to a flow cutoff of “type B" was introduced and the corresponding
equation of the relatively simple typ@d.1), similar to non-  flow equations in the Einstein-Hilbert truncation were de-
gauge theories.(The RG equation resulting fromA rived. (The “type B” cutoff is convenie_nt if one uses the. TT
=D,D* with D, constructed from thedynamical gauge decomposition_of the metr[d9].)_The fixed point properties
field is quite unwieldy). of these equations were first discussed20] and[9], and

Along similar lines an effective average action for analyzed in detail in2] and[5]. One finds that the RG flow
d-dimensional Euclidean QEG has been constructed in Refn the\-g plane is governed by two fixed points (,g9,): a
[1], and the corresponding flow equation has been derivedivial or “Gaussian” fixed point at §,, ,g,)=(0,0), and a
Leaving the Faddeev-Popov ghosts aside for a moment, thieon-Gaussian fixed point with, #0 andg, #0. .
gravitational effective average actionT,k[gW,E,,,v], is a . In order to appreciate tr_\e importange of the ?on—Gaus§|an
functional of two different metrics, the “ordinary” dynami- 1x€d point we recall what it means to “quantize” a theory in

. — the average action approach. One picks a bare a&iand

cal metricg,,, and the background metrig,,,. The usual

effective actionT[g..] is recovered by taking the limi imposes thg initial conditiod’ ;=S at the ultraviolet(UV)
0 of the function;FV [0..1=T\{9..0..—g..] in which cutoff scalek, uses the RG equation to fifd, at all lower
- kLY uvl =1 kLY uv 1 Yur™ Yuv

the two metrics are taken equal. Thanks to the backgroungCc@lésk=k, and finally send&— 0 andk— . A fundamen-
gauge fixing condition this construction leads to a functionaltal theory has the property that the “continuum” limk
I'g,,] which is invariant under general coordinate trans-— actually exists after redefining only finitely many pa-
formations. rameters in the action. This is the case in perturbatively

One of the many advantages which the exact RG aprenormalizable theorigi21], but there are also examples of
proach has in comparison to the standard canonical or patperturbatively nonrenormalizable theories which possess a
integral quantization is that it offers a very natural and intui-limit k—c [22]. The continuum limit of those “nonpertur-
tive nonperturbative approximation scheme. By truncatingatively renormalizable” theories is taken at a non-Gaussian
the theory space one can obtain approximate solutions to tHixed point, i.e. the theory is defined by the set of RG trajec-
RG equation which do not need a small expansion parametetyries which leave the fixed point when we lowerThese
The idea is to project the RG flow from the “huge” infinite- trajectories span the UV critical hypersurface of the fixed
dimensional space of all actions onto some smaller, typicallyoint, S, . If it is finite dimensional, the quantum theory
finite dimensional subspace which is easier to handle. In thighus constructed has only finitely many free parameters and
way the functional RG equation fdf, becomes a system of therefore keeps its predictive power even at arbitrarily large
ordinary differential equations for @inite) set of coupling momentum scales. This behavior is to be contrasted with an
constants which have the geometrical interpretation of cooreffectivefield theory which, at high energies, typically con-
dinates on the subspace. It is clear that in applying this stratains an increasing number of free parameters which must be
egy the key problem is finding the “relevant” subspace taken from the experiment.
which contains the essential physics. In his “asymptotic safety” scenario Weinberf23,24

In a first attempt at solving the gravitational RG equationconjectured that a fundamental quantum field theory of grav-
[1] the flow has been projected onto the 2-dimensional subity could perhaps be constructed nonperturbatively by taking
space of theory space which is spanned by the invariant$ie continuum limit at a non-Gaussian fixed poi®5].
fd9+/g andfd%\/gR. This is the so-called Einstein-Hilbert While originally this idea could be implemented =2
truncation defined by the ansatz +¢& dimensions only, the recent results coming from the ef-

fective average action strongly support the hypothesis that

— o[ — this fixed point exists also in 4 dimensions. Within the
I'{9,9]=(167G) f dx\g{—R(g) + 2\ Einstein-Hilbert truncation, the existence of a suitable non-
Gaussian fixed point is definitely established by now; the

+ classical gauge fixing. (1.2 crucial question is whether it is the projection of a fixed point

present in the exact theory or merely an artifact of the ap-
The two running couplings involved are the running Newtonproximation.
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Let us assume for a moment that the fixed point indeedsince) . is the only quantity which sets a scale, every solu-
exists in the exact 4-dimensional theory and that we defingon to Eq. (1.6) has a typical radius of curvatune,(k)

QEG by taking the k—e limit there. Then, since o1/\/\,. (Forinstance, the maximally symmet& solution

(MO - - ) approachesN, g, ...) for k—, the di- has the radius.=r = v/3/\,.) The k dependence of the so-
mensionful couplings behave as ; . . .
lutions and in particular of ; should be interpreted as fol-
_ > T 2 lows. If we want to explore the spacetime structure at a fixed
Gi=0x 1K M=A K, (1.3 length scald =1/ it is most convenient to use the action
I'{9,,] atk=1/ because for this, and only this, functional

a tree levelanalysis is sufficient to describe the essential

as Flhis coupling i,S” corr]wcernethEkCI;Z Ids asygmtotica:clyhfreephysics at this scale, including all quantum effects. Hence,
similar to Yang-Mills theory. The ependence of the \,han e observe spacetime with a “microscope” of resolu-

running Newton constant will lead to a c_haracteristic MO-tion | we will see an average radius of curvature given by
mentum dependence of the cross sections for grawtonr-c(')Erc(k:l/'). Once | is smaller than the(standard

graviton scattering and graviton mediated matter-matter SCab|anck lengtH p=m5,* we are in the fixed point regire.3)

tering. Because of this characteristic momentum dependencgo thatr (k)OCEI/k 0';' '

QEG could be distinguished experimentally from alternative ¢ '

theories of quantum gravity such as string theory, at least in

principle. re(h)ecl. .7
Let us generalize the standard definition of the Planck

mass,mp=G %2, and introduce theunning Planck mass

for largek. ObviouslyG vanishes folk—o. At least as far

Thus, when we look at the structure of spacetime with a

_ microscope of resolutioh, the average radius of curvature
MP'(k):ll\/G_k' (1.4 which Wepmeasure is proportional tc? the resolution itself. If
we want to probe finer details and decrebsee automati-
cally decreas&. and hencencrease the average curvature.
Spacetime seems to be more strongly curved at small dis-
tances than at larger ones. The scale-free reldfion sug-
gests that at distances below the Planck length quantum
spacetime is a kind of fractal with a self-similar structure. It

as no intrinsic scale.

Before we continue a remark might be in order on which
theory precisely we refer to as “quantum Einstein gravity”
Qr “QEG.” While flow equations can also be used in the
&fective field theory approach to quantum gravi2y,1], in
the present context “QEG” stands for the fundamental

Mp=[G_o] 12 (1.5 theory whose continuum limik—c is taken at the non-

N Gaussian fixed point. This theory has digy(,) free param-
plays an important role in QEG, similar to that ffyp in eters, and fixing these parameters amounts to picking a spe-
QCD. According to the numerical solutions of theg sys-  Cific trajectoryk—T'y in the full theory space. Fdt— this
tem [5], mp; marks the lower boundary of the asymptotic rajectory hits the fixed point actiofr, , regarded as the
scaling region. Neak=mp, there is a crossover from the collection of its infinitely many dimensionless coordinates on

scaling laws(1.3) of the non-Gaussian fixed point to those of theory space. The fixed point actidh, corresponds to the
the Gaussian fixed point. “bare” or “chssmaI" action in convenupnal field theory.
According to the UV scaling lawél.3) the dimensionful ~However, unlike the latteF’, is not put in by hand but is
cosmological constant diverges fioro proportional tok?. ratherderlvedwnh _the help of th_e RG equation. The usual
This has an interesting geometrical interpretation. Let uganonical or path integral quantization is always based upon
consider thek-dependent, effective field equations implied @ ‘Préjudice” about what the classical action is. In the

by the truncation ansafd.? with g, =g, , for d=4. They asymptotic safety scenario the cIassmaI action is fllxed' !n-.
S . = © . . stead by the condition of nonperturbative renormalizability;
happen to coincide with the familiar vacuum Einstein equa- b d by simol .
tions with the cosmological constant replaced by the scale!-t cannot be guessed by simple power-counting, symmetry, or
— invariance arguments, but the effective average action pro-
dependent quantity: vides a computational framework to determine it.
The really crucial property which defines QEG is the re-
R —Eg R= —fg (1.6) quirement of diffeomorphism invarianceBefore we can
my QIR KSuv: ' write down a flow equation we must declare what the theory
space is on which the renormalization group is supposed to
operate. In the case of QEG it is defined to be the space of
IA similar crossover was already known to occur in Liouville functionalsI'[g,,] depending on a nondegenerate, symmet-

quantum gravityf 26]. ric rank-2 tensor field in a diffeomorphism invariant way.

At the laboratory scalé (k) reduces tomp;, most prob-
ably, and its dependence déris negligible. However, in the
fixed point regimek— «, the asymptotic freedom @, im-
plies that Mp(k) is proportional to the scalk itself:
M pi(k) =k/+/g, . This shows that the running Planck mass is
a rather elusive “barrier” which never can be jumped acros
in any experiment. If we analyze a system with a probe o
increasing momentunk we will always push the running
Planck mass ahead of us and never reach it.

Also the standard constant Planck mass, defined mo
precisely in terms of the IR value @&,
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Leaving technical details aside, the theory space then fixearge we have no similarly simple guide line at our disposal,
the flow equation which in turn determines the RG trajecto-anda priori all invariants are equally plausible. To get a first
ries and the fixed points. idea about what happens away from the Einstein-Hilbert sub-
So far our discussion referred to the exact theory on thespace we shall include the higher-derivative invariant
full theory space. If we project on the subspace spanned byd?x+/gR? and study the RG flow in theR? truncation™
the Einstein-Hilbert truncation it is clear that also the fixed
point action", must be of the Einstein-Hilbert type. How- — _ —
ever, we emphasize that this is a trivial consequence of the Fk[g,g]=f dx\g{(167G0 [ ~R(9) + 2\
simple truncation we have chosen, and we have no reason to o
believe that the exadt, is of the Einstein-Hilbert type, too. + BkR?(9)} + classical gauge fixing. (1.8)
In fact, within the more complicated truncation of the present
paperT’, receives corrections which go beyond the Einstein-ts truncation subspace is 3-dimensional, with coordin&es
Hilbert form. Hence “quantum Einstein gravity” doesot A and the new coupling.
mean that the Einstein-Hilbert action is the bare action to be It is well known that beyond d\/gR? there exist twd
quantized. In this respect our approach is different from camore (curvaturé) invariants: fddx\/ERWR/” and
nonical quantum gravity, along the lines of Ashtekar’s pro-fddx\/gRngRuvmr. In a standard perturbative calculation
gram[28], for instance(lt is intriguing that also in this con-  near the Gaussian fixed point consistency would require us to
text remarkable finiteness properties have been provegclude them along with th&®? term because they all have
recently[29].) the same canonical dimension. As for the non-Gaussian fixed
Clearly itis a h|gh|y attractive idea that there could be apoint, we have na priori information from genera| prin_
nonperturbatively renormalizable field theory of the metricciples about the relative importance of the three terms. Since
field so that there is no longer any conceptual need for leavanyhow the best we can do is to take a “step into the dark,”
ing the framework of quantum field theory in order to arrive ywithout knowing whether we walk in the most “relevant”
at a consistent microscopic theory of quantum gravity.direction, we shall omit the other two invariants here. Includ-
Therefore every effort should be made to show that the nonmg them would go far beyond the present calculational pos-
Gaussian fixed pOint found in the Einstein-Hilbert truncationsib“itiesy in particu|ar since it would require a much more
is not just an artifact of this approximation. complicated projection techniqué].
In Ref. [2] we therefore started an extensive analysis of |n this paper we shall derive tHextremely complicated
the reliability of the Einstein-Hilbert truncation near the 3.gimensional RG equations of tH@? truncation, and we
fixed point. There the strategy was to use the scheme depesha|| use them in order to investigate the fixed points of the
dence of universal quantities in order to get a first idea aboWow, Our main results will be the followinga) The Gauss-
the precision which can be achieved with this truncationjan fixed point of the Einstein-Hilbert truncation doast
Here “scheme dependence” refers to the dependence on thgsneralize to a fixed point of tHe? truncation.(b) The non-
details of the cutoff procedure, i.e. on the shape of the funcGaussian fixed point does indeed generalize to a fixed point
tion Ry(p?). By definition, universal quantities are exactly of the R? truncation, and thev-g projection of this fixed
scheme independent in the exact theory, but they might ag;oint is described almost perfectly by the Einstein-Hilbert
quire some scheme dependence once we make approximggncation. Within the(weak residual scheme dependence,
tions. The level of this residual scheme dependence can seryge fixed point properties are almost insensitive to the inclu-
as a measure for the quality of the approximation. Typicakjon of the R? invariant. This is further strong evidence

universal quantities are the critical exponents of fixed pointggainst the theoretical possibility that the non-Gaussian fixed
and, as we argued, the produgi\, . The upshot of our point is a truncation artifact.

analysis was that the Einstein-Hilbert truncation seems t0 | the second part of the paper we shall address a very

provide a description that is much more reliable and precisgnportant general problem which is of a more technical na-

than originally hoped for, and that it would be very hard toyyre. It is related to a notorious disease of standard Euclidean

understand the approximate scheme independence we fougdantum gravity: the conformal factor problem. In setting up

if the fixed point was just due to a misleading approximation.the truncated RG equation the cutoff functi®y (actually a
These results are certainly very encouraging, but it is cleagatrix in field spacgis adapted to the truncation in such a

that the ultimate justification of a truncation ansatz consist@vay that, forp2<k?, the inverse propagator of every mass-

of adding further terms to it and verifying that its predictions |ggg modep?, is replaced byp?+k2. A problem arises if

do not change much. In the present paper we take a first st§Rere are modes, such as those of the conformal factor in the

in this direction and add one further invariant constructedejnstein-Hilbert truncation, which have a negative kinetic

fromg,, to the ansatz. energy, i.e. their inverse propagatorig?. In [1] it has been
Which invariant should we take? In standard renormal-argued that for these modes also the sigriRgfshould be

ized perturbation theory wherét least implicitly the k

—oo limit is taken at the Gaussian fixed point, the relative

importance or “relevance” of the various field monomials is  2oyr conventions arR?,,,=—a,0'% +---, R,,=R%,,,, R

measured by their scaling dimensions at the Gaussian fixeglgwRW,

point, i.e. by their canonical dimensions simply. Since at the 3except ind=4 where one invariant can be eliminated by virtue

non-Gaussian fixed point the anomalous dimensions aref the Gauss-Bonnet identity.
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reversed so as to obtain the regularized inverse propagatois devoted to the construction of cutoffs which are adapted to
—(p?+k>?). While there is little doubt that this procedure is a specific truncation; in particular the complications due to
correct for the Einstein-Hilbert truncation, it leads to thethe conformal factor problem will be discussed there. In Sec.
seemingly paradoxical situation that in the Euclidean patHV we derive the system of RG equations which results from
integral the modes of the conformal factor are enhancethe R? truncation, and in Sec. V we analyze its fixed point
rather than suppressed in the [IR. structure. We discuss the fate of the Gaussian fixed point
Contrary to the Einstein-Hilbert truncation, tR& trunca-  Which is present only in the Einstein-Hilbert truncation, and
tion yields a functionall',[g,,,] which is bounded below Wwe reanalyze the non-Gaussian fixed point in the more gen-
and, as we shall see, gives positive kinetic energyalto eral setting. In Sec. VI the positivity properties of the trun-
modes, provided one stays close to the UV fixed pointcated action functional, its Hessian, and the cutoff operator
Hence our investigation of the non-Gaussian fixed point igire investigated; in particular we show that our analysis of
not plagued by the conformal factor problem, and the conthe non-Gaussian fixed point is not affected by the conformal
struction of the cutoff becomes straightforward. This advanfactor problem. The conclusions are contained in Sec. VII.
tage is an independent motivation for studying Rfetrun- ~ Many important technical results, including the coefficients
cation. occurring in the rather complicated beta functions of the
In the usual perturbative approach higher-derivative theoX-g-8 system, are tabulated in various Appendixes.
ries of (Lorentzian gravity are notoriously problematic as far
as causality and unitarity are concerri@®,31. While ind Il. THE EXACT RG EQUATION
=4 the most general (curvatufejheory, when expanded
about flat space, is power-counting renormalizable it suffers ) ) ; .
from excitations with, classically, negative linearized energy YP€ B” RG equation for quantum gravity performed in
and, quantum mechanically, a wrong-sign residue of thdef. [2] to which we refer for the details. We start from a
propagator leading to a state space containing negaﬁve_nor;s,pale—dependent mod|,f|cat|on'of the generatmg functional for
states[30]. These “ghosts” have masses of the order of thet"® connected Green's functiond/,. It is defined by the
Planck mass. Correspondingly, if a truncation ansatz is of th&!lowing Euclidean functional integral:
(curvature§ type the k-dependent effective propagator
(52]_‘1(/5959)*15(]—‘&2))71, evaluated for flat space, has exp{Wk[source$}=f phWDCMDEMeXF[_S[5+ h]
similar ghosts with masses M (k). By itself this does not

In this section we briefly review the construction of the

indicate any real problem because generically flat space any- —SThal-S.JhC.C-a
how is not a solution of the effective equation of motion. ol 1:01= Sl . €. Cig]
Compared to the perturbative quantization the potential prob- —ASh,C,C:9]— Sourcd- (2.1

lem of ghost excitations manifests itself in the Euclidean RG
approach in a conceptually different, more tractable mannein Eq. (2.1) we use the background gauge fixing technique
Here the linearization is performed about the backgroundsvhich necessitates the decomposition of the full quantum
needed for the projection procedure, not about flat space. FoReatric ¥,., into a fixed background metrig,,, and a fluc-
a well-defined computation of the RG trajectories on a cer; _.. . . =
tain k interval it is sufficient that thdtruncated I", gives tuatlorll Va”ar?ld?“”' YW(X)_QW(X); hW(_x). It al[ows us
positive linearized action to all modes contributing to the RGto replace the integration ovey,,, by an integration over
running in this interval. In our calculation this will indeed be Nuv- FurthermoreC,, andC* are the Faddeev-Popov ghosts
the case fok large enough where the truncation is believed®f the gravitational field. _
to be reliable[5]. The much more subtle issues related to a  The first term of the actior§[ g+ h], is the classical part,
Lorentzian interpretation of the theory and its causality propwhich is assumed to be invariant under general coordinate
erties can be addressed only once a complete trajectory, valitensformations. For the time being, we also assume that it is
down to the IR, and in particular the precise form of the fixedpositive definite S>0. The gauge fixing term is given by
point action is known. From what we can tell now the exact
QEG could very well be “causal” in an appropriate sense.
A brief summary of some of the results derived in the
present paper appeared[i8], and an informal introduction
to the older work can be found {182]. In the present paper In the present paper we use the linear gauge condition
we focus on pure _gravity. The gra_\vitational average actior]:ﬂ[g,h]: \/Ekfzﬁ[g]haﬂ with ]—'Z'B[g]= 6ﬁg“7Dy
with matter fields included was discussed[ifi and [33].
The gauge fixing dependence of the original formulafibh

— 1 _ _
S0 = 5= | d%\GgF [anIF [l (22

—%g*"D,,, which amounts to a background version of the
’ . . . ) harmonic coordinate condition. Here we introduced the con-
was investigated if34] and [35]. An incomplete higher-

derivative calculation was begun [86] where the running Stant«=(327G) "2 whereG is the bare Newton constant.
of the R? couplings was neglected, however, and no concluMoreover,D , denotes the covariant derivative constructed
sions about the fixed point could be drawn. from the background metrig,,,, while we shall writeD ,

The remaining sections of this paper are organized as folfor the covariant derivative involving the complete metric
lows. In Sec. Il we review some general properties of they,,. Sy is the Faddeev-Popov ghost action resulting from
exact RG equation which will be needed later on. Section Ilithe above gauge fixing.
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FurthermoreA S andS;,,ceare the cutoff and the source  For calculational convenience we now introduce new
action, respectivelyA, S provides an appropriate infrared variables{¢,, ,o, 7,7} replacing{éﬂ,fr,ﬁ 7}, by means of
cutoff for the mtegratlon variables and will be discussed INthe momentum dependemomoca} redefinitions
detail in a momentS;,,ceintroduces sources for the fields
h,,, C* andC,. - _ ¢"=+/—D?—Ric¢"

Next we decompose the gravitational fi¢lg, according
to (see e.g[19])

_ d — —
o= \/(D2)2+ —D,R*'D,&
. d—1
hu,=N.,+D,&,+D,£,+D,D,0~ 29,,D?0+ 20,,¢. N __ _
(2.3 n= _D277, n= _D277-
(2.8

In order to obtain this “TT decomposition” one starts by H h — di
writing h,, as a sum_of its orthogonal partsh,, ere the operatdRic maps vectors onto vectors according to

=h",+hS, +hT" Hereh! , hi, andh!’ represent the (Ric v)*=R*"v,. In accordance with the decompositions

14 14

transverse traceless, longitudinal traceless and pure tra¢é-3, (2.7 and tt;e redgfinitio;\ss?.S) we then perforlm the
part, respectively. Introducing two scalar fiekdisand o, and combined transformation of integration variables,,

C T =~ AT 3 T ;

a transverse vector field, , the tensor$’’ andh’ can be AN €000 b) Cu—{Cpop, CH—{CT, 7} i the
= Lo e LT functional integral (2.1). The Jacobian induced by this

expressed by, =g,,¢/d andh,,=h,,+h,, with h,,  change of variables is such that it boils down to an unimpor-

N z LL—_~ PO A Nn25 1

=D,¢,+D,¢, andh,,=D,D,0—-g,,D%/d. Thereby we  ant constant if Einstein backgrounds, characterize®py

end up with Eq.(2.3). In the following the components of =C§ with C a constant, are inserted into E@.1). (For
1 H “ yag ) . .

h,, thus introduced will be referred to as the component,, general case see REZ).)

fields.” They obey the relations Let us now come to the “type B” cutoff term S. At the

— — component field level, it is a sum of inner products,
g“’h!,=0, D*h!, =0, P P

— 1
DE,=0, ¢=g,,hH". (2.9 AShCCiol=5 2 ({1(Rigpla)
Obviously the complete field ,, receives no contribution 1
from thoseé, and o modes which satisfy the Killing equa- "2 ¥ szelz (61, (Ri) gy, 02)
tion '
(2.9
D,¢,+D,E,=0 2. o
wé Su 29 with the index setd;={h",£,0,¢}, 1,={C",CT,5,7}. At
and the scalar equation this stage of the discussion it is not necessary to specify the
explicit structure of the cutoff operator®, acting on the
——. 1- . component fields. In order to provide the desired suppression
D,D,0~49,,D°0=0, (2.6)  of low-momentum modes, these operators must vanish for

p2/k?— (in particular fork—0) and must behave &8,
— Z k2 for p?/k?—0. (The meaning of the constag will

respectively. Such “unphysicaI%M ando modes have to be . X .
excluded from the functional integral and all subsequent calpe explained later Furthermore, they have to satisfy certain

culations[2]. Having a closer look at the scalar equation Helr\lmo:}\I/C\I/\t/)(/e (;c:gdilr?c;m[ozs]i.tion to construct the effective aver-
(2.6), one recognizes that there is a one-to-one correspon- . @ pos .

