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Flow equation of quantum Einstein gravity in a higher-derivative truncation

O. Lauscher and M. Reuter
Institute of Physics, University of Mainz, Staudingerweg 7, D-55099 Mainz, Germany

~Received 8 May 2002; published 31 July 2002!

Motivated by recent evidence indicating that quantum Einstein gravity~QEG! might be nonperturbatively
renormalizable, the exact renormalization group equation of QEG is evaluated in a truncation of theory space
which generalizes the Einstein-Hilbert truncation by the inclusion of a higher-derivative term (R2). The beta
functions describing the renormalization group flow of the cosmological constant, Newton’s constant, and the
R2 coupling are computed explicitly. The fixed point properties of the 3-dimensional flow are investigated, and
they are confronted with those of the 2-dimensional Einstein-Hilbert flow. The non-Gaussian fixed point
predicted by the latter is found to generalize to a fixed point on the enlarged theory space. In order to test the
reliability of the R2 truncation near this fixed point we analyze the residual scheme dependence of various
universal quantities; it turns out to be very weak. The two truncations are compared in detail, and their
numerical predictions are found to agree with a surprisingly high precision. Because of the consistency of the
results it appears increasingly unlikely that the non-Gaussian fixed point is an artifact of the truncation. If it is
present in the exact theory QEG is probably nonperturbatively renormalizable and ‘‘asymptotically safe.’’ We
discuss how the conformal factor problem of Euclidean gravity manifests itself in the exact renormalization
group approach and show that, in theR2 truncation, the investigation of the fixed point is not afflicted with this
problem. Also the Gaussian fixed point of the Einstein-Hilbert truncation is analyzed; it turns out that it does
not generalize to a corresponding fixed point on the enlarged theory space.
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I. INTRODUCTION

Recently a lot of work on quantum Einstein gravi
~QEG! went into constructing an appropriate exact renorm
ization group~RG! equation@1,2#, finding approximate solu-
tions to it @3–7#, and exploring their implications for blac
hole physics@8,9# and cosmology@10#. In particular, strong
indications were found that QEG might be nonperturbativ
renormalizable. If so, it could have the status of a fundam
tal, microscopic quantum theory of gravity.

The basic tool used in these investigations is the effec
average action and its exact RG equation@11#. It is a con-
tinuum analogue of Wilson’s lattice renormalization group
iterated block spin transformations@12#. Both in quantum
field theory and statistical mechanics the idea is to integ
out all fluctuation modes which have momenta larger tha
certain infrared~IR! cutoff k ~‘‘fast degrees of freedom’’!,
and to take account of those modes in an implicit way by
modified dynamics which they induce for the remaining flu
tuations with momenta smaller thank ~the ‘‘slow degrees of
freedom’’!. In field theory this ‘‘renormalized’’ dynamics is
encoded in a scale dependent effective action,Gk , whose
dependence on the cutoff scalek is governed by a functiona
differential equation referred to as the ‘‘exact RG equatio
@13#. This equation gives rise to a flow on the space of
actions~‘‘theory space’’!. The functionalGk defines an effec-
tive field theory valid near the scalek; evaluated at the tree
level, it describes all loop effects due to the high-moment
modes. The effective average action can be thought of
kind of microscope with a variable resolution. At largek, the
physics at short distancesl 51/k can be read off directly
from Gk ; at smallk we see a coarse-grained picture suita
for a simple description of structures with a large charac
istic length scalel 51/k @11#.
0556-2821/2002/66~2!/025026~50!/$20.00 66 0250
l-

y
-

e

f

te
a

e
-

’’
ll

a

e
r-

The effective average actionGk , regarded as a function o
k, interpolates between the ordinary effective actionG
5 lim

k→0
Gk and the bare~classical! action S which is ap-

proached fork→`. The construction ofGk begins by adding
a IR cutoff term DkS to the classical action entering th
standard Euclidean functional integral for the generat
functional W of the connected Green’s functions. The ne
pieceDkS introduces a momentum dependent (mass)2-term
Rk(p2) for each mode of the quantum field with momentu
p. For p2@k2, the cutoff functionRk(p2) is assumed to van
ish so that the high-momentum modes get integrated out
suppressed. Forp2!k2, it behaves asRk(p2)}k2; hence the
small-momentum modes are suppressed in the path inte
by a mass term}k2. Apart from a correction term which is
known explicitly @11#, the effective average actionGk is
given by the Legendre transform of the modified generat
functionalWk .

From this definition one can derive the exact RG equat
obeyed byGk . In a slightly symbolic notation it is of the
form

k]kGk5
1

2
Tr@„Gk

(2)1Rk~2D!…21k]kRk~2D!#. ~1.1!

The right-hand side~RHS! of this equation is a kind of ‘‘beta
functional’’ which summarizes the beta functions for in
nitely many running couplings. Geometrically, it defines
vector field on theory space, the corresponding flow lin
being the RG trajectoriesk°Gk .

The functionalGk enters this vector field via its Hessia
Gk

(2) , i.e. the infinite-dimensional matrix of all second fun
tional derivatives ofGk with respect to the dynamical, i.e
non-background fields.
©2002 The American Physical Society26-1
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In Eq. ~1.1! thec-number argument ofRk is replaced with
the operator2D. The discrimination of high-‘‘momentum’
vs low-‘‘momentum’’ modes is performed according to th
spectrum of this operator, i.e.p2 is an eigenvalue of2D. In
simple theories where no gauge or diffeomorphism inva
ance needs to be respected,D is the free Laplacian,D
5]m]m, whose eigenmodes are momentum eigenstates in
usual sense of the word. In Yang-Mills theory@14,15# it has
proven convenient to use the background field formali
@16,17# and to setD5D̄mD̄m whereD̄m is the covariant de-
rivative in the background field. The background field tec
nique plays a dual role in this context. Using a backgrou
gauge fixing term makesGk a gauge invariant functional o
its argument, and usingD̄m in the cutoff leads to a flow
equation of the relatively simple type~1.1!, similar to non-
gauge theories.~The RG equation resulting fromD
5DmDm with Dm constructed from thedynamical gauge
field is quite unwieldy.!

Along similar lines an effective average action f
d-dimensional Euclidean QEG has been constructed in R
@1#, and the corresponding flow equation has been deriv
Leaving the Faddeev-Popov ghosts aside for a moment
gravitational effective average action,Gk@gmn ,ḡmn#, is a
functional of two different metrics, the ‘‘ordinary’’ dynami
cal metric gmn and the background metricḡmn . The usual
effective actionG@gmn# is recovered by taking the limitk
→0 of the functionalGk@gmn#[Gk@gmn ,ḡmn5gmn# in which
the two metrics are taken equal. Thanks to the backgro
gauge fixing condition this construction leads to a functio
Gk@gmn# which is invariant under general coordinate tran
formations.

One of the many advantages which the exact RG
proach has in comparison to the standard canonical or
integral quantization is that it offers a very natural and int
tive nonperturbative approximation scheme. By truncat
the theory space one can obtain approximate solutions to
RG equation which do not need a small expansion param
The idea is to project the RG flow from the ‘‘huge’’ infinite
dimensional space of all actions onto some smaller, typic
finite dimensional subspace which is easier to handle. In
way the functional RG equation forGk becomes a system o
ordinary differential equations for a~finite! set of coupling
constants which have the geometrical interpretation of co
dinates on the subspace. It is clear that in applying this s
egy the key problem is finding the ‘‘relevant’’ subspa
which contains the essential physics.

In a first attempt at solving the gravitational RG equati
@1# the flow has been projected onto the 2-dimensional s
space of theory space which is spanned by the invari
*ddxAg and*ddxAgR. This is the so-called Einstein-Hilber
truncation defined by the ansatz

Gk@g,ḡ#5~16pGk!
21E ddxAg$2R~g!12l̄k%

1classical gauge fixing. ~1.2!

The two running couplings involved are the running Newt
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constantGk and the running cosmological constantl̄k . The
similarity of Eq. ~1.2! to the action of classical general rela
tivity is accidental in a sense; improved truncations wou
include both higher powers of the curvature and nonlo
terms@18,6#. In Eq. ~1.2! only the gauge fixing term depend

on ḡmn ; it vanishes when we setḡmn5gmn .

The scale dependence ofGk and l̄k is most conveniently
visualized as a flow in thel-g plane wheregk[kd22Gk and

lk[l̄k /k2 are the dimensionless Newton constant and c
mological constant, respectively. Using the original cutoff
‘‘type A’’ @1# the system of equations forgk and lk was
derived in @1# and solved numerically in@5#. In @2# a new
cutoff of ‘‘type B’’ was introduced and the correspondin
flow equations in the Einstein-Hilbert truncation were d
rived. ~The ‘‘type B’’ cutoff is convenient if one uses the TT
decomposition of the metric@19#.! The fixed point properties
of these equations were first discussed in@20# and @9#, and
analyzed in detail in@2# and@5#. One finds that the RG flow
in thel-g plane is governed by two fixed points (l* ,g* ): a
trivial or ‘‘Gaussian’’ fixed point at (l* ,g* )5(0,0), and a
non-Gaussian fixed point withl* Þ0 andg* Þ0.

In order to appreciate the importance of the non-Gauss
fixed point we recall what it means to ‘‘quantize’’ a theory
the average action approach. One picks a bare actionS and
imposes the initial conditionG k̂5S at the ultraviolet~UV!

cutoff scalek̂, uses the RG equation to findGk at all lower
scalesk< k̂, and finally sendsk→0 andk̂→`. A fundamen-

tal theory has the property that the ‘‘continuum’’ limitk̂
→` actually exists after redefining only finitely many p
rameters in the action. This is the case in perturbativ
renormalizable theories@21#, but there are also examples o
perturbatively nonrenormalizable theories which posses
limit k̂→` @22#. The continuum limit of those ‘‘nonpertur
batively renormalizable’’ theories is taken at a non-Gauss
fixed point, i.e. the theory is defined by the set of RG traje
tories which leave the fixed point when we lowerk. These
trajectories span the UV critical hypersurface of the fix
point, SUV . If it is finite dimensional, the quantum theor
thus constructed has only finitely many free parameters
therefore keeps its predictive power even at arbitrarily la
momentum scales. This behavior is to be contrasted with
effectivefield theory which, at high energies, typically con
tains an increasing number of free parameters which mus
taken from the experiment.

In his ‘‘asymptotic safety’’ scenario Weinberg@23,24#
conjectured that a fundamental quantum field theory of gr
ity could perhaps be constructed nonperturbatively by tak
the continuum limit at a non-Gaussian fixed point@25#.
While originally this idea could be implemented ind52
1« dimensions only, the recent results coming from the
fective average action strongly support the hypothesis
this fixed point exists also in 4 dimensions. Within th
Einstein-Hilbert truncation, the existence of a suitable no
Gaussian fixed point is definitely established by now;
crucial question is whether it is the projection of a fixed po
present in the exact theory or merely an artifact of the
proximation.
6-2
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FLOW EQUATION OF QUANTUM EINSTEIN GRAVITY . . . PHYSICAL REVIEW D66, 025026 ~2002!
Let us assume for a moment that the fixed point inde
exists in the exact 4-dimensional theory and that we de
QEG by taking the k̂→` limit there. Then, since
(lk ,gk , . . . ) approaches (l* ,g* , . . . ) for k→`, the di-
mensionful couplings behave as

Gk'g* /k2, l̄k'l* k2, . . . ~1.3!

for largek. ObviouslyGk vanishes fork→`. At least as far
as this coupling is concerned QEG is asymptotically f
similar to Yang-Mills theory. The 1/k2 dependence of the
running Newton constant will lead to a characteristic m
mentum dependence of the cross sections for gravi
graviton scattering and graviton mediated matter-matter s
tering. Because of this characteristic momentum depende
QEG could be distinguished experimentally from alternat
theories of quantum gravity such as string theory, at leas
principle.

Let us generalize the standard definition of the Plan
mass,mPl[G21/2, and introduce therunning Planck mass

MPl~k![1/AGk. ~1.4!

At the laboratory scaleMPl(k) reduces tomPl , most prob-
ably, and its dependence onk is negligible. However, in the
fixed point regimek→`, the asymptotic freedom ofGk im-
plies that MPl(k) is proportional to the scalek itself:
MPl(k)5k/Ag* . This shows that the running Planck mass
a rather elusive ‘‘barrier’’ which never can be jumped acro
in any experiment. If we analyze a system with a probe
increasing momentumk we will always push the running
Planck mass ahead of us and never reach it.

Also the standard constant Planck mass, defined m
precisely in terms of the IR value ofGk ,

mPl[@Gk50#21/2, ~1.5!

plays an important role in QEG, similar to that ofLQCD in
QCD. According to the numerical solutions of thel-g sys-
tem @5#, mPl marks the lower boundary of the asympto
scaling region. Neark5mPl there is a crossover from th
scaling laws~1.3! of the non-Gaussian fixed point to those
the Gaussian fixed point.1

According to the UV scaling laws~1.3! the dimensionful
cosmological constant diverges fork→` proportional tok2.
This has an interesting geometrical interpretation. Let
consider thek-dependent, effective field equations implie
by the truncation ansatz~1.2! with ḡmn5gmn for d54. They
happen to coincide with the familiar vacuum Einstein eq
tions with the cosmological constant replaced by the sc
dependent quantityl̄k :

Rmn2
1

2
gmnR52l̄kgmn . ~1.6!

1A similar crossover was already known to occur in Liouvil
quantum gravity@26#.
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Sincel̄k is the only quantity which sets a scale, every so
tion to Eq. ~1.6! has a typical radius of curvaturer c(k)

}1/Al̄k. ~For instance, the maximally symmetricS4 solution

has the radiusr c5r 5A3/l̄k.! The k dependence of the so
lutions and in particular ofr c should be interpreted as fol
lows. If we want to explore the spacetime structure at a fix
length scalel[1/k it is most convenient to use the actio
Gk@gmn# at k51/l because for this, and only this, function
a tree level analysis is sufficient to describe the essen
physics at this scale, including all quantum effects. Hen
when we observe spacetime with a ‘‘microscope’’ of reso
tion l, we will see an average radius of curvature given
r c( l )[r c(k51/l ). Once l is smaller than the~standard!
Planck lengthl Pl[mPl

21 we are in the fixed point regime~1.3!
so thatr c(k)}1/k, or

r c~ l !} l . ~1.7!

Thus, when we look at the structure of spacetime with
microscope of resolutionl, the average radius of curvatur
which we measure is proportional to the resolution itself.
we want to probe finer details and decreasel we automati-
cally decreaser c and henceincrease the average curvatur
Spacetime seems to be more strongly curved at small
tances than at larger ones. The scale-free relation~1.7! sug-
gests that at distances below the Planck length quan
spacetime is a kind of fractal with a self-similar structure.
has no intrinsic scale.

Before we continue a remark might be in order on whi
theory precisely we refer to as ‘‘quantum Einstein gravit
or ‘‘QEG.’’ While flow equations can also be used in th
effective field theory approach to quantum gravity@27,1#, in
the present context ‘‘QEG’’ stands for the fundamen
theory whose continuum limitk̂→` is taken at the non-
Gaussian fixed point. This theory has dim(SUV) free param-
eters, and fixing these parameters amounts to picking a
cific trajectoryk°Gk in the full theory space. Fork→` this
trajectory hits the fixed point actionG* , regarded as the
collection of its infinitely many dimensionless coordinates
theory space. The fixed point actionG* corresponds to the
‘‘bare’’ or ‘‘classical’’ action in conventional field theory.
However, unlike the latterG* is not put in by hand but is
ratherderivedwith the help of the RG equation. The usu
canonical or path integral quantization is always based u
a ‘‘prejudice’’ about what the classical action is. In th
asymptotic safety scenario the ‘‘classical’’ action is fixed i
stead by the condition of nonperturbative renormalizabili
it cannot be guessed by simple power-counting, symmetry
invariance arguments, but the effective average action p
vides a computational framework to determine it.

The really crucial property which defines QEG is the r
quirement of diffeomorphism invariance. Before we can
write down a flow equation we must declare what the the
space is on which the renormalization group is suppose
operate. In the case of QEG it is defined to be the spac
functionalsG@gmn# depending on a nondegenerate, symm
ric rank-2 tensor field in a diffeomorphism invariant wa
6-3
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Leaving technical details aside, the theory space then fi
the flow equation which in turn determines the RG trajec
ries and the fixed points.

So far our discussion referred to the exact theory on
full theory space. If we project on the subspace spanned
the Einstein-Hilbert truncation it is clear that also the fix
point actionG* must be of the Einstein-Hilbert type. How
ever, we emphasize that this is a trivial consequence of
simple truncation we have chosen, and we have no reaso
believe that the exactG* is of the Einstein-Hilbert type, too
In fact, within the more complicated truncation of the pres
paperG* receives corrections which go beyond the Einste
Hilbert form. Hence ‘‘quantum Einstein gravity’’ doesnot
mean that the Einstein-Hilbert action is the bare action to
quantized. In this respect our approach is different from
nonical quantum gravity, along the lines of Ashtekar’s p
gram@28#, for instance.~It is intriguing that also in this con-
text remarkable finiteness properties have been pro
recently@29#.!

Clearly it is a highly attractive idea that there could be
nonperturbatively renormalizable field theory of the met
field so that there is no longer any conceptual need for le
ing the framework of quantum field theory in order to arri
at a consistent microscopic theory of quantum grav
Therefore every effort should be made to show that the n
Gaussian fixed point found in the Einstein-Hilbert truncati
is not just an artifact of this approximation.

In Ref. @2# we therefore started an extensive analysis
the reliability of the Einstein-Hilbert truncation near th
fixed point. There the strategy was to use the scheme de
dence of universal quantities in order to get a first idea ab
the precision which can be achieved with this truncati
Here ‘‘scheme dependence’’ refers to the dependence on
details of the cutoff procedure, i.e. on the shape of the fu
tion Rk(p2). By definition, universal quantities are exact
scheme independent in the exact theory, but they might
quire some scheme dependence once we make approx
tions. The level of this residual scheme dependence can s
as a measure for the quality of the approximation. Typi
universal quantities are the critical exponents of fixed po
and, as we argued, the productg* l* . The upshot of our
analysis was that the Einstein-Hilbert truncation seems
provide a description that is much more reliable and prec
than originally hoped for, and that it would be very hard
understand the approximate scheme independence we f
if the fixed point was just due to a misleading approximatio

These results are certainly very encouraging, but it is c
that the ultimate justification of a truncation ansatz cons
of adding further terms to it and verifying that its predictio
do not change much. In the present paper we take a first
in this direction and add one further invariant construc
from gmn to the ansatz.

Which invariant should we take? In standard renorm
ized perturbation theory where~at least implicitly! the k̂
→` limit is taken at the Gaussian fixed point, the relati
importance or ‘‘relevance’’ of the various field monomials
measured by their scaling dimensions at the Gaussian fi
point, i.e. by their canonical dimensions simply. Since at
non-Gaussian fixed point the anomalous dimensions
02502
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large we have no similarly simple guide line at our dispos
anda priori all invariants are equally plausible. To get a fir
idea about what happens away from the Einstein-Hilbert s
space we shall include the higher-derivative invaria
*ddxAgR2 and study the RG flow in the ‘‘R2 truncation’’2

Gk@g,ḡ#5E ddxAg$~16pGk!
21@2R~g!12l̄k#

1b̄kR
2~g!%1classical gauge fixing. ~1.8!

Its truncation subspace is 3-dimensional, with coordinatesG,
l̄ and the new couplingb̄.

It is well known that beyond*ddxAgR2 there exist two3

more (curvature)2 invariants: *ddxAgRmnRmn and
*ddxAgRmnrsRmnrs. In a standard perturbative calculatio
near the Gaussian fixed point consistency would require u
include them along with theR2 term because they all hav
the same canonical dimension. As for the non-Gaussian fi
point, we have noa priori information from general prin-
ciples about the relative importance of the three terms. Si
anyhow the best we can do is to take a ‘‘step into the dar
without knowing whether we walk in the most ‘‘relevant
direction, we shall omit the other two invariants here. Inclu
ing them would go far beyond the present calculational p
sibilities, in particular since it would require a much mo
complicated projection technique@2#.

In this paper we shall derive the~extremely complicated!
3-dimensional RG equations of theR2 truncation, and we
shall use them in order to investigate the fixed points of
flow. Our main results will be the following:~a! The Gauss-
ian fixed point of the Einstein-Hilbert truncation doesnot
generalize to a fixed point of theR2 truncation.~b! The non-
Gaussian fixed point does indeed generalize to a fixed p
of the R2 truncation, and thel-g projection of this fixed
point is described almost perfectly by the Einstein-Hilb
truncation. Within the~weak! residual scheme dependenc
the fixed point properties are almost insensitive to the inc
sion of the R2 invariant. This is further strong evidenc
against the theoretical possibility that the non-Gaussian fi
point is a truncation artifact.

In the second part of the paper we shall address a v
important general problem which is of a more technical n
ture. It is related to a notorious disease of standard Euclid
quantum gravity: the conformal factor problem. In setting
the truncated RG equation the cutoff functionRk ~actually a
matrix in field space! is adapted to the truncation in such
way that, forp2!k2, the inverse propagator of every mas
less mode,p2, is replaced byp21k2. A problem arises if
there are modes, such as those of the conformal factor in
Einstein-Hilbert truncation, which have a negative kine
energy, i.e. their inverse propagator is2p2. In @1# it has been
argued that for these modes also the sign ofRk should be

2Our conventions areRs
rmn52]nGmr

s 1•••, Rmn5Rs
msn , R

5gmnRmn .
3Except ind54 where one invariant can be eliminated by virtu

of the Gauss-Bonnet identity.
6-4
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FLOW EQUATION OF QUANTUM EINSTEIN GRAVITY . . . PHYSICAL REVIEW D66, 025026 ~2002!
reversed so as to obtain the regularized inverse propag
2(p21k2). While there is little doubt that this procedure
correct for the Einstein-Hilbert truncation, it leads to t
seemingly paradoxical situation that in the Euclidean p
integral the modes of the conformal factor are enhan
rather than suppressed in the IR@1#.

Contrary to the Einstein-Hilbert truncation, theR2 trunca-
tion yields a functionalGk@gmn# which is bounded below
and, as we shall see, gives positive kinetic energy toall
modes, provided one stays close to the UV fixed po
Hence our investigation of the non-Gaussian fixed poin
not plagued by the conformal factor problem, and the c
struction of the cutoff becomes straightforward. This adv
tage is an independent motivation for studying theR2 trun-
cation.

In the usual perturbative approach higher-derivative th
ries of~Lorentzian! gravity are notoriously problematic as fa
as causality and unitarity are concerned@30,31#. While in d
54 the most general (curvature)2 theory, when expanded
about flat space, is power-counting renormalizable it suff
from excitations with, classically, negative linearized ene
and, quantum mechanically, a wrong-sign residue of
propagator leading to a state space containing negative-n
states@30#. These ‘‘ghosts’’ have masses of the order of t
Planck mass. Correspondingly, if a truncation ansatz is of
(curvature)2 type the k-dependent effective propagato
(d2Gk /dgdg)21[(Gk

(2))21, evaluated for flat space, ha
similar ghosts with masses} MPl(k). By itself this does not
indicate any real problem because generically flat space
how is not a solution of the effective equation of motio
Compared to the perturbative quantization the potential pr
lem of ghost excitations manifests itself in the Euclidean R
approach in a conceptually different, more tractable man
Here the linearization is performed about the backgrou
needed for the projection procedure, not about flat space.
a well-defined computation of the RG trajectories on a c
tain k interval it is sufficient that the~truncated! Gk gives
positive linearized action to all modes contributing to the R
running in this interval. In our calculation this will indeed b
the case fork large enough where the truncation is believ
to be reliable@5#. The much more subtle issues related to
Lorentzian interpretation of the theory and its causality pr
erties can be addressed only once a complete trajectory,
down to the IR, and in particular the precise form of the fix
point action is known. From what we can tell now the exa
QEG could very well be ‘‘causal’’ in an appropriate sense

A brief summary of some of the results derived in t
present paper appeared in@3#, and an informal introduction
to the older work can be found in@32#. In the present pape
we focus on pure gravity. The gravitational average act
with matter fields included was discussed in@7# and @33#.
The gauge fixing dependence of the original formulation@1#
was investigated in@34# and @35#. An incomplete higher-
derivative calculation was begun in@36# where the running
of the R2 couplings was neglected, however, and no conc
sions about the fixed point could be drawn.

The remaining sections of this paper are organized as
lows. In Sec. II we review some general properties of
exact RG equation which will be needed later on. Section
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is devoted to the construction of cutoffs which are adapted
a specific truncation; in particular the complications due
the conformal factor problem will be discussed there. In S
IV we derive the system of RG equations which results fro
the R2 truncation, and in Sec. V we analyze its fixed po
structure. We discuss the fate of the Gaussian fixed p
which is present only in the Einstein-Hilbert truncation, a
we reanalyze the non-Gaussian fixed point in the more g
eral setting. In Sec. VI the positivity properties of the tru
cated action functional, its Hessian, and the cutoff opera
are investigated; in particular we show that our analysis
the non-Gaussian fixed point is not affected by the conform
factor problem. The conclusions are contained in Sec. V
Many important technical results, including the coefficien
occurring in the rather complicated beta functions of t
l-g-b system, are tabulated in various Appendixes.

II. THE EXACT RG EQUATION

In this section we briefly review the construction of th
‘‘type B’’ RG equation for quantum gravity performed i
Ref. @2# to which we refer for the details. We start from
scale-dependent modification of the generating functional
the connected Green’s functions,Wk . It is defined by the
following Euclidean functional integral:

exp$Wk@sources#%5E DhmnDCmDC̄mexp†2S@ ḡ1h#

2Sgf@h;ḡ#2Sgh@h,C,C̄;ḡ#

2DkS@h,C,C̄;ḡ#2Ssource‡. ~2.1!

In Eq. ~2.1! we use the background gauge fixing techniq
which necessitates the decomposition of the full quant
metric gmn into a fixed background metricḡmn and a fluc-
tuation variablehmn : gmn(x)5ḡmn(x)1hmn(x). It allows us
to replace the integration overgmn by an integration over
hmn . Furthermore,C̄m andCm are the Faddeev-Popov ghos
of the gravitational field.

The first term of the action,S@ ḡ1h#, is the classical part
which is assumed to be invariant under general coordin
transformations. For the time being, we also assume that
positive definite,S.0. The gauge fixing term is given by

Sgf@h;ḡ#5
1

2aE ddxAḡḡmnFm@ ḡ,h#Fn@ ḡ,h#. ~2.2!

In the present paper we use the linear gauge condi
Fm@ ḡ,h#5A2kF m

ab@ ḡ#hab with F m
ab@ ḡ#5dm

b ḡagD̄g

2 1
2 ḡabD̄m , which amounts to a background version of t

harmonic coordinate condition. Here we introduced the c
stantk[(32pḠ)21/2 whereḠ is the bare Newton constan
Moreover, D̄m denotes the covariant derivative construct
from the background metricḡmn , while we shall writeDm
for the covariant derivative involving the complete metr
gmn . Sgh is the Faddeev-Popov ghost action resulting fro
the above gauge fixing.
6-5
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Furthermore,DkS andSsourceare the cutoff and the sourc
action, respectively.DkS provides an appropriate infrare
cutoff for the integration variables and will be discussed
detail in a moment;Ssource introduces sources for the field
hmn , Cm, andC̄m .

Next we decompose the gravitational fieldhmn according
to ~see e.g.@19#!

hmn5hmn
T 1D̄mĵn1D̄nĵm1D̄mD̄nŝ2

1

d
ḡmnD̄2ŝ1

1

d
ḡmnf.

~2.3!

In order to obtain this ‘‘TT decomposition’’ one starts b
writing hmn as a sum of its orthogonal parts:hmn

5hmn
T 1hmn

L 1hmn
Tr . Here hmn

T , hmn
L and hmn

Tr represent the
transverse traceless, longitudinal traceless and pure t
part, respectively. Introducing two scalar fieldsf andŝ, and
a transverse vector fieldĵm , the tensorshmn

Tr andhmn
L can be

expressed byhmn
Tr [ḡmnf/d and hmn

L 5hmn
LT1hmn

LL with hmn
LT

[D̄mĵn1D̄nĵm andhmn
LL[D̄mD̄nŝ2ḡmnD̄2ŝ/d. Thereby we

end up with Eq.~2.3!. In the following the components o
hmn thus introduced will be referred to as the ‘‘compone
fields.’’ They obey the relations

ḡmnhmn
T 50, D̄mhmn

T 50,

D̄mĵm50, f5ḡmnhmn. ~2.4!

Obviously the complete fieldhmn receives no contribution
from thoseĵm and ŝ modes which satisfy the Killing equa
tion

D̄mĵn1D̄nĵm50 ~2.5!

and the scalar equation

D̄mD̄nŝ2
1

d
ḡmnD̄2ŝ50, ~2.6!

respectively. Such ‘‘unphysical’’ĵm andŝ modes have to be
excluded from the functional integral and all subsequent
culations @2#. Having a closer look at the scalar equati
~2.6!, one recognizes that there is a one-to-one corresp
dence between the nonconstant solutions of Eq.~2.6! and the
purely longitudinal, or proper, conformal Killing vector
~PCKV! Cm . They are related viaCm5D̄mŝ.

Likewise we decompose the ghost and the antighost
their orthogonal components:

C̄m5C̄m
T1D̄mĥ̄, Cm5CTm1D̄mĥ. ~2.7!

Here C̄m
T andCTm are the transverse components ofC̄m and

Cm: D̄mC̄m
T50, D̄mCTm50. Furthermore, the scalarsĥ̄ and

ĥ parametrize the longitudinal part ofC̄m and Cm, respec-
tively. The constantĥ̄ and ĥ modes represent unphysic
modes which have to be excluded.
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For calculational convenience we now introduce n
variables$jm ,s,h̄,h% replacing$ĵm ,ŝ,ĥ̄,ĥ%, by means of
the momentum dependent~nonlocal! redefinitions

jm[A2D̄22Ricĵm

s[A~D̄2!21
d

d21
D̄mR̄mnD̄nŝ

h̄[A2D̄2ĥ̄, h[A2D̄2ĥ.
~2.8!

Here the operatorRic maps vectors onto vectors according
(Ric v)m5R̄mnvn . In accordance with the decomposition
~2.3!, ~2.7! and the redefinitions~2.8! we then perform the
combined transformation of integration variableshmn

→$hmn
T ,jm ,s,f%, C̄m→$C̄m

T ,h̄%, Cm→$CTm,h% in the
functional integral ~2.1!. The Jacobian induced by thi
change of variables is such that it boils down to an unimp
tant constant if Einstein backgrounds, characterized byR̄mn

5Cḡmn with C a constant, are inserted into Eq.~2.1!. ~For
the general case see Ref.@2#.!

Let us now come to the ‘‘type B’’ cutoff termDkS. At the
component field level, it is a sum of inner products,

DkS@h,C,C̄;ḡ#5
1

2 (
z1 ,z2PI 1

^z1 ,~Rk!z1z2
z2&

1
1

2 (
c1 ,c2PI 2

^c1 ,~Rk!c1c2
c2&

~2.9!

with the index setsI 1[$hT,j,s,f%, I 2[$C̄T,CT,h̄,h%. At
this stage of the discussion it is not necessary to specify
explicit structure of the cutoff operatorsRk acting on the
component fields. In order to provide the desired suppres
of low-momentum modes, these operators must vanish
p2/k2→` ~in particular fork→0) and must behave asRk
→Z kk

2 for p2/k2→0. ~The meaning of the constantZk will
be explained later.! Furthermore, they have to satisfy certa
Hermiticity conditions@2#.

Now we are in a position to construct the effective av
age actionGk . It is defined as the difference between t
Legendre transform of Wk at fixed ḡmn , denoted

G̃k@ h̄,v,v̄;ḡ#, and the cutoff action with the classical field
inserted@37,14#:

Gk@g,ḡ,v,v̄#[G̃k@g2ḡ,v,v̄;ḡ#

2DkS@g2ḡ,v,v̄;ḡ#. ~2.10!

Here the classical fields represent the (k-dependent! expectat-
ion values of the quantum fluctuations:h̄mn[^hmn&, v̄m

[^C̄m&, vm[^Cm&. They are obtained in the usual way a
functional derivatives ofWk with respect to the sources. I
Eq. ~2.10! we expressedh̄mn in terms of the classical coun
6-6
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terpartgmn of the quantum metricgmn[ḡmn1hmn which, by
definition, is given bygmn[ḡmn1h̄mn . The classical analog
of the components (hT,j,s,f,C̄T,CT,h̄,h) will be denoted
(h̄T,j̄,s̄,f̄,v̄T,vT,%̄,%).

The exact RG equation for the effective average act
describes the change ofGk induced by an infinitesima
change of the scalek. Introducing the RG ‘‘time’’t[ lnk, it
can be derived from thet derivative of the functional integra
~2.1!. It takes the form

] tGk@g,ḡ,v,v̄#5
1

2
Tr8F (

z1 ,z2P Ī 1

~Gk
(2)@g,ḡ,v,v̄#1Rk!z1z2

21

3] t~Rk!z2z1G
1

1

2
Tr8F (

c1 ,c2P Ī 2

~Gk
(2)@g,ḡ,v,v̄#1Rk!c1c2

21

3] t~Rk!c2c1G . ~2.11!

HereGk
(2) denotes the Hessian ofGk with respect to the com

ponent fields. Furthermore, we wrote (Rk)z1z2

[(Rk) ^z1&^z2& , (Rk)c1c2
[(Rk) ^c1&^c2& and introduced the

index setsĪ 1[$h̄T,j̄,s̄,f̄%, Ī 2[$v̄T,vT,%̄,%%. Furthermore,
the primes at the traces indicate that all unphysicalj̄m ands̄
modes, characterized by Eqs.~2.5! and ~2.6!, are to be ex-
cluded from the calculation of the traces.

III. TRUNCATIONS AND THEIR ADAPTED CUTOFFS

A. Truncating the ghost sector

In concrete applications of the exact RG equation o
encounters the problem of dealing with an infinite system
coupled differential equations. Usually it is impossible
find an exact solution so that we are forced to rely up
approximations. A powerful nonperturbative approximati
scheme is the truncation of theory space, which means
only a finite number of couplings is considered and the
flow is projected onto a finite-dimensional subspace
theory space. In practice one proceeds as follows. One m
an ansatz forGk that comprises only a few couplings an
inserts it on both sides of Eq.~2.11!. By projecting the RHS
of this equation onto the space of operators appearing on
LHS one obtains a finite set of coupled differential equatio
for the couplings taken into account.

Given an arbitrary truncation it is not cleara priori
whether it is sensible and leads to at least approxima
correct results. In this respect the modified BRS Ward id
tities satisfied by the exactGk @1# are of special importance
since only those truncations which are~approximately! con-
sistent with them can be reliable. In@1# it was shown that
under certain conditions truncations of the form
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Gk@g,ḡ,v,v̄#5Ḡk@g#1Ĝk@g,ḡ#1Sgf@g2ḡ;ḡ#

1Sgh@g2ḡ,v,v̄;ḡ# ~3.1!

which neglect the RG running in the ghost sector are
proximate solutions to the Ward identities for the exactGk .

Here Ḡk@g# is defined as

Ḡk@g#[Gk@g,g,0,0# ~3.2!

and Ĝk@g,ḡ# encodes the quantum corrections of the gau
fixing term. ~For the details we refer to@1,2#.! Inserting the
ansatz~3.1! into the exact evolution equation~2.11! leads to
a truncated RG equation which describes the RG flow ofGk
in the subspace of action functionals spanned by Eq.~3.1!.
The equation governing the evolution of the purely gravi
tional action

Gk@g,ḡ#[Gk@g,ḡ,0,0#5Ḡk@g#1Sgf@g2ḡ;ḡ#1Ĝk@g,ḡ#

~3.3!

takes the form

] tGk@g,ḡ#5
1

2
Tr8F (

z1 ,z2P Ī 1

~Gk
(2)@g,ḡ#1Rk!z1z2

21

3] t~Rk!z2z1G
1

1

2
Tr8F (

c1 ,c2P Ī 2

~Sgh
(2)@g,ḡ#1Rk!c1c2

21

3] t~Rk!c2c1G . ~3.4!

Here Gk
(2) and Sgh

(2) are the Hessians ofGk@g,ḡ# and

Sgh@ h̄,v,v̄;ḡ# with respect to the gravitational and the gho
component fields, respectively. They are taken at fixedḡmn .

B. Construction of the cutoff, and the conformal
factor problem

In order to obtain a tractable evolution equation for
given truncation it is necessary to use a cutoff which
adapted to this truncation but still has the desired suppres
properties for a class of backgrounds which is as large
possible.

A convenient cutoff which is adapted to the truncati
ansatz can be found in the following way@1,7#. Given a
truncation, we assume that forḡ5g the kinetic operators of
all modes with a definite helicity can be brought to the fo
(Gk

(2)) i j 5 f i j (2D̄2,k, . . . ) where$ f i j % is a set ofc-number
functions and the indicesi , j refer to the different types o
fields. Then we choose the cutoff operatorRk in such a way
that the structure

~Gk
(2)1Rk! i j 5 f i j „2D̄21k2R(0)~2D̄2/k2!,k, . . . …

~3.5!
6-7
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is achieved. Here the functionR(0)(y), y52D̄2/k2, de-
scribes the details of the mode suppression; it is require
satisfy the boundary conditions R(0)(0)51 and
lim

y→`
R(0)(y)50, but is arbitrary otherwise. By virtue o

Eq. ~3.5!, the inverse propagator of a massless field mo
with covariant momentum squarep2[2D̄2 is proportional
to p21k2R(0)(p2/k2) which equalsp2 for p2@k2 and p2

1k2 for p2!k2. This means that the small-p2 modes, and
only those, have acquired a mass}k which leads to the
desired suppression.

In order to see the potential problems of the rule~3.5! let
us be more specific and assume that the functionsf i j are
linear in D̄2 and contain no constant term. Then, after diag
nalizing f i j with respect to the field indices,Gk

(2) decomposes
into a set of~massless, by assumption! inverse propagators
zkp

2 with a running wave function normalizationzk . In this
diagonal basisRk is diagonal, too. It is of the form

Rk~p2!5Z kk
2R(0)S p2

k2D . ~3.6!

A priori Zk is a free constant, but when we apply the ru
~3.5! we are forced to setZk5zk for each mode. Only then
the propagator and the cutoff combine in the right way, le
ing to the modified inverse propagatorzk@p2

1k2R(0)(p2/k2)#.
The choiceZk5zk is certainly the correct one ifzk is

positive. This is indeed the case in the familiar unitary the
ries on flat spacetime. In QEG, however, there are trun
tions, the Einstein-Hilbert truncation, for instance, whi
give a negative kinetic energy to certain modesw of the
metric. In particular, in the Einstein-Hilbert truncation, th
conformal factorw[f haszk,0.

The important question is howZk should be chosen whe
zk is negative. If we continue to useZk5zk , the RG equa-
tion is still well-defined because the inverse propaga
2uzku@p21k2R(0)(p2/k2)# never vanishes so that the fun
tional traces on the RHS of Eq.~3.4! are not suffering from
any IR problem. In fact, if we write down the perturbativ
expansion of the traces, for instance, we see that all pro
gators are correctly cut off in the IR, and that loop mome
smaller thank are suppressed correctly. This would not ha
been the case if we had insisted on a positiveZk , setting
Zk52zk.0. In this case the modified inverse propaga
2uzku@p22k2R(0)(p2/k2)#, because of the relative minu
sign betweenp2 and theRk term, fails to suppress the IR
modes. Even worse, it can introduce a spurious singularit
the value ofp2 for which p22k2R(0)(p2/k2)50.

At first sight the choiceZk52zk.0 might have ap-
peared to be the more natural one because only ifZk.0 the
factor exp(2DkS)}exp(2*R kw

2) is a damped exponentia
which suppresses the low-momentum modes under the
integral. Nevertheless it was argued in@1# that the ‘‘Zk5zk
rule’’ is the correct choice both forzk.0 and zk,0. The
calculations in@1# and all subsequent papers@2,7,34,33# were
based upon this rule. On the one hand, this rule guaran
that the RG equation is well-defined and consistent. On
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other hand, it is difficult to give a meaning to the Euclide
functional integral from which this RG equation was deriv
at the formal level. In the caseZk5zk,0 the factor
exp(1*uR kuw2) is a growing exponential which seems
enhance rather than suppress the low-momentum mo
However, as suggested by the perturbative argument ab
this conclusion is too naive probably.

Let us now come to the case where the functionsf i j are
not linear inD̄2 but, say, of the formzk

(1)(D̄2)21zk
(2)D̄2. In

this case the rule~3.5! demands that we choose the corr
sponding operators (Rk) i j in such a way that they contai
cutoff terms adjusted to both the (D̄2)2 and theD̄2 terms of
the kinetic operator. For the above example, which is r
evant to theR2 truncation, (Rk) i j assumes the general form

Rk~p2!5Z k
(1)F2p2k2R(0)S p2

k2D 1k4XR(0)S p2

k2D C2G
1Z k

(2)k2R(0)S p2

k2D ~3.7!

where we omitted the indices referring to the types of fiel
Obviously we have to setZ k

(1)5zk
(1) andZ k

(2)5zk
(2) in order

to achieve that the propagator and the cutoff comb
as prescribed by the rule~3.5!. This leads to the modified
inverse propagator zk

(1)@p21k2R(0)(p2/k2)#21zk
(2)@p2

1k2R(0)(p2/k2)#. For brevity we refer to this prescription
too, as theZk5zk rule.

We believe that theZk5zk rule is correct also forzk,0,
and that it is the relation between the manifestly well-defin
flow equation and the formal path integral that needs to
understood better. Various attitudes are possible here.
instance, one could postulate that the fundamental defini
of the theory is in terms of the flow equation rather than
path integral. Since the former is much better defined th
the latter~in particular also with respect to the usual UV an
IR problems! one would simply discard the path integr
then. Another way out is to adopt the usual, albeit ratherad
hoc, prescription of Wick rotating the conformal factor (w
→ iw) which turns the growing exponential into a decayi
one.

A much more attractive and less radical possibility is t
following. Presumably it will be possible to construct an e
fective average action forLorentzianquantum gravity by in-
voking a kind of stationary phase argument for the mo
suppression. Then one deals with oscillating exponent
exp(i S)exp(iDkS), and apart from the trivial substitution
Gk→2 iGk , Rk→2 iRk the flow equation remains the sam
as in Euclidean gravity. ForZk5zk it has all the desired
features, andzk,0 poses no special problem for the pa
integral. It is interesting that there are also recent indicati
@38# coming from the dynamical triangulation approach
quantum gravity@39# which suggest that the Lorentzian pa
integral might have a better chance of being well-defin
than the Euclidean one.

As the last possibility we mention the best of all situ
tions, namely that in an exact treatment there are simply
factorszk,0. If this is actually the case, the conformal fact
6-8
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problem which we encounter in the Einstein-Hilbert a
similar truncations would have the status of an unphys
truncation artifact. If so, the ‘‘Zk5zk rule’’ could be inter-
preted as a device which helps in approximating as wel
possible the exact RG flow by a truncated flow.

It is one of the main results of the present paper that
scenario is indeed realized to some extent. We shall see
within theR2 truncation those terms off i j which dominate at
sufficiently large momenta havezk.0 at least for large
enough values ofk (k@mPl). For too low scales (k&mPl)
some of thezk’s might turn negative, but at these scales t
R2 truncation becomes unreliable probably@5# so that the
negativezk’s might be due to an insufficient truncation. It
not excluded that in the exact theory the dominatingzk’s are
positive down tok50.4

As all thosezk’s which determine the sign of the dom
nating contributions tof i j are positive for large values ofk,
i.

t
b
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the cutoff has the standard suppression properties and is
plagued by any conformal factor problem fork→`. This,
then, allows for an unambiguous investigation of the U
fixed point and its properties. It is quite remarkable that,
we shall see, all results concerning the fixed point are b
cally the same for theR2 truncation ~where Zk5zk.0 at
least for the dominating terms! and the Einstein-Hilbert trun-
cation with both positive and negative factorsZk5zk . This
is certainly a quite impressive confirmation of theZk5zk
rule.

C. The cutoff adapted to theR2 truncation

In the next section we shall see in detail that for the tru
cation studied in this paper we can comply with theZk5zk
rule by using the following cutoff operators for the comp
nent fields:
~Rk! h̄Th̄T
mnab

5
1

4
~ ḡmaḡnb1ḡmbḡna!$Z k

h̄Th̄T
k21Y k

h̄Th̄T
R̄,k2R(0)~2D2/k2!%,

~Rk!j̄j̄
mn

5Z k
j̄ j̄k2ḡmnk2R(0)~2D̄2/k2!,

~Rk!s̄s̄5X k
s̄s̄
„22D̄2k2R(0)~2D̄2/k2!1k4R(0)~2D̄2/k2!2

…1
1

2
$Z k

s̄s̄k21Y k
s̄s̄R̄,k2R(0)~2D̄2/k2!%,

~Rk!f̄s̄5~Rk!s̄f̄
†

5X k
f̄s̄F P̄kAS P̄k1

d

d21
D̄mR̄mnD̄n~2D̄2!21D P̄k

1D̄2A~D̄2!21
d

d21
D̄mR̄mnD̄nG1~Y k

f̄s̄R̄1Z k
f̄s̄k2!

3FAS P̄k1
d

d21
D̄mR̄mnD̄n~2D̄2!21D P̄k2A~D̄2!21

d

d21
D̄mR̄mnD̄nG ,

~Rk!f̄f̄5X k
f̄f̄

„22D̄2k2R(0)~2D̄2/k2!1k4R(0)~2D̄2/k2!2
…1

1

2
$Z k

f̄f̄k21Y k
f̄f̄R̄,k2R(0)~2D̄2/k2!%,

~Rk! v̄TvT
mn

52~Rk!vTv̄T
mn

5Z k
v̄TvT

ḡmnk2R(0)~2D̄2/k2!,

~Rk!%̄%52~Rk!%%̄5Z k
%̄%k2R(0)~2D̄2/k2!. ~3.8!
Here P̄k is defined as

P̄k[2D̄21k2R(0)~2D̄2/k2! ~3.9!

and the curly brackets denote the anticommutator,

4Recent investigations in a scalar toy model@40# indeed sugges
that the conformal factor problem could be solved dynamically
strong instability-driven renormalization effects.
e.

$A,B%5AB1BA for arbitrary operatorsA, B. The remaining
cutoff operators which appear in Eq.~2.9! but are not listed
in Eq. ~3.8! are set to zero.

The constantsXk , Yk , and Zk will be adjusted later. It
should be noted that the terms proportional to theXk’s and
Yk’s provide the cutoff for those contributions toGk

(2) which

come from the higher-derivative terms. ForY k
h̄Th̄T

5Y k
s̄s̄

5Y k
f̄s̄5Y k

f̄f̄5X k
s̄s̄5X k

f̄s̄5X k
f̄f̄50, Eq. ~3.8! actually

boils down to the cutoff of type B used in@2# in the context
of the Einstein-Hilbert truncation.~This cutoff type has to be

y
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distinguished from the cutoff of type A used in the origin
paper@1#, which is formulated in terms of the complete field
and does not involve the component fields.!

Each cutoff contains some ‘‘shape function’’R(0). A par-
ticularly suitable choice is the exponential shape function

R(0)~y!5y@exp~y!21#21. ~3.10!

In order to check the scheme independence of unive
quantities we employ a one-parameter generalization of
~3.10!, the class of exponential shape functions,

R(0)~y;s!5sy@exp~sy!21#21, ~3.11!

with the ‘‘shape parameter’’s.0 parametrizing the profile o
R(0) @35#. Another admissible choice we are going to use
the following class of shape functions with compact supp

R(0)~y;b!55
1, y<b,

exp†~y21.5!21exp@~b2y!21#‡,

b,y,1.5,

0, y>1.5.
~3.12!

Here it is the shape parameterbP@0,1.5) which param-
etrizes the profile ofR(0) @41#.

IV. THE R2 TRUNCATION

A. The ansatz

In all previous papers@1,20,35,34,2,5# the flow equation
of QEG was used in the Einstein-Hilbert truncation. In th
section we generalize this truncation by taking also anR2

term with associated running couplingb̄k into account and
we derive the RG flow within this ‘‘R2 truncation.’’ We as-
sume that, at the UV scalek̂→`, gravity in d dimensions is
described by the action

Ḡ k̂@g#5S@g#

5E ddxAgH 1

16pḠ
„2R~g!12l̄…1b̄R2~g!J .

~4.1!

It consists of the conventional Einstein-Hilbert action and
higher-derivative term with bare couplingb̄. In order to
study the RG flow ofGk@g,ḡ# towards smaller scalesk, k̂
we employ a truncated action functional of the followin
form:
02502
al
q.

s
t:

a

Gk@g,ḡ#5E ddxAg$2k2ZNk„2R~g!12l̄k…1b̄kR
2~g!%

1k2
ZNk

a E ddxAḡḡmn~F m
abgab!~F n

rsgrs!.

~4.2!

The ansatz~4.2! is obtained fromS1Sgf by replacing

Ḡ→Gk[ZNk
21Ḡ, l̄→l̄k , b̄→b̄k ,

~4.3!a→ZNk
21a

so that its form agrees with that of the gravitational secto
the ansatz~3.1! with

Ĝk@g,ḡ#5k2
ZNk21

a E ddxAḡḡmn

3~F m
abgab!~F n

rsgrs!. ~4.4!

In principle, also the gauge fixing parametera should be
treated as a scale-dependent quantity:a→ak . Its evolution
is neglected here for simplicity. However, settinga50 by
hand mimics a dynamical treatment of the gauge fixing
rameter sincea50 can be argued to be a RG fixed poi
@42,2#.