dence between the nonconstant solutions of(Ed) and the age actionl'.. It is defined as the _dlffere_nce between the
purely longitudinal, or proper, conformal Killing vectors I:eg_endre transform ofW at fixed g,,, denoted

o 1y 2 I''[h,v,v;g], and the cutoff action with the classical fields
(PCKV) C,,. They are related vid,=D ,o. K h,v,039]

Likewise we decompose the ghost and the antighost intd'Serted(37,14:

their orthogonal components: - -
I'{g9.9.v.v]=I'{g—g,v,v;0]

___T —_— e _ —_— A R— _—
Cu=CutDum CH=CHM+D¥p. (27 -ASlg-gvvigl. (210

Hereq andC™ are the transverse componentsC_qj and  Here the classical fields represent thedgpendentexpectat-
CH: D“EIT;O, DMCTI‘:O. Furthermore, the scalarsand  ion values of the quantum fluctuations;,,=(h,,,), v,

7 parametrize the longitudinal part EM and C*, respec- E(El), v#=(C*). They are obtained in the usual way as
tively. The constanty and % modes represent unphysical functional derivatives otV with respect to the sources. In
modes which have to be excluded. Eqg. (2.10 we expresseth,,, in terms of the classical coun-
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terpartg,,, of the quantuanetrigWEEWwL h,, which, by I'J9.9.0,0]1=T[g]+T[g,g]+ Sylg—0;9]

definition, is given byg,,,=g,,+h,, . The classical analogs o

of the componentsh(’,¢,a,¢,C",C", 7,77) will be denoted +Sg9—g,v,v:9] 3.1
(h".é,0,6,0"0",0,0). which neglect the RG running in the ghost sector are ap-

The exact RG equation for the effective average actiorproximate solutions to the Ward identities for the exBgt
describes the change df, induced by an infinitesimal HereF[g] is defined as
K

change of the scalk Introducing the RG “time”t=Ink, it
can be derived from theederivative of the functional integral Tulal=T 0.0
(2.2). It takes the form [ 91=1'y[9.9.0,0]

and fk[g,g] encodes the quantum corrections of the gauge

(3.2

— 1 _ fixing term. (For the details we refer tfl,2].) Inserting the
aI'fg,9,v,v]= ETV'{ > (F(kz)[gig’viv]"'Rk)gllgz ansatz(3.1) into the exact evolution equatid@.11) leads to
f1:62¢h a truncated RG equation which describes the RG flow ,of
in the subspace of action functionals spanned by (Bd).
xat(Rk)gzgl} The equation governing the evolution of the purely gravita-
tional action

1 . — — — —_—— A —
+ ETr’[ > (F(kz)[g,g,v,v]-i—Rk);llwz I'[9,9]1=I'9,9,0,0]=T" 9]+ Sy{9—g;9]+I'{9,9]
P1.2el; (3.3

takes the form
X I(Ry) Yoty |- (2.11

_ 1 _ B

8Jd@m=zﬂ{ > (IPlg.9]l+ R0,
{1:42el

HereT'(¥) denotes the Hessian B, with respect to the com-

ponent fields. Furthermore, we Wrote Rl()g1§2 Xat(Rk)gzgl}
=(Reiey (R vy, =(Rid(uy)u, and introduced the

index setsl ,;={h",&,0,¢}, 1,={v",v",0,0}. Furthermore, 1 _
i indi Scahndo 5T 2 (SRI9.01+ Ry,

the primes at the traces indicate that all unphysicadnd o 2 - gh LY K gy iy

modes, characterized by Eg2.5 and (2.6), are to be ex- R

cluded from the calculation of the traces.

X (R gy |- (3.9

I1Il. TRUNCATIONS AND THEIR ADAPTED CUTOFFS ) ) . —
Here '\’ and Sy’ are the Hessians of’,[g,g9] and

Sy h,v,v;g] with respect to the gravitational and the ghost
In concrete applications of the exact RG equation one:omponent fields, respectively. They are taken at fizgg.
encounters the problem of dealing with an infinite system of
coupled differential equations. Usually it is impossible to B. Construction of the cutoff, and the conformal
find an exact solution so that we are forced to rely upon factor problem
approximations. A powerful nonperturbative approximation ) . .
t In order to obtain a tractable evolution equation for a

scheme is the truncation of theory space, which means tha R o
only a finite number of couplings is considered and the RGIIVEN truncation it is necessary to use a cutoff which is

flow is projected onto a finite-dimensional subspace O1adapte<_j to this truncation but still has the d_esired suppression
theory space. In practice one proceeds as follows. One mak@ECPerties for a class of backgrounds which is as large as
an ansatz fol, that comprises only a few couplings and Possible. o .
inserts it on both sides of E¢2.11). By projecting the RHS A convenient CUtOﬁ.Wh'Ch IS adgpted to the t_runcatlon
of this equation onto the space of operators appearing on tHfd'Satz can be found in the following w4, 7]. Given a
LHS one obtains a finite set of coupled differential equationgruncation, we assume that fgr=g the kinetic operators of
for the couplings taken into account. all modes with a definite helicity can be brought to the form
Given an arbitrary truncation it is not clear priori  (I'?));;=f;(—D?k, ...) where{f;;} is a set ofc-number
whether it is sensible and leads to at least approximateljunctions and the indicej refer to the different types of
correct results. In this respect the modified BRS Ward idenfields. Then we choose the cutoff operaRy in such a way
tities satisfied by the exadt, [1] are of special importance, that the structure
since only those truncations which a@gproximately con- o o
sistent with them can be reliable. [d] it was shown that (T@+ Ry = fi;(—D?+k?RO(-DZK?) Kk, .. .)
under certain conditions truncations of the form (3.5

A. Truncating the ghost sector
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is achieved. Here the functioR(©)(y), y=—D?%k?2, de- other hand, it is difficult to give a meaning to the Euclidean

scribes the details of the mode suppression; it is required tinctional integral from which this RG equation was derived
Satisfy the boundary conditions R(O)(O): 1 and at the fOI’mal IeVeI. In the CaS§k=Zk<O the faCtOt’

lim _R©(y)=0, but is arbitrary otherwise. By virtue of exp(+J|R¢?) is a growing exponential which seems to
= he i f | field denhance rather than suppress the low-momentum modes.

Eq. (3.5, the Inverse propagator of a massless field mody, \ever, as suggested by the perturbative argument above,

with covariant momentum squap#= —D? is proportional  this conclusion is too naive probably.

to F2>2+ kZF\;(O)(QZ/kZ) which equalsp? for p2|;> k? and pzd Let us now come to the case where the functibpsare

+k* for p°<k“. This means that the smaF modes, an ; 2 (1)(P2y24 (22

only those, have acquired a mas& which leads to the no_t linear inD but, say, of the forne, (D7) +27D" In

desired ' . this case the rul€3.5 demands that we choose the corre-

esired suppression. sponding operatorsR,);; in such a way that they contain

In order to see the potential problems of the r{8¢5) let i — —
us be more specific and assume that the functigpsre cutoff terms adjusted to both th&()* and theD* terms of
the kinetic operator. For the above example, which is rel-

. . _2 . . _ ]
Ilne_a_r inD Qnd contain no ConStaOt tgrm. (I)he”' after diago evant to theR? truncation, Ry)ij assumes the general form
nalizing f;; with respect to the field indice¥,”’ decomposes

into a set of(massless, by assumptjoimverse propagators p2 p2 2
z.,p? with a running wave function normalizatiag . In this Ri(p?)=ZM| 2p%k?RO — |+ RO} —
diagonal basisk, is diagonal, too. It is of the form k k
p2
2 + 2RO — 3.
Ri(p?) = Z,k?R© %) . (3.6) k k2 32

where we omitted the indices referring to the types of fields.

A priori Z, is a free constant, but when we apply the rule Obviously we have to sef("'=2z" and z{?’=z? in order
(3.5 we are forced to seg, =z, for each mode. Only then to achieve that the propagator and the cutoff combine
the propagator and the cutoff combine in the right way, leadas prescribed by the rulgg.5). This leads to the modified
ing to the modified inverse propagatorz[p® inverse propagator z[p?+k?R(p?/k?)]1?+ P p?
+K2RO(pZ/Kk?)]. +k?R(©)(p?/k?)]. For brevity we refer to this prescription,

The choiceZy=z, is certainly the correct one i, is  too, as thezZ,=z, rule.
positive. This is indeed the case in the familiar unitary theo- We believe that theZ, =z, rule is correct also fog, <0,
ries on flat spacetime. In QEG, however, there are truncaand that it is the relation between the manifestly well-defined
tions, the Einstein-Hilbert truncation, for instance, whichflow equation and the formal path integral that needs to be
give a negative kinetic energy to certain modgsof the  understood better. Various attitudes are possible here. For
metric. In particular, in the Einstein-Hilbert truncation, the instance, one could postulate that the fundamental definition
conformal factore= ¢ hasz<0. of the theory is in terms of the flow equation rather than the

The important question is ho®, should be chosen when path integral. Since the former is much better defined than
7y is negative. If we continue to usg=z,, the RG equa- the latter(in particular also with respect to the usual UV and
tion is still well-defined because the inverse propagatoiR problem$ one would simply discard the path integral
—|z /[ p?+k?RO)(p?/k?)] never vanishes so that the func- then. Another way out is to adopt the usual, albeit ratubr
tional traces on the RHS of E¢B.4) are not suffering from  hoc, prescription of Wick rotating the conformal factop (
any IR problem. In fact, if we write down the perturbative — i) which turns the growing exponential into a decaying
expansion of the traces, for instance, we see that all propane.
gators are correctly cut off in the IR, and that loop momenta A much more attractive and less radical possibility is the
smaller thark are suppressed correctly. This would not havefollowing. Presumably it will be possible to construct an ef-
been the case if we had insisted on a positg setting fective average action fdrorentzianquantum gravity by in-
2=-27>0. In this case the modified inverse propagatorvoking a kind of stationary phase argument for the mode
—|z/[p*— kRO (p?/k?)], because of the relative minus suppression. Then one deals with oscillating exponentials
sign betweerp? and theR, term, fails to suppress the IR exp(i S)exp(®,S), and apart from the trivial substitutions
modes. Even worse, it can introduce a spurious singularity &t ,— —il',, R,— — iRy the flow equation remains the same
the value ofp? for which p?—k?R(©(p?/k?)=0. as in Euclidean gravity. Fog,=z, it has all the desired

At first sight the choiceZ,=—2z,>0 might have ap- features, and; <0 poses no special problem for the path
peared to be the more natural one because o0 the integral. It is interesting that there are also recent indications
factor expASxexp(— R ¢?) is a damped exponential [38] coming from the dynamical triangulation approach to
which suppresses the low-momentum modes under the patfuantum gravityf 39] which suggest that the Lorentzian path
integral. Nevertheless it was argued[if that the “Z, =z, integral might have a better chance of being well-defined
rule” is the correct choice both for,>0 andz,<0. The than the Euclidean one.
calculations irf1] and all subsequent pap¢g7,34,33 were As the last possibility we mention the best of all situa-
based upon this rule. On the one hand, this rule guaranted¢i®ns, namely that in an exact treatment there are simply no
that the RG equation is well-defined and consistent. On théactorsz,<O0. If this is actually the case, the conformal factor
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problem which we encounter in the Einstein-Hilbert andthe cutoff has the standard suppression properties and is not
similar truncations would have the status of an unphysicaplagued by any conformal factor problem fkeoo. This,
truncation artifact. If so, the Z,=z, rule” could be inter- then, allows for an unambiguous investigation of the UV
preted as a device which helps in approximating as well agixed point and its properties. It is quite remarkable that, as
possible the exact RG flow by a truncated flow. we shall see, all results concerning the fixed point are basi-
It is one of the main results of the present paper that thigally the same for thdR? truncation(where 2,=2z,>0 at
scenario is indeed realized to some extent. We shall see thiast for the dominating termand the Einstein-Hilbert trun-
within the R? truncation those terms éf; which dominate at  cation with both positive and negative factafg=z,. This
sufficiently large momenta have,>0 at least for large is certainly a quite impressive confirmation of tlig=z,
enough values ok (k>mp). For too low scalesK=mp) rule.
some of thezy’s might turn negative, but at these scales the
R? truncation becomes unreliable probaljhl so that the
negativez,’'s might be due to an insufficient truncation. It is
not excluded that in the exact theory the dominatigyg are In the next section we shall see in detail that for the trun-
positive down tok=0.? cation studied in this paper we can comply with thig=z,
As all thosez,'s which determine the sign of the domi- rule by using the following cutoff operators for the compo-
nating contributions td;; are positive for large values &  nent fields:

C. The cutoff adapted to theR? truncation

vag L — —  — — WTRT WTRT—
(RO = 7@ 9P+ g )2} "+ Vi " RKRO(-DK)},
(R ),U- _Z§§K29,¢wk2R(0)( DZ/kZ)

(Ri)oo= Xy’ (~ 2D2k2RO)(~ DYK?) +k*RO(~ DYK?)?)+ 5 {z £7k2+ VTR KRO(- D)},

(Ri) o= (Ri),; —Xj Pk\/

d
+D24/(D?)2+ —1D RAD,

\/3+ d —D,R*'D,(~D?)" 1P—\/(D2)2 ‘ —{P.R"D,
d-1eT T

Pt GogDRDL- B P,

+(VERT ZP7K)

X

— _ — — 1
(Ri) 5= XL (—2D%k?RO(—D?/k?) + k*RO)(—-D?k?)?)+ E{ZM K2+ VPR k2RO~ D2/k2)},

(R4, 7= = (R 7= 24 " g kPRO(~ D2/K?),

(R)ge=— (Ri) o= Z22K2RO)(~ D?/K?). 3.9
|
HereEk is defined as {A,B}=AB+BA for arbitrary operator#, B. The remaining
cutoff operators which appear in E®.9) but are not listed
EkE—BZ‘FkZR(O)(—EZ/kZ) (3.9 in Eq. (3.8 are set to zero.

The constantst,, ), and Z, will be adjusted later. It
should be noted that the terms proportional to & and
i ‘©3)’s provide the cutoff for those contributions B4 which

come from the higher-derivative terms. FOIk h =7’

“4Recent investigations in a scalar toy mofi#0] indeed suggest =yk”=yf¢= xrr=x=x¢=0, Eq. (3.8) actually
that the conformal factor problem could be solved dynamically byboils down to the cutoff of type B used [12] in the context
strong instability-driven renormalization effects. of the Einstein-Hilbert truncatior{This cutoff type has to be

and the curly brackets denote the anticommutator,

025026-9



O. LAUSCHER AND M. REUTER PHYSICAL REVIEW D66, 025026 (2002

distinguished from the cutoff of type A used in the original _ § ) — =,
paper| 1], which is formulated in terms of the complete fields Fk[g1g]:f d9%g{2x?Zy(—R(9) + 21 ) + BR%(9) }
and does not involve the component fields.

Each cutoff contains some “shape functioRt?). A par- AT rr o
ticularly suitable choice is the exponential shape function e 7| AXNGO(F L 90p) (FL7Gp0)-
(4.2
RO(y)=y[exp(y)—1]"% (310  The ansat#4.2) is obtained fromS+ Sy by replacing

_ i — = = =
In order to check the scheme independence of universal C=Gi=2mGy A=h BBy
guantities we employ a one-parameter generalization of Eq. aezgkla (4.3

(3.10, the class of exponential shape functions, . _ o _
so that its form agrees with that of the gravitational sector in

the ansat£3.1) with

RO(y;s)=sylexpsy)—1] ", (3.11) 701
~, —_ Nk
Idg.9]=r*——— fd“x gg-”

with the “shape parameters>0 parametrizing the profile of B -
R(® [35]. Another admissible choice we are going to use is X(Fu"9ap) (F7Gp0)-

the following class of shape functions with compact support; | principle, also the gauge fixing parametershould be

treated as a scale-dependent quantitys . Its evolution
is neglected here for simplicity. However, setting=0 by

(4.9

1, ysb, hand mimics a dynamical treatment of the gauge fixing pa-
exd(y—1.5 texd (b—y) 1], rameter sincex=0 can be argued to be a RG fixed point
RO(y;b)= b<y<15 [42,2).
0, y=1.5. B. Projecting the flow equation
(3.12

The ansatZ4.2) comprises thred&-dependent couplings.
They satisfy the initial conditionsg=\, Zyi=1 which im-
plies G@=€, andﬁﬁﬁ Here the UV scalé is taken to be
large but finite. In order to determine the evolutionﬁf,

Znk and B, towards smaller scales we have to project the
IV. THE R? TRUNCATION flow equation onto the space spanned by the operators
fd%\/g, fd%gR and fd%\gR?. After having inserted
the ansatz(4.2) into both sides of the flow equation and
In all previous paper$l1,20,35,34,2,bthe flow equation  haying performed they,, derivatives implicit inC(® we

of Q_EG was used in the_Elnstem—I_—thert truncation. In thlsmay sefg,,=g,,. As a consequence, the gauge fixing term
section we generalize this truncation by taking alsoRgn drops out from the LHS which then reads

term with associated running coupling), into account and
we derive the RG flow within this R? truncation.” We as-
sume that, at the UV scale—x, gravity ind dimensions is
described by the action

Here it is the shape parametbre[0,1.5) which param-
etrizes the profile oR(®) [41].

A. The ansatz

ADLG01- [ dx a2 -R@azu

+20(ZaM) 1+ R2(9) 0B} (4.5

Tilgl=Sg] Obviously the LHS is spanned by the operatdidx /g,
L {ddx\/ﬁ(lj? qnd_fddx\/ng. This mehans that we Zave to per-
— | gdx — (—R(a)+ 2N+ BR2 _ orm a derivative expansion on the RHS in order to extract
f \/6{ 16776( (9) )HARIQ) precisely those contributions from the traces which are pro-

portional to these operators. By equating the result to Eq.
(4.5 and comparing the coefficients we can read off the
system of coupled differential equations fog, Zy,, and

It consists of the conventional Einstein-Hilbert action and aﬁk_

higher-derivative term with bare coupling. In order to In order to make these technically rather involved calcu-
study the RG flow off',[g,g] towards smaller scalds<k lations feasible we may insert any metgg, that is general

we employ a truncated action functional of the following enough to admit a unique identification of the operators
form: spanning the truncated theory space. We exploit this freedom

4.9
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by assuming thag,,, corresponds to a maximally symmetric > D(d0)

space. Such spaces form a special class of Einstein spaces ﬂ(X)ZIZl mE_l DT ™(X),
and are characterized by T

=) * Dy(d,0)
— R _ _ _ _ — _
= - X)= T'm(x).
R;va(r d(d_l) (gy,pgvu' g,uu'gvp)l 77( ) |=El mZ=1 Mim ( )
R Similar expansions hold for the associated classical fields
szag (4.69  (expectation valugs

Contrary to Eq(C3), the summations in Eq4.8) do not

start atl =1 for vectors and at=0 for scalars, but at=2
with the curvature scalaR considered a constant number for ¢, and o, and atl=1 for the scalar ghost fields. The

rather than a functional of the metric. It is sufficient to em'modes omitted here are the Killing vectoFB'Tlm) the so-

ploy spaces wittrR>0, i.e.d spheresS’. They are param- lutions of the scalar equatiof2.6) (T'=1m), and the con-
etrized by their radius which is related to the curvature stants T'~%™=1). As we mentioned in Sec. Il, these modes
scalar and the volume in the usual way, do not correspond to fluctuations bf,, or the Faddeev-
Popov ghosts.
As in [2], we decompose the quantum fieldinto a part
¢, spanned by the same set of eigenfunctionsraand a
——(4mr?)¥2. (4.7 part ¢y containing the contributions from the remaining
(d) modes:

d

ﬁd(d:l. fdd\/a

We emphasize that the beta functions?TQf, VAN andEk

do not depend on this choice fgy,, ; it is simply a technical $(X) = po(X) + $1(x),

trick without any physical meaning. In principle the beta-

functions could be computed without any specification of 1 Dy(d,0)

Ouv - $o00=2 2 $mT"(x), (4.9

While this projection technique is capable of distinguish-
ing fd9/geerd from both fd9%+/gRecr 972 and fd9 /g R?

rd=4 it cannot dlsentangle the three (curvatﬁrejvan- % Dy(d.0)
antsfddx\/—R2 fddx\/— RZ,. andfd\gRZ, , which are 610=>"3 ¢ TMx).
all proportional tor?~4. If one wants to project them out =2 m=1

individually one has to insert non-maximally symmetric
spaces, but then the evaluation of the functional traces on tHeue to the orthogonality of the spherical harmonigg, is
RHS of Eq. (3.4 is a rather formidable problem with the orthogonal to¢, and o: (¢1,¢¢) =(o,dg)=0. This im-
present technology. In fact, this is one of the reasons foplies(®,®)={dq,Po) +{P1,¢1) and{o,d)=(o,P1). As a
omitting the other two (curvatur@)nvariants from our trun-  consequence, splitting according to Eq(4.9) ensures that
cation ansatz. any nonzero bilinear cross term of the scalar fields is such

In Ref. [2] we discussed already the expansion of fieldsthat the scalars involved can be expanded in the same set of
defined on spherical backgrounds. Both the classical and theigenfunctions. Of course, the same holds for the corre-
quantum TT-component fields can be expanded in terms afponding classical fieldg, and ¢;.
transverse-traceless tensor harmor‘ﬁﬁ%, transverse vector
harmonicsT'I[”, and scalar harmonicE'™. They form com-
plete sets of orthogonal eigenfunctions with respect to the
corresponding covariant Laplacians. We summarize the main Let us now start with the evaluation of the RHS of Eqg.
results of[2] in Appendix C. In particular, the expansions of (3.4). After having inserted the truncation ansdtz2) we

, ¢, C*, C, and their classical counterparts can be readdentify the two metricg,,, andg,,,. Therefore it is suffi-

off from Eq. (C3) while the remaining component fields are cient to calculate the operatorﬁgz)[g g]+Rk[g]) ! and

expanded according to (S{19.91+ R g]) * atg,,=g,,. To this end we first ex-
pand the ansat@#.2) according to

C. Inserting the ansatz into the RHS of the RG equation

© Dy(d1)
— Im . I _ I —
E00=2, 2 EnT(X) I\{g+h.gl=T\{g.g)+ Oh) +I{*{hig]+ O(h?)
(4.10
% D(d,0) _ _
o(X)=> > omT™(x), and concentrate on the part quadratitjp,, i.e.[h;g].
=2 m=1 This leads to

(4.9
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— \— 1 - —
5048t "G, | D2+ 7(28, 65— 0" G,0) (R-20) + 0*'R,,— 4R,

_ 1 1-2a—
FE”a‘[h;g]=j d9x gh,“,[ K2ZNid —( “

R?+2g*'R(—R,,+D,D,—g,,D?)

(1,
+§18k E Eg gptr_ 5p50'

DV o 1_ a _,u,V_ n ,LL_V_
~R",#,+ ——(¢"'D,D,~ 84D'D,)
+2R(8.R*,~R*,,"~38,D"D +2g,,D*D"+25"5,D?~ 5.D ,D*)+ 25D ,RD*—38"5.D*RD,
+46D*RD,—4g,,D*RD"+g*'g,,D*RD, + 2R*'R,,,— 4R*'(D,D,—g,,D?)+2D*D*D,D,

—4g*'D?D,D,+2g*"g,,(D?)?