B. Projecting the flow equation

The ansatz~4.2! comprises threek-dependent couplings
They satisfy the initial conditionsl̄ k̂5l̄, ZNk̂51 which im-
pliesGk̂5Ḡ, andb̄ k̂5b̄. Here the UV scalek̂ is taken to be
large but finite. In order to determine the evolution ofl̄k ,
ZNk and b̄k towards smaller scales we have to project t
flow equation onto the space spanned by the opera
*ddxAg, *ddxAgR and *ddxAgR2. After having inserted
the ansatz~4.2! into both sides of the flow equation an
having performed thegmn derivatives implicit in Gk

(2) we

may setgmn5ḡmn . As a consequence, the gauge fixing te
drops out from the LHS which then reads

] tGk@ ḡ,ḡ#5E ddxAḡ$2k2@2R̄~ ḡ!] tZNk

12] t~ZNkl̄k!#1R̄2~ ḡ!] tb̄k%. ~4.5!

Obviously the LHS is spanned by the operators*ddxAg,
*ddxAgR and*ddxAgR2. This means that we have to pe
form a derivative expansion on the RHS in order to extr
precisely those contributions from the traces which are p
portional to these operators. By equating the result to
~4.5! and comparing the coefficients we can read off t
system of coupled differential equations forl̄k , ZNk , and
b̄k .

In order to make these technically rather involved calc
lations feasible we may insert any metricḡmn that is general
enough to admit a unique identification of the operat
spanning the truncated theory space. We exploit this freed
6-10
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by assuming thatḡmn corresponds to a maximally symmetr
space. Such spaces form a special class of Einstein sp
and are characterized by

R̄mnrs5
R̄

d~d21!
~ ḡmrḡns2ḡmsḡnr!,

R̄mn5
R̄

d
ḡmn ~4.6!

with the curvature scalarR̄ considered a constant numb
rather than a functional of the metric. It is sufficient to em
ploy spaces withR̄.0, i.e. d spheresSd. They are param-
etrized by their radiusr which is related to the curvatur
scalar and the volume in the usual way,

R̄5
d~d21!

r 2
, E ddxAḡ5

GS d

2D
G~d!

~4pr 2!d/2. ~4.7!

We emphasize that the beta functions ofl̄k , ZNk , andb̄k

do not depend on this choice forḡmn ; it is simply a technical
trick without any physical meaning. In principle the bet
functions could be computed without any specification
ḡmn .

While this projection technique is capable of distinguis
ing *ddxAg}r d from both*ddxAgR}r d22 and*ddxAgR2

}r d24, it cannot disentangle the three (curvature)2 invari-
ants*ddxAgR2, *ddxAgRmn

2 , and*ddxAgRmnrs
2 which are

all proportional tor d24. If one wants to project them ou
individually one has to insert non-maximally symmetr
spaces, but then the evaluation of the functional traces on
RHS of Eq. ~3.4! is a rather formidable problem with th
present technology. In fact, this is one of the reasons
omitting the other two (curvature)2 invariants from our trun-
cation ansatz.

In Ref. @2# we discussed already the expansion of fie
defined on spherical backgrounds. Both the classical and
quantum TT-component fields can be expanded in term
transverse-traceless tensor harmonicsTmn

lm , transverse vecto
harmonicsTm

lm , and scalar harmonicsTlm. They form com-
plete sets of orthogonal eigenfunctions with respect to
corresponding covariant Laplacians. We summarize the m
results of@2# in Appendix C. In particular, the expansions
hmn

T , f, Cm, C̄m and their classical counterparts can be re
off from Eq. ~C3!, while the remaining component fields a
expanded according to

jm~x!5(
l 52

`

(
m51

Dl (d,1)

j lmTm
lm~x!,

s~x!5(
l 52

`

(
m51

Dl (d,0)

s lmTlm~x!,
~4.8!
02502
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h~x!5(
l 51

`

(
m51

Dl (d,0)

h lmTlm~x!,

h̄~x!5(
l 51

`

(
m51

Dl (d,0)

h̄ lmTlm~x!.

Similar expansions hold for the associated classical fie
~expectation values!.

Contrary to Eq.~C3!, the summations in Eq.~4.8! do not
start atl 51 for vectors and atl 50 for scalars, but atl 52
for jm and s, and atl 51 for the scalar ghost fields. Th
modes omitted here are the Killing vectors (Tm

l 51,m), the so-
lutions of the scalar equation~2.6! (Tl 51,m), and the con-
stants (Tl 50,m51). As we mentioned in Sec. II, these mod
do not correspond to fluctuations ofhmn or the Faddeev-
Popov ghosts.

As in @2#, we decompose the quantum fieldf into a part
f1 spanned by the same set of eigenfunctions ass, and a
part f0 containing the contributions from the remainin
modes:

f~x!5f0~x!1f1~x!,

f0~x!5(
l 50

1

(
m51

Dl (d,0)

f lmTlm~x!, ~4.9!

f1~x!5(
l 52

`

(
m51

Dl (d,0)

f lmTlm~x!.

Due to the orthogonality of the spherical harmonics,f0 is
orthogonal tof1 and s: ^f1 ,f0& 5^s,f0&50. This im-
plies ^f,f&5^f0 ,f0&1^f1 ,f1& and^s,f&5^s,f1&. As a
consequence, splittingf according to Eq.~4.9! ensures that
any nonzero bilinear cross term of the scalar fields is s
that the scalars involved can be expanded in the same s
eigenfunctions. Of course, the same holds for the co
sponding classical fieldsf̄0 and f̄1.

C. Inserting the ansatz into the RHS of the RG equation

Let us now start with the evaluation of the RHS of E
~3.4!. After having inserted the truncation ansatz~4.2! we
identify the two metricsgmn and ḡmn . Therefore it is suffi-
cient to calculate the operators (Gk

(2)@g,ḡ#1Rk@ ḡ#)21 and

(Sgh
(2)@g,ḡ#1Rk@ ḡ#)21 at gmn5ḡmn . To this end we first ex-

pand the ansatz~4.2! according to

Gk@ ḡ1h̄,ḡ#5Gk@ ḡ,ḡ#1O~ h̄!1Gk
quad@ h̄;ḡ#1O~ h̄3!

~4.10!

and concentrate on the part quadratic inh̄mn , i.e.Gk
quad@ h̄;ḡ#.

This leads to
6-11
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Gk
quad@ h̄;ḡ#5E ddxAḡh̄mnH k2ZNkF2S 1

2
dr

mds
n 1

122a

4a
ḡmnḡrsD D̄21

1

4
~2dr

mds
n 2ḡmnḡrs!~R̄22l̄k!1ḡmnR̄rs2ds

mR̄n
r

2R̄n
r

m
s1

12a

a
~ ḡmnD̄rD̄s2ds

mD̄nD̄r!G1
1

2
b̄kF1

2 S 1

2
ḡmnḡrs2dr

mds
n D R̄212ḡmnR̄~2R̄rs1D̄rD̄s2ḡrsD̄2!

12R~ds
n R̄m

r2R̄m
rs

n23ds
n D̄mD̄r12ḡrsD̄mD̄n12dr

mds
n D̄22ds

n D̄rD̄m!12ds
n D̄rR̄D̄m23dr

mds
n D̄lR̄D̄l

14ds
n D̄mR̄D̄r24ḡrsD̄mR̄D̄n1ḡmnḡrsD̄lR̄D̄l12R̄mnR̄rs24R̄mn~D̄rD̄s2ḡrsD̄2!12D̄mD̄nD̄rD̄s

24ḡmnD̄2D̄rD̄s12ḡmnḡrs~D̄2!2G J h̄rs. ~4.11!

At this stageḡmn is still arbitrary. In order to~partially! diagonalize this quadratic form we insert the family ofSd background
metrics into Eq.~4.11! and decomposeh̄mn according to Eq.~2.3!. Then we apply Eq.~4.9! to the classical fieldf̄ to
decompose it as well. This yields

Gk
quad@ h̄;ḡ#5E ddxAḡ

1

2 H h̄mn
T @ZNkk

2
„2D̄21AT~d!R̄22l̄k…1b̄k„R̄D̄21GT~d!R̄2

…#h̄Tmn1 j̄mF 2

a
ZNkk

2
„2D̄21AV~d,a!R̄

22al̄k…1GV~d!b̄kR̄
2G j̄m1s̄@CS2~d,a!ZNkk

2
„2D̄21AS2~d,a!R̄1BS2~d,a!l̄k…

1b̄k„HS~d!~D̄2!22GS1~d!~2R̄D̄21R̄2!…#s̄12f̄1@CS2~d,a!CS3~d,a!ZNkk
21b̄k„2HS~d!D̄212GS1~d!R̄…#

3A2D̄2A2D̄22
R̄

d21
s̄1 (

f̄P$f̄0 ,f̄1%

f̄@CS2~d,a!CS1~d,a!ZNkk
2
„2D̄21AS1~d,a!R̄1BS1~d,a!l̄k…

1b̄k„HS~d!~D̄2!22GS2~d!R̄D̄21GS3~d!R̄2
…#f̄J . ~4.12!
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Here the variousA’s, B’s, C’s andG’s andHS are functions
of the dimensionalityd and the gauge fixing parametera.
The explicit expressions for these coefficients are given
Appendix D 1.

This partial diagonalization is performed in order to sim
plify the inversion of the operatorGk

(2)@g,ḡ#1Rk@ ḡ#. In fact,
this is the main reason for using the TT decomposition~2.3!
and specifying a concrete background. Note that in the p
Einstein-Hilbert truncation it is only the term in Eq.~4.11!
which is proportional to 12a that gives rise to mixings be
tween the traceless part ofh̄mn andf̄ and therefore necess
tates the complete decomposition~2.3!. For a51, a com-
plete diagonalization can be achieved by merely splitting
the trace part@1,2#. This has to be contrasted with theR2

truncation where the higher-derivative term introduces ad
tional mixings between the traceless part andf̄. These cross
terms donot vanish fora51. Hence the complete decom
position ofh̄mn is necessary for a partial diagonalization ev
in the casea51.

At the component field level the cross terms boil down
a purely scalars̄-f̄ mixing term that vanishes for the spher
cal harmonicsTl 50,m51 andTl 51,m. Since these modes con
tribute to f̄, but not tos̄, we cannot directly invert the as
02502
n

re

ff

i-

sociated matrix differential operator„(Gk
(2)) i j …i , j P$h̄T,j̄,s̄,f̄% .

As a way out, we splitf̄ according to Eq.~4.9! into f̄0 and
f̄1. This has the effect that only mixings between the sca
s̄ andf̄1 survive, which can be expanded in the same se
eigenfunctionsTlm starting atl 52. Hence the resulting ma
trix differential operator„(Gk

(2)) i j …i , j P$h̄T,j̄,f̄0 ,s̄,f̄1% is invert-
ible. However, it should be noted that this additional split
f̄ leads to a slightly modified flow equation since it affec
the matrix structure of this operator. In fact, the summat
in the gravitational sector of Eq.~3.4! now runs over the se
of fields $h̄T,j̄,f̄0 ,s̄,f̄1%, with (Rk) f̄0f̄0

[(Rk) f̄1f̄1

[(Rk) f̄f̄ and (Rk) s̄f̄1
[(Rk) s̄f̄ .

As a next step we calculate the contributions from t
ghost fields appearing on the RHS of Eq.~3.4!. For this
purpose we insert the family of spherical background spa
Sd into Sgh and setgmn5ḡmn . Then we use Eq.~2.7! to
decompose the ghost fields. This yields

Sgh@0,v,v̄;g#5A2E ddxAgH v̄m
TF2D22

R

dGvTm

1%̄F2D222
R

dG%J . ~4.13!
6-12
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From now on the bars are omitted from the metric, the curvature and the operatorsD2 andPk .
Before we can continue with our evaluation we have to specify the precise form of the cutoff operators. Adapting

Gk
(2) andSgh

(2) of Eqs.~4.12!, ~4.13! by applying the rule~3.5! leads precisely to the structure~3.8! with the following choices
for the Xk’s, Yk’s, andZk’s:

X k
f̄1s̄

5X k
s̄s̄5X k

f̄0f̄05X k
f̄1f̄15HS~d!b̄k , Y k

h̄Th̄T
52b̄k ,

Y k
f̄1s̄

5Y k
s̄s̄52GS1~d!b̄k , Y k

f̄0f̄05Y k
f̄1f̄15GS2~d!b̄k , Z k

h̄Th̄T
5ZNk ,

~4.14!

Z k
j̄ j̄5

2

a
ZNk , Z k

f̄1s̄
5CS2~d,a!CS3~d,a!ZNk, Z k

s̄s̄5CS2~d,a!ZNk,

Z k
f̄0f̄05Z k

f̄1f̄15CS2~d,a!CS1~d,a!ZNk , Z k
v̄TvT

5Z k
%̄%5A2.

Thus, forgmn5ḡmn , the nonvanishing entries of the matrix differential operatorsGk
(2)1Rk andSgh

(2)1Rk take the form

~Gk
(2)@g,g#1Rk! h̄Th̄T5ZNkk

2
„Pk1AT~d!R22l̄k…1b̄k„2RPk1GT~d!R2

…,

~Gk
(2)@g,g#1Rk!j̄j̄5

2

a
ZNkk

2
„Pk1AV~d,a!R22al̄k…1GV~d!b̄kR

2,

~Gk
(2)@g,g#1Rk!s̄s̄5CS2~d,a!ZNkk

2
„Pk1AS2~d,a!R1BS2~d,a!l̄k…1b̄k„HS~d!Pk

21GS1~d!~2RPk2R2!…,

~Gk
(2)@g,g#1Rk!f̄1s̄5~Gk

(2)@g,g#1Rk!s̄f̄1

5@CS2~d,a!CS3~d,a!ZNkk
21b̄k„HS~d!Pk12GS1~d!R…#APkAPk2

R

d21
,

~Gk
(2)@g,g#1Rk!f̄0f̄0

5~Gk
(2)@g,g#1Rk!f̄1f̄1

5CS2~d,a!CS1~d,a!ZNkk
2
„Pk1AS1~d,a!R1BS1~d,a!l̄k…

1b̄k„HS~d!Pk
21GS2~d!RPk1GS3~d!R2

…,

~Sgh
(2)@g,g#1Rk! v̄TvT52~Sgh

(2)@g,g#1Rk!vTv̄T5A2FPk2
R

dG ,

~Sgh
(2)@g,g#1Rk!%̄%52~Sgh

(2)@g,g#1Rk!%%̄5A2FPk22
R

dG . ~4.15!

For notational simplicity we set (Sgh
(2)@0,v,v̄;g#)c1c2

[(Sgh
(2)@g,g#)c1c2

with c1 ,c2P Ī 2.

Now we are in a position to write down the RHS of the flow equation withgmn5ḡmn . We shall denote itSk(R) in the
following. Obviously we need the inverse operators (Gk

(2)1Rk)
21 and (Sgh

(2)1Rk)
21. This inversion is carried out in Appendi

A 1. Inserting the inverse operators intoSk(R) leads to the somewhat complicated result
025026-13
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Sk~R!5Tr(2ST2)†„Pk1AT~d!R22l̄k1~ZNkk
2!21b̄k@2RPk1GT~d!R2#…21

„N2~ZNkk
2!21b̄kRT1…‡

1Tr(1T)8 @„Pk1AV~d,a!R22al̄k1GV~d!~ZNkk
2!21b̄kR

2
…

21N#

1Tr(0)9 F H „CS2~d,a!@Pk1AS2~d,a!R1BS2~d,a!l̄k#

1~ZNkk
2!21b̄k@HS~d!Pk

21GS1~d!~2RPk2R2!#…„CS2~d,a!CS1~d,a!@Pk1AS1~d,a!R1BS1~d,a!l̄k#

1~ZNkk
2!21b̄k@HS~d!Pk

21GS2~d!RPk1GS3~d!R2#…2„CS2~d,a!CS3~d,a!1~ZNkk
2!21b̄k@HS~d!Pk

12GS1~d!R#…2PkS Pk2
R

d21D J 21H „CS2~d,a!@Pk1AS2~d,a!R1BS2~d,a!l̄k#1~ZNkk
2!21b̄k@HS~d!Pk

21GS1~d!

3~2RPk2R2!#…„CS2~d,a!CS1~d,a!N1~ZNkk
2!21b̄k@HS~d!T21GS2~d!RT1#…

1„CS2~d,a!CS1~d,a!@Pk1AS1~d,a!R1BS1~d,a!l̄k#1~ZNkk
2!21b̄k@HS~d!Pk

21GS2~d!RPk1GS3~d!R2#…

3„CS2~d,a!N1~ZNkk
2!21b̄k@HS~d!T212GS1~d!RT1#…12„CS2~d,a!CS3~d,a!1~ZNkk

2!21b̄k@HS~d!Pk

12GS1~d!R#…APkAPk2
R

d21

1

2ZNkk
2
] tXHS~d!b̄kFPkAPkAPk2

R

d21

1D2A2D2A2D22
R

d21 G1„2GS1~d!b̄kR1CS2~d,a!CS3~d,a!ZNkk
2
…

3FAPkAPk2
R

d21
2A2D2A2D22

R

d21 G CJ G22Tr(1T)F S Pk2
R

d D 21

N0G
22Tr8(0)F S Pk22

R

d D 21

N0G1
1

2ZNkk
2 (

l 50

1

ˆDl~d,0!$CS2~d,a!CS1~d,a!„L l~d,0!1k2R(0)
„L l~d,0!/k2

…1AS1~d,a!R

1BS1~d,a!l̄k…1~ZNkk
2!21b̄k†HS~d!„L l~d,0!1k2R(0)

„L l~d,0!/k2
……

21GS2~d!R„L l~d,0!1k2R(0)
„L l~d,0!/k2

……

1GS3~d!R2
‡%21] t$CS2~d,a!CS1~d,a!ZNkk

2k2R(0)
„L l~d,0!/k2

…1b̄k†HS~d!„2L l~d,0!k2R(0)
„L l~d,0!/k2

…

1k4R(0)
„L l~d,0!/k2

…

2
…1GS2~d!Rk2R(0)

„L l~d,0!/k2
…‡%‰. ~4.16!

The new quantitiesN, N0 , T1, andT2 introduced in Eq.~4.16! are defined as

N[~2ZNk!
21] t@ZNkk

2R(0)~2D2/k2!#

5F12
1

2
hN~k!Gk2R(0)~2D2/k2!1D2R(0)8~2D2/k2!,

N0[221] t@k2R(0)~2D2/k2!#5k2R(0)~2D2/k2!1D2R(0)8~2D2/k2!,

T1[~2b̄k!
21] t@b̄kk

2R(0)~2D2/k2!#

5F12
1

2
hb~k!Gk2R(0)~2D2/k2!1D2R(0)8~2D2/k2!,

T2[~2b̄k!
21] t@b̄k„22D2k2R(0)~2D2/k2!1k4R(0)~2D2/k2!2

…#

52Pk@k2R(0)~2D2/k2!1D2R(0)8~2D2/k2!#2
1

2
hb~k!„2D2k2R(0)~2D2/k2!1k4R(0)~2D2/k2!2

…. ~4.17!
025026-14
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Here

hN~k![2] tln ZNk ~4.18!

and

hb~k![2] tln b̄k ~4.19!

are the anomalous dimensions of the operators*ddxAgR and
*ddxAgR2, respectively. Furthermore, the prime atR(0) de-
notes the derivative with respect to the argument.

In Eq. ~4.16! we refined our notation concerning th
primes at the traces. From now on one prime indicates
the mode corresponding to the lowest eigenvalue has to
excluded, while two primes indicate the subtraction of t
contributions from the lowest two eigenvalues. The su
scripts at the traces describe on which kind of field the
erators under the traces act. We use the subscripts(0), (1T)
and (2ST2) for spin-0 fields, transverse spin-1 fields, a
symmetric transverse traceless spin-2 fields, respectively

D. The system of flow equations forlk , gk , and bk

Next we derive the flow equations for the couplings.
order to make the rather complicated calculations feasible
are forced to work from now on in the technically convenie
gaugea51. Here we merely summarize the main steps,
details of the calculation can be found in Appendix A 2.

By expandingSk(R) whereR}r 22 with respect tor and
evaluating the traces by means of heat kernel technique
extract those pieces from the RHS of the flow equation,
~4.16!, which are proportional to the appropriate powers
the radius, i.e.r d}*ddxAg, r d22}*ddxAgR, and r d24

}*ddxAgR2. Then we equate the result to the LHS, E
c-

e
r.
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~4.5!, and compare the coefficients of the various powers
r. This leads to a system of coupled differential equations
l̄k , ZNk and b̄k .

In order to present it in a transparent manner we introd
the dimensionless running cosmological constant

lk[k22l̄k , ~4.20!

the dimensionless running Newton constant

gk[kd22Gk[kd22ZNk
21Ḡ, ~4.21!

and the dimensionless runningR2 coupling

bk[k42db̄k . ~4.22!

Gk[Ḡ/ZNk denotes the dimensionful running Newton co
stant.

In terms of the couplingslk , gk , andbk , our final result
for the 3-dimensional flow equation reads

] tlk5bl~lk ,gk ,bk ;d!

[A1~lk ,gk ,bk ;d!1hN~k!A2~lk ,gk ,bk ;d!

1hb~k!A3~lk ,gk ,bk ;d!, ~4.23!

] tgk5bg~lk ,gk ,bk ;d!

[@d221hN~k!#gk , ~4.24!

] tbk5bb~lk ,gk ,bk ;d!

[@42d2hb~k!#bk . ~4.25!

The anomalous dimensions are explicitly given by
hN~k![hN~lk ,gk ,bk ;d!5gk

B1~lk ,gk ,bk ;d!@bk1C3~lk ,gk ,bk ;d!#2C1~lk ,gk ,bk ;d!B3~lk ,gk ,bk ;d!

@12gkB2~lk ,gk ,bk ;d!#@bk1C3~lk ,gk ,bk ;d!#1gkC2~lk ,gk ,bk ;d!B3~lk ,gk ,bk ;d!

~4.26!

and

hb~k![hb~lk ,gk ,bk ;d!52
C1~lk ,gk ,bk ;d!@12gkB2~lk ,gk ,bk ;d!#1gkB1~lk ,gk ,bk ;d!C2~lk ,gk ,bk ;d!

@12gkB2~lk ,gk ,bk ;d!#@bk1C3~lk ,gk ,bk ;d!#1gkC2~lk ,gk ,bk ;d!B3~lk ,gk ,bk ;d!
.

~4.27!
ve

d
or-
ow
The threeb functionsbl , bg andbb contain the quantities
Ai , Bi , Ci , i 51,2,3, which are extremely complicated fun
tions of the couplings and the dimensionalityd. The explicit
expressions for these coefficient functions can be found
Appendix B. They contain the new threshold functionsC

and C̃ of Eqs. ~A29! and ~A30! which functionally depend
on R(0). They generalize the familiar threshold functionsF

and F̃ which occur in the Einstein-Hilbert truncation. Th
threeb functions are one of the main results of this pape
in

V. THE FIXED POINTS

A. Fixed points, critical exponents,
and nonperturbative renormalizability

Because of its complexity it is clearly impossible to sol
the system of flow equations forlk , gk andbk , Eqs.~4.23!,
~4.24! and ~4.25!, exactly. Even a numerical solution woul
be a formidable task. However, it is possible to gain imp
tant information about the general structure of the RG fl
by looking at its fixed point structure.
6-15
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Given a set ofb functions corresponding to an arbitra
set of dimensionless essential couplings gi(k), it is often pos-
sible to predict their scale dependence for very small an
very large scalesk by investigating their fixed points. The
are those points in the space spanned by the gi where allb
functions vanish. Fixed points are characterized by their
bility properties. A given eigendirection of the linearize
flow is said to be UV or IR attractive~or stable! if, for k
→` or k→0, respectively, the trajectories are attracted
wards the fixed point along this particular direction. The U
~IR! critical hypersurfaceSUV (SIR) in the space of all cou-
plings is defined to consist of all trajectories that run into
given fixed point fork→` (k→0).

In quantum field theory, fixed points play an importa
role in the modern approach to renormalization theory@12#.
At a UV fixed point the infinite cutoff limit can be taken in
controlled way, the theory can be renormalized nonpertur
tively there. As for gravity, Weinberg@23# argued that a
theory described by a RG trajectory lying on afinite-
dimensionalUV critical hypersurface of some fixed point
presumably free from unphysical singularities. It is pred
tive since it depends only on afinite number of free~essen-
tial! parameters. In Weinberg’s words, such a theory isas-
ymptotically safe. Asymptotic safety has to be regarded as
generalized, nonperturbative version of renormalizability
covers the class of perturbatively renormalizable theor
whose infinite cutoff limit is taken at the Gaussian fix
point g* i50, as well as those perturbatively nonrenormal
able theories which are described by a RG trajectory o
finite-dimensional UV critical hypersurface of a no
Gaussian fixed point g* iÞ0 and are nonperturbatively reno
malizable therefore@23#.

Let us now consider the component form of the exact
equation, i.e. the system of differential equations

k]kgi~k!5bi~g! ~5.1!

for a set of dimensionless essential couplings gk)
[„g1(k), . . . ,gn(k)…. In an exact treatment the numbern is
infinite; in a specific truncation it might be finite. We assum
that g* is a fixed point of Eq.~5.1!, i.e. bi(g* )50 for all i
51, . . . ,n. We linearize the RG flow about g* which leads
to

k]kgi~k!5(
j 51

n

Bi j „gj~k!2g* j… ~5.2!

where Bi j [] jbi(g* ) are the entries of the stability matri
B5(Bi j ). Diagonalizing B according to S21BS5
2diag(u1 , . . . ,un), S5(V1, . . . ,Vn), whereVI is the right-
eigenvector ofB with eigenvalue2u I we have

(
j 51

n

Bi j Vj
I52u IVi

I , I 51, . . . ,n. ~5.3!

The general solution to Eq.~5.2! may be written as
02502
or

a-

-

t

a-

-

a
t
s,

-
a

gi~k!5g* i1(
I 51

n

CIVi
I S k0

k D u I

. ~5.4!

Here

CI[(
j 51

n

~S21! I j gj~k0! ~5.5!

are arbitrary real parameters andk0 is a reference scale.
Obviously a fixed pointg* is UV attractive for a given

trajectory ~i.e. attractive fork→`) only if all its CI corre-
sponding to negativeu I,0 are set to zero. Therefore th
dimensionalityDUV[dim(SUV) of the UV critical hypersur-
face belonging to this particular fixed point equals the nu
ber of positiveu I ’s. Conversely, for a trajectory where allCI
corresponding to positiveu I are set to zero, g* is an IR
attractive fixed point~approached in the limitk→0). As a
consequence, the IR critical hypersurfaceSIR of a fixed point
has a dimensionalityD IR[dim(SIR) which equals the num-
ber of negativeu I ’s.

In a slight abuse of language we shall refer to theu I ’s as
the critical exponents.

Strictly speaking, the solution~5.4! and its above interpre
tation is valid only in such cases where all eigenvalu
2u I are real, which is not guaranteed since the matrixB is
not symmetric in general. If complex eigenvalues occur o
has to consider complexCI ’s and to take the real part of Eq
~5.4!, see below. Then the real parts of the critical expone
determine which directions in coupling constant space
attractive or repulsive.

At this point it is necessary to discuss the impact a cha
of the cutoff scheme has on the scaling behavior. Since
path integral forGk depends on the cutoff scheme, i.e. on t
DkS chosen, it is clear that generically thek-dependent cou-
plings and their fixed point values are scheme depend
Hence a variation of the cutoff scheme, i.e. ofRk , induces a
change in the correspondingB matrix. So one might naively
expect that also its eigenvalues, the critical exponents,
scheme dependent. In fact, this is not the case. Accordin
the general theory of critical phenomena and a recent
analysis in the framework of the exact RG equations@43#
any variation of the cutoff scheme can be generated b
specific coordinate transformation in the space of couplin
with the cutoff held fixed. Such transformations leave t
eigenvalues of theB matrix invariant, so that the critica
behavior near the corresponding fixed point is universal. T
positions of fixed points are scheme dependent but t
~non!existence and the qualitative structure of the RG fl
are Rk-independent features. Quantities like theu I ’s which
are Rk independent are calleduniversal. Their residual
scheme dependence present in an approximate treat
~truncation, etc.! can be used in order to judge the quality
the approximation. A truncation can be considered relia
only if it predicts the same fixed point structure for all a
missible choices ofRk .

In the context of theR2 truncation the space of coupling
is parametrized by g15l, g25g, and g35b. The b func-
tions occurring in the three flow equations
6-16



n-

s

l-
on

th
e
e

xe
n-
w
-
on

a
d
ll

a-
the

the

s

FLOW EQUATION OF QUANTUM EINSTEIN GRAVITY . . . PHYSICAL REVIEW D66, 025026 ~2002!
] tlk5bl~lk ,gk ,bk!, ] tgk5bg~lk ,gk ,bk!,

] tbk5bb~lk ,gk ,bk! ~5.6!

are given in Eqs.~4.23!, ~4.24! and ~4.25!, respectively.
In Ref. @2# the fixed point structure of the pure Einstei

Hilbert truncation was investigated. In this case theb func-
tions were found to have both a trivial zero atl* 5g* 50,
referred to as the Gaussian fixed point, and a non-Gaus
fixed point atl* Þ0, g* Þ0. As we will see in Sec. V B, the
Gaussian fixed point isnot present any more in the genera
ized truncation. This has to be contrasted with the n
Gaussian fixed point which is found with theR2 truncation,
too. In Sec. V C we study its cutoff dependence and
cutoff dependence of the associated critical exponents
ploying the aboveb functions with the families of shap
functions~3.11! or ~3.12! inserted.

B. The fate of the Gaussian fixed point

In this subsection we study the fate of the Gaussian fi
point found in the context of the pure Einstein-Hilbert tru
cation. In @2# we investigated the 2-dimensional RG flo
near this fixed point (l* ,g* )5(0,0) and discussed its sta
bility properties. It is an important question how the situati
changes by enlarging the parameter space.

Quite remarkably, we find that in the 3-dimension
l-g-b space of theR2 truncation there is no Gaussian fixe
point, i.e. (l,g,b)5(0,0,0) is not a simultaneous zero of a
three b functions. Whilebl and bg vanish at the origin
(l,g,b)5(0,0,0), settinglk5gk50 in bb leads to

bb~0,0,bk ;d!5bb~0,0,0;d!5gd ;bk . ~5.7!

The nonzero constantgd is given by
02502
ian

-

e
m-

d

l

gd5~4p!2d/2$h31~d!Fd/222
1 ~0!1h32~d!Fd/221

2 ~0!

1h33~d!Fd/2
3 ~0!%. ~5.8!

Here thehi ’s are defined as in Appendix D 2. Ind54 dimen-
sions

g45
419

1080
~4p!22 ~5.9!

is a universal quantity sinceF0
1(0)5F1

2(0)52F2
3(0)51

independently of the cutoff; see Appendix F.
Although there is no fixed point at the origin of the p

rameter space it is nevertheless very interesting to study
RG flow in the vicinity of (l,g,b)5(0,0,0). For simplicity
we restrict our considerations to the cased.2. Expanding
(bl ,bg ,bb) about the origin we obtain instead of Eq.~5.2!
the inhomogeneoussystem

k]kgi~k!5gdd i ,31(
j 51

3

Mi j gj~k!. ~5.10!

The linearized renormalization group flow is governed by
Jacobi-matrixM5(Mi j ), Mi j [] jbi(0,0,0;d), which takes
the form

M5S 22 ndd 0

0 d22 0

§d td 42d
D . ~5.11!

Its entries follow from the expandedb functions ~E3! of
Appendix E. Herend , §d andtd ared-dependent parameter
defined as
nd[~d23!~4p!12d/2Fd/2
1 ~0!, ~5.12!

§d[~4p!2d/2$h34~d!Fd/222
2 ~0!1h35~d!Fd/221

3 ~0!1h36~d!Fd/2
4 ~0!%, ~5.13!

td[2~4p!12dH @h37~d!Fd/221
1 ~0!1h38~d!Fd/2

2 ~0!#F1

4
h34~d!F̃d/222

1 ~0!1
1

8
h35~d!F̃d/221

2 ~0!

1
1

12
h36~d!F̃d/2

3 ~0!G1@h31~d!Fd/222
1 ~0!1h32~d!Fd/221

2 ~0!1h33~d!Fd/2
3 ~0!#

3Fh39~d!F̃d/222
0 ~0!1h40~d!F̃d/221

1 ~0!

1h41~d!F̃d/2
2 ~0!1h42~d!F̃d/211

3 ~0!1
3

2G J . ~5.14!
6-17
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At this point it should be noted that the submatr
(Mi j ) i , j P$1,2% coincides precisely with the stability matrix o
the Gaussian fixed point which was calculated in@2# in the
Einstein-Hilbert truncation.

Diagonalizing the matrix~5.11! yields the~obviously uni-
versal! eigenvaluesq1522, q25d22 and q3542d
which are associated with the eigenvectors

V15„1,0,§d /~d26!…T,

V25„nd,1,~§dnd1td!/@2~d23!#…T, ~5.15!

V35~0,0,1!T.

Equation~5.15! is valid only for dÞ3,6. In d53 we obtain
V15(1,0,2§3/3), V25V35(0,0,1), and in the
6-dimensional case the eigenvectors areV15V35(0,0,1),
V25„n6,1,(§6n61t6)/6…. Thus in both cases the spac
spanned by the eigenvectors in only 2-dimensional, i.e. t
do not form a complete system. For all values ofd, including
d53 andd56, the solutions forlk andgk obtained from the
linearized system~5.10! assume the following form:

lk5~lk0
2ndgk0

!S k0

k D 2

1ndgk0S k

k0
D d22

,

gk5gk0S k

k0
D d22

. ~5.16!

Since the expandedb function bg of Eq. ~E3! does not
depend onlk andbk up to terms of third order in the cou
plings we can easily calculate also the next-to-leading
proximation forgk near the origin. In terms of the dimen
sionful quantityGk this improved solution reads

Gk5Gk0
@12vdGk0

~k0
d222kd22!#21 ~5.17!

with

vd[2
1

d22
B1~0,0,0;d!

5~4p!12d/2$h43~d!Fd/221
1 ~0!1h44~d!Fd/2

2 ~0!%

~5.18!

a d-dependent parameter. It agrees with thevd defined in@2#
in the context of the pure Einstein-Hilbert truncation. Fork
!uvdGk0

u21/(d22) and with the reference scalek050 ~which
is admissible only for specific initial conditions of the co
mological constant!, Eq. ~5.17! yields

Gk5G0@12vdG0kd221O~G0
2k2(d22)!#. ~5.19!

For the dimensionful cosmological constant we obtain, fr
Eq. ~5.16!,

l̄k5l̄k0
1ndGk0

~kd2k0
d!. ~5.20!

Equations~5.19! and~5.20! agree completely with the corre
sponding results from the Einstein-Hilbert truncation.
02502
y

-

Let us now discuss the solution forbk . In order to derive
it we start by pickingi 53 in Eq. ~5.10! and rewrite the
corresponding equation as

]k@kd24bk#5kd25@gd1§dlk1tdgk#. ~5.21!

Then we insert the solutions forgk andlk of Eq. ~5.16! into
Eq. ~5.21!. The resulting differential equation may easily b
solved. FordÞ3,4,6, the solution reads

bk5
gd

d24
1

~lk0
2ndgk0

!§d

d26 S k0

k D 2

1
nd§d1td

2~d23!
gk0S k

k0
D d22

1Fbk0
2

gd

d24
2

~lk0
2ndgk0

!§d

d26

2
nd§d1td

2~d23!
gk0

G S k0

k D d24

. ~5.22!

The solutions ind53, d54, andd56 can be obtained from
Eq. ~5.22! by a careful evaluation of the limitsd→3, d
→4, andd→6, respectively. In the most interesting case
d54 dimensions this leads to the following solution:

bk5bk0
1

~lk0
2n4gk0

!§4

2
2

n4§41t4

2
gk0

1
419

1080
~4p!22lnS k

k0
D2

~lk0
2n4gk0

!§4

2 S k0

k D 2

1
n4§41t4

2
gk0S k

k0
D 2

. ~5.23!

The parameters appearing in Eq.~5.23! are

n45
1

4p
F2

1~0!

§45~4p!22H 2
559

432
1

71

36
F1

3~0!1
347

24
F2

4~0!J
t45~4p!23H F13

3
F1

1~0!1
79

3
F2

2~0!GF2
559

1728

1
71

288
F̃1

2~0!1
347

288
F̃2

3~0!G1
419

1080F2
299

180

1
13

3
F̃1

1~0!1
40

3
F̃2

2~0!G J . ~5.24!

Employing the exponential shape function withs51 and
inserting the corresponding values of theFn

p(0) andF̃n
p(0)

integrals given in Appendix F we obtain
6-18
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n45z~3!/~2p!'0.19, §45~4p!22H 2
559

432
1

278

4
ln~2!2

347

24
ln~3!J '0.20,

~5.25!
t45

2817356125~474113p2!„255914590 ln~2!22082 ln~3!…

49766400p3
'0.0051.

FIG. 1. The cased54: ~a! Type Ia, type IIa, and type IIIa trajectories~from left to right! obtained from thel-g projection~5.16!. They
coincide precisely with the corresponding trajectories of the Einstein-Hilbert truncation. The type IIa trajectory is the separat
lk5050, which separates the region of trajectories withlk→0→2` ~type Ia! from those running towards more positivel ’s ~type IIIa!. ~b!
Three typical trajectories of the linearizedl-g-b equation. They correspond to different values ofbk0

, but all of them satisfy Eq.~5.26!. We
also depict their projection onto thel-g plane. It coincides with the separatrix of the pure Einstein-Hilbert truncation.
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Let us now analyze the RG flow near the origin of t
parameter space. Strictly speaking our analysis even ext
to all points of thel-g-b space which satisfyulu,ugu!1 and
ubu!1/ugu. This is because in any of the threeb functions all
terms of second and higher orders inbk appear as product
gk

nbk
m with n>m.

Since q1522,0 and, ford.2, q25d22.0, lk of
Eq. ~5.16! starts growing as soon ask falls belowk0 and the
linearization breaks down, unless the couplings run alon
trajectory which satisfies

lk5ndgk⇔l̄k5ndGkk
d ~5.26!

for sufficiently small values ofk @5#, with Gk given by Eq.
~5.17!. In this case bothlk andgk approachl5g50 in the
limit k→0 as long asubku!1/ugku is satisfied as well. Since
Fd/2

1 (0) depends on the shape functionR(0), nd is not a
universal quantity. Therefore the slope of the distinguish
trajectories characterized by Eq.~5.26! is not fixed in a uni-
versal manner.

Equation~5.26! is exactly the condition for the ‘‘separa
trix’’ found in @5# in the context of the 4-dimensiona
Einstein-Hilbert truncation. In the terminology of@5#, the
separatrix is the ‘‘type IIa trajectory’’ that interpolates b
tween the Gaussian and the non-Gaussian fixed point o
02502
ds

a

d

he

Einstein-Hilbert truncation, thereby separating the region
trajectories withlk→0→2` ~type Ia! from those which hit
the boundary of parameter space (l51/2) for some finite
value ofk ~type IIIa!. In Fig. 1~a! we depict the separatrix, a
type Ia and a type IIIa trajectory in the vicinity of (l,g)
5(0,0). The plot should be thought of as a projection fro
l-g-b space onto itsb50 plane.

For the separatrix, Eq.~5.19! for the running ofGk is
valid down tok50 becausegk stays near the origin. Ford
Þ2 the parametersFd/221

1 (0) andFd/2
2 (0) appearing invd

are scheme dependent, andvd is nonuniversal. In the mos
interesting case ofd54,

v45
1

24p
@13F1

1~0!179F2
2~0!#. ~5.27!

Since F1
1(0) and F2

2(0) are positive for any admissibl
shape function5 we can infer from Eq.~5.27! thatv4 is posi-
tive. Thus, if we define QEG with vanishing renormalize

5Using the exponential shape functionR(0) with s51, for in-
stance, we haveF1

1(0)5p2/6, F2
2(0)51 so thatv4'1.33. Fur-

thermore, we haveF2
1(0)52z(3) wherez denotes the Riemann

zeta function, and thusn4'0.19.
6-19



je

G

s
o

pa

-

ts

un
s

tio

e

ith
-
ac

on

ot

ries
-

at-

t
rm

y

rbi-
e

de

s

lly
The

O. LAUSCHER AND M. REUTER PHYSICAL REVIEW D66, 025026 ~2002!
cosmological constant to be the theory described by a tra
tory in l-g-b space, whosel andg coordinates follow the
separatrix in the limitk→0, Eq. ~5.17! implies that QEG is
antiscreening in the IR, i.e.Gk decreases ask increases.

Up to now we investigated theb50 projection of the
flow on l-g-b space. Next we discuss the linearized R
flow of the b component.

1. dÄ4

In d54 the solution forbk , Eq. ~5.23!, diverges in the
limit k→0. If lkÞndgk as k→0, the leading divergence i
quadratic ink. However, in this case the linearization cann
be trusted down to arbitrarily small values ofk anyhow since
trajectories withlkÞndgk ultimately run away from (l,g)
5(0,0) for k→0.

For the distinguished trajectories which satisfy the se
ratrix condition~5.26! for k→0, the coefficient of the term
}(k0 /k)2 in Eq. ~5.23! vanishes and only a logarithmic run
ning with auniversalcoefficient remains:

bk5bk0
2

n4§41t4

2
gk0

1
419

1080
~4p!22lnS k

k0
D

1O~k2!. ~5.28!

Since higher orders inbk appear exclusively as produc
gk

nbk
m with n>m, the vanishing of gk

n
„ln(k/k0)…

m

}(k/k0)2n
„ln(k/k0)…

m in the limit k→0 then implies that
terms of orderbk

2 remain negligible ask→0. As a conse-
quence, the linearization does not break down fork→0 al-
thoughbk diverges in this limit.

According to Eqs.~5.16!, ~5.26!, lk and gk quickly ap-
proachl5g50 so that the corresponding trajectories r
almost along theb axis fork→0, and the RG flow become
essentially one-dimensional. This logarithmic running ofbk
was expected on the basis of conventional perturba
theory @31#. We observe thatubku decreases logarithmically
with increasingk. This is what is usually referred to as th
‘‘asymptotic freedom’’ of the (curvature)2 coupling. We em-
phasize, however, that according to our results this logar
mic running occurs only close tog5l50 and does not rep
resent the true short-distance behavior of the theory. In f
we shall find thatbk runs towards a fixed point valueb* for
k→`.

Figure 1~b! shows three typical trajectories of theR2 trun-
cation close to (l,g,b)5(0,0,0); all of them satisfy the
separatrix condition~5.26!. Their b component diverges
logarithmically towards2` ask goes to zero, which is due
to the positive coefficient in front of the ln(k/k0) term in Eq.
~5.28!. In this figure we also depict the common projecti
of the trajectories onto thel-g plane. It coincides precisely
with the separatrix of the Einstein-Hilbert truncation@5#, i.e.
the curve in Fig. 1~a! that hits (l,g)5(0,0). Conversely, all
trajectories of theR2 truncation satisfying Eq.~5.26! repre-
sent specific ‘‘lifts’’ of the separatrix with nonvanishingb
components; they are distinguished by theirbk0

andgk0
val-

ues.
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Let us now discuss theb evolution for 2,dÞ4. Again,
the linearization breaks down for trajectories which do n
satisfy Eq.~5.26! for k→0 since ulk→0u→` in this case.
Therefore we restrict our considerations to the trajecto
with lk5ndgk for sufficiently smallk. In this case the sec
ond, quadratically divergent term of Eq.~5.22! drops out,
and the only powers ofk which occur inbk are kd22 and
k42d.

In 2,d,4, both q25d22 andq3542d are positive
which implies that the RG trajectories considered are
tracted towards (l,g,b)5„0,0,gd /(d24)… as k is sent to
zero.

For d.4, q3 is negative and thusbk contains a divergen
term }k42d. As a consequence, the coefficient of this te
must vanish, if a trajectory is to hit the point (l,g,b)
5„0,0,gd /(d24)… in the limit k→0. The distinguished tra-
jectory which runs into this point ask→0 satisfies, for suf-
ficiently small values ofk,

bk5
nd§d1td

2~d23!
gk5

nd§d1td

2~d23!nd
lk

⇔b̄k5
nd§d1td

2~d23!
Gkk

2(d23)

5
nd§d1td

2~d23!nd
l̄kk

d26. ~5.29!

For all other trajectories theb component diverges fork
→0. However, higher orders ofbk are again suppressed b
powers of gk and may therefore be neglected.~Note that
lim

k→0
gk

nbk
m} lim

k→0
kn(d22)2m(d24)50 for n>m.! As a

consequence, the linearization can be trusted down to a
trarily small scalesk even in this case. The shape of th
corresponding trajectories resembles the one found ind54.
While ubku→`, the l and g components approachl5g
50 in the limit k→0. Thus, for sufficiently smallk, the
trajectories are almost straight lines which virtually coinci
with the b axis.

Having a closer look at theb functions one recognize
that the IR scaling behavior indÞ4 dimensions is actually
governed by a ‘‘quasi-Gaussian’’ fixed point at

~l* ,g* ,b* !5„0,0,gd /~d24!…. ~5.30!

The quasi-Gaussian fixed point is not present ind54. Lin-
earizing the RG flow about this fixed point yields essentia
the same results as our expansion about (0,0,0) above.
linearizedb functions with stability matrixB, and the linear
6-20
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FIG. 2. ~a! The cased53: three typical trajectories of the linearized flow. They correspond to different values ofbk0
, but all of them

satisfy Eq.~5.26!. As a consequence, all 3 trajectories hit the quasi-Gaussian fixed point fork→0. ~b! The cased55: three typical
trajectories of the linearized flow corresponding to different values ofbk0

. All of them satisfy Eq.~5.26!, but in contrast to the other two
curves, the one in the middle satisfies also Eq.~5.29!. As a consequence, it hits the quasi-Gaussian fixed point fork→0. In both~a! and~b!
we also depict the projection of the curves onto theb50 plane.
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solutions associated with this fixed point, may be obtain
from Eqs.~5.10!, ~5.11!, ~5.16!, ~5.22!, and~5.29! simply by
replacingtd with

t̂d[td2
2~4p!12d

d24
„h39~d!1h45~d!Fd/2

2 ~0!…. ~5.31!

In particular, B5M (td→ t̂d). The constantsu I52q I as-
sume the meaning of critical exponents now, and their si
determine the dimensionalityD IR of the ~truncated! IR criti-
cal hypersurfaceSIR of the quasi-Gaussian fixed point.

In 2,d,4 we have one positive critical exponentu1
.0 and two negative critical exponentsu2 ,u3,0. There-
fore, within the truncation,D IR52, as suggested by the co
responding solutions discussed above.

In d.4, u1 andu3 are positive andu2 is negative. Hence
in this caseD IR51, i.e. SIR consists of a single trajectory
For sufficiently small values ofk this IR critical trajectory is
given by Eq. ~5.29! with td replaced witht̂d . Since the
parametersnd , §d and t̂d containR(0)-dependent integrals
Fn

p(0), F̃n
p(0), they are not universal. Therefore the slop

in both directions of the distinguished trajectory~5.29! are
not fixed in a universal manner. This is in accordance w
the general expectation that the eigenvalues ofB should be
universal, but not its eigenvectors.

We illustrate our results fordÞ4 in Fig. 2. In Fig. 2~a! we
considerd53 and in Fig. 2~b! the 5-dimensional case. Eac
figure shows three typical trajectories in the vicinity of t
quasi-Gaussian fixed point. All of them satisfy Eq.~5.26!, so
that in bothd53 andd55 the projections of the 3 trajecto
ries onto theb50 plane coincide with the separatrix.
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In d53, Fig. 2~a!, all 3 trajectories hit the fixed point
independently of theirbk0

value. As we already pointed ou

above, the quasi-Gaussian fixed point ind,4 is IR attractive
for all trajectories satisfying Eq.~5.26!. In d.4 this is no
longer the case. This is confirmed by Fig. 2~b! for d55.
Here only one of the trajectories hits the quasi-Gauss
fixed point for k→0, and this is precisely the one whic
satisfies the additional condition~5.29!. The other two trajec-
tories shown in Fig. 2~b! correspond tobk0

values which are

different from the one in Eq.~5.29! and thus theirb compo-
nent diverges in the limitk→0. Depending on thebk0

value,

bk runs towards1` or 2`.

C. The non-Gaussian fixed point

Now we turn to the nontrivial simultaneous zeros of t
set ofb functions$bl ,bg ,bb% given by Eqs.~4.23!, ~4.24!,
~4.25!. Such non-Gaussian fixed points withl* , g* , b* all
different from zero have the anomalous dimensions

hN* 522d, hb* 5d24 ~5.32!

which follow immediately from Eqs.~4.24! and ~4.25!.

1. Results obtained from the pure Einstein-Hilbert truncation

In d54 dimensions, and for the cutoff of the type A in
troduced in@2#, the non-Gaussian fixed point of the pu
Einstein-Hilbert truncation was first discussed in@20,9#, and
in Ref. @35# the a and R(0) dependence of its projectio
(0,g* ) onto theg direction has been investigated. Howeve
since foraÞ1 the cutoff of type A was defined in@34# by an
ad hocmodification of the standard one-loop determinants
6-21
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is not clear whether it can be derived from an actionDkS,
except for the casea51 @1#. Since a specification ofDkS is
indispensable for the actual construction ofGk , the status of
the results derived in@35# is somewhat unclear. In Ref.@2#
we performed a comprehensive analysis of the fixed p
properties using different cutoffs of type B, for which aDkS
is known to exist. In particular, we investigated the cut
scheme dependence of various universal quantities of in
est, both by looking at their dependence on the shape fu
tion R(0) and by comparing the ‘‘type A’’ and ‘‘type B’’ re-
sults.

In this respect universal quantities are of special imp
tance because, by definition, they are strictly cutoff sche
independent in the exact theory. Any truncation leads t
scheme dependence of these quantities whose magnitud
measure for the reliability of the truncation@43#. Typical ex-
amples of universal quantities are the critical exponentsu I .
The existence or nonexistence of a fixed point is also a
versal, scheme independent feature, but its precise loca
in parameter space is scheme dependent. Nevertheless
be argued that, ind54, the productg* l* is universal@44,2#
while g* andl* separately are not.