]WW. (4.11)

At this stagegw is still arbitrary. In order tdpartially) diagonalize this quadratic form we insert the faminSSfbacngund

metrics into Eq.(4.11) and decomposé,, according to Eq.(2.3). Then we apply Eq(4.9 to the classical fieldp to
decompose it as well. This yields

- 1 — S — I — — 12 — —
rgethigl- [ @y 5[FLV[ZNKKZ(—Dz+AT<d>R—zxk>+ﬁk<RDZ+GT<d>R2>]hW+§,L = Zy?(- D2+ Ay(d,a)R

—2aN)+Gy(d) BR? [+ 0] Cey(d, @) Zyie®(— D2+ Agy(d, @) R+ Bey(d, @)\ )

+ Br(Hs(d)(D?)2— Ggy(d)(2RD?+ R?))Jo + 2 [ Csp(d, @) Cg(d, @) Zyyk>+ Bi(— He(d) D%+ 2Ggy (d)R)]

. R —

x=D?\[~D?~ o—ro+_ 2 4[Celd,a)Cei(d,@)Zyx*(~D*+Asi(d, )R+ Bgi(d, a)\y)
I
+ Bi(Hg(d)(D?)2— Ggy(d)RD2+ ng<d>§2>]$] : (4.12

Here the varioud\'s, B’s, C’'s andG’s andHg are functions ggciated matrix differential Operatd(r(kz))ij)i,j (0 d

of the dimensionalityd and the gauge fixing parametet As a way out, we splitz according to Eq(4.9) into ¢, and

Zggei):jri)ﬂclljt 1e Xpressions for these coefficients are given mggl. This has the effect that only mixings between the scalars

This partial diagonalization is performed in order to sim- ¢ @nd¢; survive, which can be expanded in the same set of

. . . — — eigenfunctionsT'™ starting atl =2. Hence the resulting ma-
prlll_fy_thehlnverglon of thefopera}td?(kzr)][g_,rgr];rRk[g]. |ng;% trig differential operator(?l“ff))ij)i e (nT &y, by} 1S invgert-
this is the main reason for using the ecompositid . . e e Po Pl :
and specifying a concrete background. Note that in the purlQle' However, it should be noted that this additional split of

Einstein-Hilbert truncation it is only the term in E(1.1) ¢ leads to a slightly modified flow equation since it affects
which is proportional to * « that gives rise to mixings be- theé matrix structure of this operator. In fact, the summation

tween the traceless part HLV an dgan d therefore necessi- in the gravitational sector of Eq3.4) now runs over the set

tates the complete decompositié®.3). For «=1, a com- ©f fields {h',& do,0,¢1}, with (R g0,=(Ri) 4,4,
plete diagonalization can be achieved by merely splitting of=(Ri) 4¢ and (Ri) ¢, = (Ri) os -

the trace parf1,2]. This has to be contrasted with tifR¢ As a next step we calculate the contributions from the
truncation where the higher-derivative term introduces addighost fields appearing on the RHS of E&.4). For this
tional mixings between the traceless part andrhese cross PUrPOse we insert the family of spherical background spaces

terms donot vanish fora=1. Hence the complete decom- S° into Sy, and setd,,=d,,. Then we use Eq(2.7) to
position ofh,,, is necessary for a partial diagonalization evendecompose the ghost fields. This yields

in the casex=1. _ R
At the component field level the cross terms boil down to Syl 00,v;9]= \/EJ’ ddx\/g[gl -D%- q pTe
a purely scalaw-¢ mixing term that vanishes for the spheri-
cal harmonicsT'=%M=1 and T'=1™, Since these modes con- , R
. — — . . +o| —-D°—2—|0¢. (4.13
tribute to ¢, but not too, we cannot directly invert the as- d
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From now on the bars are omitted from the metric, the curvature and the opdbdtarsd P, .
Before we can continue with our evaluation we have to specify the precise form of the cutoff operators. Adapting them to

I'?) andS{?) of Eqgs.(4.12, (4.13 by applying the rulg3.5) leads precisely to the structuf@.8) with the following choices
for the X ’s, )’'s, and Z,’s:

o o b, vy — WTRT —
XPT= X =20 = AP =Hy(d) B, VR =By

bo oo — Dod: b1 — WTRT
VI =YiT=2Gq(d) B, V=Y =Ce(d) B, 2" =Zy,

(4.19

2 o
ZE="Z, ZN17=Ceq(d,@)Ce(d,a)Zy,, Z{7=Cs(d,a)Zy,

K

zpo%= 2= Co(d,@)Ca(d @) Zyy, 2§ =ZE0= 12,

Thus, forngaw, the nonvanishing entries of the matrix differential operafdﬁ@nLRk and Sé%’+7€k take the form

(I'P1g,9]+ Ritnr=Znik 2P+ Ar(d)R— 2N, ) + Bi(— RP+ G(d)R?),
(2) — 2 2 N =Y
(I'¢’l9,9]+ R e= AN (Pt Ay(d,@)R—2aN )+ Gy(d) BR%,

(TP9,9]+ Ri) 7o=Ceo(d, @) Zy kX (P + Agy(d, @) R+ Bep(d, )\ ) + Bi(Hs(d) P+ G (d) (2RP— R?)),

(T19.91+ R3,-=(NP[9.9]1+ R,

— R
=[Ceo(d, ) Cea(d, @) Zyi®+ B(Hs(d) Pt 26y ()R VP \ Pi— =7

(TE19,91+ Rid g, = (NEL9.91+ R,

=Ceg(d,@)Cey(d, @) Zyk®(P+ Agy(d, @) R+ By (d, @)\

+ Br(Hg(d) P2+ Ggy(d)RP+ Gg(d)R?),

R
(S§19,91+ Ri)yr,m=— (S 9,9]+ Ry, 7, 7= ﬁ[ Py~ E} :

R
(SF19.01+ Rge =~ (S{L9.91+ Ri) 0= ﬁ[Pk—za} @19

For notational simplicity we setS(F[00,v;91) . 4,=(S5[9,91) 4y, With 1,92 1.

Now we are in a position to write down the RHS of the flow equation \giy;=gw. We shall denote itS (R) in the
following. Obviously we need the inverse operatdig{+R,) ~* and () + Ry) ~*. This inversion is carried out in Appendix
A l. Inserting the inverse operators infR(R) leads to the somewhat complicated result
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Su(R)=Tras)[(Px+ Ar(d)R— 2N+ (Znk?) "Bl — RPy+ Gr(d)R?]) (N~ (Zyk?) "1 BkRT)]

+Tr(n[ (Pt Ay(d, @) R— 2k + Gy(d) (Zyyw?) ~1BR?) W]

+ Tr(o)

[ (Csa(d, @)[ Pt Asp(d, @) R+ B (d, @)\ ]

+(Znw?) T B Hs(d) P2+ Gy (d)(2RP— R?)])(Cey(d, @) Cey(d, @) [ P+ Agy(d, @) R+ By (d, @)\, ]

+(Znk?) " B Hs(d) PE+ Gep(d)R P+ Geg(d)R?]) — (Cep(d, @) Ceg(d, @) + (Zyyek?) ~* B[ Hs(d) Py
R \|? _ _
+ 2681(d)R])2Pk( Py— m) ] [ (Csp(d, @)[ P+ Agy(d, @) R+ Bgy(d, @)\ ]+ (Znik?) "1 B[ H(d) Pﬁ"‘ Ggy(d)

X (2RP,—R?)])(Cgy(d,a)Cg(d, @) N+ (ZNsz)flﬁk[Hs(d)Tz"' Gsy(d)RT1])
+(Csp(d,@)Cey(d,a)[ Pt Agy(d, @) R+ Bgy(d, @)\ ]+ (Znik?) 1B Hs(d) PE+ Gy d)R P+ Gs(d)R?])

X (Cep(d, @) N+ (Zyk?) "B Hs(d) T+ 2G g (d)RT;]) + 2(Csp(d, @) C(d, @) + (Zyy?) ~* B[ Hs(d) P

R 1 R

+2Gg(d)R])VPy Pk—d_—lﬂat(Hs(dmk[ PiVPe\ Pi— g—1
Nk

+D2y"DZ/ D2

d-1

SRy L m

R -1
o) e

+(2Ggy(d) BR+ Cey(d, @) Cg(d, @) Zyyek?)

P

E {D,(d,0){Cs(d,a)Cgq(d,@)(A(d,00+ k?RO(A(d,0//k?)+ Ag(d,a)R

2Tr(1T)

—2Tr
© 270 |

+Bgy(d, @) M)+ (Znk?®) B Hs(d) (A1(d,0) + k?RO(A(d,0)/k?))?+ Gp(d)R(A(d,0) + k?RO(A(d,0)/k?))
+Gg(d)R?]} 19{Cep(d, @) Cey(d, @) Zni®k?RO(A (d,0)/k?) + B[H(d) (2A,(d,00k?ROU(A,(d,0)/K?)
+k*RO(A(d,0/k?)?) + Gg(d)RKCRO(A(d,0)/k?)]}}. (4.16

The new quantitiesV, Ny, 73, and7, introduced in Eq(4.16 are defined as

N=(2Zy) " o[ Znik* RO~ D?/K?)]
1 ,
= { 1-5 nN(k)} k’RO)(—D?/k?)+D?RO' (- D%k?),

Ny=2"14[k?RO)(—D?k?)]=k?RO(-D¥k?)+D?R®' (- D¥k?),

T,=(2B)) o] Bk?RO(—D?/k?)]
=|1- ! K) |k2ROO)(—D%/k?)+D2RO)' (- D¥/K?
= 5 15(K) ( )+ ( )
T,=(2B1) " *o Bi(— 2D%k2RO(— DZk?) + k*RO(— D?/k?)?)]
, 1
=2P[k’RO(—D?/k?)+D?R® (- D?/k?)]- E”ﬁ(k)(_ D2k?RO)(—D?/k?) + k*RO)(—D%/k?)?). (4.1
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Here (4.5, and compare the coefficients of the various powers of
r. This leads to a system of coupled differential equations for

(k)= = aIn Zyy (418 1 andB,.
and In order to present it in a transparent manner we introduce

the dimensionless running cosmological constant
7(K)=—d¢n By (4.19

are the anomalous dimensions of the operafdf+/gR and
fd%/gR?, respectively. Furthermore, the primeR{f?) de-
notes the derivative with respect to the argument. —d-2n —pd-25—-1~

In Eq. (4.16 we refined our notation concerning the 9=k TG=KT ZG, .29
primes at the traces. From now on one prime indicates thaind the dimensionless runniff coupling
the mode corresponding to the lowest eigenvalue has to be o
excluded, while two primes indicate the subtraction of the Bi=k*"98,. (4.22
contributions from the lowest two eigenvalues. The sub- _
scripts at the traces describe on which kind of field the opGy=G/Zy denotes the dimensionful running Newton con-
erators under the traces act. We use the subs¢ipts(1T) stant.
and (ST?) for spin-0 fields, transverse spin-1 fields, and In terms of the couplings,, g, andBy, our final result
symmetric transverse traceless spin-2 fields, respectively. for the 3-dimensional flow equation reads

IN= Br(\i, 9k, Bi;d)

Next we derive the flow equations for the couplings. In =A1(M, Ok Bi;d) + mn(K) Ax(N i Ok, Bi )
order to make the rather complicated calculations feasible we .
are forced to work from now on in the technically convenient T 75K As(M i, k. Bi: ), 4.23
gaugea= 1. Here we .merely summarize the main steps, the 9= By, B d)
details of the calculation can be found in Appendix A 2.

By expandingS,(R) whereRer ~2 with respect tar and =[d—2+ nn(k) 10k, (4.249
evaluating the traces by means of heat kernel techniques we
extract those pieces from the RHS of the flow equation, Eq. t8x= Bs(Ak, k. Bk:d)
(4.16), which are proportional to the appropriate powers of A
the radius, i.e.rd«fd%./g, r4-2e«fd%.gR, and r¢-* [4=d=ns(K)] B 4.29
«[d%/gR?. Then we equate the result to the LHS, Eq.The anomalous dimensions are explicitly given by

AkE k_zxk, (42@

the dimensionless running Newton constant

D. The system of flow equations fol\,, g, and By

(0= mu(hr.0r B d) =g B1(Nk, 9k, Bk; D[ Bkt Ca(Mk, 9k, Bi;d) ] — C1( N, Gk, Br: d)Ba(Ai, Ok, Bk ;d)
N NS P “[1—0kBo(M i, Ok, B ) 1L B+ Ca(hie, Ok, Bi; )1+ 9kCa Ay, Ok, Bi; ) Ba( A Ok, Bi ;)
(4.26

and

GGk B DI — 9kBo(M i, Gk B ) 1+ 9kBa (M Ok B s d) Ca( Ak, Gk, Bk d)
[1—09kB2o(M e, 9k, Bis D) I Bt Ca(N i, 9k, Bi: ) 1+ 9kCa( Nk, 9k, Bk d) Ba( Nk, Ok, Bk ;)
(4.27

7a(K)= 175N, 9k, Bk;d) =

The three functions g, , By and B contain the quantities V. THE FIXED POINTS
A;, B, C;, 1=1,2,3, which are extremely complicated func-
tions of the couplings and the dimensionalityThe explicit
expressions for these coefficient functions can be found in . o i )
Appendix B. They contain the new threshold functioiis Because of its complexity it is clearly impossible to solve

~ . . the system of flow equations far, g, and By, Eqgs.(4.23,
and ¥ of Egs.(A29) and (A30) which functionally depend 40 42 V. E ical soluti |
on R(©). They generalize the familiar threshold functiohs (4.24 and (4.29, exactly. Even a numerical solution would

' _ _ . e _ be a formidable task. However, it is possible to gain impor-
and @ which occur in the Einstein-Hilbert truncation. The tant information about the general structure of the RG flow
three B functions are one of the main results of this paper. by looking at its fixed point structure.

A. Fixed points, critical exponents,
and nonperturbative renormalizability
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Given a set off8 functions corresponding to an arbitrary n Ko\ ¥
set of dimensionless essential couplingky it is often pos- g(k)=g,;+ E CN{(—) . (5.9
sible to predict their scale dependence for very small and/or =1 K
very large scalek by investigating their fixed points. They Here
are those points in the space spanned by th&hgre all 8
functions vanish. Fixed points are characterized by their sta- n
ft:mty'prop.erues. A given e|gend|rgct|on of the. linearized CIEE (S—l)”gj(ko) (5.5
ow is said to be UV or IR attractivéor stable if, for k =1
—oo or k—0, respectively, the trajectories are attracted to-
wards the fixed point along this particular direction. The UV are arbitrary real parameters akglis a reference scale.

(IR) critical hypersurfaceS,y (Sigr) in the space of all cou- Obviously a fixed poing, is UV attractive for a given
plings is defined to consist of all trajectories that run into atrajectory (i.e. attractive fork—<) only if all its C, corre-
given fixed point fork— (k—0). sponding to negatived, <0 are set to zero. Therefore the

In quantum field theory, fixed points play an important dimensionalityA y,=dim(Syy) of the UV critical hypersur-
role in the modern approach to renormalization thddrg].  face belonging to this particular fixed point equals the num-
At a UV fixed point the infinite cutoff limit can be taken in a ber of positived,’s. Conversely, for a trajectory where &}
controlled way, the theory can be renormalized nonperturbasorresponding to positived, are set to zero, ,gis an IR
tively there. As for gravity, Weinberd23] argued that a attractive fixed pointapproached in the limik—0). As a
theory described by a RG trajectory lying on fmite-  consequence, the IR critical hypersurfag of a fixed point
dimensionalUV critical hypersurface of some fixed point is has a dimensionalitp ,g=dim(S,g) which equals the num-
presumably free from unphysical singularities. It is predic-ber of negatived,’s.
tive since it depends only onfaiite number of freg(essen- In a slight abuse of language we shall refer to th's as
tial) parameters. In Weinberg's words, such a theorads  the critical exponents
ymptotically safeAsymptotic safety has to be regarded as a  Strictly speaking, the solutiof.4) and its above interpre-
generalized, nonperturbative version of renormalizability. Ittation is valid only in such cases where all eigenvalues
covers the class of perturbatively renormalizable theoriess- 9, are real, which is not guaranteed since the masriis
whose infinite cutoff limit is taken at the Gaussian fixed not symmetric in general. If complex eigenvalues occur one
point g,;=0, as well as those perturbatively nonrenormaliz-has to consider comple®,’s and to take the real part of Eq.
able theories which are described by a RG trajectory on &5.4), see below. Then the real parts of the critical exponents
finite-dimensional UV critical hypersurface of a non- determine which directions in coupling constant space are
Gaussian fixed point,g# 0 and are nonperturbatively renor- attractive or repulsive.

malizable therefor¢23]. At this point it is necessary to discuss the impact a change
Let us now consider the component form of the exact RGof the cutoff scheme has on the scaling behavior. Since the
equation, i.e. the system of differential equations path integral fol", depends on the cutoff scheme, i.e. on the
A S chosen, it is clear that generically thedependent cou-
kagi (k)= Bi(9) (5.2) plings and their fixed point values are scheme dependent.

Hence a variation of the cutoff scheme, i.e7gf, induces a
for a set of dimensionless essential couplingsk)g( change in the correspondigymatrix. So one might naively

=(gy(K), . .., g (k). In an exact treatment the numkreis expect that also its eigenvalues, the critical exponents, are
infinite; in a specific truncation it might be finite. We assumeScheme dependent. In fact, this is not the case. According to
that g, is a fixed point of Eq(5.1), i.e. Bi(g,)=0 for all the ge_ne_ral theory of critical phenomena and a recent re-
=1,...n. We linearize the RG flow about,gwhich leads analysis in the framework of the exact RG equati(43]

to any variation of the cutoff scheme can be generated by a

specific coordinate transformation in the space of couplings,
with the cutoff held fixed. Such transformations leave the
" eigenvalues of théB matrix invariant, so that the critical
kagi(k)= Z Bij(g;(K) —9y)) (5.2 behavior near the corresponding fixed point is universal. The
1= positions of fixed points are scheme dependent but their
(nonjexistence and the qualitative structure of the RG flow
are Ry-independent features. Quantities like thés which
are Ry independent are calledniversal Their residual
scheme dependence present in an approximate treatment
(truncation, etg.can be used in order to judge the quality of
the approximation. A truncation can be considered reliable
n only if it predicts the same fixed point structure for all ad-
2 BijV}Z -4V, I1=1,...n (5.3  Missible choices of}y. . _
i=1 In the context of théR? truncation the space of couplings
is parametrized by =\, g,=g, and g=p. The B func-
The general solution to E@5.2) may be written as tions occurring in the three flow equations

where Bj;=4;6;(9,) are the entries of the stability matrix
B=(B;). Diagonalizing B according to S 'BS=
—diag(6, . . .,6,), S=(V, ... V"), whereV!' is the right-
eigenvector oB with eigenvalue— 6, we have
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INe= BN, 9k, By 919k= By(Ni, 9k Bi) Y= (47) "% h31(d) D, 5(0) +hzy(d)DF_1(0)
Bi= Bs(Mi. Ok Br) (5.6 +hay(d) D0} (5.8
are given in Eqs(4.23, (4.24) and(4.25, respectively. Here theh;’s are defined as in Appendix D 2. th=4 dimen-

In Ref.[2] the fixed point structure of the pure Einstein- sions
Hilbert truncation was investigated. In this case phéunc-
tions were found to have both a trivial zeroXt=g, =0, 419
referred to as the Gaussian fixed point, and a non-Gaussian Y4~ 1080
fixed point at\, #0, g, #0. As we will see in Sec. V B, the
Gaussian fixed point isot present any more in the general- is a universal quantity sinc@j(0)=®2(0)=2d3(0)=1
ized truncation. This has to be contrasted with the nonindependently of the cutoff; see Appendix F.
Gaussian fixed point which is found with tf¢ truncation, Although there is no fixed point at the origin of the pa-
too. In Sec. VC we study its cutoff dependence and theameter space it is nevertheless very interesting to study the
cutoff dependence of the associated critical exponents enRG flow in the vicinity of (\,g,8)=(0,0,0). For simplicity
ploying the aboveg functions with the families of shape we restrict our considerations to the case 2. Expanding
functions(3.13) or (3.12 inserted. (B\.By.Bs) about the origin we obtain instead of E&.2)

theinhomogeneousystem

(4m)~2 (5.9

B. The fate of the Gaussian fixed point .

In this subsection we study the fate of the Gaussian fixed ) — , .
point found in the context of the pure Einstein-Hilbert trun- koG (k) ng"ﬁzl Mijg (k). (.10
cation. In[2] we investigated the 2-dimensional RG flow

near this fixed pointX, ,g,)=(0,0) and discussed its sta- The linearized renormalization group flow is governed by the
bility properties. It is an important question how the situationJacobi-matrixM = (M;;), M;;=4;6;(0,0,0d), which takes

changes by enlarging the parameter space. the form
Quite remarkably, we find that in the 3-dimensional
\-g-B space of theR? truncation there is no Gaussian fixed —2 vy 0
point, i.e. \,g,8)=(0,0,0) is not a simultaneous zero of all M=| 0 d-2 o |. (5.11)

three B functions. While g, and g, vanish at the origin
(A,9,8)=(0,0,0), setting\,=gx=0 in B, leads to

Bs(0,08;d)=4(0,0,0d)=v4 V}. (5,77 Its entries follow from the expandeg functions (E3) of
Appendix E. Herevy, sq and 74 ared-dependent parameters

Sd Td 4—d

The nonzero constaniy is given by defined as
ve=(d—3)(4m)' P2Dg,(0), (5.12
sa=(4m) " P2y, (d) DG, (0)+has(d) P, 1(0)+hae(d) D1 (0)}, (513

_ 1-d 1 2 1 =1 1 =2
T4=—(4) [h3Ad)®Pgp_1(0)+hgg(d)Pg(0)] Zh34(d)¢’d/2—2(0) + §h35(d)‘1’d/2—1(0)

1 -
+ l—2h3e(d)¢3/2(0) +[hg1(d) PG 5(0) +had) D, 1(0)+hay(d)DF5(0)]

X

hag(d) DY, 5(0) +hy(d) D, 1(0)

. (5.14

~ ~ 3
+has(d)DG(0) + hao ) Dg.4(0) + 5
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At this point it should be noted that the submatrix Let us now discuss the solution f@ . In order to derive
(Mjj)i,jeq1,2 coincides precisely with the stability matrix of it we start by pickingi=3 in Eq. (5.10 and rewrite the
the Gaussian fixed point which was calculated2fhin the  corresponding equation as
Einstein-Hilbert truncation.

Diagonalizing the matrix5.11) yields the(obviously uni- A KI 4B ]=KI yg+ sghkt 740kl (5.21
versa) eigenvaluesd,=—-2, 9,=d—2 and 93=4—d
which are associated with the eigenvectors Then we insert the solutions fo, and\ of Eq. (5.16) into

Eq. (5.21). The resulting differential equation may easily be

_ _ T
=(1,054/(d=6))", solved. Ford# 3,4,6, the solution reads

V2= (v4,1, +79)/[2(d=3)]DT, 5.1
(va, 1(sqva+ 7a)/[2( )1 (5.19 vy O va9)5a (ko) 2
V3=(0,0,1). P=g—2* " d-s |k
Equation(5.15 is valid only ford# 3,6. Ind=3 we obtain VySqt Tq k\d-2
VI=(1,0-s4/3), V2=V3=(0,0,1), and in the T 2d—3) Yol g

6-dimensional case the eigenvectors ¥fe=V3=(0,0,1),

V2= (vg,1,(sgvs+ 76)/6). Thus in both cases the space va (Mg~ va9k,)Sd

spanned by the eigenvectors in only 2-dimensional, i.e. they +| By~ d—4 d—6
do not form a complete system. For all valuegipincluding
d=3 andd=6, the solutions fok, andg, obtained from the vaSq+ 74 ko\9™4
linearized systen(5.10 assume the following form: - mgko (?) . (5.22
kO 2 k d-2
A= ()\ko— vdgko)(?) + Vdgko(k_> , The solutions id=3, d=4, andd=6 can be obtained from
0 Eqg. (5.22 by a careful evaluation of the limitd—3, d
K\ d-2 —4, andd— 6, respectively. In the most interesting case of
g 9k0< ) (5.1  d=4 dimensions this leads to the following solution:
Since the expandeg function g, of Eq. (E3) does not Bi= By + (Mg V4gko)§4_ V4S4t T4g
depend om\, and B, up to terms of third order in the cou- k™ Pko 2 2 ko
plings we can easily calculate also the next-to-leading ap-
proximation forg, near the origin. In terms of the dimen- 419 42| ki (M~ VaGky)Sa Ko z
sionful quantityG, this improved solution reads 1080( mn Ko 2 k
Gi=Gy[ 1~ wdGi,(kg “~K*™2)]™"  (5.17) st 5)2_ (5.23
2 o\ kg
with

The parameters appearing in E§.23 are

Wy= —

1
ﬁBl(0,0,0;d)

1
V4= E‘D%(O)
=(4m)"" Y%huy(d) Py 1(0) +hadd) DG,(0)}

(5.18 71
ad-dependent parameter. It agrees with éhedefined in[2] Sa= (477)2[ “a30" 3_(3(13?(0) + ﬂq)g(o)]
in the context of the pure Einstein-Hilbert truncation. kor
<|wqGy | 72 and with the reference scatg=0 (which

559

is admissible only for specific initial conditions of the cos- T2=(47)" 3” l(O)+ —<I>2(O)H

. . 1728
mological constant Eq. (5.17) yields

k= 2ol 2T @dbo 0 S * 2880 1(0)* 25827(0) |+ 1580 ~ 10
For the dimensionful cosmological constant we obtain, from 13 40
Eq. (5.16), + ?CD}(O) + ?1)3(0) } . (5.24
)\k_)\k + Vde ( ) (520}

Employing the exponential shape function wigh-1 and

Equations(5.19 and(5.20 agree completely with the corre- inserting the corresponding values of té(0) and&)ﬁ(O)
sponding results from the Einstein-Hilbert truncation. integrals given in Appendix F we obtain
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FIG. 1. The casé=4: (a) Type la, type lla, and type llla trajectori¢som left to righy obtained from the\-g projection(5.16). They
coincide precisely with the corresponding trajectories of the Einstein-Hilbert truncation. The type lla trajectory is the separatrix with
Mk=0=0, which separates the region of trajectories with,,— —° (type 13 from those running towards more positixé& (type llla). (b)

Three typical trajectories of the linearizadg-B equation. They correspond to different vaIuesGQg, but all of them satisfy Eq5.26). We
also depict their projection onto the-g plane. It coincides with the separatrix of the pure Einstein-Hilbert truncation.

=/(3)/(2 0.19 =(4m)"? 559+ 278I 2 347I 3 0.20
v4={(3)/[(2m)~0.19, s4=(4m) 132 Tn( ) ﬁn( )1 ~0.20,
2817356+ 25474+ 13772)(— 559+45901n(2)— 208211 3)) (5.25
T4= ~(0.0051.
49766400r°

Let us now analyze the RG flow near the origin of the Einstein-Hilbert truncation, thereby separating the region of
parameter space. Strictly speaking our analysis even extentlgjectories with\,_ o— — (type lg from those which hit
to all points of thex-g-8 space which satisfjA|,|g|<1 and  the boundary of parameter space=(1/2) for some finite
| B| <1/ g|. This is because in any of the thr@dunctions all  value ofk (type Illa). In Fig. 1(a) we depict the separatrix, a
terms of second and higher ordersgp appear as products type la and a type llla trajectory in the vicinity of\(g)

ggBr with n=m. =(0,0). The plot should be thought of as a projection from
Since ¢,=—-2<0 and, ford>2, 4,=d—2>0, A\, of  \-g-B space onto it8=0 plane.

Eqg. (5.16 starts growing as soon &dalls belowk, and the For the separatrix, Eq5.19 for the running ofGy is

linearization breaks down, unless the couplings run along &alid down tok=0 becausey stays near the origin. Fat

trajectory which satisfies #2 the parameter@é,z_l(O) andd)ﬁ,z(O) appearing inwy

_ N d are scheme dependent, atg is nonuniversal. In the most
M= a0k M= vaGik (529 interesting casepocﬂz 4, ‘
for sufficiently small values ok [5], with G, given by Eg. 1 1 5
(5.17). In this case both, andg, approachlh=g=0 in the “’4:E[13‘D1(0)+79‘D2(0)]- (5.27
limit k—0 as long as$8,|<1/|g,| is satisfied as well. Since
®J,(0) depends on the shape functi®®, vy is not a  Since ®1(0) and ®2(0) are positive for any admissible
universal quantity. Therefore the slope of the distinguisheghape functionwe can infer from Eq(5.27) thatw, is posi-
trajectories characterized by E&.26 is not fixed in a uni- tive. Thus, if we define QEG with vanishing renormalized
versal manner.

Equation(5.26) is exactly the condition for the “separa-
trix” found in [5] in the context of the 4-dimensional 5Using the exponential shape functiddf® with s=1, for in-
Einstein-Hilbert truncation. In the terminology ¢5], the  stance, we have@1(0)=7?/6, ®5(0)=1 so thatw,~1.33. Fur-
separatrix is the “type lla trajectory” that interpolates be- thermore, we havebi(0)=2¢(3) where{ denotes the Riemann
tween the Gaussian and the non-Gaussian fixed point of theeta function, and thus,~0.19.
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cosmological constant to be the theory described by a trajec- 2. d#4
tory in A-g-B space, whosa and g coordinates follow the
separatrix in the limik— 0, Eq. (5.17) implies that QEG is
antiscreening in the IR, i.65, decreases dsincreases.

Up to now we investigated th@=0 projection of the
flow on \-g-B space. Next we discuss the linearized RG
flow of the 8 component.

Let us now discuss thg evolution for 2<d#4. Again,
the linearization breaks down for trajectories which do not
satisfy Eq.(5.26 for k—0 since|\y_o|— in this case.
Therefore we restrict our considerations to the trajectories
with N\, = v4g, for sufficiently smallk. In this case the sec-
ond, quadratically divergent term of E¢.22 drops out,
and the only powers ok which occur ing, arek®"? and
1. d=4 k4_d
In d=4 the solution forgy, Eq. (5.23, diverges in the In 2<d<4, both 9,=d—2 and 9;=4—d are positive
limit k—0. If A\ # vygyx ask—0, the leading divergence is which implies that the RG trajectories considered are at-
quadratic ink. However, in this case the linearization cannot{acted towards X,9,8)=(0,0,y4/(d—4)) ask is sent to
be trusted down to arbitrarily small valueslonyhow since  ,arq.
trajectories with\,.# vqgj ultimately run away from X.,g) Ford>4, 9, is negative and thug, contains a divergent
=(0,0) fork—0. . _ _ _ term «k*~9. As a consequence, the coefficient of this term
o o e e ot ey TUSL VS, i 2 wactory i 10 it he porh .
i ' =(0,0,y4/(d—4)) in the limit k— 0. The distinguished tra-

2 . . . .
oc.(kolk.) In Eq. (5.23 van_|s_hes and anY a logarithmic run- jectory which runs into this point ds—0 satisfies, for suf-
ning with auniversalcoefficient remains: ficiently small values ok

_ V4§4+ T4 419 _2
Bx=Br,~™ — 5 Ik 7pgol4™ I Ko 8 _ vgsgt ng _ VgSdt g
k™ _ k™ _ k
LoD, (5.29 2(d—3) 2(d—3)yy
Since higher orders B, appear exclusively as products —  vgSgt+ Ty 2(d-3
grBr  with n=m, the vanishing of gp(In(k/ky)™ < Bi= 2(d—3) Gk

= (klko)2"(In(k/kg))™ in the limit k—0 then implies that

terms of orderﬁﬁ remain negligible ak—0. As a conse-

qguence, the linearization does not break downkier0O al- gt T

though B, diverges in this limit. =_d Tdy d-s, (5.29
According to Egs.(5.16), (5.26, A\, and gy quickly ap- 2(d=3)vq

proachh=g=0 so that the corresponding trajectories run

almost along the8 axis fork— 0, and the RG flow becomes ] ] )

essentially one-dimensional. This logarithmic runningggf ~ For all other trajectories th@ component diverges fok

was expected on the basis of conventional perturbation0- However, higher orders g8 are again suppressed by

theory[31]. We observe thalig,| decreases logarithmically Powers ofg, and may tgerefgri be neglecte@ote that

with increasingk. This is what is usually referred to as the lim, gkBk=lim,  k"¢=2"md=9=0 for n=m) As a

“asymptotic freedom” of the (curvaturé)coupling. We em-  consequence, the linearization can be trusted down to arbi-

phasize, however, that according to our results this logarithtrarily small scalesk even in this case. The shape of the

mic running occurs only close @=\=0 and does not rep- corresponding trajectories resembles the one fourdi=d.

resent the true short-distance behavior of the theory. In faciwhile |8,/ —, the A and g components approach=g

we shall find thais runs towards a fixed point valyg, for =0 in the limit k—0. Thus, for sufficiently smalk, the

K— o0, trajectories are almost straight lines which virtually coincide
Figure 1b) shows three typical trajectories of tR& trun-  with the B axis.

cation close to X,g,8)=(0,0,0); all of them satisfy the Having a closer look at thg8 functions one recognizes

separatrix condition(5.26.. Their B8 component diverges that the IR scaling behavior id+#4 dimensions is actually

logarithmically towards—o ask goes to zero, which is due governed by a “quasi-Gaussian” fixed point at

to the positive coefficient in front of the lklky) term in Eq.

(5.28. In this figure we also depict the common projection

of the trajectories onto thk-g plane. It coincides precisely (A 104+ B4 )=(0,0,y4/(d—4)). (5.30

with the separatrix of the Einstein-Hilbert truncati®i, i.e.

the curve in Fig. 1a) that hits ,g) =(0,0). Conversely, all

trajectories of theR? truncation satisfying Eq(5.26) repre-  The quasi-Gaussian fixed point is not presendin4. Lin-

sent specific “lifts” of the separatrix with nonvanishin  earizing the RG flow about this fixed point yields essentially

components; they are distinguished by th&ir andgy val-  the same results as our expansion about (0,0,0) above. The

ues. linearizedB functions with stability matrix, and the linear
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(b)

FIG. 2. (a) The cased=3: three typical trajectories of the linearized flow. They correspond to different valuﬁ§o,obut all of them
satisfy Eq.(5.26. As a consequence, all 3 trajectories hit the quasi-Gaussian fixed poiftf@r. (b) The cased=5: three typical
trajectories of the linearized flow corresponding to different valueg,gf All of them satisfy Eq.(5.26), but in contrast to the other two
curves, the one in the middle satisfies also G&R9. As a consequence, it hits the quasi-Gaussian fixed poirk-fed. In both(a) and(b)
we also depict the projection of the curves onto g0 plane.

solutions associated with this fixed point, may be obtained In d=3, Fig. 4a), all 3 trajectories hit the fixed point,
from Eqgs.(5.10, (5.1, (5.16), (5.22, and(5.29 simply by  independently of theipy value. As we already pointed out

replacingry with above, the quasi-Gaussian fixed pointlifi4 is IR attractive

for all trajectories satisfying Eq5.26). In d>4 this is no
longer the case. This is confirmed by Figbpfor d=5.
Here only one of the trajectories hits the quasi-Gaussian
fixed point for k—0, and this is precisely the one which
In particular, B=M(ry— 74). The constantsd,=— 9, as- satisfies the additional conditid6.29. The other two trajec-

sume the meaning of critical exponents now, and their signlPti€s shown in Fig. @) correspond 8, values which are

determine the dimensionalityr of the (truncated IR criti- ~ different from the one in Eq5.29 and thus theig compo-

cal hypersurfaceSz of the quasi-Gaussian fixed point. nent diverges in the limk— 0. Depending on thg, value,
In 2<d<4 we have one positive critical exponeft B\ runs towardst o or — .

>0 and two negative critical exponents,3<0. There-

fore, within the truncationA =2, as suggested by the cor- C. The non-Gaussian fixed point

responding solutions discussed above. h vial simul fh
In d>4, 6, and 5 are positive and, is negative. Hence, Now we turn to the nontrivial simultaneous zeros of the

in this caseAg=1, i.e. Sz consists of a single trajectory. S€t OfB functions{B, By, By} given by Eqs(4.23, (4.24),
For sufficiently small values df this IR critical trajectory is ~ (4:29- Such non-Gaussian fixed points witfy , g, , B, all
. . s . different from zero have the anomalous dimensions
given by Eq.(5.29 with 74 replaced with7y. Since the
parametersyy, sq and 74 contain R©-dependent integrals e =2—d, 7g,=d—4 (5.32
®P(0), ®P(0), they are not universal. Therefore the slopes . _ .
in both directions of the distinguished trajecta.29 are which follow immediately from Egs(4.24) and(4.25.
not fixed in a universal manner. This is in accordance with
the general expectation that the eigenvalue8 chould be
universal, but not its eigenvectors. In d=4 dimensions, and for the cutoff of the type A in-
We illustrate our results fait# 4 in Fig. 2. In Fig. Za) we  troduced in[2], the non-Gaussian fixed point of the pure
considerd=3 and in Fig. 2b) the 5-dimensional case. Each Einstein-Hilbert truncation was first discussed 20,9, and
figure shows three typical trajectories in the vicinity of thein Ref. [35] the o and R(®) dependence of its projection
guasi-Gaussian fixed point. All of them satisfy £§.26, so (0,9, ) onto theg direction has been investigated. However,
that in bothd=3 andd=5 the projections of the 3 trajecto- since fora# 1 the cutoff of type A was defined {184] by an
ries onto theB=0 plane coincide with the separatrix. ad hocmodification of the standard one-loop determinants it

. 2(4)t~d
TaTTdT T

(hag(d) +hys(d)@5,(0)).  (5.3D)

1. Results obtained from the pure Einstein-Hilbert truncation
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is not clear whether it can be derived from an actiyS, ~0.14 for «=0. The differences between the “physical”
except for the case=1 [1]. Since a specification af,Sis  (fixed poin) value of the gauge parameter=0, and the
indispensable for the actual constructionl@f, the status of technically more convenient=1 are at the level of about
the results derived if35] is somewhat unclear. In Reff2] 10 to 20 percent.

we performed a comprehensive analysis of the fixed point The above results suggest that the UV attractive non-
properties using different cutoffs of type B, for whicl\@S  Gaussian fixed point occurring in the Einstein-Hilbert trun-
is known to exist. In particular, we investigated the cutoff cation is very unlikely to be an artifact of this truncation but
scheme dependence of various universal quantities of inteshould rather be the projection of a fixed point in the exact
est, both by looking at their dependence on the shape fund¢heory. We interpreted them as nontrivial indications support-
tion R(®) and by comparing the “type A’ and “type B” re- ing the conjecture that 4-dimensional QEG is “asymptoti-
sults. cally safe” in Weinberg’s sense.

In this respect universal quantities are of special impor-
tance because, by definition, they are strictly cutoff scheme
independent in the exact theory. Any truncation leads to a o o
scheme dependence of these quantities whose magnitude is al h€ actual justification of a truncation is that when one
measure for the reliability of the truncati®a3]. Typical ex- ~ dds further terms to it its physical predictions do not change
amples of universal quantities are the critical exponents ~ Significantly any more. In order to test the stability of the
The existence or nonexistence of a fixed point is also a uniEinstein-Hilbert truncation against the inclusion of other in-
versal, scheme independent feature, but its precise locatiofriants we shall now reanalyze the non-Gaussian fixed point
in parameter space is scheme dependent. Nevertheless it dinthe generalized truncatio#.2) including the R* term.
be argued that, id=4, the product, A, is universa[44,2]  Starting from theg functions of theR? truncation, Egs.
while g, and\, separately are not. (4.23), (4.24) and (4.25, we determine the location of the

For later comparison with thR? truncation, let us briefly fixed point in A-g-8 space and the linearized flow in its
list some of the results we obtained 8] with the pure vicinity. Then we investigate the residual cutoff scheme de-
Einstein-Hilbert truncation: pendence of the associated universal quantities, and we com-

(1g ) Universal Existence: Both for type A and type B pare our results to those obtained from the pure Einstein-
cutoffs the non-Gaussian fixed point exists for all shapeHilbert truncation.
functionsR(®) we considered. This result is highly nontrivial  Note that, contrary to the pure Einstein-Hilbert truncation,
since in higher dimensiongl&5) the fixed point exists for  only a cutoff of type B is used in the context of the general-
some but does not exist for other cutoffs. ized truncation. Therefore we omit the specification of the

(2e4) Positive Newton Constant: While the position of cutoff type when we refer to results obtained from R#
the fixed point is scheme dependent, all cutoffs y@bgditive  truncation.

2. Results obtained from the Rtruncation

values ofg, and\, . A negativeg, might be problematic Location of the fixed poind=4). In a first attempt at
for stability reasons, but there is no mechanism in the flowinding the non-Gaussian fixed point in tR8 truncation we
equation which would exclude it on general grounds. neglect the cosmological constant and the coupling oRhe

(3e) Stability: For any cutoff employed, the non- ijnvariant. We approximate, =\, =0, B,=5, =0, thereby
Gaussian fixed pOint is found to be UV attractive in both projecting the renormalization group flow onto the one-
directions of the)\-g plane. LineariZing the flow equation dimensional space parametrized @y|n this case the non-
according to Eq(5.2) we obtain a pair of complex conjugate Gaussian fixed point is obtained as the nontrivial solution of
critical exponentsé,= 65 with positive real partd’ and B,4(09,.0;d)=0. It is determined in Appendix E with the
imaginary partst 6”. Due to the positivity of¢’, all trajec-  result given by Eq(E2). For anyd, this solution coincides
tories in its basin of attraction hit the fixed pointlag sent  precisely with the analogous approximate solutiet?) of
to infinity. Because of the nonvanishing imaginary péft Ref. [2] with «=1, obtained in the pure Einstein-Hilbert
the trajectories spiral into the fixed point fkf oo, truncation. In order to get a numerical value for the fixed

Solving the full, nonlinear flow equatiori§] shows that point we have to specifyR(?). Inserting the exponential
the asymptotic scaling region where the linearization is validshape function withs=1 into Eq. (E2) and settingd=4

1

extends fromk'* ="' c down to aboutk~mp with the leads tog, ~0.590.
Planck mass defined asp=G, 2. It is the regime above  Assuming that for the combinex-g-3 system the num-
the Planck scale where the asymptotic freedorspbets in.  bers\, , g, andg, are of the same order of magnitude as
(4g ) Scheme and Gauge Dependence: The critical exg, above we expand thg functions about Xy ,dx.Bx)
ponents are reasonably constant within about a factor of 2=(0,0,0) and neglect terms of higher orders in the cou-
For the gaugesr=1 and «=0, for instance, they assume plings. Again in Appendix E we determine the non-Gaussian
values in the ranges 10’ <1.8, 2.360"<4 and 1.& 6’ fixed point from the corresponding system of differential
=<2.1, 2.550"<5, respectively. The universality properties equations. Inserting the shape functi@10 and settingd
of the producig, A, are much more impressive though. De- =4, we find (\, ,g, ,8,)~(0.287,0.751,0.002). Quite re-
spite the rather strong scheme dependence,ofand \, markably, for any cutofi, andg, agree perfectly with the
separately, their product exhibits almost no visiB® de-  corresponding values obtained [ia] by the same approxi-
pendence. Its value ig, \,~0.12 for «=1 and g, \, mation applied to the pure Einstein-Hilbert truncation.
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FIG.3.(® g, , N\, , andg, A, as functions obfor 1<s<5, and(b) 8, as a function of for 1<s=<30, using the family of exponential
shape functions.

In order to determine thexact position of the non- plagued by convergence problems. They are due to the fact
Gaussian fixed pointX ,0, ,8,) we have to resort to nu- that in d=4 some of the threshold functions appearing in
merical methods. Given a starting value for the fixed point,g, , By and B, diverge in the limits—0, see alsg35]. As
for instance one of the approximate solutions above, the praor the family of shape functions with compact support, we
gram we use determines a numerical solution which is exagiave to restrict ourselves to<1.2 for similar reasons. Here
up to an arbitrary_degree of accuracy. Under t.he same COrR(%)(y: ) approaches a sharp cutoff Bs+ 1.5, which intro-
ditions as above, i.e. fs=1 andd=4, we obtain duces discontinuities into the integrands of the threshold

(N, 0, B, )=(0.330,0.292,0.005 (5.33 functions ®P and ®F. Already for b=1.2 the B functions
start to “feel” the sharp cutoff limit, which leads to conver-

In the pure Einstein-Hilbert truncation the correspondinggence problems.
coordinates of the fixed point are\{ ,g,)=(0.348,0.272) As in the case of the pure Einstein-Hilbert truncat{@h
[2]. Obviously the values of, andg, are almost the same our results establish the existence of the non-Gaussian fixed
in both cases. While\, andg, are of the same order of point in a wide range of andb values. As expected, the
magnitude, we find thgB, is significantly smaller tham , position of the fixed point turns out to depend ®aor b, i.e.
andg, . on the cutoff scheme, but the crucial point is that it exists for
In order to test whether these properties of the fixed poinginy of the cutoffs employed. Figures 3 and 4 show its coor-
coordinates are universal we study their scheme dependendiates {, ,0, ,8,) as well as the produag, \, for the
by looking at thes or b dependence introduced via the one- shape function$3.11) and (3.12, respectively. In Fig. &)
parameter families of shape functiof®.11) or (3.12, re-  we plotted the various gquantities in the rangeg<5 where
spectively. Heres parametrizes the family of exponential the largest changes in, andg, occur, but we calculated
shape function$3.11), while the shape parameteallows us  them for 1=s=<30. For every shape parametor b, the
to change the profile of the shape functions with compacvalues of\, andg, are almost the same as those obtained
support(3.12. with the Einstein-Hilbert truncatiof2]. As a consequence,
As for the family of exponential shape functions, we arethe productg, A, is again almost constant and its value dif-
forced to restrict our considerations to shape parameters fers only slightly from the one if2] for the same gauge
=1. This is because fs<1 the numerical integrations are =1. Both Figs. 8a) and 4a) suggest the universal value

B«

0.5k 0.01
Jx

0.4l 0.008
A

0.3-’_—//————”" 0.006

0.2¢ 0.004
gx Ae

0.1} 0.002

b
0.2 0.4 0.6 0.8 1 b

0.2 0.4 0.6 0.8 1 1.2

(a) (b)

FIG. 4. (& g, , A\, andg,\, , and(b) B, as functions ob for 0<b=<1.2, using the family of shape functions with compact support.
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(b)

FIG. 5. Trajectory of the linearized flow equation obtained from Rietruncation for &t=In(k/ky)<. In (b) we depict the eigendi-
rections and the “box” to which the trajectory is confined.