For later comparison with theR2 truncation, let us briefly
list some of the results we obtained in@2# with the pure
Einstein-Hilbert truncation:

(1E.H.) Universal Existence: Both for type A and type
cutoffs the non-Gaussian fixed point exists for all sha
functionsR(0) we considered. This result is highly nontrivia
since in higher dimensions (d*5) the fixed point exists for
some but does not exist for other cutoffs@5#.

(2E.H.) Positive Newton Constant: While the position
the fixed point is scheme dependent, all cutoffs yieldpositive
values ofg* and l* . A negativeg* might be problematic
for stability reasons, but there is no mechanism in the fl
equation which would exclude it on general grounds.

(3E.H.) Stability: For any cutoff employed, the non
Gaussian fixed point is found to be UV attractive in bo
directions of thel-g plane. Linearizing the flow equatio
according to Eq.~5.2! we obtain a pair of complex conjugat
critical exponentsu15u2* with positive real partu8 and
imaginary parts6u9. Due to the positivity ofu8, all trajec-
tories in its basin of attraction hit the fixed point ask is sent
to infinity. Because of the nonvanishing imaginary partu9
the trajectories spiral into the fixed point fork→`.

Solving the full, nonlinear flow equations@5# shows that
the asymptotic scaling region where the linearization is va
extends fromk‘ ‘ 5 ’ ’ ` down to aboutk'mPl with the
Planck mass defined asmPl[G0

21/2. It is the regime above
the Planck scale where the asymptotic freedom ofGk sets in.

(4E.H.) Scheme and Gauge Dependence: The critical
ponents are reasonably constant within about a factor o
For the gaugesa51 and a50, for instance, they assum
values in the ranges 1.4&u8&1.8, 2.3&u9&4 and 1.7&u8
&2.1, 2.5&u9&5, respectively. The universality propertie
of the productg* l* are much more impressive though. D
spite the rather strong scheme dependence ofg* and l*
separately, their product exhibits almost no visibleR(0) de-
pendence. Its value isg* l* '0.12 for a51 and g* l*
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'0.14 for a50. The differences between the ‘‘physica
~fixed point! value of the gauge parameter,a50, and the
technically more convenienta51 are at the level of abou
10 to 20 percent.

The above results suggest that the UV attractive n
Gaussian fixed point occurring in the Einstein-Hilbert tru
cation is very unlikely to be an artifact of this truncation b
should rather be the projection of a fixed point in the ex
theory. We interpreted them as nontrivial indications suppo
ing the conjecture that 4-dimensional QEG is ‘‘asympto
cally safe’’ in Weinberg’s sense.

2. Results obtained from the R2 truncation

The actual justification of a truncation is that when o
adds further terms to it its physical predictions do not chan
significantly any more. In order to test the stability of th
Einstein-Hilbert truncation against the inclusion of other
variants we shall now reanalyze the non-Gaussian fixed p
in the generalized truncation~4.2! including the R2 term.
Starting from theb functions of theR2 truncation, Eqs.
~4.23!, ~4.24! and ~4.25!, we determine the location of th
fixed point in l-g-b space and the linearized flow in it
vicinity. Then we investigate the residual cutoff scheme d
pendence of the associated universal quantities, and we c
pare our results to those obtained from the pure Einst
Hilbert truncation.

Note that, contrary to the pure Einstein-Hilbert truncatio
only a cutoff of type B is used in the context of the gener
ized truncation. Therefore we omit the specification of t
cutoff type when we refer to results obtained from theR2

truncation.
Location of the fixed point(d54). In a first attempt at

finding the non-Gaussian fixed point in theR2 truncation we
neglect the cosmological constant and the coupling of theR2

invariant. We approximatelk[l* 50, bk[b* 50, thereby
projecting the renormalization group flow onto the on
dimensional space parametrized byg. In this case the non-
Gaussian fixed point is obtained as the nontrivial solution
bg(0,g* ,0;d)50. It is determined in Appendix E with the
result given by Eq.~E2!. For anyd, this solution coincides
precisely with the analogous approximate solution~H2! of
Ref. @2# with a51, obtained in the pure Einstein-Hilbe
truncation. In order to get a numerical value for the fix
point we have to specifyR(0). Inserting the exponentia
shape function withs51 into Eq. ~E2! and settingd54
leads tog* '0.590.

Assuming that for the combinedl-g-b system the num-
bersl* , g* andb* are of the same order of magnitude
g* above we expand theb functions about (lk ,gk ,bk)
5(0,0,0) and neglect terms of higher orders in the co
plings. Again in Appendix E we determine the non-Gauss
fixed point from the corresponding system of different
equations. Inserting the shape function~3.10! and settingd
54, we find (l* ,g* ,b* )'(0.287,0.751,0.002). Quite re
markably, for any cutoffl* andg* agree perfectly with the
corresponding values obtained in@2# by the same approxi-
mation applied to the pure Einstein-Hilbert truncation.
6-22
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FIG. 3. ~a! g* , l* , andg* l* as functions ofs for 1<s<5, and~b! b* as a function ofs for 1<s<30, using the family of exponentia
shape functions.
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In order to determine theexact position of the non-
Gaussian fixed point (l* ,g* ,b* ) we have to resort to nu
merical methods. Given a starting value for the fixed po
for instance one of the approximate solutions above, the
gram we use determines a numerical solution which is ex
up to an arbitrary degree of accuracy. Under the same c
ditions as above, i.e. fors51 andd54, we obtain

~l* ,g* ,b* !5~0.330,0.292,0.005!. ~5.33!

In the pure Einstein-Hilbert truncation the correspond
coordinates of the fixed point are (l* ,g* )5(0.348,0.272)
@2#. Obviously the values ofl* andg* are almost the sam
in both cases. Whilel* and g* are of the same order o
magnitude, we find thatb* is significantly smaller thanl*
andg* .

In order to test whether these properties of the fixed po
coordinates are universal we study their scheme depend
by looking at thes or b dependence introduced via the on
parameter families of shape functions~3.11! or ~3.12!, re-
spectively. Heres parametrizes the family of exponenti
shape functions~3.11!, while the shape parameterb allows us
to change the profile of the shape functions with comp
support~3.12!.

As for the family of exponential shape functions, we a
forced to restrict our considerations to shape parametes
>1. This is because fors,1 the numerical integrations ar
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plagued by convergence problems. They are due to the
that in d54 some of the threshold functions appearing
bl , bg andbb diverge in the limits→0, see also@35#. As
for the family of shape functions with compact support, w
have to restrict ourselves tob<1.2 for similar reasons. Here
R(0)(y;b) approaches a sharp cutoff asb→1.5, which intro-
duces discontinuities into the integrands of the thresh

functions Fn
p and F̃n

p . Already for b*1.2 theb functions
start to ‘‘feel’’ the sharp cutoff limit, which leads to conve
gence problems.

As in the case of the pure Einstein-Hilbert truncation@2#
our results establish the existence of the non-Gaussian fi
point in a wide range ofs and b values. As expected, th
position of the fixed point turns out to depend ons or b, i.e.
on the cutoff scheme, but the crucial point is that it exists
any of the cutoffs employed. Figures 3 and 4 show its co
dinates (l* ,g* ,b* ) as well as the productg* l* for the
shape functions~3.11! and ~3.12!, respectively. In Fig. 3~a!
we plotted the various quantities in the range 1<s<5 where
the largest changes inl* and g* occur, but we calculated
them for 1<s<30. For every shape parameters or b, the
values ofl* andg* are almost the same as those obtain
with the Einstein-Hilbert truncation@2#. As a consequence
the productg* l* is again almost constant and its value d
fers only slightly from the one in@2# for the same gaugea
51. Both Figs. 3~a! and 4~a! suggest the universal valu
rt.
FIG. 4. ~a! g* , l* andg* l* , and~b! b* as functions ofb for 0<b<1.2, using the family of shape functions with compact suppo
6-23
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FIG. 5. Trajectory of the linearized flow equation obtained from theR2 truncation for 1<t5 ln(k/k0),`. In ~b! we depict the eigendi-
rections and the ‘‘box’’ to which the trajectory is confined.
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g* l* '0.14 while we obtainedg* l* '0.12 from the pure
Einstein-Hilbert truncation. Thus we may expect that o
g* l* -value is precise at the 10 to 20 percent level. Presu
ably this degree of precision is the best we can achieve in
present calculation because we saw already that the erro
to using a51 instead of the ‘‘correct’’a50 leads to an
uncertainty of the same size.

Furthermore, our results show thatb* is always signifi-
cantly smaller thang* and l* for both families of shape
functions, which is quite remarkable. Within the limited pr
cision of our calculation this means that in the thre
dimensionall-g-b space the fixed point practically lies i
the l-g plane withb50, i.e. on the parameter space of t
pure Einstein-Hilbert truncation.

It is also interesting to note that the scheme dependenc
b* is unexpectedly small. As for the family of exponenti
shape functions~3.11!, the functionb* (s) depicted in Fig.
3~b! develops a plateau-like shape for not too small value
s. Employing the family of shape functions with compa
support, the scheme dependence ofb* is even weaker. The
function b* (b) plotted in Fig. 4~b! is almost constant in the
range 0<b<1.2. Moreover, the positions of the two platea
are nearly identical. While Fig. 3~b! suggests the valueb*
'0.0031, we obtainb* '0.0036 from Fig. 4~b!. This indi-
cates that ind54 dimensions alsob* might be a universa
quantity.

The linearized flow (d54). Let us now analyze the critica
behavior near the non-Gaussian fixed point. Quite rema
ably, the non-Gaussian fixed point of theR2 truncation
proves to be UV attractive in any of the three directions
l-g-b space, for all cutoffs used. The linearized flow in
vicinity is always governed by a pair of complex conjuga
critical exponentsu15u81 iu95u2* with u8.0 and a single
real, positive critical exponentu3.0. ~We defineu1 as the
critical exponent with the positive imaginary part so thatu9
.0.! The general solution to the linearized flow equations
obtained by taking the real part of Eq.~5.4!. Introducing the
RG time t[ ln(k/k0) it may be written as
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~lk ,gk ,bk!
T5~l* ,g* ,b* !T12$@ReC cos~u9t !

1Im C sin~u9t !#ReV1@ReC sin~u9t !

2Im C cos~u9t !#Im V%e2u8t1C3V3e2u3t

~5.34!

with arbitrary complexC[C15(C2)* and arbitrary realC3.
Furthermore,V[V15(V2)* andV3 are the right eigenvec
tors of the stability matrix (Bi j ) i , j P$l,g,b% with eigenvalues
2u152u2* and2u3, respectively. Obviously the condition
for UV stability areu8.0 andu3.0. They are indeed sat
isfied for all cutoffs. As a consequence, all RG trajector
which reach its basin of attraction hit the fixed point ast is
sent to infinity. The trajectories~5.34! comprise three inde-
pendent normal modes with amplitudes proportional
ReC, Im C and C3, respectively. The first two are of th
spiral type, the third one is a straight line.

Let us illustrate these features by means of an exam
For the exponential shape function~3.11! with s51, for in-
stance, we have (l* ,g* ,b* )5(0.330,0.292,0.005). The
corresponding stability matrixB takes the form

B52S 8.83 2.61 401.75

6.18 4.46 89.24

0.29 0.32 19.82
D . ~5.35!

It leads to the pair of complex critical exponentsu15u2*
with u852.15, u953.79, and to the real critical exponen
u3528.8. For the associated right eigenvectors we find

ReV5~20.164,0.753,20.008!T,

Im V5~0.64,0,20.01!T,

V352~0.92,0.39,0.04!T. ~5.36!

~The vectors are normalized such thatuuVuu5uuV3uu51.! In
Fig. 5 we show a typical trajectory which has all three no
6-24
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FIG. 6. ~a! u85Reu1 andu95Imu1, and~b! u3 as functions ofs, using the family of exponential shape functions.
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mal modes excited with equal strength (ReC5Im C
51/A2, C351). All its way down fromk‘ ‘ 5 ’ ’ ` to about
k5mPl it is confined to a very thin box surrounding theb
50 plane, i.e. the parameter space of the Einstein-Hilb
truncation.

In fact, the linearized flow is characterized by the follow
ing quite remarkable properties, independently of the cut
They all indicate that, close to the non-Gaussian fixed po
the RG flow is rather well approximated by the pu
Einstein-Hilbert truncation.

~a! The b components of ReV and ImV are very tiny.
Hence these two vectors span a plane which virtually co
cides with thel-g subspace atb50, i.e. with the paramete
space of the Einstein-Hilbert truncation. As a consequen
the ReC and ImC normal modes are essentially the sam
trajectories as the ‘‘old’’ normal modes already found wit
out theR2 term. Also the correspondingu8 and u9 values
coincide within the scheme dependence; see below.

~b! For all cutoffs employed, the new eigenvalueu3 intro-
duced by theR2 term is significantly larger thanu8; see
below. When a trajectory approaches the fixed point fr
below (t→`), the ‘‘old’’ normal modes}ReC,Im C are
proportional to exp(2u8t), but the new one is proportional t
exp(2u3t), so that it decays much more quickly. For eve
trajectory running into the fixed point, i.e. for every set
constants (ReC,Im C,C3), we find therefore that, oncet is
sufficiently large, the trajectory lies entirely in the ReV-Im V
subspace, i.e. theb50 plane practically.

Due to the large value ofu3, the new scaling field is very
‘‘relevant.’’ However, when we start at the fixed poin
(t ‘ ‘ 5 ’ ’ `) and lowert it is only at the low energy scalek
'mPl (t'0) that exp(2u3t) reaches unity, and only then, i.e
far away from the fixed point, the new scaling field sta
growing rapidly.

~c! Since the matrixB is not symmetric its eigenvector
have no reason to be orthogonal. In fact, we find thatV3 lies
almost in the ReV-Im V plane. For the angles between th
eigenvectors given above we obtain\(ReV,Im V)
5102.3°, \(ReV,V3)5100.7°, \(Im V,V3)5156.7°.
Their sum is 359.7° which confirms that ReV, Im V andV3

are almost coplanar. This implies that when we lowert and
move away from the fixed point so that theV3-scaling field
02502
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starts growing, it is again predominantly the*ddxAg and
*ddxAgR invariants which get excited, but not*ddxAgR2 in
the first place.

Summarizing the three points above we can say that v
close to the fixed point the RG flow seems to be essenti
two-dimensional, and that this two-dimensional flow is w
approximated by the RG equations of the Einstein-Hilb
truncation.

Scheme dependence of the critical exponents(d54). As
we pointed out already the critical exponents are universa
an exact treatment, but in a truncated parameter spa
scheme dependence is expected to occur as an artifact o
truncation. We may use it to judge the quality of our trunc
tion. Also in this respect theR2 truncation yields satisfactory
results, which we display in Figs. 6 and 7. Figures 6~a! and
7~a! show the real and the imaginary partu8 and u9 of the
complex conjugate pairu15u2* while u3 is depicted in Figs.
6~b! and 7~b!. The plots in Fig. 6 are based on the family
exponential shape functions~3.11! and those in Fig. 7 are
obtained by employing the family of shape functions w
compact support~3.12!. They display thes and theb depen-
dence of the critical exponents, respectively.

As for the complex conjugate pair of critical exponen
the scheme dependence is of the same order of magnitud
in the case of the Einstein-Hilbert truncation@2#. While the
scheme dependence ofu9 is weaker than that found in@2# we
see that it is slightly larger foru8. For the exponential shap
functions with 1<s<30, u8 and u9 assume values in the
ranges 2.1&u8(s)&3.4 and 3.1&u9(s)&4.3, respectively.
Employing the shape functions with compact support le
to a weaker dependence on the shape parameterb. However,
the corresponding valuesu8(b) andu9(b) are in good agree-
ment with those obtained with the exponential cutoffs.
fact, they all lie in theu8(s) andu9(s) intervals given above.
The average values ofu8 and u9 are slightly larger than
those obtained from the pure Einstein-Hilbert truncation. T
difference between the corresponding average values is
proximately 1 for bothu8 andu9.

Let us now come to the new critical exponentu3 which
was not present in the Einstein-Hilbert truncation. Using
exponential shape functions~3.11! it suffers from relatively
strong variations as the shape parameters is changed. It as-
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FIG. 7. ~a! u85Reu1 andu95Imu1, and~b! u3 as functions ofb, using the family of shape functions with compact support.
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sumes values in the range 8.4&u3(s)&28.8. As compared to
the exponential cutoffs, the cutoffs with compact supp
lead to a much weaker scheme dependence. ForbP@0,1.2#
we have 23.0&u3(b)&26.7. However, the results obtaine
with the two families of shape functions agree within t
scheme dependence. Moreover,u3 is always systematically
larger thanu8 ~and u9) with both families of cutoffs. As a
consequence, the hierarchy of critical exponents which
mentioned in~b! above and which squeezes the trajector
into a thin box is a universal feature.

Obviously the critical exponents, in particularu3, exhibit
a much stronger scheme dependence thang* l* . This is
most probably due to neglecting further relevant operator
the truncation so that theB matrix we are diagonalizing is
still too small.

In 21« dimensions. The above results and their mutu
consistency strongly suggest that 4-dimensional quan
Einstein gravity indeed possesses a RG fixed point with p
cisely the properties needed for its nonperturbative renorm
izability or ‘‘asymptotic safety.’’ However, with the presen
approach it is clearly not possible to determine the dim
sionality DUV of the UV critical hypersurface, which coin
cides with the number of invariants relevant at the no
Gaussian fixed point. According to the canonic
dimensional analysis, the~curvature! n invariants in 4 dimen-
sions areclassicallymarginal forn52 and irrelevant forn
.2. The results foru3 indicate that there are largenonclas-
sical contributions so that there might be relevant operat
perhaps even beyondn52. However, as it is hardly conceiv
able that the quantum effects change the signs of arbitra
large~negative! classical scaling dimensions,DUV should be
finite @23#.

A first confirmation of this picture comes from ourR2

calculation in d521« where the dimensional count i
02502
t

s
s
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m
e-
l-

-

-
l

s
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shifted by two units. In this case we find indeed that the th
scaling field isirrelevant for any cutoff employed,u3,0.

For our analysis of theR2 truncation ind521« dimen-
sions with 0,«!1 we had to resort to numerical method
Using the« expansion we calculated the fixed point coord
nates and the critical exponents for selected values of
shape parameters. For all quantities only the leading non
trivial order of the« expansion was retained. In Table I w
present the corresponding numerical results.

For all cutoffs used we obtain threereal critical expo-
nents, the first two are positive and the third is negati
Thus, the correspondingV3 direction is UV repulsive. This
suggests that the dimensionality ofSUV could be as small as
DUV52, but this is not a proof, of course. If so, the quantu
theory would be characterized by only two free paramete
the renormalized Newton constantG0 and the renormalized

cosmological constantl̄0, for instance.
Let us now compare the results to those from the Einste

Hilbert truncation@1,2#. Thel andg coordinates of the fixed
point and the critical exponentsu1 and u2 are found to be
similar to those in@1,2#. However, in the Einstein-Hilber
truncation the leading-order resultsg* 53/38«1O(«2)
'0.079«1O(«2) and u25«1O(«2) are scheme indepen
dent, which is not quite true for the results above. Both tru
cations agree onu1521O(«).

Summary.Our main results concerning the non-Gauss
fixed point in theR2 truncation are:

(1R2) Position of the fixed point: The fixed point is foun
to exist for all cutoffs used. This result is highly nontrivia
since the example of the Gaussian fixed point clearly sho
that a fixed point of the Einstein-Hilbert truncation does n
necessarily generalize to a fixed point of theR2 truncation.
For every shape parameter the fixed point practically lies
TABLE I. Fixed point coordinates and critical exponents.

s l* „1O(«2)… g* „1O(«2)… b* „1O(«)… u1„1O(«)… u2„1O(«2)… u3„1O(«)…

1 20.131« 0.087« 20.083 2 0.963« 21.968
5 20.055« 0.092« 20.312 2 0.955« 21.955

10 20.035« 0.095« 20.592 2 0.955« 21.956
6-26
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thel-g plane, and its position almost exactly coincides w
that from the Einstein-Hilbert truncation.

(2R2) Eigenvalues and eigenvectors: The fixed point
UV attractive in any of the three directions of thel-g-b
space for all cutoffs employed. The linearized flow in
vicinity is always governed by a pair of complex conjuga
critical exponentsu15u81 iu95u2* with u8.0 and a single
real, positive critical exponentu3.0. It is essentially two-
dimensional, and this two-dimensional flow is well describ
by the RG equations of the Einstein-Hilbert truncation.

(3R2) Scheme dependence: The scheme dependenc
the critical exponents and of the productg* l* is of the same
order of magnitude as in the case of the Einstein-Hilb
truncation. While the scheme dependence ofu9 is weaker
than in the case of the Einstein-Hilbert truncation we fi
that it is slightly larger foru8. The exponentu3 shows a
relatively strong dependence on the cutoff. The prod
g* l* again exhibits an impressively weak scheme dep
dence.

(4R2) Dimensionality ofSUV : The dimensionalityDUV of
the UV critical hypersurface cannot be determined within
present approach. However, the results from ourR2 calcula-
tion in 21« dimensions suggest thatDUV should be finite
also in 4 dimensions.

On the basis of the above results we believe that the n
Gaussian fixed point occurring in the Einstein-Hilbert tru
cation is very unlikely to be an artifact of this truncation b
rather should be the projection of a fixed point in the ex
theory. We demonstrated explicitly that the fixed point a
all its qualitative properties are stable against the inclusion
a further invariant in the truncation. These results stron
support the hypothesis that 4-dimensional QEG is ind
nonperturbatively renormalizable.

VI. POSITIVITY OF ACTION, HESSIAN, AND CUTOFF

A. Positivity of the action

It is a well known problem that ind.2 dimensions the
Euclidean Einstein-Hilbert action

SEH@g#5
1

16pḠ
E ddxAg$2R~g!12l̄% ~6.1!

is not bounded below. In fact, decomposing the metric
gmn5exp(2x)ḡmn where ḡmn is a fixed reference metric w
obtain

SEH@g#5
1

16pḠ
E ddxAḡe(d22)x@2R̄12l̄e2x

2~d21!~d22!ḡmn~D̄mx!~D̄nx!#. ~6.2!

This shows thatSEH can become arbitrarily negative if th
conformal factorx(x) varies rapidly enough so that (D̄mx)2

is large. Therefore it seems difficult to define a path integ
Z5*Dgmnexp(2SEH) for Euclidean quantum gravity.
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The situation improves by including the term*ddxAgR2

with a positive coefficient since the resulting action
bounded below @18#. While the Einstein-Hilbert term
*ddxAgR leads to a negative contribution to the kinetic ter
of the conformal factor, which dominates at small momen
the R2 term gives rise to a positive contribution dominatin
at large momenta. As a consequence, both the truncated
tion functional Gk@g,ḡ# of Eq. ~4.2! and the bare action
S@g#5G k̂→`@g,g# possess an absolute minimum. Moreov
rewriting the truncation ansatz~4.2! with ḡmn5gmn as

Gk@g,g#5E ddxAgH b̄kS R2
ZNkk

2

b̄k
D 2

1ZNkk
2S 4l̄k2

ZNkk
2

b̄k
D J ~6.3!

one can easily determine a sufficient condition for a ma
festly positiveactionGk@g,g#.0. In terms of the dimension
less couplings it readsgk.0, bk.0, and

128pgklkbk.1. ~6.4!

B. Positivity of the Hessian

At the level of the flow equation,Gk appears on the RHS
in terms of its HessianGk

(2) to which the cutoff operatorRk

is adapted by the rule~3.5!. Thus, only ifGk
(2) is a positive

definite operator can we obtain a cutoff which leads to
‘‘correct’’ mode suppression. Since we expect theR2 trunca-
tion anyhow to be reliable only for largek, it is actually
sufficient if Gk

(2) andRk are positive definite for sufficiently

large momentap2[2D̄2. The reason is that, due to the fa
tor ] tRk(p2) which emphasizes the regionp2'k2, the traces
on the RHS of the RG equation~3.4! receive the dominan
contributions from modes whosep2 is close tok2.

In generalGk
(2)@g,ḡ# depends on bothgmn and the back-

ground metric ḡmn . Here we concentrate onGk
(2)@g,g#

[Gk
(2) with the two metrics identified. Furthermore, we a

sume thatgmn5ḡmn is the metric of ad sphere with radiusr
since our projection technique requires these backgrou
only. In this case the eigenvaluesp25L l(d,s) depend on the
discrete quantum numberl. The explicit expressions fo
L l(d,s) are tabulated in Appendix C. They are strict
monotonically increasing functions of l with
lim

l→`
L l(d,s)5`.

In the following we show that the operatorGk
(2) with k

very large indeed becomes positive definite if it is restric
to the subspace spanned by the2D2 eigenfunctions with
sufficiently large eigenvalues, certain assumptions on
couplings being made. The spherical harmonicsTmn

lm , Tm
lm ,

and Tlm with l larger than a certain minimum valuel min
provide a basis of this subspace. We shall concentrate on
conditions implied by the leading large-l behavior.
6-27
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The HessianGk
(2)@g,g# as given by the quadratic form

~4.12! is a symmetric block diagonal matrix. Therefore, a
cording to the Jacobi criterion, the condition for positivi
takes the simple form (Gk

(2)) h̄Th̄T.0, (Gk
(2)) j̄ j̄.0, (Gk

(2)) f̄f̄

.0, and (Gk
(2)) s̄s̄(Gk

(2)) f̄f̄2(Gk
(2)) s̄f̄

2
.0. For sufficiently

large values ofl the leadingl powers ofL l(d,s) are the
dominating contributions to the entries ofGk

(2) in Eq. ~4.12!
so that, in this limit, the above condition boils down to

0,~Gk
(2)! h̄Th̄T →

l→`

~ZNkk
22b̄kR!L l~d,2!