0, N\, ~0.14 while we obtained, A, ~0.12 from the pure (A, Ok, Br) T=(\y .04 ,Bx) T +2{[ReC cog #"t)
Einstein-Hilbert truncation. Thus we may expect that our ] ]

g, A, -value is precise at the 10 to 20 percent level. Presum- +ImCsin(6"t) JReV+[ReC sin(6"t)
ably this degree.of precision is the best we can achieve in the ~ImCcog #"t)]ImVie AENRVISTY
present calculation because we saw already that the error due
to using a=1 instead of the “correct’a=0 leads to an (5.39
uncertainty of the same size.

Furthermore, our results show thai is always signifi-
cantly smaller tharg, and X\, for both families of shape
functions, which is quite remarkable. Within the limited pre-
cision of our calculation this means that in the three-

dimensionalk-g-g space the fixed point practically lies in iqfie for all cutoffs. As a consequence, all RG trajectories
thex-g plane with =0, i.e. on the parameter space of the hich reach its basin of attraction hit the fixed pointtds
pure Einstein-Hilbert truncation. sent to infinity. The trajectorieés.34 comprise three inde-

It is also interesting to note that the scheme dependence ‘E)%ndent normal modes with amplitudes proportional to
By is unexpectedly small. As for the family of exponential ReC, ImC and C;, respectively. The first two are of the
shape functiong3.11), the functiong, (s) depicted in Fig.  spiral type, the third one is a straight line.

3(b) develops a plateau-like shape for not too small values of Let us illustrate these features by means of an example.
s. Employing the family of shape functions with compact For the exponential shape functi¢8.11) with s=1, for in-
support, the scheme dependenceBgfis even weaker. The stance, we have\( ,g, ,8,)=(0.330,0.292,0.005). The
function B, (b) plotted in Fig. 4b) is almost constant in the corresponding stability matri® takes the form

range G=b=1.2. Moreover, the positions of the two plateaus

with arbitrary complexC=C;=(C,)* and arbitrary reaC;.
FurthermoreV=V1=(V?)* andV? are the right eigenvec-
tors of the stability matrix B;;); ; <1x,q,5 With eigenvalues
— 6,=— 65 and— 65, respectively. Obviously the conditions
for UV stability are#’>0 and #;>0. They are indeed sat-

are nearly identical. While Fig.(B) suggests the valug, 8.83 2.61 401.7

~0.0031, we obtainB, =~0.0036 from Fig. 4b). This indi- B=_| 6.18 446 8924 (5.35
cates that ind=4 dimensions als@, might be a universal

quantity. 0.29 0.32 198

The linearized flow (eF4). Let us now analyze the critical It leads to th ir of | itical Ms= 0%
behavior near the non-Gaussian fixed point. Quite remark- . ca ,s; o e Ba'r of complex:critical exponents= 0,
ably, the non-Gaussian fixed point of tHe? truncation “With ¢'=2.15, 6"=3.79, and to the real critical exponent
proves to be UV attractive in any of the three directions of93:28'8' For the assaciated right eigenvectors we find

\-g-B space, for all cutoffs used. The linearized flow in its ReV=(—0.164,0.753-0.008,

vicinity is always governed by a pair of complex conjugate

critical exponent®);= ¢’ +i6"= 65 with §'>0 and a single ImV=(0.64,0-0.017,

real, positive critical exponeni;>0. (We defined, as the

critical exponent with the positive imaginary part so tigat Vv3=-(0.92,0.39,0.04". (5.36

>0.) The general solution to the linearized flow equations is
obtained by taking the real part of EG.4). Introducing the  (The vectors are normalized such thit||=||V3||=1.) In
RG timet=In(k/ky) it may be written as Fig. 5 we show a typical trajectory which has all three nor-
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FIG. 6. (@) ' =Ref; and #”=Im@,, and(b) 65 as functions of, using the family of exponential shape functions.

mal modes excited with equal strength (®eIlmC starts growing, it is again predominantly tHel%./g and
=1/\2, C3=1). All its way down fromk'* ="’ = to about  Jfd%\/gR invariants which get excited, but nftl%/gR? in
k=mp, it is confined to a very thin box surrounding tie  the first place.

=0 plane, i.e. the parameter space of the Einstein-Hilbert Summarizing the three points above we can say that very
truncation. close to the fixed point the RG flow seems to be essentially

In fact, the linearized flow is characterized by the follow- two-dimensional, and that this two-dimensional flow is well
ing quite remarkable properties, independently of the cutoffapproximated by the RG equations of the Einstein-Hilbert
They all indicate that, close to the non-Gaussian fixed pointtruncation.
the RG flow is rather well approximated by the pure Scheme dependence of the critical exponédts4). As
Einstein-Hilbert truncation. we pointed out already the critical exponents are universal in

(&) The B components of R¥ and ImV are very tiny. an exact treatment, but in a truncated parameter space a
Hence these two vectors span a plane which virtually coinscheme dependence is expected to occur as an artifact of the
cides with thex-g subspace g8=0, i.e. with the parameter truncation. We may use it to judge the quality of our trunca-
space of the Einstein-Hilbert truncation. As a consequenceion. Also in this respect thR? truncation yields satisfactory
the ReC and ImC normal modes are essentially the sameresults, which we display in Figs. 6 and 7. Figuréa) @nd
trajectories as the “old” normal modes already found with- 7(a) show the real and the imaginary pat and " of the
out the R? term. Also the corresponding’ and ¢” values  complex conjugate paif;= 65 while 65 is depicted in Figs.
coincide within the scheme dependence; see below. 6(b) and 7b). The plots in Fig. 6 are based on the family of

(b) For all cutoffs employed, the new eigenval@gintro-  exponential shape function®.11) and those in Fig. 7 are
duced by theR? term is significantly larger tha’; see  obtained by employing the family of shape functions with
below. When a trajectory approaches the fixed point fromcompact support3.12). They display thes and theb depen-
below (t—x), the “old” normal modes=xReC,ImC are dence of the critical exponents, respectively.
proportional to expf #'t), but the new one is proportional to  As for the complex conjugate pair of critical exponents,
exp(—6st), so that it decays much more quickly. For everythe scheme dependence is of the same order of magnitude as
trajectory running into the fixed point, i.e. for every set of in the case of the Einstein-Hilbert truncatip2|. While the
constants (R€,ImC,C3), we find therefore that, onceis  scheme dependence @f is weaker than that found 2] we
sufficiently large, the trajectory lies entirely in the RdmV  see that it is slightly larger fof’. For the exponential shape
subspace, i.e. th8=0 plane practically. functions with 1=s<30, ¢’ and " assume values in the

Due to the large value i3, the new scaling field is very ranges 2.£6'(s)=<3.4 and 3. 6"(s)<4.3, respectively.
“relevant.” However, when we start at the fixed point Employing the shape functions with compact support leads
(t'* =" ») and lowert it is only at the low energy scale to a weaker dependence on the shape pararbetéowever,
~mp (t=0) that exp 6;t) reaches unity, and only then, i.e. the corresponding valugs (b) and§”(b) are in good agree-
far away from the fixed point, the new scaling field startsment with those obtained with the exponential cutoffs. In
growing rapidly. fact, they all lie in the#’ (s) and 8" (s) intervals given above.

(c) Since the matrixB is not symmetric its eigenvectors The average values of’ and ¢” are slightly larger than
have no reason to be orthogonal. In fact, we find Wties  those obtained from the pure Einstein-Hilbert truncation. The
almost in the R&-ImV plane. For the angles between the difference between the corresponding average values is ap-
eigenvectors given above we obtairl(ReV,ImV) proximately 1 for bothd’ and 6".
=102.3°, <(ReV,Vv3)=100.7°, <(ImV,v3)=156.7°. Let us now come to the new critical exponeft which
Their sum is 359.7° which confirms that Re ImV andV®  was not present in the Einstein-Hilbert truncation. Using the
are almost coplanar. This implies that when we lowvand  exponential shape functiori8.1]) it suffers from relatively
move away from the fixed point so that th€-scaling field  strong variations as the shape parametisrchanged. It as-
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FIG. 7. (a) ' =Ref; and #”"=Im@,, and(b) 65 as functions ob, using the family of shape functions with compact support.

sumes values in the range &4#;(s)<28.8. As compared to shifted by two units. In this case we find indeed that the third
the exponential cutoffs, the cutoffs with compact supportscaling field isirrelevant for any cutoff employedf;<0.

lead to a much weaker scheme dependencebledi0,1.2] For our analysis of th&®? truncation ind=2+e¢ dimen-

we have 23.€ 03(b)=<26.7. However, the results obtained sjions with 0<e<1 we had to resort to numerical methods.
with the two families of shape functions agree within the Using thee expansion we calculated the fixed point coordi-
scheme dependence. Moreovey, is always systematically nates and the critical exponents for selected values of the
larger thand’ (and 6") with both families of cutoffs. As a  shape parametes: For all quantities only the leading non-

consequence, the hierarchy of critical exponents which Wagiyia| order of thes expansion was retained. In Table | we
mentioned in(b) above and which squeezes the tra]ectorlespresem the corresponding numerical results.

into a thin box is a universal feature. For all cutoffs used we obtain threeal critical expo-

ObVLOU?Iy the criti;,al expdonentz, in partlcu|ﬂ§,$r)](hlblt nents, the first two are positive and the third is negative.
a much stronger scheme dependence than, . This is _Thus, the corresponding® direction is UV repulsive. This

most probably due to neglecting further relevant operators in . . :
the truncation so that thB matrix we are diagonalizing is suggests that the dimensionality 8f could be as small as

; Ayy=2, but this is not a proof, of course. If so, the quantum
still too small. h Id be ch terized b v two f i
In 2+¢ dimensions The above results and their mutual tN€Ory would be characterized by only two free parameters,

consistency strongly suggest that 4-dimensional quantur{'® renormalized Newton consta@p and the renormalized
Einstein gravity indeed possesses a RG fixed point with presosmological constam,, for instance.

cisely the properties needed for its nonperturbative renormal- Let us now compare the results to those from the Einstein-
izability or “asymptotic safety.” However, with the present Hilbert truncation1,2]. The\ andg coordinates of the fixed
approach it is clearly not possible to determine the dimenpoint and the critical exponen#; and 6, are found to be
sionality Ay of the UV critical hypersurface, which coin- similar to those in[1,2]. However, in the Einstein-Hilbert
cides with the number of invariants relevant at the nontruncation the leading-order resultg, =3/38 + O(&?)
Gaussian fixed point. According to the canonical~0.07%+O(e?) and 6,=¢+ O(s?) are scheme indepen-
dimensional analysis, thigurvature" invariants in 4 dimen-  dent, which is not quite true for the results above. Both trun-
sions areclassicallymarginal forn=2 and irrelevant fon cations agree o, =2+ O(¢).

>2. The results fo; indicate that there are largenclas- SummaryOur main results concerning the non-Gaussian
sical contributions so that there might be relevant operatorsixed point in theR? truncation are:
perhaps even beyont= 2. However, as it is hardly conceiv- (1gr2) Position of the fixed point: The fixed point is found

able that the quantum effects change the signs of arbitrarilyo exist for all cutoffs used. This result is highly nontrivial
large (negative classical scaling dimension4,,, should be since the example of the Gaussian fixed point clearly shows
finite [23]. that a fixed point of the Einstein-Hilbert truncation does not
A first confirmation of this picture comes from o>  necessarily generalize to a fixed point of #R& truncation.
calculation ind=2+¢ where the dimensional count is For every shape parameter the fixed point practically lies on

TABLE |. Fixed point coordinates and critical exponents.

S M(HO0(ED)  0.(+0(e?) B (+0(e))  6:(+0(e))  6(+0(e?)  b5(+O(e))

1 —0.13%k 0.08% —0.083 2 0.9638 —1.968
5 —0.05% 0.092 —0.312 2 0.955 —1.955
10 —0.03% 0.09% —0.592 2 0.956 —1.956
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the \-g plane, and its position almost exactly coincides with ~ The situation improves by including the terfu®x./gR?
that from the Einstein-Hilbert truncation. with a positive coefficient since the resulting action is

(2r2) Eigenvalues and eigenvectors: The fixed point isbounded below[18]. While the Einstein-Hilbert term
UV attractive in any of the three directions of theg-8  fd%xgR leads to a negative contribution to the kinetic term
space for all cutoffs employed. The linearized flow in its of the conformal factor, which dominates at small momenta,
vicinity is always governed by a pair of complex conjugatethe R? term gives rise to a positive contribution dominating
critical exponents),;= 6’ +i#"= 05 with #’>0 and a single at large momenta. As a consequence, both the truncated ac-
real, positive critical exponerd;>0. It is essentially two- tion functional I',[g,g] of Eq. (4.2 and the bare action
dimensional, and this two-dimensional flow is well describedS g]=T";_...[g,9] possess an absolute minimum. Moreover,
by the RG equations of the Elr?steln—Hllbert truncation. rewriting the truncation ansat.2) with g,,,=g,, as

(3r2) Scheme dependence: The scheme dependence of
the critical exponents and of the prodggt\ , is of the same
order of magnitude as in the case of the Einstein-Hilbert o Znik? 2
truncation. While the scheme dependencedbfis weaker Fk[g,g]=f d¥x\gi Bl R— —=
than in the case of the Einstein-Hilbert truncation we find B
that it is slightly larger for6’. The exponentd; shows a 72
relatively strong dependence on the cutoff. The product +ZNkK2( A\ — Nk )] (6.3
0.\, again exhibits an impressively weak scheme depen- B
dence.

(4r2) Dimensionality ofSyy : The dimensionalityAyy of  one can easily determine a sufficient condition for a mani-

the UV critical hypel’surface cannot be determined within tthsﬂy positiveactionrk[g’g]>0. In terms of the dimension-
present approach. However, the results fromRticalcula-  |egs couplings it readg, >0, B,>0, and

tion in 2+& dimensions suggest that,, should be finite
also in 4 dimensions.

On the basis of the above results we believe that the non- 12879 N B> 1. (6.9
Gaussian fixed point occurring in the Einstein-Hilbert trun-
cation is very unlikely to be an artifact of this truncation but
rather should be the projection of a fixed point in the exact
theory. We demonstrated explicitly that the fixed point and At the level of the flow equatiorl,, appears on the RHS
all its qualitative properties are stable against the inclusion ofh terms of its Hessiaﬂf(kz) to which the cutoff operatoR,

a further invariant in the truncation. These results stronglyis adapted by the rulé3.5). Thus, only ifr(kZ) is a positive
support the hypothesis that 4-dimensional QEG is indeegefinite operator can we obtain a cutoff which leads to a

B. Positivity of the Hessian

nonperturbatively renormalizable. “correct” mode suppression. Since we expect Rietrunca-
tion anyhow to be reliable only for largk it is actually
VI. POSITIVITY OF ACTION, HESSIAN, AND CUTOFF sufficient ifl“(kz) and Ry are positive definite for sufficiently

large momenta?= — D?. The reason is that, due to the fac-
tor 9,R(p?) which emphasizes the regi@i~k?, the traces

It is a well known problem that imi>2 dimensions the on the RHS of the RG equatio(3.4) receive the dominant
Euclidean Einstein-Hilbert action contributions from modes whos# is close tok?.

In generall“(ki[g,g] depends on botl,,, and the back-

ground metricg,,. Here we concentrate off{*)[g,g]
=I"{?) with the two metrics identified. Furthermore, we as-

sume thayg,,=g,, is the metric of ad sphere with radius
is not bounded below. In fact, decomposing the metric asince our projection technique requires these backgrounds
9,,=€xp(2)g,, whereg,,, is a fixed reference metric we Only. In this case the eigenvalupé=A,(d,s) depend on the
obtain discrete quantum numbdr The explicit expressions for
A(d,s) are tabulated in Appendix C. They are strictly
monotonically  increasing  functions  of |  with
IimHOOA|(d,s)=oo.

In the following we show that the operatnﬂff) with k
- _ very large indeed becomes positive definite if it is restricted
—(d=1)(d-2)g""(D,x)(D,x)]. (6.2 to the subspace spanned by thed? eigenfunctions with
sufficiently large eigenvalues, certain assumptions on the
This shows thaSEH can become arbitrarily negatile if the Coup”ngs being made. The Spherica| harmorﬂfﬁ%, TLLm'
conformal factory(x) varies rapidly enough so thalD(LX)2 and T'™ with | larger than a certain minimum value,,
is large. Therefore it seems difficult to define a path integraprovide a basis of this subspace. We shall concentrate on the
Z=[Dg,,exp(—Sy) for Euclidean quantum gravity. conditions implied by the leading lardebehavior.

A. Positivity of the action

_ 1 d _ N
SEH[g]——l&Taf di%Vg{—R(g)+2\} (6.

1 .
S =—_f d9%+/geld= 2] — R+ 2)\e2X
eH 9] 167G \/3 [
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The Hessianl'{*[g,g] as given by the quadratic form T\ /89,,=0 forg,,=g,,. The difference to the situation
(4.12 is a symmetric block diagonal matrix. Therefore, ac-discussed before is th&is a function ofk now, to be com-
cording to the Jacobi criterion, the condition for positivity puted fromg®y(k). (The operatoﬂ“(kz)[gf’s(k),g"s(k)] would
takes the simple formI{*)pmr>0, P >0, (I?)35  appear in a standard one-logsaddle point calculation
>0, and (ﬁz))mfﬁz))@—(rﬁz))i?>0. For sufficiently based upon the “classical” actioR, .)
large values ofl the leadingl powers ofA(d,s) are the For the truncated action function&l, of Eq. (4.2) with
dominating contributions to the entries Bf?) in Eq. (4.12 9.»=0,, the field equation takes the form
so that, in this limit, the above condition boils down to

| —o0 _
0<(TPmnt — (Zniw? = BrR)A(d,2) 273k G hid + Bl — (G, +R,,IR
=Zy® = BR>0 (6.5 +2D,D,R~2g,,D?R]=0 (6.10
2
@ 7, ENKK , o :
0<(I'iMgg — 2——A(d,)D) with G,,=R,,—9,,R/2 the Einstein tensor. Precisely for
, d=4, the maximally symmetric solutions to E@.10 sat-
VANPLS isfy Einstein’s equationG,,=—g,,\«, they are not af-
= >0 (6.6) A wy © .
a fected by theR“ term. Inserting the contracted equatiBn
g =4\, into the third condition of Eq(6.9) leads to
| — o0 —1 2
05 — 2| S| BuA (0.0
=60 (6.7) 12879\ Br<1. (6.11)

(2) @N—_ (722
0= ol T 9o~ (1) o Remarkably, this condition is satisfied preciselY'if g,g] is

nota manifestly positive functional of,, , as follows from
Eq. (6.4). This implies that ford=4 the S* solution of Eq.
(6.10 cannot correspond to the absolute minimum of
I' [ g,0] if this functional is manifestly positive.
szKZEk In the UV fixed point regime, the conditiof6.11) be-
=—>0. (6.8 comes 12&g, \, B, <1. For all cutoffs employed we found
that 0.1<1287g, A\, B, =0.22 so that this condition is in-

For non-negative values of the gauge parameter0, this deed satisfied. It is reassuring that also, upon insertingthe

. . 2 g
leads to the following restrictions on the dimensionless couselution of Eq.(6.10, the Hessiarl"{?) becomes a positive
plings: operator for sufficiently large values éfand k, indepen-

dently of the cutoff.
Furthermore, the concomitant violation of E@.4) im-
90, B>0, k% (32mgBi)>R. (6.9  plies that in the vicinity of the fixed point the functional
I' [ g,9] is bounded below but not positive. By adding an
In the UV fixed point regime of thed=4)-dimensional  appropriate constant it is trivial though to turn it into a mani-

case we have,~g, and g~ g, with g, ,B8,>0. Hence, festly positive functional.
close to the non-Gaussian fixed point, the first two conditions

of Eq. (6.9 are obviously satisfied. Furthermore, the third

condition then takes the forrR<k?/(32wg, B,). For R C. Positivity of the cutoff
fixed this condition is satisfied as well providé&ds suffi-
ciently large. Thus, fok large and on modes with large ei-
genvalues of—D?, the restricted operatd?(kz) is positive.
The cutoff should have the desired suppression properti
therefore.

The above argument tred®sas a constant parameter. Re-
calling the derivation of the prqjecteijlllequ gquatlon Whererestrict our considerations to the most interesting case of
we compared powers of the radiugR it is indeed clear — 2 and to spherical backarounds
that in this contextr and R should be regarded as fixed, P M,,aﬁ_g - B va o
k-independent quantities. After setting (Ry)yr,r =1/2(9*“g"+9"79") (RiJnar

It is instructive to look also at the operator and (Rk)gzgf”(Rk)g, and inserting the eigenvalues of
Fﬁz)[gos(k),g"s(k)] where g°¥(k) is the k-dependent “on- the covariant Laplacians, the entries of the cutoff matrix
shell” S metric which solves the equation of motion (3.8) assume the form

'**(d_ 1)ZZNKKZEk

— = (A(d,0))*>0

a

a

The cutoff A, S is expected to be positive definite under
the same conditions as found for the Hessi#R in the
revious subsection. In order to obtain more quantitative in-
ormation about ,;, and the momentum regime whetgS
is positive we continue our analysis with an explicit investi-
gation of the cutoff operatoR,. For simplicity we again
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K*RO(A(4,2)/k?)
32’7Tgk

(Ri)nThr=

R
1- 327Tgk,3kp ,

kK*ROV(A(4,2)/k?)
167'rgka

(R ee=

K*ROY(A,(4,0/k?)

(R oo= 3270,

(R)gor=(Rid) g = gﬁkk4| [A1(4,0/K*+RO(A(4,0/k*)]%? \/A.(4,0)/k2+ RO(A(4,0/k?) ~

3
[ 367, Br(2A(4,0/k*+RO(A(4,0/k?))+ 7

PHYSICAL REVIEW D66, 025026 (2002

(6.12

3k?

R
—[A(4,0/K7]% A|<4,0>/k2—§J,

k*ROOY(A(4,0/k?)
32’7Tgk

(R o=

As compared to Eq3.8) which was written in terms of the
dimensionful quantitieZyx?, Ay, and B, we switched

( 36mguBr(2A(4,0/K*+ROU(A(4,0/k%) — %] ,

(R.K, 0k, By ;RO T with a certain scalar eigenmodé™,
they tell us whether the contribution from this mode is sup-

here to a description in terms of the dimensionless couplinggressed correctly or not. The more restrictive inequality

In analogy with the Hessiali{*) the condition for the
cutoff matrix R to be positive definite readsR()nm,7>0,

(R0, (RY35>0, and Rz R so— (Ri)5,>0.

These conditions indeed reproduce the restrictions on the

couplings obtained frori'(?) for sufficiently large momenta
p?=A,(d,s). Provided thata=0, they take the forng,
>0, B>0 and k?/(32m7g,3) >R, which coincides with
Eq. (6.9.