⇒ZNkk
22b̄kR.0 ~6.5!

0,~Gk
(2)!j̄j̄ →

l→`

2
ZNkk

2

a L l~d,1!

⇒ ZNkk
2

a .0 ~6.6!

0,~Gk
(2)!f̄f̄ →

l→`

2S d21
d D 2

b̄k„L l~d,0!…2

⇒b̄k.0 ~6.7!

0,~Gk
(2)!s̄s̄~Gk

(2)!f̄f̄2~Gk
(2)!s̄f̄

2

→
l→`S d21

d D 2 ZNkk
2b̄k

a „L l~d,0!…3.0

⇒ ZNkk
2b̄k

a
.0. ~6.8!

For non-negative values of the gauge parameter,a>0, this
leads to the following restrictions on the dimensionless c
plings:

gk.0, bk.0, k2/~32pgkbk!.R. ~6.9!

In the UV fixed point regime of the (d54)-dimensional
case we havegk'g* andbk'b* with g* ,b* .0. Hence,
close to the non-Gaussian fixed point, the first two conditio
of Eq. ~6.9! are obviously satisfied. Furthermore, the th
condition then takes the formR,k2/(32pg* b* ). For R
fixed this condition is satisfied as well providedk is suffi-
ciently large. Thus, fork large and on modes with large e
genvalues of2D2, the restricted operatorGk

(2) is positive.
The cutoff should have the desired suppression prope
therefore.

The above argument treatsR as a constant parameter. R
calling the derivation of the projected flow equation whe
we compared powers of the radiusr}R21/2 it is indeed clear
that in this contextr and R should be regarded as fixed
k-independent quantities.

It is instructive to look also at the operato
Gk

(2)@gos(k),gos(k)# where gos(k) is the k-dependent ‘‘on-
shell’’ Sd metric which solves the equation of motio
02502
-

-

s

es

dGk /dgmn50 for gmn5ḡmn . The difference to the situation
discussed before is thatR is a function ofk now, to be com-
puted fromgos(k). „The operatorGk

(2)@gos(k),gos(k)# would
appear in a standard one-loop~saddle point! calculation
based upon the ‘‘classical’’ actionGk .…

For the truncated action functionalGk of Eq. ~4.2! with
ḡmn5gmn the field equation takes the form

2ZNkk
2@Gmn1gmnl̄k#1b̄k@2~Gmn1Rmn!R

12DmDnR22gmnD2R#50 ~6.10!

with Gmn5Rmn2gmnR/2 the Einstein tensor. Precisely fo
d54, the maximally symmetric solutions to Eq.~6.10! sat-
isfy Einstein’s equationGmn52gmnl̄k , they are not af-
fected by theR2 term. Inserting the contracted equationR

54l̄k into the third condition of Eq.~6.9! leads to

128pgklkbk,1. ~6.11!

Remarkably, this condition is satisfied precisely ifGk@g,g# is
not a manifestly positive functional ofgmn , as follows from
Eq. ~6.4!. This implies that ford54 the S4 solution of Eq.
~6.10! cannot correspond to the absolute minimum
Gk@g,g# if this functional is manifestly positive.

In the UV fixed point regime, the condition~6.11! be-
comes 128pg* l* b* ,1. For all cutoffs employed we found
that 0.17&128pg* l* b* &0.22 so that this condition is in
deed satisfied. It is reassuring that also, upon inserting thS4

solution of Eq.~6.10!, the HessianGk
(2) becomes a positive

operator for sufficiently large values ofl and k, indepen-
dently of the cutoff.

Furthermore, the concomitant violation of Eq.~6.4! im-
plies that in the vicinity of the fixed point the functiona
Gk@g,g# is bounded below but not positive. By adding a
appropriate constant it is trivial though to turn it into a man
festly positive functional.

C. Positivity of the cutoff

The cutoff DkS is expected to be positive definite und
the same conditions as found for the HessianGk

(2) in the
previous subsection. In order to obtain more quantitative
formation aboutl min and the momentum regime whereDkS
is positive we continue our analysis with an explicit inves
gation of the cutoff operatorRk . For simplicity we again
restrict our considerations to the most interesting case od
54 and to spherical backgrounds.

After setting (Rk) h̄Th̄T
mnab

[1/2(gmagnb1gmbgna)(Rk) h̄Th̄T

and (Rk) j̄ j̄
mn

[gmn(Rk) j̄ j̄ , and inserting the eigenvalues o
the covariant Laplacians, the entries of the cutoff mat
~3.8! assume the form
6-28
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~Rk! h̄Th̄T5
k4R(0)

„L l~4,2!/k2
…

32pgk
H 1232pgkbk

R

k2J ,

~Rk!j̄j̄5
k4R(0)

„L l~4,1!/k2
…

16pgka
,

~Rk!s̄s̄5
k4R(0)

„L l~4,0!/k2
…

32pgk
H 36pgkbk„2L l~4,0!/k21R(0)

„L l~4,0!/k2
……1

3

4J ,

~6.12!

~Rk!f̄s̄5~Rk!s̄f̄1

†
5

9

8
bkk

4H @L l~4,0!/k21R(0)
„L l~4,0!/k2

…#3/2AL l~4,0!/k21R(0)
„L l~4,0!/k2

…2
R

3k2

2@L l~4,0!/k2#3/2AL l~4,0!/k22
R

3k2J ,

~Rk!f̄f̄5
k4R(0)

„L l~4,0!/k2
…

32pgk
H 36pgkbk„2L l~4,0!/k21R(0)

„L l~4,0!/k2
……2

1

4J .
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As compared to Eq.~3.8! which was written in terms of the
dimensionful quantitiesZNkk

2, l̄k , and b̄k , we switched
here to a description in terms of the dimensionless couplin

In analogy with the HessianGk
(2) the condition for the

cutoff matrix Rk to be positive definite reads (Rk) h̄Th̄T.0,
(Rk) j̄ j̄.0, (Rk) f̄f̄.0, and (Rk) f̄f̄(Rk) s̄s̄2(Rk) f̄s̄

2
.0.

These conditions indeed reproduce the restrictions on
couplings obtained fromGk

(2) for sufficiently large momenta
p25L l(d,s). Provided thata>0, they take the formgk
.0, bk.0 and k2/(32pgkbk).R, which coincides with
Eq. ~6.9!.

Given an arbitrary set of parameters (R,k,gk ,bk) satisfy-
ing these three inequalities, we have (Rk) h̄Th̄T.0 and
(Rk) j̄ j̄.0 @and also (Rk) s̄s̄.0# for any allowed value ofl.
This is not the case for the other two conditions which st
from the scalar sector of the cutoff. Clearly (Rk) f̄f̄ of Eq.
~6.12! can assume negative values for sufficiently small v
ues ofl, providedgk , bk andR/k2 are small enough. Sinc
(Rk) s̄s̄.0, a negative (Rk) f̄f̄ implies that also
(Rk) f̄f̄(Rk) s̄s̄2(Rk) f̄s̄

2
,0.

The l values for which (Rk) f̄f̄.0 satisfy

2L l~4,0!/k21R(0)
„L l~4,0!/k2

….
1

144pgkbk
. ~6.13!

In Appendix G we derive a similar inequality involving th
f̄-s̄ cross term. There we find that (Rk) f̄f̄(Rk) s̄s̄

2(Rk) f̄s̄
2

.0 at least for all values ofl satisfying

2L l~4,0!/k21R(0)
„L l~4,0!/k2

….
1

96pgkbk
. ~6.14!

Both inequalities, Eqs.~6.13! and ~6.14!, depend on
gkbk , on p2/k2 with p25L l(4,0)5 l ( l 13)R/12, and on
the shape function R(0). Given a specific se
02502
s.

e

l-

(R,k,gk ,bk ;R(0);Tlm) with a certain scalar eigenmodeTlm,
they tell us whether the contribution from this mode is su
pressed correctly or not. The more restrictive inequa
~6.14! applies to the scalar eigenmodes$Tlm% with l>2,
while Eq.~6.13! can be used for the constant modeTl 50,m51

and the PCKV’s$Tl 51,m% only.
Let us now focus on RG trajectories which run into t

non-Gaussian fixed point ask→`. Furthermore, we assum
that R is either kept fixed or thatR5akk

2 with a constant
ak,(32pgkbk)

21. Then, for large enough values ofk, we
have gk'g* .0, bk'b* .0 and k2/(32pg* b* ).R so
that the conditions~6.9! for the positivity ofGk

(2) andRk are
satisfied. Moreover, the RHS of Eqs.~6.13! and ~6.14! may
be expressed as (144pg* b* )21 and (96pg* b* )21, respec-
tively.

Now we are in a position to determine thel regime for
which the cutoff is manifestly positive definite. Using th
family of exponential shape functions~3.11! with 1<s<30,
a numerical analysis reveals thatany value of the ratiox
[p2/k25L l(4,0)/k2 satisfies Eq.~6.13! or ~6.14! provided
s*2 or s*7, respectively. Hence, under the above con
tions, all cutoffs employing an exponential shape functi
with s*7 are manifestly positive definite forall momenta,
i.e. for all quantum numbersl.

This is a rather intriguing result. It might indicate th
cutoffs with s.7 are particularly reliable.

Conversely, for anys&7 there exists a specific valu
x0(s) such that allx with x<x0(s) violate Eq.~6.14!. Fur-
thermore, there exists a specificx1(s) for anys&2 such that
any x<x1(s) leads to a violation of Eq.~6.13!. In Fig. 8 we
show x0(s) and x1(s) in the ranges 1<s<6 and 1<s<2,
respectively. It is important to note thatx0(s),0.7 and
x1(s),0.26 for any value ofs considered. This implies tha
in the UV fixed point regime the cutoff has the desired su
pression properties for all modes with momenta rang
from infinity down to values well belowk.
6-29
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FIG. 8. ~a! x0, and~b! x1 as functions ofs, using the family of exponential shape functions.
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To complete the analysis let us study the inequalit
~6.13! and~6.14! also at the spherically symmetric stationa
point gos(k) of Gk@g,g# which we discussed in the previou
subsection. In the vicinity of the fixed point the on-sh
value of the curvature isR'4l* k2. Hence, we obtain from
Eqs.~6.13! and ~6.14!, respectively,

f 1@R(0); l #[
2l ~ l 13!l*

3
1R(0)

„l ~ l 13!l* /3…

2
1

144pg* b*
.0, l 50,1 ~6.15!

and

f 0@R(0); l #[
2l ~ l 13!l*

3
1R(0)

„l ~ l 13!l* /3…

2
1

96pg* b*
.0, l>2. ~6.16!

The first inequality stems from the scalar eigenmodesTlm

with l 50,1, and the second from those withl>2. Both Eqs.
~6.15! and ~6.16! depend onl andR(0).

Again we restrict our investigation to the family of exp
nential shape functions with 1<s<30. Then the LHS of Eqs
~6.15! and ~6.16! are functions of s and l: f 1@R(0); l #
02502
s

l

[f1(s,l), f 0@R(0); l #[ f 0(s,l ). For l>2 we have f 0(s; l )
> f 0(s; l 52) independently of the shape parameter. Nume
cally we find thatf 0(s; l 52) is always positive. Hence,any
momentum withl>2 satisfies the condition~6.16! for all
values ofs considered. Furthermore, our numerical analy
shows that alsof 1(s,l 51).0 for all cutoffs employed.
However, f 1(s,l 50) is not always positive. We obtain
f 1(s,l 50).0 for s*2 and f 1(s,l 50),0 for s&2. Our
results are illustrated in Fig. 9.

The above results have to be interpreted as follows.
sume thatk lies in the UV scaling regime, and consider th
cutoff operator at the spherically symmetric stationary po
Rk@gos(k)#. Then this operator is strictly positive on th
space spanned byall spherical harmonics and would co
rectly suppress all modes in a path integral containing
‘‘on-shell’’ cutoff, provided we choose an exponential sha
function with s*2. For s&2, only the contributions from
the constant mode withp250 are not suppressed correctl
For any other mode the cutoff term is positive even in t
case.

To summarize.In this section we found that at least in th
asymptotic domain relevant in our investigation of the U
fixed point the cutoff which is adapted to theR2 truncation is
positive definite and therefore has all the required mode s
pression properties. No conformal factor problem and
growing exponentials produced by exp(2DkS) are encoun-
tered.
FIG. 9. ~a! f 0(s,l 52), and~b! f 1(s,l 50) and f 1(s,l 51) as functions ofs, using the family of exponential shape functions.
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VII. SUMMARY AND CONCLUSION

In this paper we evaluated the exact RG equation of qu
tum Einstein gravity in a truncation which generalizes t
Einstein-Hilbert approximation used so far by the inclusi
of a higher-derivative term. We derived the beta-functions
the resultingl-g-b system which turned out to be by fa
more complicated than the oldl-g system. We used thes
beta functions in order to investigate how the two fix
points known to exist in the Einstein-Hilbert truncatio
manifest themselves in the enlarged theory space.

We found that the Gaussian fixed point of the Einste
Hilbert truncation does not generalize to a correspond
fixed point of the R2 truncation. Nevertheless, th
2-dimensional projection of thel-g-b flow onto the l-g
plane atb50, near the originl5g5b50, is well approxi-
mated by the flow resulting from the Einstein-Hilbert tru
cation. The projected flow does indeed have a fixed poin
l* 5g* 50. In the Einstein-Hilbert truncation there exists
distinguished RG trajectory, the ‘‘separatrix’’@5#, which
gives rise to a vanishing renormalized cosmological c
stant, lim

k→0
l̄k50. In d54, it turned out that this trajectory

possesses a 3-dimensional ‘‘lift’’ which is characterized b
logarithmic running of theR2 coupling bk . For dÞ4 its
running is power-like, and there exists a ‘‘quasi-Gaussia
fixed point at l* 5g* 50, b* Þ0. This picture puts the
older perturbative calculations inR2 gravity into a broader
context.

Quite differently, the non-Gaussian fixed point (l* ,g* )
Þ(0,0) implied by the Einstein-Hilbert truncation doe
‘‘lift’’ to a corresponding fixed point of the 3-dimensiona
flow, with a tiny but nonzero third componentb* .0. It is
UV attractive in all 3 directions ofl-g-b space. We demon
strated in detail that close to the fixed point the flow on
extended theory space is essentially 2-dimensional, and
the 2-dimensional projected flow is very well approximat
by the Einstein-Hilbert flow. For thel* andg* coordinates
both truncations yield virtually identical values, and the sa
is true for the critical exponents pertaining to th
2-dimensional subspace. For universal quantities the dif
ences between the two truncations are typically smaller t
their weak residual scheme dependence.

This stability of the Einstein-Hilbert truncation against t
inclusion of a further invariant, together with the other piec
of evidence which we summarized in Secs. V C 1 and V C
strongly support the conjecture that this approximation is
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least qualitatively reliable in the UV. Hence it appears
creasingly unlikely that the very existence of the no
Gaussian fixed point is an artifact of the truncation. We b
lieve that QEG has indeed very good chances of be
nonperturbatively renormalizable.

A notorious difficulty of Euclidean quantum gravity is th
conformal factor problem. In the exact RG approach, it a
pears in the Einstein-Hilbert truncation, but not in theR2

truncation providedk is large enough. When this complica
tion occurs the construction of an appropriate cutoff opera
is rather subtle. However, it was possible to show that
investigation of the non-Gaussian fixed point in theR2 trun-
cation is not affected by this problem, and that a straightf
ward positive definite cutoff can be employed. The numeri
agreement of the results with those from the Einstein-Hilb
truncation indicates that the rule for constructing an adap
cutoff in the presence of the conformal factor problem wh
was proposed in@1# ~‘‘ Zk5zk rule’’ ! should indeed be cor
rect.
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APPENDIX A: EVALUATING THE RHS OF THE
TRUNCATED FLOW EQUATION

In this section we present several rather lengthy calcu
tions needed for the discussion of theR2 truncation in Sec.
IV. In the following, all calculations are performed wit
gmn5ḡmn whereḡmn is assumed to correspond to aSd back-
ground. For simplicity the bars are omitted from the metr
the curvature and the operators.

1. Computation of „Gk
„2…¿Rk…

À1 and „Sgh
„2…¿Rk…

À1

In Sec. IV we derived explicit expressions for the kine

operatorsG̃k
(2)[Gk

(2)1Rk andS̃gh
(2)[Sgh

(2)1Rk . They may be
represented as matrix differential operators acting on the
umn vectors (h̄T,j̄,f̄0 ,s̄,f̄1)T and (v̄T,vT,%̄,%)T, respec-
tively. In this representation they take the form
G̃k
(2)@g,g#5S ~ G̃k

(2)@g,g# ! h̄Th̄T 0 0 0132

0 ~ G̃k
(2)@g,g# !j̄j̄ 0 0132

0 0 ~ G̃k
(2)@g,g# !f̄0f̄0

0132

0231 0231 0231 Qk

D ~A1!

and
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S̃gh
(2)@g,g#5S 0 ~S̃gh

(2)@g,g# ! v̄TvT 0 0

~S̃gh
(2)@g,g# !vTv̄T 0 0 0

0 0 0 ~S̃gh
(2)@g,g# !%̄%

0 0 ~S̃gh
(2)@g,g# !%%̄ 0

D ~A2!

where

Qk[S ~ G̃k
(2)@g,g# !s̄s̄ ~ G̃k

(2)@g,g# !f̄1s̄

~ G̃k
(2)@g,g# !f̄1s̄ ~ G̃k

(2)@g,g# !f̄f̄

D . ~A3!

The entries of these matrices are given in Eq.~4.15!. On the RHS of the flow equation~3.4! the inverse operators@G̃k
(2)#21 and

@S̃gh
(2)#21 appear which we determine in the following. At this point it is important to note that, because of the max

symmetric background, all covariant derivatives contained in the operators~A1! and~A2! appear as covariant Laplacians, a
that the various entries arex independent otherwise. This implies that these entries arecommutingdifferential operators which
allows for particularly simple manipulations. Therefore it is not difficult to verify that the inverse operators assume th

~ G̃k
(2)@g,g# !215S †~ G̃k

(2)@g,g# ! h̄Th̄T‡
21 0 0 0132

0 †~ G̃k
(2)@g,g# !j̄j̄‡

21 0 0132

0 0 †~ G̃k
(2)@g,g# !f̄0f̄0

‡

21 0132

0231 0231 0231 Q k
21

D ~A4!

and

~S̃gh
(2)@g,g# !215S 0 †~S̃gh

(2)@g,g# ! v̄TvT‡
21 0 0

†~S̃gh
(2)@g,g# !vTv̄T‡

21 0 0 0

0 0 0 †~S̃gh
(2)@g,g# !%̄%‡

21

0 0 †~S̃gh
(2)@g,g# !%%̄‡

21 0

D ~A5!

with

Q k
215†~ G̃k

(2)@g,g# !s̄s̄~ G̃k
(2)@g,g# !f̄1f̄1

2~ G̃k
(2)@g,g# !f̄1s̄

2
‡

21S ~ G̃k
(2)@g,g# !f̄1f̄1

2~ G̃k
(2)@g,g# !f̄1s̄

2~ G̃k
(2)@g,g# !f̄1s̄ ~ G̃k

(2)@g,g# !s̄s̄

D . ~A6!

Inserting these expressions into the RHS of the flow equation~3.4! leads to

Sk~R!5
1

2
Tr8F (

zP$h̄T,j̄,f̄0%

†~Gk
(2)@g,g#1Rk@g# !zz‡

21] t~Rk@g# !zzG1
1

2
Tr8†$~ G̃k

(2)@g,g# !s̄s̄~ G̃k
(2)@g,g# !f̄1f̄1

2~ G̃k
(2)@g,g# !f̄1s̄

2
%21$~Gk

(2)@g,g#1Rk@g# !s̄s̄] t~Rk@g# !f̄1f̄1
1~Gk

(2)@g,g#1Rk@g# !f̄1f̄1
] t~Rk@g# !s̄s̄

22~Gk
(2)@g,g#1Rk@g# !f̄1s̄] t~Rk@g# !f̄1s̄%‡2Tr8F (

cP$vT,%%

†~Sgh
(2)@g,g#1Rk@g# !c̄c‡

21] t~Rk@g# !c̄cG ~A7!

where we used the relations

@~Sgh
(2)! v̄TvT#mx

ny52@~Sgh
(2)!vTv̄T#ny

mx5
1

Ag~y!

d

dvTn~y!

1

Ag~x!

dSgh

d v̄m
T~x!

~A8!

@~Sgh
(2)!%̄%#x

y52@~Sgh
(2)!%%̄#y

x5
1

Ag~y!

d

d%~y!

1

Ag~x!

dSgh

d%̄~x!
.

025026-32



q.

he
nal to
. For

e

FLOW EQUATION OF QUANTUM EINSTEIN GRAVITY . . . PHYSICAL REVIEW D66, 025026 ~2002!
The trace of thef0 term appearing in the first line of Eq.~A7! may be evaluated easily since only the scalar eigenmodesT01

andT1m contribute. We obtain

1

2
Tr8††~Gk

(2)@g,g#1Rk@g# !f0f0
‡

21] t~Rk@g# !f0f0
‡

5
1

2ZNkk
2 (

l 50

1

(
m51

Dl (d,0) E ddxAg~x!Tlm~x!@CS2~d,a!CS1~d,a!„Pk1AS1~d,a!R1BS1~d,a!l̄k…

1~ZNkk
2!21b̄k„HS~d!Pk

21GS2~d!RPk1GS3~d!R2
…#21] t†CS2~d,a!CS1~d,a!ZNkk

2k2R(0)~2D2/k2!

1b̄k„HS~d!@22D2R(0)~2D2/k2!1k4R(0)~2D2/k2!2#1GS2~d!Rk2R(0)~2D2/k2!…‡Tlm~x!

5
1

2ZNkk
2 (

l 50

1

$Dl~d,0!$CS2~d,a!CS1~d,a!„L l~d,0!1k2R(0)~L l~d,0!/k2!1AS1~d,a!R1BS1~d,a!l̄k…

1~ZNkk
2!21b̄k@HS~d!„L l~d,0!1k2R(0)

„L l~d,0!/k2
…!21GS2~d!R„L l~d,0!1k2R(0)

„L l~d,0!/k2
……1GS3~d!R2

‡%21

3] t$CS2~d,a!CS1~d,a!ZNkk
2k2R(0)

„L l~d,0!/k2
…1b̄k†HS~d!„2L l~d,0!k2R(0)

„L l~d,0!/k2
…1k4R(0)

„L l~d,0!/k2
…

2
…

1GS2~d!Rk2R(0)
„L l~d,0!/k2

…‡%‰. ~A9!

HereL l(d,0) is the eigenvalue with respect to2D2 corresponding toTlm. Inserting also the remaining entries given in E
~4.15! into Eq. ~A7! finally leads to Eq.~4.16!.

2. Heat kernel expansion and evaluation of the traces

In this part of the appendix we expandSk(R) of Eq. ~4.16! with respect tor and evaluate the traces appearing in t
resulting equation~A10! below by applying the heat kernel expansion. Thereby we extract the contributions proportio
*ddxAg, *ddxAgR and *ddxAgR2. This puts us in a position to read off the RG equations for the three couplings
technical convenience we restrict our considerations to the gaugea51.

We start our evaluation ofSk(R), Eq. ~4.16!, by expanding it with respect toR}r 22. Since we are only interested in th
contributions proportional to*ddxAg}r d, *ddxAgR}r d22 and*ddxAgR2}r d24, only terms of orderr d, r d22 andr d24 are
needed. This leads to

Sk~R!5Tr(2ST2)@A 1
21N#1Tr(1T)8 @A 1

21N#2h1~d!Tr(0)9 @A 2
21N#1akTr(0)9 @A 2

21T2#1akTr(0)9 @~A1A2!21Pk
2N#

22Tr(1T)@Pk
21N0#22Tr~0!8 @Pk

21N0] 1H 2akTr(2ST2)@A 1
21T1#1akTr(2ST2)@A 1

22PkN#2AT~d!Tr(2ST2)@A 1
22N#

2AV~d,1!Tr(1T)8 @A 1
22N#1h2~d!akTr(0)9 @~A1A2!21T2#1h3~d!akTr(0)9 @~A1A2!21PkN#1h4~d!Tr(0)9 @~A1A2!21N#

1h3~d!akTr(0)9 @A 2
21T1#2h2~d!ak

2Tr(0)9 @A 1
21A 2

22Pk
2T2#2h3~d!ak

2Tr(0)9 @A 2
22PkT2#2h4~d!akTr(0)9 @A 2

22T2#

2h2~d!ak
2Tr(0)9 @~A1A2!22Pk

4N#2h3~d!ak
2Tr(0)9 @A 1

21A 2
22Pk

3N#22h4~d!akTr(0)9 @A 1
21A 2

22Pk
2N#

1h1~d!h3~d!akTr(0)9 @A 2
22PkN#1h1~d!h4~d!Tr(0)9 @A 2

22N#2
2

d
Tr(1T)@Pk

22N0#2
4

d
Tr(0)8 @Pk

22N0#

1
dd,2

4p
@~b̄kk

4!21] t~ b̄kk
4!#E ddxAgJ R1H 2ak

2Tr(2ST2)@A 1
22PkT1#1akAT~d!Tr(2ST2)@A 1

22T1#

2GT~d!akTr(2ST2)@A 1
22N#1ak

2Tr(2ST2)@A 1
23Pk

2N#22AT~d!akTr(2ST2)@A 1
23PkN#1AT~d!2Tr(2ST2)@A 1

23N#

2GV~d!akTr(1T)8 @A 1
22N#1AV~d,1!2Tr(1T)8 @A 1

23N#2h5~d!ak
2Tr(0)9 @~A1A2!21T2#1h6~d!akTr(0)9 @~A1A2!21N#

2
2

d2
ak

2Tr(0)9 @~A1A2!21PkT1#1h2~d!h3~d!akTr(0)9 @~A1A2!21T1#2h2~d!2ak
2Tr(0)9 @~A1A2!22Pk

2T2#

1
1

2
h2~d!ak

3Tr(0)9 @A 1
21A 2

22Pk
2T2#22h2~d!h3~d!ak

2Tr(0)9 @A 1
21A 2

22PkT2#2
3

2
h2~d!h4~d!akTr(0)9 @A 1

21A 2
22T2#
025026-33
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2h6~d!ak
2Tr(0)9 @A 2

22T2#1
1

2
h2~d!ak

3Tr(0)9 @~A1A2!22Pk
4N#22h2~d!h3~d!ak

2Tr(0)9 @~A1A2!22Pk
3N#

2
3

2
h2~d!h4~d!akTr(0)9 @~A1A2!22Pk

2N#2h7~d!ak
2Tr(0)9 @A 1

21A 2
22Pk

2N#23h3~d!h4~d!akTr(0)9 @A 1
21A 2

22PkN#

2
3

2
h4~d!2Tr(0)9 @A 1

21A 2
22N#1h1~d!h6~d!akTr(0)9 @A 2

22N#2h2~d!h3~d!ak
2Tr(0)9 @A 1

21A 2
22Pk

2T1#

2h3~d!2ak
2Tr(0)9 @A 2

22PkT1#2h3~d!h4~d!akTr(0)9 @A 2
22T1#1h2~d!2ak

3Tr(0)9 @A 1
22A 2

23Pk
4T2#

12h2~d!h3~d!ak
3Tr(0)9 @A 1

21A 2
23Pk

3T2#12h2~d!h4~d!ak
2Tr(0)9 @A 1

21A 2
23Pk

2T2#1h3~d!2ak
3Tr(0)9 @A 2

23Pk
2T2#

12h3~d!h4~d!ak
2Tr(0)9 @A 2

23PkT2#1h4~d!2akTr(0)9 @A 2
23T2#1h2~d!2ak

3Tr(0)9 @~A1A2!23Pk
6N#

12h2~d!h3~d!ak
3Tr(0)9 @A 1

22A 2
23Pk

5N#13h2~d!h4~d!ak
2Tr(0)9 @A 1

22A 2
23Pk

4N#1h3~d!2ak
3Tr(0)9 @A 1

21A 2
23Pk

4N#

14h3~d!h4~d!ak
2Tr(0)9 @A 1

21A 2
23Pk

3N#13h4~d!2akTr(0)9 @A 1
21A 2

23Pk
2N#2h1~d!h3~d!2ak

2Tr(0)9 @A 2
23Pk

2N#

22h1~d!h3~d!h4~d!akTr(0)9 @A 2
23PkN#2h1~d!h4~d!2Tr(0)9 @A 2

23N#2
2

d2
Tr(1T)@Pk

23N0#2
8

d2
Tr(0)8 @Pk

23N0#

1E ddxAgF dd,2

8pk4
„123R(0)8~0!…„~ b̄kk

2!21] t~ b̄kk
4!2b̄k

21] t~ b̄kk
2!…1

dd,4

8~4p!2
„9akk

422~k222l̄k!…
21

3„9akb̄k
21] t~ b̄kk

4!22ZNk
21] t~ZNkk

2!…G J R21O~r ,d24!. ~A10!

Here we set

A1[Pk22l̄k ,

A2[akPk
22

1

2
h1~d!~Pk22l̄k! ~A11!

and

ak[~ZNkk
2!21b̄k . ~A12!

The quantitiesN, N0 , T1 andT2 are defined as in Eq.~4.17!. Furthermore,O(r ,d24) means that terms}r n with powersn
,d24 are neglected.

The terms in Eq.~A10! proportional todd,2 anddd,4 arise from the last term in Eq.~4.16!. Contrary to the other terms o
Eq. ~4.16!, its expansion does not containd-dependent powers ofr, but is of the form(m50

` b2mr 22m with $b2m% a set of
r-independent coefficients. As for comparing powers ofr, this has the following consequence. Since, for allm>0 andd
.0, 22m5d24 or 22m5d22 are satisfied only if (m,d)P$(0,2),(1,2),(0,4)%, and since22m5d cannot be satisfied a
all, this term contributes to the evolution equation only in the two- and the four-dimensional case. Using Eq.~4.7! the pieces
contributing, i.e.b2m50r 0 in d52 andd54, andb2m52r 22 in d52, may be expressed in terms of the operators*d2xAgR,
*d2xAgR2 or *d4xAgR2. This yields the terms in Eq.~A10! which are proportional to thed ’s.

As the next step we evaluate ther expansion of the traces appearing in Eq.~A10! by applying the heat kernel expansio
In its original form it has often been used to compute traces of operators acting on unconstrained fields. For our purp
need the heat kernel expansions for operators acting on constrained fields, i.e., fields satisfying appropriate tran
conditions. In Ref.@2# these expansions are derived in detail for LaplaciansD2 on Sd backgrounds acting on symmetr
transverse traceless tensors, on transverse vectors and on scalars, with the following results:

Tr(2ST2)@e2(is2«)D2
#5S i

4p~s1 i«! D
d/2E ddxAgH 1

2
~d22!~d11!2

~d11!~d12!~d2513dd,2!

12~d21!
~ is2«!R

2
~d11!~5d4222d3283d22392d222811440dd,213240dd,4!

720d~d21!2
~s1 i«!2R21O~R3!J , ~A13!
025026-34
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Tr(1T)@e2(is2«)D2
#5S i

4p~s1 i«! D
d/2E ddxAgH d212

~d12!~d23!16dd,2

6d
~ is2«!R

2
5d4212d3247d22186d11801360dd,21720dd,4

360d2~d21!
~s1 i«!2R21O~R3!J , ~A14!

Tr(0)@e2(is2«)D2
#5S i

4p~s1 i«! D
d/2E ddxAgH 12

1

6
~ is2«!R2

5d227d16

360d~d21!
~s1 i«!2R21O~R3!J . ~A15!

Here the terms proportional to thed ’s arise from the exclusion of unphysical modes of the type discussed in Sec. II.
Let us now consider an arbitrary functionW(z) with a Fourier transformW̃(s). For such functionsW, we may express the

trace of the operatorW(2D2) that results from replacing the argument ofW with 2D2 in terms ofW̃(s):

Tr@W~2D2!#5 lim
«↘0

E
2`

`

dsW̃~s!Tr@e2(is2«)D2
#. ~A16!

We obtain the asymptotic expansion of Tr@W(2D2)# by inserting the heat kernel expansion for Tr@e2(is2«)D2
# into Eq.~A16!.

For Laplacians acting on the constrained fields considered here they read as follows:

Tr(2ST2)@W~2D2!#5~4p!2d/2H 1

2
~d22!~d11!Qd/2@W#E ddxAg1

~d11!~d12!~d2513dd,2!

12~d21!
Qd/221@W#E ddxAgR

1
~d11!~5d4222d3283d22392d222811440dd,213240dd,4!

720d~d21!2
Qd/222@W#

3E ddxAgR21O~r ,d24!J , ~A17!

Tr(1T)@W~2D2!#5~4p!2d/2H ~d21!Qd/2@W#E ddxAg1
~d12!~d23!16dd,2

6d
Qd/221@W#E ddxAgR

1
5d4212d3247d22186d11801360dd,21720dd,4

360d2~d21!
Qd/222@W#E ddxAgR21O~r ,d24!J ,

~A18!

Tr(0)@W~2D2!#5~4p!2d/2H Qd/2@W#E ddxAg1
1

6
Qd/221@W#E ddxAgR

1
5d227d16

360d~d21!
Qd/222@W#E ddxAgR21O~r ,d24!J . ~A19!

Here the set of functionalsQn@W# is defined as

Qn@W#[ lim
«↘0

E
2`

`

ds~2 is1«!2nW̃~s!. ~A20!

By virtue of the Mellin transformation we may now reexpressQn in terms ofW so that

Qn@W#5
~21! i

G~n1 i !E0

`

dzzn1 i 21
diW~z!

dzi
, i .2n, i PNø$0% arbitrary. ~A21!

In particular we obtainQ0@W#5W(0). Furthermore, ifn.0 we may choosei 50 for simplicity. As can be seen by a
appropriate integration by parts,Qn@W# does not depend oni.

At this point it is necessary to discuss the case where isolated eigenvalues have to be excluded from Tr@W(2D2)#. As we
showed in@2#, such traces can be expressed as
025026-35
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Tr8 . . . 8@W~2D2!#5Tr@W~2D2!#2 (
l P$ l 1 , . . . ,l n%

Dl~d,s!W„L l~d,s!…. ~A22!

Heren primes at Tr8 . . . 8 symbolize the exclusion of all eigenmodesTlm with l P$ l 1 , . . . ,l n%, andL l(d,s) andDl(d,s) denote
the corresponding eigenvalues of2D2 and their degrees of degeneracy, respectively. SinceL l(d,s)}R we may view
W„L l(d,s)… as a function ofR. As outlined above, such a function contributes to the evolution ofl̄k , ZNk and b̄k only for
d52 and ford54, with the contributions given byW(0)1W8(0)L l(2,s) andW(0), respectively. Using the explicit expres
sions forL l(d,s) andDl(d,s) ~see Table II in Appendix C! and applying Eq.~4.7! we therefore obtain for the traces releva
to the flow equation:

Tr(1T)8 @W~2D2!#5Tr(1T)@W~2D2!#2
dd,2

16p H6W~0!E d2xAgR13W8~0!E d2xAgR2J 2
5dd,4

12~4p!2
W~0!E d4xAgR2

1O~r ,d24!, ~A23!

Tr(0)9 @W~2D2!#5Tr(0)@W~2D2!#2
dd,2

16p H8W~0!E d2xAgR13W8~0!E d2xAgR2J 2
dd,4

4~4p!2
W~0!E d4xAgR2

1O~r ,d24!, ~A24!

Tr(0)8 @W~2D2!#5Tr(0)@W~2D2!#2
dd,2

8p
W~0!E d2xAgR2

dd,4

24~4p!2
W~0!E d4xAgR21O~r ,d24!. ~A25!

HereW8 denotes the derivative with respect to the argument:W8(z)5dW(z)/dz with z5L l(d,s).
The next step is to insert the expansions of the traces intoSk(R), Eq.~A10!, and to compare the coefficients of the operat

*ddxAg, *ddxAgR and*ddxAgR2 with those on the LHS, Eq.~4.5!. This leads to the following differential equations:

] t~ZNkl̄k!5~4k2!21~4p!2d/2$h8~d!Qd/2@A 1
21N#2h1~d!Qd/2@A 2

21N#1akQd/2@A 2
21T2#1akQd/2@~A1A2!21Pk

2N#

22dQd/2@Pk
21N0#%, ~A26!

] tZNk52~2k2!21~4p!2d/2H h9~d!Qd/221@A 1
21N#2

1

6
h1~d!Qd/221@A 2

21N#1
1

6
akQd/221@A 2

21T2#

1
1

6
akQd/221@~A1A2!21Pk

2N#1h10~d!Qd/221@Pk
21N0#2h11~d!akQd/2@A 1

21T1#1h11~d!akQd/2@A 1
22PkN#

1h12~d!Qd/2@A 1
22N#1h2~d!akQd/2@~A1A2!21T2#1h3~d!akQd/2@~A1A2!21PkN#

1h4~d!Qd/2@~A1A2!21N#1h3~d!akQd/2@A 2
21T1#2h2~d!ak

2Qd/2@A 1
21A 2

22Pk
2T2#

2h3~d!ak
2Qd/2@A 2

22PkT2#2h4~d!akQd/2@A 2
22T2#2h2~d!ak

2Qd/2@~A1A2!22Pk
4N#

2h3~d!ak
2Qd/2@A 1

21A 2
22Pk

3N#22h4~d!akQd/2@A 1
21A 2

22Pk
2N#1h1~d!h3~d!akQd/2@A 2

22PkN#

1h1~d!h4~d!Qd/2@A 2
22N#1h13~d!Qd/2@Pk

22N0#J , ~A27!

] tb̄k5~4p!2d/2H h14~d!Qd/222@A 1
21N#2h1~d!h15~d!Qd/222@A 2

21N#1h15~d!akQd/222@A 2
21T2#

1h15~d!akQd/222@~A1A2!21Pk
2N#2h16~d!Qd/222@Pk

21N0#2h17~d!akQd/221@A 1
21T1#

1h17~d!akQd/221@A 1
22PkN#2h18~d!Qd/221@A 1

22N#1
1

6
h2~d!akQd/221@~A1A2!21T2#

1
1

6
h3~d!akQd/221@~A1A2!21PkN#1

1

6
h4~d!Qd/221@~A1A2!21N#1

1

6
h3~d!akQd/221@A 2

21T1#
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2
1

6
h2~d!ak

2Qd/221@A 1
21A 2

22Pk
2T2#2

1

6
h3~d!ak

2Qd/221@A 2
22PkT2#2

1

6
h4~d!akQd/221@A 2

22T2#

2
1

6
h2~d!ak

2Qd/221@~A1A2!22Pk
4N#2

1

6
h3~d!ak

2Qd/221@A 1
21A 2

22Pk
3N#

2
1

3
h4~d!akQd/221@A 1

21A 2
22Pk

2N#1
1

6
h1~d!h3~d!akQd/221@A 2

22PkN#1
1

6
h1~d!h4~d!Qd/221@A 2

22N#

2h20~d!Qd/221@Pk
22N0#2h11~d!ak

2Qd/2@A 1
22PkT1#1

1

2
h11~d!h21~d!akQd/2@A 1

22T1#

1h22~d!akQd/2@A 1
22N#1h11~d!ak

2Qd/2@A 1
23Pk

2N#2h11~d!h21~d!akQd/2@A 1
23PkN#1h23~d!Qd/2@A 1

23N#

2h5~d!ak
2Qd/2@~A1A2!21T2#1h6~d!akQd/2@~A1A2!21N#2

2

d2
ak

2Qd/2@~A1A2!21PkT1#

1h2~d!h3~d!akQd/2@~A1A2!21T1#2h2~d!2ak
2Qd/2@~A1A2!22Pk

2T2#1
1

2
h2~d!ak

3Qd/2@A 1
21A 2

22Pk
2T2#

22h2~d!h3~d!ak
2Qd/2@A 1

21A 2
22PkT2#2

3

2
h2~d!h4~d!akQd/2@A 1

21A 2
22T2#2h6~d!ak

2Qd/2@A 2
22T2#

1
1

2
h2~d!ak

3Qd/2@~A1A2!22Pk
4N#22h2~d!h3~d!ak

2Qd/2@~A1A2!22Pk
3N#

2
3

2
h2~d!h4~d!akQd/2@~A1A2!22Pk

2N#2h7~d!ak
2Qd/2@A 1

21A 2
22Pk

2N#

23h3~d!h4~d!akQd/2@A 1
21A 2

22PkN#2
3

2
h4~d!2Qd/2@A 1

21A 2
22N#1h1~d!h6~d!akQd/2@A 2

22N#

2h2~d!h3~d!ak
2Qd/2@A 1

21A 2
22Pk

2T1#2h3~d!2ak
2Qd/2@A 2

22PkT1#2h3~d!h4~d!akQd/2@A 2
22T1#

1h2~d!2ak
3Qd/2@A 1

22A 2
23Pk

4T2#12h2~d!h3~d!ak
3Qd/2@A 1

21A 2
23Pk

3T2#

12h2~d!h4~d!ak
2Qd/2@A 1

21A 2
23Pk

2T2#1h3~d!2ak
3Qd/2@A 2

23Pk
2T2#12h3~d!h4~d!ak

2Qd/2@A 2
23PkT2#

1h4~d!2akQd/2@A 2
23T2#1h2~d!2ak

3Qd/2@~A1A2!23Pk
6N#12h2~d!h3~d!ak

3Qd/2@A 1
22A 2

23Pk
5N#

13h2~d!h4~d!ak
2Qd/2@A 1

22A 2
23Pk

4N#1h3~d!2ak
3Qd/2@A 1

21A 2
23Pk

4N#

14h3~d!h4~d!ak
2Qd/2@A 1

21A 2
23Pk

3N#13h4~d!2akQd/2@A 1
21A 2

23Pk
2N#2h1~d!h3~d!2ak

2Qd/2@A 2
23Pk

2N#

22h1~d!h3~d!h4~d!akQd/2@A 2
23PkN#2h1~d!h4~d!2Qd/2@A 2

23N#1h24~d!Qd/2@Pk
23N0#

1dd,2F2
3

2
ak

] t@b̄kk
2#

b̄k~k222l̄k!
1S 11

4
R(0)8~0!1

3

2
akk

2D ] t@ZNkk
2#

ZNk~k222l̄k!
2

2
11

4
R(0)8~0!

] tZNk

ZNk~k222l̄k!

2
1

2k2
R(0)8~0!G1dd,4F1

8

] t@ZNkk
2#

ZNk~k222l̄k!
1

1

4

] t@ZNkk
2#

ZNk„3akk
42~k222l̄k!…

2
3

8
akk

4
] t@ZNkk

2#

ZNk~k222l̄k!„3akk
42~k222l̄k!…

2
1

4

] t@ZNkk
2#

ZNk„9akk
422~k222l̄k!…

2
3

8
ak

] t@b̄kk
4#

b̄k„3akk
42~k222l̄k!…

1
9

8
ak

] t@b̄kk
4#

b̄k„9akk
422~k222l̄k!…

G J . ~A28!

Here the coefficientshi are functions of the dimensionalityd. They are tabulated in Eq.~D2! of Appendix D 2.
Now we introduce the cutoff-dependent generalized threshold functions
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Cn;m
p;q ~v,w;d![

~21! i

G~n1 i !E0

`

dyyn1 i 21
] i

]yi F „y1R(0)~y!…m„R(0)~y!2yR(0)8~y!…„y1R(0)~y!1w…

2p

3S 32pv„y1R(0)~y!…22
d22

2~d21!
„y1R(0)~y!1w…D 2qG ~A29!

and

C̃n;m; l
p;q ~v,w;d![

~21! i

G~n1 i !E0

`

dyyn1 i 21
] i

]yi F „y1R(0)~y!…m„2y1R(0)~y!…lR(0)~y!„y1R(0)~y!1w…

2p

3S 32pv„y1R(0)~y!…22
d22

2~d21!
„y1R(0)~y!1w…D 2qG . ~A30!

In Eqs.~A29! and~A30!, i is a non-negative integer which satisfiesi .2n, but which is arbitrary otherwise. The functionsC

andC̃ are independent ofi which can be seen by an integration by parts. Again, we may seti 50 if n.0. Furthermore, noting
that

Fn
p~w![Cn;0

p;0~v,w;d!, F̃n
p~w![C̃n;0;0

p;0 ~v,w;d! ;v ;d ~A31!

we recover the threshold functionsFn
p(w) and F̃n

p(w) originally defined in@1# in the context of the pure Einstein-Hilbe
truncation.

Using the relations

Qn@A 1
2pA 2

2qPk
mT1#5k2(m1n2p2q11)Cn;m

p;q
„akk

2/~32p!,l̄k /k2;d…

2
1

2
hb~k!k2(m1n2p2q11)C̃n;m;0

p;q
„akk

2/~32p!,l̄k /k2;d…

Qn@A 1
2pA 2

2qPk
mT2#52k2(m1n2p2q12)Cn;m11

p;q
„akk

2/~32p!,l̄k /k2;d…

2
1

2
hb~k!k2(m1n2p2q12)C̃n;m;1

p;q
„akk

2/~32p!,l̄k /k2;d…

~A32!
Qn@A 1

2pA 2
2qPk

mN#5k2(m1n2p2q11)Cn;m
p;q

„akk
2/~32p!,l̄k /k2;d…

2
1

2
hN~k!k2(m1n2p2q11)C̃n;m;0

p;q
„akk

2/~32p!,l̄k /k2;d…

Qn@Pk
2pN0#5k2(n2p11)Fn

p~0!

the differential equations~A26!, ~A27! and ~A28! may be rewritten in terms of the threshold functionsCn;m
p;q (v,w;d) and

C̃n;m; l
p;q (v,w;d) instead of theQn .
In order to make the integrals in Eq.~A20! convergent we have to demand thatR(0)(y) decreases rapidly asy→6`.

However, since from now on its form fory,0 does not play a role any more we identifyR(0)(y) with its part for non-negative
arguments and assume thatR(0)(y) is a smooth function defined only fory>0 and endowed with the properties stated in S
III B.

Next we introduce the dimensionless couplingslk , gk andbk of Eqs.~4.20!–~4.22!. Inserting Eq.~4.20! into ] t(ZNkl̄k)
leads to the relation

] tlk52„22hN~k!…lk132pgkk
2k2d] t~ZNkl̄k!. ~A33!

Then, by using Eq.~A26!, we obtain the differential equation~4.23! for the dimensionless cosmological constant. T
corresponding differential equations forgk andbk may be determined as follows. Taking the scale derivative of Eqs.~4.21! and
~4.22! leads to Eqs.~4.24! and~4.25!, respectively. For the anomalous dimensionshN andhb we obtain from Eqs.~A27! and
~A28!, respectively,

hN5gkB1~lk ,gk ,bk ;d!1hNgkB2~lk ,gk ,bk ;d!1hbgkB3~lk ,gk ,bk ;d! ~A34!
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and

hb52bk
21C1~lk ,gk ,bk ;d!2hNbk

21C2~lk ,gk ,bk ;d!2hbbk
21C3~lk ,gk ,bk ;d!. ~A35!

The set of equations~A34! and ~A35! may now be solved for the anomalous dimensionshN andhb in terms oflk , gk , bk
andd which eventually leads to the expressions~4.26! and ~4.27!.

APPENDIX B: COEFFICIENT FUNCTIONS APPEARING IN THE b FUNCTIONS

In the following we list the coefficient functionsAi , Bi , Ci , i 51,2,3, which appear in theb functions~4.23!, ~4.24! and
~4.25!. The coefficientshi(d) contained in these expressions are defined in Appendix D 2, and the generalized thr
functionsC andC̃ were introduced in Eq.~A29! and Eq.~A30!, respectively. The other threshold functions,F and F̃, are
those already introduced in the context of the pure Einstein-Hilbert truncation@1#:

A1~lk ,gk ,bk ;d![22lk12~4p!12d/2gk„h8~d!Fd/2
1 ~22lk!22dFd/2

1 ~0!164pgkbkCd/2;1
0;1 ~gkbk ,22lk ;d!

2h1~d!Cd/2;0
0;1 ~gkbk ,22lk ;d!132pgkbkCd/2;2

1;1 ~gkbk ,22lk ;d!… ~B1!

A2~lk ,gk ,bk ;d![lk2~4p!12d/2gk„h8~d!F̃d/2
1 ~22lk!2h1~d!C̃d/2;0;0

0;1 ~gkbk ,22lk ;d!

132pgkbkC̃d/2;2;0
1;1 ~gkbk ,22lk ;d!… ~B2!

A3~lk ,gk ,bk ;d![28~4p!22d/2gk
2bkC̃d/2;0;1

0;1 ~gkbk ,22lk ;d! ~B3!

B1~lk ,gk ,bk ;d![4~4p!12d/2H h9~d!Fd/221
1 ~22lk!2h10~d!Fd/221

1 ~0!1
32

3
pgkbkCd/221;1

0;1 ~gkbk ,22lk ;d!

2
1

6
h1~d!C̃d/221;0

0;1 ~gkbk ,22lk ;d!1
16

3
pgkbkCd/221;2

1;1 ~gkbk ,22lk ;d!232h11~d!pgkbkFd/2
1 ~22lk!

132h11~d!pgkbkCd/2;1
2;0 ~gkbk ,22lk ;d!1h12~d!Fd/2

2 ~22lk!1h13~d!Fd/2
2 ~0!

132h19~d!pgkbkCd/2;1
1;1 ~gkbk ,22lk ;d!1h4~d!Cd/2;0

1;1 ~gkbk ,22lk ;d!

132h3~d!pgkbkCd/2;0
0;1 ~gkbk ,22lk ;d!2h19~d!~32pgkbk!