Given an arbitrary set of parametei’,k, g, ,8y) satisfy-
ing these three inequalities, we hav&k,j,7»7>0 and
(R g0 [and also Ry),,>0] for any allowed value ofl.

This is not the case for the other two conditions which stem

from the scalar sector of the cutoff. ClearlR(),, of Eq.

(6.12 can assume negative values for sufficiently small val

ues ofl, providedg,, B« andR/k? are small enough. Since

(R)5e>0, a negative Ry, Implies that also
2
(RO Ri) 7o~ (R 5,<0.
Thel values for which ®y)3,>0 satisfy
2A,(4,0/k*+RO(A(4,0/k?)> (6.13

144w, By

In Appendix G we derive a similar inequality involving the
¢-o cross term. There we find thatR{),4(Ri) oo
— (Rk)i_0>0 at least for all values df satisfying

2A,(4,0/k?+RO(A(4,0/k?)> (6.14

9679 Bk

Both inequalities, Eqs(6.13 and (6.14), depend on
9Bk, on p?/k? with p?=A,(4,0)=1(1+3)R/12, and on
the shape function R©®. Given a specific set

(6.14 applies to the scalar eigenmodg8™ with =2,
while Eq.(6.13 can be used for the constant moH& %m=1
and the PCKV's{[T'=1™ only.
Let us now focus on RG trajectories which run into the
non-Gaussian fixed point &s—«. Furthermore, we assume
that R is either kept fixed or thaR=a.k? with a constant
a,<(32mg,B) L. Then, for large enough values kf we
have gy~g, >0, B=pB,>0 and k?/(32mg, B,)>R so
that the condition$6.9) for the positivity of () and R, are
satisfied. Moreover, the RHS of Eq®.13 and (6.14 may
be expressed as (144, 8, ) ! and (96rg, 3,) 1, respec-
tively.

Now we are in a position to determine theegime for
which the cutoff is manifestly positive definite. Using the

family of exponential shape functiori3.11) with 1<s<30,

a numerical analysis reveals thamhy value of the ratiox
=p?/k?=A,(4,0)/k? satisfies Eq(6.13 or (6.14 provided
s=2 or s=7, respectively. Hence, under the above condi-
tions, all cutoffs employing an exponential shape function
with s=7 are manifestly positive definite fall momenta,
i.e. for all quantum numbers

This is a rather intriguing result. It might indicate that
cutoffs withs>7 are particularly reliable.

Conversely, for anys<7 there exists a specific value
Xo(8) such that allx with x<xy(s) violate Eq.(6.14). Fur-
thermore, there exists a specifig(s) for anys=<2 such that
any x<x,(s) leads to a violation of Eq6.13. In Fig. 8 we
show xq(s) andx,(s) in the ranges £s<6 and l=s<2,
respectively. It is important to note thady(s)<0.7 and
X1(s)<0.26 for any value of considered. This implies that
in the UV fixed point regime the cutoff has the desired sup-
pression properties for all modes with momenta ranging
from infinity down to values well belovk.
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FIG. 8. (a) Xq, and(b) x, as functions of, using the family of exponential shape functions.

To complete the analysis let us study the inequalities=fy(sl), fo[R®;11=fq(s,1). For I=2 we have fy(s;l)
(6.13 and(6.14 also at the spherically symmetric stationary =f(s;|=2) independently of the shape parameter. Numeri-
point g°(k) of I',[g,g] which we discussed in the previous cally we find thatf,(s;| =2) is always positive. Hencany
subsection. In the vicinity of the fixed point the on-shell momentum withl=2 satisfies the condition6.16) for all

value of the curvature iR~4\, k?. Hence, we obtain from
Egs.(6.13 and(6.14), respectively,

21(1+3)A
fl[R(O);I]E%+R(°)(I(I+3))\*/3)
! 0, 1=01 6.1
T Taamgp, 0 17Ot 69
and
21(1+3)\
fo[R(O);I]E(T)*JrR(O)(I(HS))\*/S)
—-—— >0, I=2. 6.1
9679, B, (618

The first inequality stems from the scalar eigenmo@é%
with | =0,1, and the second from those with 2. Both Egs.
(6.15 and(6.16 depend orl andR©.

values ofs considered. Furthermore, our numerical analysis
shows that alsof,(s,I=1)>0 for all cutoffs employed.
However, fi(s,/=0) is not always positive. We obtain
f1(s,1=0)>0 for s=2 and f,(s,|=0)<0 for s<2. Our
results are illustrated in Fig. 9.

The above results have to be interpreted as follows. As-
sume thak lies in the UV scaling regime, and consider the
cutoff operator at the spherically symmetric stationary point,
Ri[9°%K)]. Then this operator is strictly positive on the
space spanned bgll spherical harmonics and would cor-
rectly suppress all modes in a path integral containing this
“on-shell” cutoff, provided we choose an exponential shape
function with s=2. For s<2, only the contributions from
the constant mode witp?=0 are not suppressed correctly.
For any other mode the cutoff term is positive even in this
case.

To summarizeln this section we found that at least in the
asymptotic domain relevant in our investigation of the UV
fixed point the cutoff which is adapted to tRe truncation is
positive definite and therefore has all the required mode sup-

Again we restrict our investigation to the family of expo- pression properties. No conformal factor problem and no

nential shape functions with<1s<30. Then the LHS of Egs.
(6.15 and (6.16 are functions ofs and I: f;[R(®:]

fo

0.6¢

1=2

5 10 15 20 25 30

(@)

growing exponentials produced by exp§,S are encoun-
tered.

£
0.8

(b)

FIG. 9. (a) fo(s,1=2), and(b) f,(s,=0) andf,(s,I=1) as functions o, using the family of exponential shape functions.
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VIl. SUMMARY AND CONCLUSION least qualitatively reliable in the UV. Hence it appears in-
. . creasingly unlikely that the very existence of the non-
In this paper we evaluated the exact RG equation of a5 qussian fixed point is an artifact of the truncation. We be-

Einstein Hibert approximation used 56 far by the inghsion| /¢ that QEG has indeed very good chances of being
PP y onperturbatively renormalizable.

of a higher-derivative term. We derived the beta-functions otn A notorious difficulty of Euclidean quantum gravity is the

e Sompoea o e s Sy ot oy corfomal facor prabiem. i he exat RG approzch, 12

beta functions in order to investigate hbw the two ﬁxedpears n the E!nstem-HlIbert truncation, but n_ot N tﬁé

points known to exist in the Einstein-Hilbert truncation truncation providedk is Ia_rge enough. Whgn this complica-
tion occurs the construction of an appropriate cutoff operator

maw;efséj:zr?ﬁztlvﬁlse'%;huiggf;?fg dthici)r:{ c?fp?hC:'Einstein-is rather subtle. However, it was possible to show that our
P investigation of the non-Gaussian fixed point in Retrun-

Hilbert truncation does not generalize to a CorreSpondIn%ation is not affected by this problem, and that a straightfor-

. . 2 .

f2|x§.d po!nt IOf the t'R t;utT]c;atlon. ﬂNever'E[heltiss),\ the ward positive definite cutoff can be employed. The numerical
I- 'me”s'fr(‘)a proj?ﬁ |on.o_n\_ '9‘3_6"’Y onc|>| €A9  agreement of the results with those from the Einstein-Hilbert

plane atg=0, near the origin =g= =0, is well approxi- ., a4ion indicates that the rule for constructing an adapted

(r:naatlitgr? t')r)r/1éhsr(:;ce)\::vtégilljcl)“v:gofg?c,r?ntdheeecljzIr?g\t/eelna_l:iizzrtpgi%?_ utoff in the presence of the conformal factor problem which
\, =0, =0. In the Einstein-Hilbert truncation there exists are?:? proposed iff] (* %=z rule”) should indeed be cor-

distinguished RG trajectory, the “separatri{’5], which
gives rise to a vanishing renormalized cosmological con-

stant, Iirq(_)o)\k= 0. Ind=4, it turned out that this trajectory

possesses a 3-dimensional “lift” which is characterized by a We would like to thank C. Wetterich for many helpful
logarithmic running of theR? coupling .. For d#4 its discussions. We are also grateful to A. Ashtekar, A. Bonanno,

running is power-like, and there exists a “quasi-Gaussian’V- Dittrich, P. Forgjt_is, H. Gies, E. Gozzi, D. Litim, M.
fixed point at\, =g, =0, B, #0. This picture puts the Niedermaier, H. B. Nielsen, R. Percacci, J. B. Pitts, M. Salm-

older perturbative calculations iR? gravity into a broader Nofer, F. Saueressig, L. Smolin, T. Thiemann, and G. Ven-
context. eziano for interesting conversations and communications.
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Quite differently, the non-Gaussian fixed point,(,9,)
#(0,0) implied by the Einstein-Hilbert truncation does APPENDIX A: EVALUATING THE RHS OF THE
“lift” to a corresponding fixed point of the 3-dimensional TRUNCATED FLOW EQUATION

flow, with a tiny but nonzero third compone, >0. It is In this section we present several rather lengthy calcula-
UV attractive in all 3 directions ok-g-8 space. We demon- . P! i ngthy
tions needed for the discussion of tRé truncation in Sec.

strated in detail that close to the fixed point the flow on the . ) .

extended theory space is essentially 2-dimensional, and thiy- "_the following, all calculations are performed with

the 2-dimensional projected flow is very well approximated9,.»=9,, Whereg,,, is assumed to correspond tcS4back- -

by the Einstein-Hilbert flow. For the, andg, coordinates ground. For simplicity the bars are omitted from the metric,

both truncations yield virtually identical values, and the saméhe curvature and the operators.

is true for the critical exponents pertaining to the

2-dimensional subspace. For universal quantities the differ- 1. Computation of (I'(?’+R,)~* and (S&+R,) ~*

ences between the two truncations are typically smaller than

their weak residual scheme dependence. =(2)_1(2) 2(2)— o(2)
This stability of the Einstein-Hilbert truncation against the OPeratord =T'}"'+ Ry andSg'= Sji/+ R,.. They may be

inclusion of a further invariant, together with the other pieces’ePresented as matrix differential operators acting on the col-

of evidence which we summarized in Secs. V C 1 and V C umn vectors k',&, ¢q,0,¢6,)" and ©',v",0,0)", respec-

strongly support the conjecture that this approximation is atively. In this representation they take the form

In Sec. IV we derived explicit expressions for the kinetic

(T{PLg. gDt 0 0 Ouxz

~ 0 Trg,9) 0 O1x2
Tg.0)= deteaba - (A1)

0 0 (T19.9D)5,5, O1x2

02><1 02><1 02><1 Qk

and
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0 (SPr9.9D,, 0 0
(S9.91), 77 0 0 0
E% = v
hl9.9]1= 0 0 0 E9.9)5, (A2)
0 0 (S§09.9D) 00 0

where
T@19.9))5 TP19.9D)3,0

2 ) (A3)
(r< 19.9D3, (TPlg.9)ss

The entries of these matrices are given in Eql5. On the RHS of the flow equatiai8.4) the inverse operato{s'f“(kz)]‘1 and

[Eg%)]‘l appear which we determine in the following. At this point it is important to note that, because of the maximally
symmetric background, all covariant derivatives contained in the oper@dysand(A2) appear as covariant Laplacians, and
that the various entries ardndependent otherwise. This implies that these entries@renutingdifferential operators which
allows for particularly simple manipulations. Therefore it is not difficult to verify that the inverse operators assume the form

[(TP[g.9Dm] 0 0 Ours
FPla.g]) 1= 0 [(TPlg.gDzl * 0 01 »
0 0 [(FPrg.aD5,9,] " Ouea
0251 O2x1 Osxy 0.t
and
0 [(S§1g.9Dumr] 0 0
Eog) =] Srlo ol ° ° ’ (A5)
0 0 0 [(3209.91)ge]
0 0 [(S2[9.9]) ol * 0
with

, . ) [ T@l9.aDss —TPl9.0)s,
=ITPL0.9) e T Ple.9) s, - TPl00Ds A7 o (A6)
— (199D (119,900
Inserting these expressions into the RHS of the flow equa8af leads to

1
Si(R)=Tr' Z [(T@[9,9]1+ R 9] I 2o R 9D ¢ | +

1 -
! ETr'[{(l“(kz)[g,g])ﬁ( 19.91)5,4,
relhT e o}

~(TP19.9D5 3 HTP19,91+ RAGD 7t R 3,5, + (TE19,91+ RGN 3,3,0( R o

> [(SB9.91+ Rl gDyl *o(Rd9D | (A7)

—2(FP[9,91+ R 5,00 RILA) 5,03 1= T1 =
yefv e

where we used the relations

L(SE T = (STl = o
Va(y) sv™(y) Vg(X) v ()

(A8)
s 1 85,

s2) X —
[( 2 Dool’y= [( )eg]y - ’_g(y so(y) Vo(x) 5Q(x
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The trace of thep, term appearing in the first line of EGA7) may be evaluated easily since only the scalar eigenmotfes
and T'™ contribute. We obtain

1 ’ (2) -1
il (L9911 Rid 9D gy0p] " RULID) 90, ]

1 Dy(d,0)

1
=y .20 2 d%/g(x) TM(x)[ Cep(d, @) Cey(d, @) (Py+ Ay (d, @) R+ By (d, @)\ )
Nk

+(Znk?) " Bi(Ho(d) P2+ Ggy(d)R P+ Gg(d)R?)] 10, [Cp(d, @) Cp(d, ) Zyy k2RO~ DZK?)

+Ek(Hs(d)[—2D2R<°>(— D2/k?)+k*RO(— D?/k?)?]+ Gg,(d)RICRO(—D?/k?))]T'™(x)

1
=57 2 {D(d,0{Cs(d, @) Cs1(d, @) (A(d,0) +k*RO(A,(d,0)/k?) + Ag;(d, @) R+ Bey (d, a)\y)
Nk 1=0

+(Znw®) "B H(d) (A(d,0) + K2RO(A(d,00/k?))2+ Gy(d)R(A(d,0) + K2RO(A(d,0)/k?)) + G5(d)R?]} 2
X 9{Cey(d,@)Csp(d, @) Zkk2ROUA(d,0)/k?)+ Br[Hs(d) (2A(d,00k2RO(A(d,0)/k?) + k*RO(A,(d,0)/k?)?)
+ Gg(d)RICRO(A(d,0/k?) ]} (A9)

Here A,(d,0) is the eigenvalue with respect toD? corresponding ta'™. Inserting also the remaining entries given in Eq.
(4.15 into Eq. (A7) finally leads to Eq(4.16.
2. Heat kernel expansion and evaluation of the traces

In this part of the appendix we expa®}(R) of Eq. (4.16 with respect tor and evaluate the traces appearing in the
resulting equatiofA10) below by applying the heat kernel expansion. Thereby we extract the contributions proportional to
fd%\/g, fd9%+/gR and fd%+/gR?. This puts us in a position to read off the RG equations for the three couplings. For
technical convenience we restrict our considerations to the gasgk.

We start our evaluation a$(R), Eq. (4.16), by expanding it with respect tBocr ~2. Since we are only interested in the
contributions proportional tgd®x/ger?, [d+/gRar9~2 and [d+/gR2r9=4, only terms of order?, r4=2 andr9=* are
needed. This leads to

SR =Trose)[ A N+ Trm[Ag "N —hy(d) Trig[ Az "N+ aTri[ A, 2]+ aTri) (ArAy) ~*PRA]
—2Tran[ Py Nol- 2Tr(/o)[Pl:1No] ) —aTresm[ Ay T+ aTrose)[ Ay 2PN - AT(d)Tr(stZ)[Al_ZN]

—Ay(d, D) Tr(yry [ A7 °N]+ho(d)ay Trig) [ (ArAz) ~ o]+ ha(d)ay Trig)[ (A1 Az) PN+ hy(d) Trig)[ (ArA2) 1N
+ha(d)aTrp[ A, 'Ti]—hy(d)a T"ZO)[-A LA PPRT,) - hS(d)akTr(O)[AZ PyT,]—hy( d)akTr(O)[AEZITZ]
—hy(d)afTrig)[ (A1Ap) ~2PRN]—hs(d)agTrip [ A7 LA 5 2PRN] —2h,(d)ay Trip [ A7 A5 2PEN]

2 4
+hy(d)hy(d)acTro[ A5 *Pil]+ hy(d)ha(d) Trg[ A5 *M = Tran [Py *Nol = 5Tro)[ P “Ao]

Ogo — —
2o LB 2Bk f dx\g R+[ —a{Tros e[ Aq *PeTil+aA(d) Tros e[ AL *Th]

—Gr(d)ayTrse)[ Ay N+ a(Trose [ AL *PN] = 2A7(d)ayTros [ Ay PN+ Ar(d)*Tros [ A °N]
Gu(d)aTr(yn[ A1 “N+Ay(d,1)2Tr( [ A7 *N] = hg(d)af Tr{o)[ (A1A,) ~ T ]+ he(d)a Tri [ (ArAy) ~N]

2
- @aETrEIO)[(AlAZ)ilPk,Tl] +hy(d)ha(d)ayTrig)[(ArAz) ~ T3] —hy(d)?agTri) (A1 Ap) ~*PiT,]

1 3 -1 4-2p2 201 -1 ,4-2 3 " -1 ,4-2
+§h2(d)akTr(0)[A1 AZ Psz]—2h2(d)h3(d)akTr(0)[A1 AZ Pk’z—z]_Ehz(d)h‘l(d)akTr(O)[Al "42 7—2]
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— l " — " —
—he(d)agTr(o[[ Az *To1+ 5 ha(d)agTrio)[(ArAz) ~2PEN] — 2ha(d)hg(d)agTrig [ (Asdz) ~*PEN]
3 - - " - -
— 5 ha(d)hy(d)aTrio)[(ArAz) ~2PEN] = hy(d)agTrio [ A " A5 PRV = 3hy(d)hy(d)aTro[ A T A5 “P]

3
- Eh4(c|)2Trg’o)[,4 1 MAZ 2N+ ha(d)hg(d)ay Trip[ A5 2N —ha(d)ha(d)a Trip [ A; A5 *PET;]

— hs(d)?agTr(g)[ A2 *PT1] = ha(d)ha(d)a Trig[ A *Ty]+ha(d)?agTrip [ A7 °A; *PET;]
+2h,(d)hg(d)agTr{p)[ A1 A PRT]+ 2hy(d)hy(d)aZ Trg [ AT LA *PET,] +ha(d) i Tr(y [ A5 *PET:]
+2h3(d)hy(d)agTrig[ A, *PiTz]+hy(d)?aTrip[ A, *Tp]+ho(d)?aiTrig) (A1 Az) ~PEN]
+2hy(d)ha(d)agTrip[ A1 %A 5 *PRN]T+ 3hy(d)hy(d)ag Trip[ A1 2A 5 2PN+ ha(d)?ai Trip[ A1 A S 2PN
+4hg(d)hy(d)agTrip[ A1 A5 PINT+3h,(d)2a, Tr{[ AL A5 *PEN]—hy(d)hs(d)?agTrip[ A, *PEN]

2 8
—2h;(d)hz(d)hy(d)a,Trig[ A5 2PN —hy(d)hy(d)?Trig[ A 3N~ 2rant P NGl - @Tr(’O)[Pk*SNo]

s, , — — = — S, —
+ f d?\/g 8;;(1—3%0’ (0)(Bk?) L Bik™) = B L Bik®) + & 4":)2<9akk4—2<k2—2xk>) !
X (9 By Poi( Bik*) — 2Zyidr(Znik?)) ] RZ+O(r=974). (A10)
Here we set
Aj=Py—2),
1 _
Az =aPg— 5 hi(d)(Pc—2)y) (A11)
and
a=(Znkk?) 1By (A12)

The quantitiesV, Ny, 7; and7; are defined as in Eq4.17). Furthermore(r =9~ %) means that termsr" with powersn
<d-—4 are neglected.

The terms in Eq(A10) proportional tod, , and dg4 4 arise from the last term in E¢4.16). Contrary to the other terms of
Eq. (4.16), its expansion does not contaikdependent powers of but is of the form=;,_ b ,r ~2™ with {b,,,} a set of
r-independent coefficients. As for comparing powers othis has the following consequence. Since, forra#:0 andd
>0, —2m=d—4 or —2m=d—2 are satisfied only ifrf,d) €{(0,2),(1,2),(0,4), and since-2m=d cannot be satisfied at
all, this term contributes to the evolution equation only in the two- and the four-dimensional case. Us{Ag/Eilpe pieces
contributing, i.eb,m_or® in d=2 andd=4, andb,,,_,r ~2 in d=2, may be expressed in terms of the operafat®/gR,
Jd?x\/gR? or fd*x\/gR?. This yields the terms in EA10) which are proportional to thé's.

As the next step we evaluate thexpansion of the traces appearing in E§10) by applying the heat kernel expansion.
In its original form it has often been used to compute traces of operators acting on unconstrained fields. For our purposes we
need the heat kernel expansions for operators acting on constrained fields, i.e., fields satisfying appropriate transversality
conditions. In Ref[2] these expansions are derived in detail for LaplaciBison S° backgrounds acting on symmetric
transverse traceless tensors, on transverse vectors and on scalars, with the following results:

i
A (s+ie)

(d+1)(d+2)(d—5+384,)
12(d—1)

(is—e)R

) ) d/2 1
Trasmyle (579 ]=( Jddx@[z(d—Z)(d+ 1)—

(d+1)(5d*—22d3— 83d%— 392 — 228+ 144054 ,+ 324054 4)

720d(d—1)2 (st+ie)?R*+O(R%) , (A13)
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d/2 _
f ddX@| 4q d+2)d 3)+65d’2(is—s)R

(is—s)D2
Tramle (s7#)P ]=(

Am(s+ie) 6d
5d*—12d°—47d*— 186d+ 180+ 36053 ,+ 720534 . , . 5
_ : “(s+ie)’R*+ O(R®) ¢, (A14)
360d%(d—1)
: dr2 5d°~7d+6
—(is—&)D? - d _ = U idTe 2 3
Tr)le 1= (477(S+I8) Jd x\/—[l (is—e)R— 3600(d—1) (s+ie)’R*+O(R )] (A15)

Here the terms proportional to th¥s arise from the exclusion of unphysical modes of the type discussed in Sec. Il.
Let us now consider an arbitrary functio¥(z) with a Fourier transfornW(s). For such functionsV, we may express the
trace of the operatow/(— D?) that results from replacing the argumentWwfwith —D? in terms of\W(s):

TI{W(—D?)]= lim ) dsW(s)Tr[e~(is=#)P?]. (A16)
e\,0Y —*

We obtain the asymptotic expansion of W(— D?)] by inserting the heat kernel expansion fo[é‘r(iS*S)Dz] into Eq.(A16).
For Laplacians acting on the constrained fields considered here they read as follows:

o1 (d+1)(d+2)(d—5+384,)
Trasm[W(~D?)]= (47) d’2{§<d—2)<d+1>Qd,2[vv] [ 4+ T2 QW) [ %GR
(d+1)(5d*—22d3— 83d?— 392 — 228+ 144054 ,+ 324054 4)
+ 5 Quarz-2l W]
720d(d—1)
xf ddx\/§R2+O(r<d4)}, (A17)
~ (d+2)(d—3)+65,
Tram[W(—D?)]=(4m) dlz[(d_l)Qd/z[W]f dx\g+ 6d szd/z—l[W]f dx\gR
5d*—12d3— 47d2— 186d + 180+ 3606, ,+ 7205 4 f
’ ' W] | di%\gRE+O(r=9-4},
3602(d—1) Quz-2l W] Vo ( )
(A18)
1
TH o W(~D%)1= (4) % Qu W1 [ 6%\G+ 5Quz (W) [ G
5d?>—7d+6
d 2 <d-4
* 6D Qd,z,z[vv]J dgR?+ O(r )]. (A19)
Here the set of functional®,[ W] is defined as
Q. [W]=Ilim | ds(—is+&) "W(s). (A20)
e\,0Y —*
By virtue of the Mellin transformation we may now reexprégsin terms ofW so that
[W]= f dz2*- 1d Wiz) i>—n, ieNU{0} arbitrar (A21)
Qn F(n+|) dz r € Y-

In particular we obtainQq W]=W(0). Furthermore, ifn>0 we may choose=0 for simplicity. As can be seen by an
appropriate integration by part®,[ W] does not depend on

At this point it is necessary to discuss the case where isolated eigenvalues have to be excludefMiorDF)]. As we
showed in[2], such traces can be expressed as
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Tr' - '[W(—D?)]=T{W(-D?)]- >  D(d,s)W(A(d,S)). (A22)
le{ly, . la}
Heren primes at Tt -’ symbolize the exclusion of all eigenmodB& with | {I,, ... .}, andA,(d,s) andD,(d,s) denote

the corresponding eigenvalues efD? and their degrees of degeneracy, respectively. Sm@,s)scR we may view
W(A(d,s)) as a function ofR. As outlined above, such a function contributes to the evolutioR,gfZy, and B, only for
d=2 and ford=4, with the contributions given bw(0)+W'(0)A,(2,s) andW(0), respectively. Using the explicit expres-
sions forA,(d,s) andD,(d,s) (see Table Il in Appendix Cand applying Eq(4.7) we therefore obtain for the traces relevant
to the flow equation:

Tr{1y[W(—D?)]=Tram)[W(— DZ)]——[GW(O f d?x\gR+3W'(0) f dx\gR ] m f d*x\gR?
+O(r=9-4), (A23)

Tr{o)[W(—D?)]=Trq)[W(—D?)]- oo [sw 0)fd2x\/_R+3W'(0 fdzfoZ] x\/gR2
+0O(r=d=4, (A24)

Trioy[ W(—D?)]=Trio[ W(— DZ)]— W(O) J d?x\gR— W(O) f d*x\gR2+O(r <974y, (A25)

HereW’ denotes the derivative with respect to the argum@fitz) =dW(z)/dz with z= A(d,s).
The next step is to insert the expansions of the tracesSi(f®), Eq.(A10), and to compare the coefficients of the operators
fd%+/g, fd9%+/gR and [d%./gR? with those on the LHS, Eq4.5). This leads to the following differential equations:

I(Znihi) = (4x2) " H(4) " Y2 hg(d) Qg A1 N —h1(d)Qud A5 "N+ aQqral A5 ' 1]+ Qi (ArAy) ~PEN]
—2dQup Py "Nol}, (A26)

WZynk=—(2k?) " 1(4m) " ¥ ho(d) Qo[ AT 'N]— = 1(d Quiz—1[ A3 "N+ = ade/z AT

1
+ gadelz— 1L (A1 AR) " TPENT+ o d) Qo 1[ P "Nol — hys(d) @ Quil A 1 *73]+ hys(d) @ Quil A 1 *PyN]

+h1o(d) Quil A1 *M+ hy(d)aQupal (ArAz) M1+ ha(d)aQqid (ArAz) ~ PV
+hy(d)Qural (ArA2) "N+ ha(d)aQqd Az 7] —ha(d)aiQqd A1 M A *PET;]
—h3(d)agQqd A, *PTz]— ha(d)aQqd A, *T2]— ha(d)agQqral (A1) ~2PiN]
—ha(d)afQul A7 LA 5 *PEN] - 2hy(d)ayQul A1 M A5 2PN+ hy(d)ha(d)ayQul A 2PiN]

+hy(d)hy(d)Quial A5 2N+ hy(d) Qgpal Py Aol 1, (A27)

0 B=(41) Y2 h1y(d)Qqpo— o[ A7 "N —hy(d)h1s(d) Qur— o[ A5 "N+ hys(d) Qo[ A5 1751
+hag(d)a Qo[ (A1A2) “*PENT—hig(d) Qi ol Py *No]l —had d)a Qo 1[ A1 7]
1
+h1Ad)aQarz- 1L A1 *PiM] = h1g(d) Qurz- 1[ A1 *M+ 5ha(d)aQurz- 1 (A1 A2) 7]
1 1
—h3(d)a Qg [ (A1 Ay) PN+ €h4(d)Qd/2— L (ALA) N+ ghs(d)ade/z— AT
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1 2 1 4-252 1 2 2 1 —2
—ghz(d)ade/z—l[Al A, Pklfz]_ghg(d)ade/z—l[Az Psz]—gh4(d)ade/2—1[A2 7]
1 2 —2p4 1 2 -1 4-2p3
—ghz(d)ade/z—l[(AlAz) Pk/\/]—ghs(d)ade/z—l[A1 A, “PyN]
1 -1 4-2p2 1 -2 1 -2
—§h4(d)ade,2_1[A1 Ay PN+ ghl(d)hs(d)ade/z—l[Az PN+ ghl(d)hA(d)Qd/z—l[Az N]

1
~hao( ) Quiz- 1 Py “No] —haa(d)agQuyd A 1 *PiTi]+ 5 hay(d)hay(d)aQurd A1 *T1]

+hoy(d)aQud A1 2N+ hyy(d)aZQual A 1 2PEN]—hyy(d)hoy(d) @ Qg A1 *PN] + hag(d) Qi A 1 3N]

2
~ hs()aQul (A1) "]+ he(d)a4Quel (Ardy) "N = 5 2(Quil (ArA2) " PiTi]
-1 2,2 -2p2 1 3 -1 4-2p2
+ha(d)ha(d)aQud (ArA2) " Th]—ha(d)?a{Qqil (A1 A2) “2PETo]+ S ha(d)aQuid A1 " A, *PLT5]
3
—2h(d)hy(d)agQul A1 "Az *PiT2] — 5 ha(dhhy(d)aQud A1 *A; *To]— he(d)agQuil A °T; ]

+ =hy(d)adQyl (AyAy) ~2PRN]— 2h,(d)hs(d)aZQgl (A1 Ay) ~2PEN]

Nl W N| -

hy(d)ha(d)a Qi (A1Az) ?PEN]—ho(d)agQusl A7 A5 *PEN]

3
—3ha(d)ha(d)aQud A1 "A *PiN]— 5 hy(d)*Quil A1 M A *N+hy(d)hs(d)aQqil A, *N]

—hy(d)hs(d)agQqal A1 "4, *PETi]— ha(d)*agQul A, *PT1] —hs(d)hy(d)aQql A, *71]
+hy(d)2aiQuil A1 *A; *PiTp1+ 2hy(d)hg(d)aiQul A1 LA *PRT]

+2h(d)hy(d)agQual A1 *A; *PET]+hs(d)?aQud A, *PiT2]+ 2h3(d)hy(d)agQusl A, P72
+hy(d)?aQqd A5 *To]+ hy(d)?a§Qqul (ArA) “*PRN]+2h,(d)hy(d)agQuil A1 %A *PRN]
+3hy(d)hu(d)agQul A1 A, *PyNT+hs(d)?aiQu A 1 LA, PPN

+4h3(d)hy(d)agQupl A1 M A5 *PRNT+3h,(d) 8 Qi A * A5 *PENT—hy(d)hy(d)?afQuil A5 *PEN]
—2hy(d)hg(d)hs(d)a QgL A *PiN]—hy(d)hy(d)?Qqral A5 2N+ has(d)Qqral Py *No]

3 9[Bk? 11 3 O Znik? 11 0.z
+ 5y, ——ak_t[ﬂ—k]_—l—(—R(o) (0)+ —a,k? LTS B (0) — Nk
’ 2 "B (K2=2n) 4 2 Zydk2=2£)2 4 Zn(K2=2)\y)
1 , A Znik? 1 A Z k2
__R(O) (O) +5d4_ t[ NK ]_ +Z I[ Nk ] _
2k? 18 Zy(k*=2N) 4 Zy(Bak? — (K2—2)\y))
. I Znik?] 1 I Znik?] 3 a Bik*]
_§akk 2_ oy 4_ 2 oy v\ 4 4 2 oy 8ak% 4_ 2oy
Zn(k== 2N ) (Bagk™ = (k= 2\y)) Znk(9ayk® —2(k“—2\y)) Br(Bagk™ = (k“—2\y))
9 o[ Brk*
A= ;[B" 3 _ ] (A28)
Br(9agk®—2(k=—2X\y))

Here the coefficientl; are functions of the dimensionality They are tabulated in E4D2) of Appendix D 2.
Now we introduce the cutoff-dependent generalized threshold functions
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+ . — (_1)i * +i— ai m 4 _
‘Pﬁ;qm(v,w,d)=r(n+i)fo dyy’ la_yi (y+ROyNMRO(y) =y RO () (y+RO(y) +w) P
x| 3270 (y + RO (y))2— d-2 (y+RO(y) +w) h (A29)
o (y TN y

and

. (=L (e L0
‘lfﬁ;,‘i,;,(v,w,d)=mfo dyyn+ 1—.

Pl RO(y))™(2y +RO(y))RO(y)(y+RO(y) +w) P
y

X

—q
3270 (y+ RO(y))?— (y+RO(y) +w) } . (A30)

2(d—-1)

In Egs.(A29) and(A30), i is a non-negative integer which satisfies—n, but which is arbitrary otherwise. The functiols

and¥ are independent afwhich can be seen by an integration by parts. Again, we maly=setif n>0. Furthermore, noting
that

DP(wW)=TP (v, w;d), DR(W)=TPT.(v,w;d) Vo Vd (A31)

we recover the threshold functiodsf(w) and @ﬁ(w) originally defined in[1] in the context of the pure Einstein-Hilbert
truncation.
Using the relations

Qu[ A1 PA; IPRT = k2P a D Bl (3, k% (32m) N /K d)
1 . _
= 5 (kKM NTPTATDWE, (A k?/(32m) N /K% d)
Qul AL PA; PP, ]=2K2MN=P=a+ 2P (a,k?/(32m),\ /K?;d)

1 - _
= 5 np(KKAMTNTPTATDWEL, (A k?(32m) N /K2 d)

_ (A32)
Qnl A1 PA, PN =K MNP0t D i (8, k?/(327) N /K?;d)

1 o —
= 5 n(KKZME NPT DW R, ((ak?/ (32m) i /K, d)

Q[ Py PN =k PP 0)

the differential equationgA26), (A27) and (A28) may be rewritten in terms of the threshold functioﬁﬁgﬁn(v,w;d) and
VP (v,w;d) instead of theQ,,.

In order to make the integrals in EGA20) convergent we have to demand tiRif)(y) decreases rapidly as— + .
However, since from now on its form fgr<0 does not play a role any more we ident®{f)(y) with its part for non-negative
arguments and assume tR{P)(y) is a smooth function defined only fgr=0 and endowed with the properties stated in Sec.
[l B.

Next we introduce the dimensionless couplings g, and B, of Egs.(4.20—(4.22. Inserting Eq.(4.20 into &t(ZNkfk)
leads to the relation

Ihk=— 2= (KN + 327G, k2K 99 Ziih) - (A33)

Then, by using Eq(A26), we obtain the differential equatio.23 for the dimensionless cosmological constant. The
corresponding differential equations fgr and 8, may be determined as follows. Taking the scale derivative of @¢a1) and
(4.22) leads to Eqs(4.24) and(4.25, respectively. For the anomalous dimensiofsand »; we obtain from Eqs(A27) and
(A28), respectively,

7n=0kB1( Nk, Qk» Bi:d) + 7nGikBo(N i, Ok, B : d) + 759kB3( N, 9k, Bi: d) (A34)
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and

= — B "Ca(\, Ok Bi;d) — 7nBi *Ca( M, Ok, Bi: d) — 78 "CalNk, Gk, Bic; d). (A35)

The set of equationA34) and (A35) may now be solved for the anomalous dimensiggsand 7, in terms of\,, gy, Bk
andd which eventually leads to the expressidds26) and (4.27).

APPENDIX B: COEFFICIENT FUNCTIONS APPEARING IN THE B FUNCTIONS

In the following we list the coefficient functions;, B;, C;, i=1,2,3, which appear in thg functions(4.23, (4.24 and
(4.25. The coefficientsh;(d) contained in these expressions are defined in Appendix D 2, and the generalized threshold

functions® and ¥ were introduced in EqA29) and Eq.(A30), respectively. The other threshold functiods,and®, are
those already introduced in the context of the pure Einstein-Hilbert truncdtion

Ar(N, Gk, Bk d)=— 2N+ 2(4m)  Y2g, (hg(d) D G — 2N ) — 2d D 5(0) + 647G B 321 (TkBi . — 2N d)
—hy(d) W3 0(9kBk, — 2h ;) + 3270, BV 2. 2(GkBi, — 2N 5 d)) (B1)

AN, G Bi; ) =N — (4m) 1 92, (hg(d) Do — 2N ) — hl(d)q'g/;zl;o;o(gkﬁk y—2N;d)

+3279, BV ik 2. o OB, — 2N ;) (B2)

As(Ni, Ok, Bi;d)=—8(4m) > Ygi B, T /201(9k/3’k7 2N\;d) (B3)

o 1-dP 1 1 32 0:1 .
B1(Ak,9k,Bk;d)=4(4m) ho(d)®yp_1(— 2N ) —hyo(d) Py 1(0) + 3 TIkBKY 42— 1:1(IkBrk» — 2N d)

1 -~ 16 .
- ghl(d)‘l'gizl—l;o(gkﬁk,—2>\k;d)+ ?ngﬁkq,(ljl’zl—l;z(gkﬂkv_2)\k;d)_32111(d)779kﬂkq)é/2(_2)\k)

+32014(d) T B Y 351 (IkBi — 2Nk :d) + i d) D F(— 201 +hyo(d) D F(0)
+3201o(d) 7OkBKY iz 1(GkBr» — 2N d) + ha(A) W53 o( 9B, — 2N ;d)

+3203(d) TG BV §i2.0( 9B, — 2Nk :d) — g d) (32781 Bi) W G2 5( OB, — 2Nk ;)
—64h4(d)779k,3k‘1’d/22(gk,3ka 2N\;d)— 2h3(d)(32779k,3k)2‘1’0/2z(gkﬂky 2\;d)
+32h; (d)hyo(d) 79k BKY 372 1(9kBi, — 2N d) + hy(d) Ny () W3 o( 9Bk, — 2N ;)

—h,(d)(3279kB) W 5iZ.4(9kBk , — 2N ;) (B4)

o — 1-di2 51 1 5,01 .
Ba(Mk, Ok, Bi:d)=—2(4m) ho(d)Pgo_1(—2N\) — ghl(d)q’d/’z—l;o;o(gkﬂk y— 2N d)

16 . ~ ..
+ 3 7B gi2-1.2:0( OB, ~ 2hic: )+ 32014(d) TGB G 1.o( IBic, — 2\ )
+hyfd) DT — 20 )+ 3203(d) 7GkBT 572 1.0 OBk — 2h i3 A) + Mg () T §72.0.0( OBk, — 2 d)
—h3(d) (3279, B *V 3/ 3.0 OkBk» — 2Nk ; ) — 64N, () TG BV /5 2.0 OBk » — 2N ;)
+32n,(d)h3(d) mgk BT 52 1. kBi» — 2hic; )+ hy () hy(A) T 572.0.o(9kBk, — 2N ;d)
—hy(d)(32mGuBi) W 53, 4;0( OB — 2Niid) (B5)
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16 ~n. -
Ba(A, Ok, Bk;d)=—2(4m)1 42 ?ngﬂkq’gl’%fl;o;l(gkﬂk ,— 273 d) — 32n15(d) 70y B® o — 2N

+320,(d) TG BV §i2:0.1(9kBk» — 2Ni;d) + 323(d) TG BV 8/2:0.0( OBk » — 2N d)
—h,(d)(32794B1) 2V 525 1(9kBr, — 2N ;d) — h3(d) (329, Bi) 2V 572 1. 1(9i B, — 2« d)

—3204(d) T9BKY §i2.0:1(IkBrk . — 2N d) (B6)

cl<xk,gk,ﬁk:d>z<4w>d’2f ()@ o(—2N) —hyg(d) DY, 5(0)+64015(d) 70k BT G5 5.1(TkBk, — 2Ny ;d)
—ha(d) ()W 5.o(TiBi — 2N ) +32015(d) TG B P 53— 5. 2(GuBr, — 2N d)

16 .
= 3201Ad) TGkBIP G- 1(— 2N+ 3 Na(A) TABY Gz 1.0 Gk, — 2\ )
P W gis o)+ Shy(d) W — 2\ d

+ 3 19(d) 19 BV Gia— 1.1(9kBi» — 2Nk ; )+6 A(d)W5i5- 1.0(9kBik» — 2N d)

+320, /() 79 BV 55 1.1(FkBr, — 2Ni;d) — hyg(d) o4 (—2X4) — hyg(d) PG, 4(0)— h19<d>
21012 32

X(3279kBi) VY giz - 1.3(IkBk» — 2N ;d) — —h4(d)779k,3k‘1’d/2 1:209kBk, —2N;d) — —h 3(d)
, 16

X(327g B W iz 1:2(9kBk, —2N;d) + ghl(d)hlg(d)ﬂ'gkﬁk

. 1
XWZ (9B, — 2N )+ = hl(d>h4<d>wd,z 1:0(GkBro — 2Niid) — ha(d) (32mgB)?

X ‘1'5/;22—1;4(9k/3k = 2N\ d)— h11(d)(32779k/3k)2‘1’5}g;1(9k/3k ,— 2N\ ;) + 32n,5(d) QB @ 5o — 2M )
+h14(0) (3279481 W 32 2 G, — 2\ i ;) — 32N 15(d) oy (d) QB Fig1(GicBi» — 2N d)
+hog(d) D3 — 2N + hog(d) F5(0) — h(d) (32701 Bi) 2V iz 1 (GkBk» — 2Nic:d)

+320,(d) hoe(d) TGBKY iz o Ik » — 2N d) + o (d) (32701 Bi) W i3 5 GkBi» — 2N d) — hr(d)

X(32791B1) 2V 37259k Br s — 2N d) + 32h4(d) hog(d) m9, BV /2 1(9kBi » — 2N d)

_§ 24pl:2 _ A 24170;2 - .
2h4(d) W i2:0(QkBr » — 2Ny ;d) — hao(d) (3279, Bi) “W g5 1( kB » — 2Nk ; d)
02 . 1 3
—32h,(d)hag(d) 79k BV 420 GkBi s — 2N d) + EhZ(d)(sz'”'gk,Bk)

XWAZ (9B, —2\;d) + = h<d>h28<d><32wgkﬁk>2wd,z3<gkﬂk —2\;d)
—48n,(d)hy(d) m9k BV 32 o 9iBi , — 2N ;d) + 2h3(d) 23279, Bi) *W Ji3.5(9kBic, — 2« ;)

64 ]
—3hs(d)hg(d)hao(d) (327GkB) ¥ 373 2 GiBis — 2Nk i) + o ha () ha(d) g ) mG BT G519

—2\;d)— hl(d)h4(d)2q,d/2 o(OkBik, — 2N d) + 3h3(d)hSO(d)(327Tgk,Bk)3q,d/2 4(9kBi, — 2N\ y;d)
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4 2 2 13
3 h4(d)hog(d) (3279 By) ‘I’d/z 3(OkBiks — 2N d) +96h,(d) “mgy Bk W gjz: 2( kB » — 2N d)

2 .
— 3h2(d)hag(d) (327110 W §5.5(GuBk, ~ 2Mic;d) + 3h(d) hy(d) (327G By ?

. 969, B
XU (G D)+ ha(A)2(32m 0B Y e 0uic ~ 2 +| — 5RO (0)~ =i
. 11R©)(0) + 19279, By [ 288mg,Bc—1 . 1 967Q, Br—

2(1—2)\,)? 4(144m9,Bk—(1=2N\))  4(1—=2N\)  2(96mgyBx— (1—2\y))

3 2479, B }5
(1-20\0(96mgiBi— (1—2)\y)) |~

(B7)

Co(Ai, Gk, Bi:d)=— —(477) dlz[ hy(d) D3, o(— 2N ) —hy(d)hys(d) T3 2:0:0(9kBk > — 2\i;d)
. 16 ~ .

+32115(d)ngBk\I,(]j-/’zl—Z;Z;O(ngk1_2)\k;d)+ ?hS(d)"Tngkq,él’zlf1;1;0(gk18k1_2)\k;d)

1 ~ . ~ 5.
+ 5 ha( W2 10,0098k, — 20k ) + 321 ) QB G5 1.1,o( G, — 2Miid)

=9 l 25

_h18(d)q)d/271(_2)\k)_ ha(d) (32798 *V §i2- 1.5.0(9kBk» — 2\k:d)

32 ~ 1.0 16 /0.2
- ?h4(d)ngﬂk‘l’dizfl;z;o(gkﬁk1_2)\kid)+ 3hl(d)ha(d)ngﬁk‘l’dizfl;l;o(gkﬁk,_27\k§d)

1 ~ .
+ = h 1(d)hy(d) T2 1:0:0(9kBk» — 2N\ ;d) — ghz(d)(32779kﬂk)2‘1’§/’22—1;4;0(9k5k:_27\kid)

+32055(d) TOBD 5o — 2N i) + hll(d)(3277'gk,8k)2{p§/;g;2;0(gk,Bk v 2N d)
—3203(d)hoy(d) TG BT 51910 IkBi s — 2N )+ hog(A) DT (— 2) )
+32n6(d) TG BkY §12:0:0(IkBi » — 2Ni;d) —h7(d) (3279, B1) 2P §iZ.5. o OBk » — 2N d)

_96h3(d)h4(d)779k/3k‘1’d/2 1:0(9kBik, — 2N d) — —h4(d)2q’d/2 0:0(9kBk, — 2\ d)

~ 0. 1 ~ 5.
+3201(d)he(d) GBI G 0.0 IBk. — 2Mici ) + 5 ha(d)(32mGuBi) T G 4 o B, — 2Micid)

— 2h,(d)h3(d) (327G Bi) > T 3i2 5.0 OBk — 2hi d) — 48,(d) () TGk BT 513 5. o 9B . — 2N )
—hy(d)ha(d)2(3279uB) 2T 313 2.6 Ik — 2k d) — 64n,(d) () a(d) 79 BT Y3 1. o IiBr . — 2hi; )
—hy(d)ha(d)2T 32 6.o( OB, — 2hi;d) +ha(d) 23279k B1) W i3 4. o G, — 2k d)
+4h3(d)hy(d)(328Bi) 2V .50 kB — 2Nic: ) +9604(0A) 2 TG BV 433 .o IiBi» — 2k d)

+ 2h,(d)h3(d) (32981 *T i3 5. Ik - — 2Nk d) + 3No(d) () (32701 Bi) 2T i3 4o IiBi - — 2Nk )

11R©'(0) | 192rg Bt 11R©)(0)
2(1-2)y) 2(1—2) )2 42

ho(d)2(3279uBi) 3V 313 6.0 OBk, — 2hi;d) + | —
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1 1 1
+[_ 414470 B (1-200)  A(1-2n0) | 2(967GBr—(1—210)

B 24mgiBk }5
(1—2N,) (96mgy B — (1—2)N)) | ¢4

(B8)

1 ~n. ~
Ca(hic. Gk, Biid)=— §<4w>d’2[ 32:5(d) G Bi¥ gz 2,0,1( 9B — 2hic: ) — 3214 d) TG DG - 1 (— 2N)
16 . 16 . 1
+ ?h3(d)ngﬂk\l,d/é—l;o;o(gkﬂk1_2)\k ;d)+ ?h2(d)ngﬂkq’dl’z—l;o;l(gkﬂk = 2N;d) — ghz(d)
2,12 . 1 2
X (3279kBi) "V gia—1:2:1(QBk» — 2N ;d) — ghs(d)(327'fgkﬁk)

. 16 ~ .
XW i3 11198k~ 20 d) = Zha(d) mOB G5 1.0,1( 9Bk — 2Niid) — haa(d) (327182
X T2 1 o(OkBr, — 2N ;) + 16015(d) hoy(d) 7G4 B F o — 2\ 1) — s () (32791 Bi) 2P 513 0.1( 9B

2 . -~
—2xk:d>—?(32wgkﬂk>2\vé;§;1;o(gkﬁk,—zxk:d)+32h2<d>h3<d>wgkﬁkﬂfé;%;o;o(gkﬂk,—zxk:d>

1 ~ .
+ 5 ha(d) (32m9uBi0) ¥ 43 5:( 9Bk, — 2Nk :d) — 2ha(d) ha(d) (32718 ?

XWEi2 1. 1(GkBr. — 2hi;d) — 48, d) g (d) 79k BY 573 0.4(9kBic . — 2N d)
—ha(d)h3(d)(32mgyB) 2 §i3 5. o OBk — 2Ni;d) — () (3279 Bi) T §i2 0. 1( kB, — 2N d)
—h3(d)2(32mgiBi) 2T 2. 1.o Ik, — 2hi;d) — 323(d) hy(d) 7B i3 0. o 9B » — 2N d)
—hy(d)4(32m094Bi) T §i5.2.1(9kBr » — 2\ d) + ha(d) 23279, B1) > 3. 5. 1(9kBic, — 2N d)
+2h3(d)hy(d) (32791 B1) 2T G5 1.1(9Br - — 2hk:d) +3204(d) 2w g Bi¥ i3 0. 1(IkB» — 2\ d)
+2h,(d)hg(d) (329,81 *W G5 5.1( Bk — 2Nic;d) + 2h,(d) hy(d) (327G Bi)?

~ 1. ~ 5. 967Tgkﬂk
X321 G~ 2N d) + o) 2327080 Wiz aca( G — 2Msd) — 5= b2
3679k Bk 249y B }5 J
d,4( -

14470 Be— (1- 200 967G Be—(1— 20y (B9)

In Egs.(B7), (B8) and(B9) the terms proportional téy , or APPENDIX C: TENSOR SPHERICAL HARMONICS ON ¢

44 4 arise not only from the-terms of Eq(A10), but also by _ . .
evaluating the “primed” traces, i.e., by subtracting the con- 1€ Spherical harmzomc'lé'ﬂ, Tl;rin andT'™ for symmetric
tributions coming from unphysical modes; see Appendix A 2transverse tracelesS{") tensorsh ,,, transverseT) vectors

for details. All these contributions are obtained by expanding, , and scalarsp on S’ form complete sets of orthogonal
various functionsf (R) with respect toR and retaining only  eigenfunctions with respect to the covariant Laplacians. They
the termsf(0)+f'(0)R in d=2 andf(0) in d=4. As we  satisfy

explained above, these are the only piece$ which may

contribute to the evolution in the truncated parameter space. DTN () =A(d,2)T,H(x),

Furthermore, the heat kernel expansions of the traces corre- o

sponding to differentially constrained fields introduce addi- —DZTLT(X):A,(d,l)TLLm(x), (C)
tional contributions proportional t&,, or &4, into Egs. .

(B7)—(B9). —D?T"M(x)=A,(d,0T'"™(x)
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TABLE Il. Eigenvalues of— D2 and their degeneracies on ttesphere.

Eigenfunction  Spirs  EigenvalueA,(d,s)

DegeneracyD,(d,s) I

Th(x) 2 I(+d-1)-2_ (d+1)(d=2)(I+d)(I-1)2+d—-1)(1+d-3) 2.3,...
dd-1 2(d—1)1(1+1)!
(%) 1 I(1+d—1)—1— I(1+d—1)(21+d—1)(I +d—3)! 12,...
Cdd-1) (d—2)1(1+1)!
T'(x) 0 I(1+d—1)_ (2+d—1)(1+d—2)! 01,...
d(d—1) l1(d—1)!
and, after proper normalization, © Dy(d,1)
£.00=2 2 EmT,I(), (C3
S smn= J g (L) #rPoTIMTED -
» Dy(d0)

- [ @t T 60=3 3 o).

= f ddx\/ET'mTk”. (C2) EquationgC3) may now be used to expand also any sym-
metric nonT? tensor and nontransverse vector in terms of
oo — e L oy spherical harmonics since they may be expressed in terms of
Here  (Losm)**7=(d=2)/(2d)(g""9""+9"?9") and g2 tensors T vectors and scalars by using the decomposi-
(Lamy)**=(d—=1)/dg*" are the unit matrices in the spaces tions (2.3), (2.7); see e.g.[45-48.
of ST tensors and transverse vectors, respectively. The Note that theD,(d,1)=d(d+1)/2 modes{T};m} and the
Ay(d,s)’s denote the eigenvalues efD? wheresis the spin = D;(d,0)=d+1 modes{T™} satisfy the Killing equation
of the field under consideration andakes the values,s (2.5 and the scalar equatiof2.6), respectively, and that
+15+2,....Theindexm=1, ... D|(d,s) is a degeneracy T%!=const. Arbitrary symmetric rank-2 tensors receive no
index. contribution from these modes. In the case of arbitrary vec-
In Ref.[45] explicit expressions foA(d,s) and the de- tors the constant scalar mode does not contribute. Such
generacie®,(d,s) were derived which are summarized in modes have no physical meaning and have to be omitted

Table Il. The eigenvalues are expressed in terms of the cutherefore.
vature scalaR=d(d—1)/r? of the sphere with radius

The spherical harmonicé"ﬂ, TLT and T'™ span the
spaces o8 T? tensorsT vectors, and scalars so that we may
expand arbitrary functionbfw, ¢, and ¢ according to

APPENDIX D: TABLES OF COEFFICIENT FUNCTIONS

1. Coefficients introduced inT"{®’[g,g]

In this subsection we define the variods, B’s, C’s and
G’s andHg(d) which appear in Eqs4.12—(4.16) of Sec.
IV C and in Egs.(A9) and (A10) of Appendix A:

© Dy(d2)

hly(x>=|§2 mE:1 AT (X),

d(d—3)+4 d(d—5)+8 a(d-2)—1

AT(d)EW- GT(d)E—m, Ay(d,a)=———,

d—4 a(d—4)
CuUd==5g Aald = " @-2)’
B a(d—2)—2 B 2ad
Al )= g2 —2@-1 Pl = 5@ n—(a-2
2ad 2a(d—1)—(d—2) d—2

Bso(d, @)= Ca(d,a)= (DY)

a(d—2)—2(d—1)’ C4(d-1)—2a(d—2)d—1’
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d—12(d—1)—a(d-2) d—2)(a—1)
Coolda)=—; s CS3(d’a)Ea(€3I—2)—(Z(d—l)’
(d—1)(d—4) (d—1)(d—6)
GSl(d)Ez—dz’ Gsz(d)ETa
(d—4)(d-6) d-1)?
ng(d)ET, Hs(d)EZ(T) -

2. Coefficients appearing in theg functions

Next we define the coefficientg(d) contained in thgs functions(4.23),

(4.24) and(4.25 via the coefficient functions, ,

Bi, Ci, i=1,2,3, given in Appendix B. They also appear in the approximate solutions for the non-Gaussian fixed point of

Appendix E:

d?—8d+4
2d(d—1) "’

d—2

d—4
h,(d)= da—1" hz(d)ET7 hs(d)=

d?—4d- (d—4)?

(d—2)(d—4)
~ d(d—-1)

4

5d*—48d%+148d°— 112+ 16

hs(d)= PYTI he(d)Em, h7(d)=

d’+d—4 (d+3)(d+2)(d?>—5d+

4d%(d—1)2

2) d’-6

hg(d)= ——F5—

12d(d—1)

(d+1)(d—2)

hyo(d)= -

3d

d*—2d%—5d?+16d— 14

hyy(d)= hiy(d)=—

2 2d(d—1)

2(d+1)

(D2)

hiy(d)=- hi(d)=

d 72002

5d?°—7d+6

5d%— 7d°®— 139*— 5450%— 89842+ 504d — 360

(d=1)?

_ 5d*—7d*-54d°—180d+ 180

hlS(d)Em- hy

(d+2)(d+1)(d—5) (d+2)(d°—

180d%(d—1)

5d*—5d%+43d%—68d+ 18)

hiAd)=

hig(d)=

12(d—1)

5d2—28d+20

(d+3)(d—2)
2d(d—1) '

3d?

hio(d)= » hao(d)

2

d?—-3d+4

12d%(d—1)?

(d—3)(d®*—d?—4d+8)

hyy(d)=2 hoy(d)=

d(d—1) ’ 4d(d—1)
d®—5d°+3d*+ 31d%—86d2+98d— 50

2d%(d—1)?

ho3(d) = ,
3d*—12d%+9d?+ 24d - 40

has(d)= 4d(d—1)

hoe(d)=

’

15d*— 17843+ 6280%°— 632+ 176
4d%(d—1)?

hoAd)=

’

5d*—52d%+168d%— 1284+ 16
4d%(d—1)2

’

hag(d)= so(d)=
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hyg(d)=—

d+3

h24(d)5—2d—,

d?—6d+2
d(d—

1)’

9(d?>—6d+4)
2d(d—1)

3d?—16d+12

2d(d—1)
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5d%—27d®— 71d*— 405d° — 34202 — 960d + 360

hay(d)= :

) 720d(d—1)2

hasd)= d®—3d°~7d*+5d°+26d*~82d+ 12

s 120%(d—1)2 ’

N (d)_d6—5d5+7d4—13d3+42d2—42d+2

= 2d2(d- 1) ’

N (d)_5d6—7d5—119d4—593d3—846d2+48m—360

s 360d2(d—1)2 ’

hag )= d®—3d°~11d*+9d*+54d*— 134d + 36

= 3d2(d—1)° ’

N (d)_qdﬁ—5d5+7d4—9d3+46d2—62d+14

T d2(d—1)2 ’

hd _ (d+2)(d*~6d*+3d—-6) b= 2d4—2d3+3d2—4d—2

N d_5d2—7d+6 o d_30d5—115d4—362:i3+721d2+182d+264

b )= 23d6—17d5+25d4+39d3—166d2+224d—96

T 3d%(d—1)(d—2) ’

N d_4(d—1)(d—4)2 e (d+2)(d>~6d*+3d—6)

ad)= Tdd=2) 43(d)= 3d(d—1)(d—2) ,

b _2d4—2d3+3d2—4d—2 b _ d*-3d°+32d—-32

44( )= d(d_l)(d_Z) ) 45( )= d2 ’
d*—13d°—24d+ 12 d*—2d3—-d?~4d+2

hae(d)=— haAd)=

6d(d—1)

APPENDIX E: CLOSED-FORM FORMULAS FOR THE
FIXED POINT LOCATION

d(d—1)

0, = (4m) Y2 Hh(d) D, 1(0)
+h(d) D 1(0)+hyy(d)PF5(0)

In the following we derive the approximate formula for
the position of the non-Gaussian fixed point discussed in
Sec. V C. Here we restrict our considerations to the chse
>2.

In a first approximation we set,=A, =0, By,=8,=0
and determineg, from the condition#y, =2—d alone.
Since 8, =0, we may solve this equation fay, in closed
form which leads to

+hydd) 5,00} L. (E2)

Here theh;(d) are againd-dependent coefficients which are
defined in Appendix D 2. It is remarkable that the solution
(E2) coincides precisely with the corresponding approximate
solution (H2) of Ref.[2] with a=1, obtained in the frame-
work of the Einstein-Hilbert truncation.

Employing the exponential shape functié®11) with s
=1, and settingd=4, for instance, Eq.E2) yields g,
~0.590. Here we used that, for this shape functi@é(O)

2-d
9« =B.(0,01, :d)—(d—2)B,(0,07, :d)

(ED
As \, =0, it boils down to
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=146, ®3(0)=1, ®1(0)=1, and®3(0)=1/2; see Appen- vgd  d(d—3)
dixF. ' ’ Me=34- =7 Pl 0N )P 1(0)
In order to improve upon this approximation scheme, we
determine K, ,0, ,B,) from a set of Taylor-expandeg +h44(d)<1>§,2(0)}‘1. (E5)

functions. Using Eqs(F1)—(F4) we expand thgB functions . )
(4.23, (4.24) and (4.25 about\,=g,=B,=0 and obtain Quite remarkably, also these results agree completely with
those of Ref[2] which follow from the pure Einstein-Hilbert

BN, 9k, B d) = — 2N+ vgd g+ O(g?), truncation.[See Eqs(H6) and(H7) of this referencd.
Now we usep; in order to determings, . However,
ﬁg(hk,gk;a,d)z(d—z)gk—(d—z)wdgﬁJr o(g®), since the term linear 8, vanishes fod=4, the expanded
Bg of Eq. (EJ) is not sufficient in this case. Therefore we
Bs(\oGoBicd)= ya+ (A=) Bt O(P). (E3)  consider also those terms of second order in the couplings
which are linear inB,.. For these terms we find
Hereyy, vq, andwy are defined as in Eq$5.9), (5.12 and &gﬁﬁ

(5.18), respectively, and)(g") stands for terms ofth and

=0,

higher orders in the couplings; &)=\, 9(k)=g, and INkIPk Ae=0y=B=0
03(k) =B« . Now g, is obtained as the nontrivial solution to
B,=0, which reads PP
ay=
B B I9IPK|\ _q _p
0y =wg "= (4m) > Hhyy(d) DG 1(0) NG A0 -
= —(4m)1 " ¥2{2h39(d) + 2h,5(d) DF/(0) — 385 4}
() D2, (0)} 1. (E4) (4m)"" T4 2h3o(d) +2hys(d) DGo(0) = 38 4}
Taking the nonvanishing term of E¢E6) into account, and
Inserting Eq.(E4) into B, =0 leads to insertingg, of Eq. (E4) into Bz=0 then leads to
Yd

B

- d—4—adw51

(4m) " Y2lhgy(d) D, 5(0)+hay(d) DG, 1(0)+has(d)DF,(0)}

= —, (E7)
d—4+{2hgo(d) + 2h5(d) D 515(0) — 38y aH{Nag(d) Piro1(0) +Nag(d) F(0)}
Employing the shape functio8.11) with s=1 we obtain from Eqs(E4), (E5) and(E7) in d=4 dimensions
AN, =((3 137 - 0.287
« =8| ax t 54 ~0287,
137 79\°1
0, = m + E ~0.751, (ES)
4191372+ 474)
,= ————~0.0018.
(47)%906768

Here we used the expressions for the threshold functions derived in Appendix F. The number&8) Ehould be compared
to the exact result5.33.
APPENDIX F: PROPERTIES OF THE THRESHOLD FUNCTIONS

In this appendix we summarize various important properties of the threshold funétfohs TFid., , ®P and®dP which are
defined by Eqs(A29), (A30) and (A31).
Expanding the generalized threshold functiohg,, \Tfﬁgﬁn;, about vanishing couplings yields
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q

d—1
DRTAITMLO)N+2(p+q)(p+q+1)

-2

1\9
—2—) PRTIM0)+2(p+q)| -

WhH(OkBK, — 2N ;d) = a2

—_—

-1\ d—1\9+t
2] WX M ON -S| ~2g5| 0 0asOW),  FD
- —-1\9, d—1\9,
Wi o(9kBk, — 2N d) = _Zﬁ) OETINO) +2(pt )| - —2) PRI O+ 2(p+a) (P g+ 1)
d-1 d—1)\9*1_
2d—) DRI O)NE - 32wq( zd—z) ORI 0GB O(G),  (F2)
ST d-1)¢ Fp+a-m-1 FPp+g—m d-1¢
TR (9B~ 20 d) =| — 25— | @F (0)+n®RTEM(0)+2(p+a)| ~25—
Fp+g—m ~p+qu+l d—1\9
X(@n T (0)+nd L O\t 2(p+a)(P+a+1)| —24—

_q\q+1
X (@PHAMTL(0) 4 0PI m+2(0)))\ﬁ—32ﬂ-q( _Zd—_Z) @Pra-m-2(g)

+ndPTI ™ 1(0)gi B+ O(GP). (F3)

Here O(g®) stands for terms of third and higher orders in the couplingd)g=\, g(k)=gy and g(k)=p,. Quite
remarkably, every fixed order of these expansions depends only on the “conventional” threshold fuddliamsl ff)ﬁ at
vanishing arguments.

By using Eq.(A31) the corresponding expansions ®f andﬁ)ﬁ about vanishing argument can be read off directly from
Egs.(F1) and(F2). They are given by

®R(— 2\ ) =D(0) +2pD R H(0)N+2p(p+ 1) PR 20N+ ONP)
~ ~ 5 _ (F4)
BR(—2)0) =DR(0) +2pDR " H(0) N+ 2p(p+ 1) DR (0N [+ O,
For n=0 the threshold functions are universal in the sense that they do not depeRi@@y). In fact, settingn=0 in
wha PRa, dF anddP leads to
_ -q

PEm(v,w;d)= ‘Ifom,(v,w;d)=(1+w)‘p 327rv—%(1+w) (F5)

and
DB(w)=DJ(w)=(1+w) P. (F6)

There exists a second class of universal values of certain threshold functions. Using the boundary condR(8l{g fame
may easily verify that, for vanishing argument and fior 1=p=1, ®! assumes the universal value

1
P1(0)= [y (F7

Let us now be more specific and opt for the family of exponential cut@ffl). In this case the integral that defindg
can be carried out analytically for the vanishing argument. Using the integral representation of the polylogijthm

X7~ 1

Li,(x)= I‘(n)f , (F8)

one obtains fop=0,... .4

®°(0)=n(n+1)s "¢(n+1) (F9
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®3(0)=ns "{{(n+1)—Liy1(1-9)} (F10
2 "1—s) i, 4(1—s), s#1,
d2(0)= (F11
1, s=1
([2(n—1)(1—s)?] ¥ ™M (2—9s)Li,_p(1—s)—sLi,_3(1—s)}, n#1,s#1
; [2" Y(n—-1)] (2" 1-1), n#l,s=1
Pn(0)= —[2(1-5)?] 1> {(2—s)Li%(1-s)—sLi®I(1-s)}, n=1,#1 (F12
L In(2), n=s=1
[6(n—1)(n—2)(1—s)% 's* "2(s?—3s+3)Li,_3(1—s)—3s(2—s)Li,_4(1—5)
+8%Lin_5(1—59)}, n#1,2s#1,
[(n—1)(n—2)] Y(1-23""+32""), n#1,2s=1,
d4(0)={ [6(2n—3)(1~5)%] "'s* "{2(s?—3s+3)Li{Y(1—5) —3s(2—s)Li-N1~5)
+s2Lit%(1-s)}, ne{1,2,s#1,
In(27/16), n=s=1,
In(4/3), n=2,s=1.
(F13
[
Here we defined with a>1 and Osy<2/5.[For a=1 this function vanishes

identically: f(1,y)=0.] An upper bound for this function

dc g may be obtained as follows. For the first two derivative$ of
Li gk,l)(x) =— F|_i n(X) (F14)  with respect toy we obtain
n dx
(0,1) =
and used the relations f (a,y)—dyf(a,y)
Lin_1() ___= 1

Lin(1)=£(n),  LifH0= (F15 T 2Valasy) 2vioy'

with ¢ denoting the Riemann zeta function. For nonvanish- 2

0,2 —
ing arguments an analytic solution to the integrals defining f03(a,y)= Ff(a,y)
the threshold functions is not known. y
For the exponential cutoft3.11) with s=1 there even ad 1

exists a very useful relation amorigf(0) and®P(0). One =
may easily verify that

- . G2
4[a(a—y)]3’2+ 4(1-y)%? ©2

I Solving f(®Y(a,y) =0 for y leads to thesingle solution
DR(0)=D"7(0). (F16
B __a(a+l)
This relation allows us to calculate tie(0) integrals ana- YYo= e a1 (G3)
lytically as well.

Since f(®¥(a,yy)=(a%+a+1)¥¥a®-1)/(4a%>0, we
APPENDIX G: PROOF OF THE INEQUALITY (6.14) havef(a,yg)<f(a,y) for all ye[0,1] anda>1. Hence, for
a>1 fixed but arbitrary,f monotonically decreases in the
intervaly e [0yo] wherey,<1.
Furthermore,y,=Yyq(a) is a monotonically increasing
function of a for all a=1. Therefore we have thaty(a)
f(a,y)=ava(a—y)—VJ1l-y (G) =yo(a=1)=2/3. As a consequencé, monotonically de-

In this appendix we prove the inequalit§.14). As a first
step we consider the function
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creases in the interval Qy<2/3 for any value ofa>1.
Since we restricted our considerationsyta[0,2/5] we ob-
tain f(a,y)<f(a,0).

(Ry) g May be obtained fronh by replacing

A (4,0/K2+RO(A,(4,0//k?)
A (4,0/k?

a— ’

R 4
Y7 3A,4,0 1(1+3)’

(G4

and multiplying the result by 8,(A,(4,0))%/8. Note that for
all =2 we haveA(4,0)=5R/6 so thaty=2/5 is indeed
satisfied. Moreover, a>1 is satisfied as long as
RO(A,(4,0)Kk?)>0. If RO(A(4,00k?=0, the cutoff in
the scalar sector is zero anyway:Ry),,=(R) g
=(RiWss=0. Hence, for positive values oBy, f(a,y)
<f(a,0) leads to

9
(R) g 3 Bk*RO(A,(4,0/k?){2A,(4,0)/k?

+RO(A,(4,0/k?)}. (G5)

Next we insert R,),, and (Ry),, Of Eg. (6.12 into
(RO 53R 7o~ (Ri)5, and then use E¢GS). This yields

PHYSICAL REVIEW D66, 025026 (2002

(RO G Rz~ (R

=

=

k*RO(A,(4,0/k?)\?
32’7Tgk

X

1879 Br(2A(4,0)/k?

3
+RO(A(4,0/K?)— E} . (G6)
Obviously the positivity condition Rk)@(Rk);—(Rk)fﬁ
>0 now boils down to

v(K?1,R)+2A,(4,0/k*>+RO(A(4,0/k?)

1

= 7

Here v is the non-negative function df, | and R which
represents the contributions te(Rk)iv(r neglected on the

RHS of Eq.(G6). We see that Eq6.14) is a sufficient con-
dition for the inequality (G7) to be valid, i.e., for

(R 35(R) 7~ (Ri)5, to be positive. This is what we
wanted to prove.
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