2Cd/2;3
1;2 ~gkbk ,22lk ;d!

264h4~d!pgkbkCd/2;2
1;2 ~gkbk ,22lk ;d!22h3~d!~32pgkbk!

2Cd/2;2
0;2 ~gkbk ,22lk ;d!

132h1~d!h19~d!pgkbkCd/2;1
0;2 ~gkbk ,22lk ;d!1h1~d!h4~d!Cd/2;0

0;2 ~gkbk ,22lk ;d!

2h2~d!~32pgkbk!
2Cd/2;4

2;2 ~gkbk ,22lk ;d!J ~B4!

B2~lk ,gk ,bk ;d![22~4p!12d/2H h9~d!F̃d/221
1 ~22lk!2

1

6
h1~d!C̃d/221;0;0

0;1 ~gkbk ,22lk ;d!

1
16

3
pgkbkC̃d/221;2;0

1;1 ~gkbk ,22lk ;d!132h11~d!pgkbkC̃d/2;1;0
2;0 ~gkbk ,22lk ;d!

1h12~d!F̃d/2
2 ~22lk!132h3~d!pgkbkC̃d/2;1;0

1;1 ~gkbk ,22lk ;d!1h4~d!C̃d/2;0;0
1;1 ~gkbk ,22lk ;d!

2h3~d!~32pgkbk!
2C̃d/2;3;0

1;2 ~gkbk ,22lk ;d!264h4~d!pgkbkC̃d/2;2;0
1;2 ~gkbk ,22lk ;d!

132h1~d!h3~d!pgkbkC̃d/2;1;0
0;2 ~gkbk ,22lk ;d!1h1~d!h4~d!C̃d/2;0;0

0;2 ~gkbk ,22lk ;d!

2h2~d!~32pgkbk!
2C̃d/2;4;0

2;2 ~gkbk ,22lk ;d!J ~B5!
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B3~lk ,gk ,bk ;d![22~4p!12d/2H 16

3
pgkbkC̃d/221;0;1

0;1 ~gkbk ,22lk ;d!232h11~d!pgkbkF̃d/2
1 ~22lk!

132h2~d!pgkbkC̃d/2;0;1
1;1 ~gkbk ,22lk ;d!132h3~d!pgkbkC̃d/2;0;0

0;1 ~gkbk ,22lk ;d!

2h2~d!~32pgkbk!
2C̃d/2;2;1

1;2 ~gkbk ,22lk ;d!2h3~d!~32pgkbk!
2C̃d/2;1;1

0;2 ~gkbk ,22lk ;d!

232h4~d!pgkbkC̃d/2;0;1
0;2 ~gkbk ,22lk ;d!J ~B6!

C1~lk ,gk ,bk ;d![~4p!2d/2H h14~d!Fd/222
1 ~22lk!2h16~d!Fd/222

1 ~0!164h15~d!pgkbkCd/222;1
0;1 ~gkbk ,22lk ;d!

2h1~d!h15~d!Cd/222;0
0;1 ~gkbk ,22lk ;d!132h15~d!pgkbkCd/222;2

1;1 ~gkbk ,22lk ;d!

232h17~d!pgkbkFd/221
1 ~22lk!1

16

3
h3~d!pgkbkCd/221;0

0;1 ~gkbk ,22lk ;d!

1
16

3
h19~d!pgkbkCd/221;1

1;1 ~gkbk ,22lk ;d!1
1

6
h4~d!Cd/221;0

1;1 ~gkbk ,22lk ;d!

132h17~d!pgkbkCd/221;1
2;0 ~gkbk ,22lk ;d!2h18~d!Fd/221

2 ~22lk!2h20~d!Fd/221
2 ~0!2

1

6
h19~d!

3~32pgkbk!
2Cd/221;3

1;2 ~gkbk ,22lk ;d!2
32

3
h4~d!pgkbkCd/221;2

1;2 ~gkbk ,22lk ;d!2
1

3
h3~d!

3~32pgkbk!
2Cd/221;2

0;2 ~gkbk ,22lk ;d!1
16

3
h1~d!h19~d!pgkbk

3Cd/221;1
0;2 ~gkbk ,22lk ;d!1

1

6
h1~d!h4~d!Cd/221;0

0;2 ~gkbk ,22lk ;d!2
1

6
h2~d!~32pgkbk!

2

3Cd/221;4
2;2 ~gkbk ,22lk ;d!2h11~d!~32pgkbk!

2Cd/2;1
2;0 ~gkbk ,22lk ;d!132h25~d!pgkbkFd/2

2 ~22lk!

1h11~d!~32pgkbk!
2Cd/2;2

3;0 ~gkbk ,22lk ;d!232h11~d!h21~d!pgkbkCd/2;1
3;0 ~gkbk ,22lk ;d!

1h23~d!Fd/2
3 ~22lk!1h24~d!Fd/2

3 ~0!2h2~d!~32pgkbk!
2Cd/2;1

1;1 ~gkbk ,22lk ;d!

132h2~d!h26~d!pgkbkCd/2;0
1;1 ~gkbk ,22lk ;d!1h2~d!~32pgkbk!

3Cd/2;3
1;2 ~gkbk ,22lk ;d!2h27~d!

3~32pgkbk!
2Cd/2;2

1;2 ~gkbk ,22lk ;d!132h4~d!h28~d!pgkbkCd/2;1
1;2 ~gkbk ,22lk ;d!

2
3

2
h4~d!2Cd/2;0

1;2 ~gkbk ,22lk ;d!2h29~d!~32pgkbk!
2Cd/2;1

0;2 ~gkbk ,22lk ;d!

232h4~d!h26~d!pgkbkCd/2;0
0;2 ~gkbk ,22lk ;d!1

1

2
h2~d!~32pgkbk!

3

3Cd/2;4
2;2 ~gkbk ,22lk ;d!1

2

3
h2~d!h28~d!~32pgkbk!

2Cd/2;3
2;2 ~gkbk ,22lk ;d!

248h2~d!h4~d!pgkbkCd/2;2
2;2 ~gkbk ,22lk ;d!12h3~d!2~32pgkbk!

3Cd/2;3
0;3 ~gkbk ,22lk ;d!

23h1~d!h3~d!h30~d!~32pgkbk!
2Cd/2;2

0;3 ~gkbk ,22lk ;d!1
64

3
h1~d!h4~d!h28~d!pgkbkCd/2;1

0;3 ~gkbk ,

22lk ;d!2h1~d!h4~d!2Cd/2;0
0;3 ~gkbk ,22lk ;d!13h3~d!h30~d!~32pgkbk!

3Cd/2;4
1;3 ~gkbk ,22lk ;d!
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2
4

3
h4~d!h28~d!~32pgkbk!

2Cd/2;3
1;3 ~gkbk ,22lk ;d!196h4~d!2pgkbkCd/2;2

1;3 ~gkbk ,22lk ;d!

2
2

3
h2~d!h28~d!~32pgkbk!

3Cd/2;5
2;3 ~gkbk ,22lk ;d!13h2~d!h4~d!~32pgkbk!

2

3Cd/2;4
2;3 ~gkbk ,22lk ;d!1h2~d!2~32pgkbk!

3Cd/2;6
3;3 ~gkbk ,22lk ;d!1F2

1

2
R(0)8~0!2

96pgkbk

122lk

1
11R(0)8~0!1192pgkbk

2~122lk!
2 Gdd,21F 288pgkbk21

4„144pgkbk2~122lk!…
1

1

4~122lk!
2

96pgkbk21

2~96pgkbk2„122lk!…

2
24pgkbk

~122lk!„96pgkbk2~122lk!…
Gdd,4J ~B7!

C2~lk ,gk ,bk ;d![2
1

2
~4p!2d/2H h14~d!F̃d/222

1 ~22lk!2h1~d!h15~d!C̃d/222;0;0
0;1 ~gkbk ,22lk ;d!

132h15~d!pgkbkC̃d/222;2;0
1;1 ~gkbk ,22lk ;d!1

16

3
h3~d!pgkbkC̃d/221;1;0

1;1 ~gkbk ,22lk ;d!

1
1

6
h4~d!C̃d/221;0;0

1;1 ~gkbk ,22lk ;d!132h17~d!pgkbkC̃d/221;1;0
2;0 ~gkbk ,22lk ;d!

2h18~d!F̃d/221
2 ~22lk!2

1

6
h3~d!~32pgkbk!

2C̃d/221;3;0
1;2 ~gkbk ,22lk ;d!

2
32

3
h4~d!pgkbkC̃d/221;2;0

1;2 ~gkbk ,22lk ;d!1
16

3
h1~d!h3~d!pgkbkC̃d/221;1;0

0;2 ~gkbk ,22lk ;d!

1
1

6
h1~d!h4~d!C̃d/221;0;0

0;2 ~gkbk ,22lk ;d!2
1

6
h2~d!~32pgkbk!

2C̃d/221;4;0
2;2 ~gkbk ,22lk ;d!

132h22~d!pgkbkF̃d/2
2 ~22lk!1h11~d!~32pgkbk!

2C̃d/2;2;0
3;0 ~gkbk ,22lk ;d!

232h11~d!h21~d!pgkbkC̃d/2;1;0
3;0 ~gkbk ,22lk ;d!1h23~d!F̃d/2

3 ~22lk!

132h6~d!pgkbkC̃d/2;0;0
1;1 ~gkbk ,22lk ;d!2h7~d!~32pgkbk!

2C̃d/2;2;0
1;2 ~gkbk ,22lk ;d!

296h3~d!h4~d!pgkbkC̃d/2;1;0
1;2 ~gkbk ,22lk ;d!2

3

2
h4~d!2C̃d/2;0;0

1;2 ~gkbk ,22lk ;d!

132h1~d!h6~d!pgkbkC̃d/2;0;0
0;2 ~gkbk ,22lk ;d!1

1

2
h2~d!~32pgkbk!

3C̃d/2;4;0
2;2 ~gkbk ,22lk ;d!

22h2~d!h3~d!~32pgkbk!
2C̃d/2;3;0

2;2 ~gkbk ,22lk ;d!248h2~d!h4~d!pgkbkC̃d/2;2;0
2;2 ~gkbk ,22lk ;d!

2h1~d!h3~d!2~32pgkbk!
2C̃d/2;2;0

0;3 ~gkbk ,22lk ;d!264h1~d!h3~d!h4~d!pgkbkC̃d/2;1;0
0;3 ~gkbk ,22lk ;d!

2h1~d!h4~d!2C̃d/2;0;0
0;3 ~gkbk ,22lk ;d!1h3~d!2~32pgkbk!

3C̃d/2;4;0
1;3 ~gkbk ,22lk ;d!

14h3~d!h4~d!~32pgkbk!
2C̃d/2;3;0

1;3 ~gkbk ,22lk ;d!196h4~d!2pgkbkC̃d/2;2;0
1;3 ~gkbk ,22lk ;d!

12h2~d!h3~d!~32pgkbk!
3C̃d/2;5;0

2;3 ~gkbk ,22lk ;d!13h2~d!h4~d!~32pgkbk!
2C̃d/2;4;0

2;3 ~gkbk ,22lk ;d!

1h2~d!2~32pgkbk!
3C̃d/2;6;0

3;3 ~gkbk ,22lk ;d!1F2
11R(0)8~0!

2~122lk!
1

192pgkbk111R(0)8~0!

2~122lk!
2 Gdd,2
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1F2
1

4„144pgkbk2~122lk!…
1

1

4~122lk!
1

1

2„96pgkbk2~122lk!…

2
24pgkbk

~122lk!„96pgkbk2~122lk!…
Gdd,4J ~B8!

C3~lk ,gk ,bk ;d![2
1

2
~4p!2d/2H 32h15~d!pgkbkC̃d/222;0;1

0;1 ~gkbk ,22lk ;d!232h17~d!pgkbkF̃d/221
1 ~22lk!

1
16

3
h3~d!pgkbkC̃d/221;0;0

0;1 ~gkbk ,22lk ;d!1
16

3
h2~d!pgkbkC̃d/221;0;1

1;1 ~gkbk ,22lk ;d!2
1

6
h2~d!

3~32pgkbk!
2C̃d/221;2;1

1;2 ~gkbk ,22lk ;d!2
1

6
h3~d!~32pgkbk!

2

3C̃d/221;1;1
0;2 ~gkbk ,22lk ;d!2

16

3
h4~d!pgkbkC̃d/221;0;1

0;2 ~gkbk ,22lk ;d!2h11~d!~32pgkbk!
2

3C̃d/2;1;0
2;0 ~gkbk ,22lk ;d!116h11~d!h21~d!pgkbkF̃d/2

2 ~22lk!2h5~d!~32pgkbk!
2C̃d/2;0;1

1;1 ~gkbk ,

22lk ;d!2
2

d2
~32pgkbk!

2C̃d/2;1;0
1;1 ~gkbk ,22lk ;d!132h2~d!h3~d!pgkbkC̃d/2;0;0

1;1 ~gkbk ,22lk ;d!

1
1

2
h2~d!~32pgkbk!

3C̃d/2;2;1
1;2 ~gkbk ,22lk ;d!22h2~d!h3~d!~32pgkbk!

2

3C̃d/2;1;1
1;2 ~gkbk ,22lk ;d!248h2~d!h4~d!pgkbkC̃d/2;0;1

1;2 ~gkbk ,22lk ;d!

2h2~d!h3~d!~32pgkbk!
2C̃d/2;2;0

1;2 ~gkbk ,22lk ;d!2h6~d!~32pgkbk!
2C̃d/2;0;1

0;2 ~gkbk ,22lk ;d!

2h3~d!2~32pgkbk!
2C̃d/2;1;0

0;2 ~gkbk ,22lk ;d!232h3~d!h4~d!pgkbkC̃d/2;0;0
0;2 ~gkbk ,22lk ;d!

2h2~d!2~32pgkbk!
2C̃d/2;2;1

2;2 ~gkbk ,22lk ;d!1h3~d!2~32pgkbk!
3C̃d/2;2;1

0;3 ~gkbk ,22lk ;d!

12h3~d!h4~d!~32pgkbk!
2C̃d/2;1;1

0;3 ~gkbk ,22lk ;d!132h4~d!2pgkbkC̃d/2;0;1
0;3 ~gkbk ,22lk ;d!

12h2~d!h3~d!~32pgkbk!
3C̃d/2;3;1

1;3 ~gkbk ,22lk ;d!12h2~d!h4~d!~32pgkbk!
2

3C̃d/2;2;1
1;3 ~gkbk ,22lk ;d!1h2~d!2~32pgkbk!

3C̃d/2;4;1
2;3 ~gkbk ,22lk ;d!2

96pgkbk

122lk
dd,2

1F 36pgkbk

144pgkbk2~122lk!
2

24pgkbk

96pgkbk2~122lk!
Gdd,4J . ~B9!
n
2

in

ac
r

di

l
hey
In Eqs.~B7!, ~B8! and~B9! the terms proportional todd,2 or
dd,4 arise not only from thed-terms of Eq.~A10!, but also by
evaluating the ‘‘primed’’ traces, i.e., by subtracting the co
tributions coming from unphysical modes; see Appendix A
for details. All these contributions are obtained by expand
various functionsf (R) with respect toR and retaining only
the termsf (0)1 f 8(0)R in d52 and f (0) in d54. As we
explained above, these are the only pieces off which may
contribute to the evolution in the truncated parameter sp
Furthermore, the heat kernel expansions of the traces co
sponding to differentially constrained fields introduce ad
tional contributions proportional todd,2 or dd,4 into Eqs.
~B7!–~B9!.
02502
-

g

e.
re-
-

APPENDIX C: TENSOR SPHERICAL HARMONICS ON Sd

The spherical harmonicsTmn
lm , Tm

lm andTlm for symmetric
transverse traceless (ST2) tensorshmn

T , transverse~T! vectors
jm , and scalarsf on Sd form complete sets of orthogona
eigenfunctions with respect to the covariant Laplacians. T
satisfy

2D̄2Tmn
lm ~x!5L l~d,2!Tmn

lm ~x!,

2D̄2Tm
lm~x!5L l~d,1!Tm

lm~x!, ~C1!

2D̄2Tlm~x!5L l~d,0!Tlm~x!
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TABLE II. Eigenvalues of2D̄2 and their degeneracies on thed sphere.

Eigenfunction Spins EigenvalueL l(d,s) DegeneracyDl(d,s) l

Tmn
lm (x) 2 l~l1d21!22

d~d21!
R̄

~d11!~d22!~l1d!~l21!~2l1d21!~l1d23!!

2~d21!!~l11!!

2,3, . . .

Tm
lm(x) 1 l~l1d21!21

d~d21!
R̄

l~l1d21!~2l1d21!~l1d23!!

~d22!!~l11!!

1,2, . . .

Tlm(x) 0 l~l1d21!

d~d21!
R̄

~2l1d21!~l1d22!!

l!~d21!!

0,1, . . .
es
Th

in
cu

ay

m-
of
s of
si-

t
no
ec-
uch
tted
and, after proper normalization,

d lkdmn5E ddxAḡ~1(2ST2)!
mnrsTmn

lm Trs
kn

5E ddxAḡ~1(1T)!
mnTm

lmTn
kn

5E ddxAḡTlmTkn. ~C2!

Here (1(2ST2))
mnrs5(d22)/(2d)(ḡmrḡns1ḡmsḡnr) and

(1(1T))
mn5(d21)/dḡmn are the unit matrices in the spac

of ST2 tensors and transverse vectors, respectively.
L l(d,s)’s denote the eigenvalues of2D̄2 wheres is the spin
of the field under consideration andl takes the valuess,s
11,s12, . . . . Theindexm51, . . . ,Dl(d,s) is a degeneracy
index.

In Ref. @45# explicit expressions forL l(d,s) and the de-
generaciesDl(d,s) were derived which are summarized
Table II. The eigenvalues are expressed in terms of the
vature scalarR̄5d(d21)/r 2 of the sphere with radiusr.

The spherical harmonicsTmn
lm , Tm

lm and Tlm span the
spaces ofST2 tensors,T vectors, and scalars so that we m
expand arbitrary functionshmn

T , jm andf according to

hmn
T ~x!5(

l 52

`

(
m51

Dl (d,2)

hlm
T Tmn

lm ~x!,
02502
e

r-

jm~x!5(
l 51

`

(
m51

Dl (d,1)

j lmTm
lm~x!, ~C3!

f~x!5(
l 50

`

(
m51

Dl (d,0)

f lmTlm~x!.

Equations~C3! may now be used to expand also any sy
metric non-T2 tensor and nontransverse vector in terms
spherical harmonics since they may be expressed in term
ST2 tensors,T vectors and scalars by using the decompo
tions ~2.3!, ~2.7!; see e.g.,@45–48#.

Note that theD1(d,1)5d(d11)/2 modes$Tm
1,m% and the

D1(d,0)5d11 modes$T1,m% satisfy the Killing equation
~2.5! and the scalar equation~2.6!, respectively, and tha
T0,15const. Arbitrary symmetric rank-2 tensors receive
contribution from these modes. In the case of arbitrary v
tors the constant scalar mode does not contribute. S
modes have no physical meaning and have to be omi
therefore.

APPENDIX D: TABLES OF COEFFICIENT FUNCTIONS

1. Coefficients introduced inGk
„2…

†g,g‡

In this subsection we define the variousA’s, B’s, C’s and
G’s and HS(d) which appear in Eqs.~4.12!–~4.16! of Sec.
IV C and in Eqs.~A9! and ~A10! of Appendix A:
AT~d![
d~d23!14

d~d21!
, GT~d![2

d~d25!18

2d~d21!
, AV~d,a![

a~d22!21

d
,

GV~d![2
d24

2d
, AS1~d,a![

a~d24!

2a~d21!2~d22!
,

AS2~d,a![2
a~d22!22

a~d22!22~d21!
, BS1~d,a![2

2ad

2a~d21!2~d22!
,

BS2~d,a![
2ad

a~d22!22~d21!
, CS1~d,a![2

2a~d21!2~d22!

4~d21!22a~d22!

d22

d21
, ~D1!
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CS2~d,a![
d21

d2

2~d21!2a~d22!

a
, CS3~d,a![

~d22!~a21!

a~d22!22~d21!
,

GS1~d![
~d21!~d24!

2d2
, GS2~d![

~d21!~d26!

d2
,

GS3~d![
~d24!~d26!

4d2
, HS~d![2S d21

d D 2

.

2. Coefficients appearing in theb functions

Next we define the coefficientshi(d) contained in theb functions~4.23!, ~4.24! and~4.25! via the coefficient functionsAi ,
Bi , Ci , i 51,2,3, given in Appendix B. They also appear in the approximate solutions for the non-Gaussian fixed p
Appendix E:

h1~d![
d22

d21
, h2~d![

d24

d
, h3~d![

d228d14

2d~d21!
, h4~d![2

~d22!~d24!

d~d21!
,

h5~d![
d224d22

2d2
, h6~d![

~d24!2

2d~d21!
, h7~d![

5d4248d31148d22112d116

4d2~d21!2
,

h8~d![
d21d24

2
, h9~d![

~d13!~d12!~d225d12!

12d~d21!
, h10~d![2

d226

3d
,

h11~d![
~d11!~d22!

2
, h12~d![2

d422d325d2116d214

2d~d21!
, ~D2!

h13~d![2
2~d11!

d
, h14~d![

5d627d52139d42545d32898d21504d2360

720d2~d21!2
,

h15~d![
5d227d16

360d~d21!
, h16~d![

5d427d3254d22180d1180

180d2~d21!
,

h17~d![
~d12!~d11!~d25!

12~d21!
, h18~d![

~d12!~d525d425d3143d2268d118!

12d2~d21!2
,

h19~d![
5d2228d120

2d~d21!
, h20~d![

~d13!~d22!

3d2
,

h21~d![2
d223d14

d~d21!
, h22~d![

~d23!~d32d224d18!

4d~d21!
,

h23~d![
d625d513d4131d3286d2198d250

2d2~d21!2
, h24~d![22

d13

d2
,

h25~d![
3d4212d319d2124d240

4d~d21!
, h26~d![

d226d12

d~d21!
,

h27~d![
15d42178d31628d22632d1176

4d2~d21!2
, h28~d![2

9~d226d14!

2d~d21!
,

h29~d![
5d4252d31168d22128d116

4d2~d21!2
, h30~d![

3d2216d112

2d~d21!
,
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h31~d![
5d6227d5271d42405d32342d22960d1360

720d2~d21!2
,

h32~d![2
d623d527d415d3126d2282d112

12d2~d21!2
,

h33~d![
d625d517d4213d3142d2242d12

2d2~d21!2
,

h34~d![
5d627d52119d42593d32846d21480d2360

360d2~d21!2
,

h35~d![2
d623d5211d419d3154d22134d136

3d2~d21!2
,

h36~d![3
d625d517d429d3146d2262d114

d2~d21!2
,

h37~d![
~d12!~d326d213d26!

3d~d21!
, h38~d![22

d422d313d224d22

d~d21!
,

h39~d![
5d227d16

45d~d22!
, h40~d![

30d52115d42362d31721d21182d1264

90d~d21!~d22!
,

h41~d![22
3d6217d5125d4139d32166d21224d296

3d2~d21!~d22!
,

h42~d![4
~d21!~d24!2

d~d22!
, h43~d![2

~d12!~d326d213d26!

3d~d21!~d22!
,

h44~d![2
d422d313d224d22

d~d21!~d22!
, h45~d![

d423d3132d232

d2
,

h46~d![2
d4213d2224d112

6d~d21!
, h47~d![

d422d32d224d12

d~d21!
.

r

e

e
on
ate
APPENDIX E: CLOSED-FORM FORMULAS FOR THE
FIXED POINT LOCATION

In the following we derive the approximate formula fo
the position of the non-Gaussian fixed point discussed
Sec. V C. Here we restrict our considerations to the casd
.2.

In a first approximation we setlk5l* 50, bk5b* 50
and determineg* from the conditionhN* 522d alone.
Sinceb* 50, we may solve this equation forg* in closed
form which leads to

g* 5
22d

B1~0,0,l* ;d!2~d22!B2~0,0,l* ;d!
. ~E1!

As l 50, it boils down to
*

02502
in

g* 5~4p!d/221$h43~d!Fd/221
1 ~0!

1h46~d!F̃d/221
1 ~0!1h44~d!Fd/2

2 ~0!

1h47~d!F̃d/2
2 ~0!%21. ~E2!

Here thehi(d) are againd-dependent coefficients which ar
defined in Appendix D 2. It is remarkable that the soluti
~E2! coincides precisely with the corresponding approxim
solution ~H2! of Ref. @2# with a51, obtained in the frame-
work of the Einstein-Hilbert truncation.

Employing the exponential shape function~3.11! with s
51, and settingd54, for instance, Eq.~E2! yields g*
'0.590. Here we used that, for this shape function,F1

1(0)
6-45
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5p2/6, F2
2(0)51, F̃1

1(0)51, andF̃2
2(0)51/2; see Appen-

dix F.
In order to improve upon this approximation scheme,

determine (l* ,g* ,b* ) from a set of Taylor-expandedb
functions. Using Eqs.~F1!–~F4! we expand theb functions
~4.23!, ~4.24! and ~4.25! aboutlk5gk5bk50 and obtain

bl~lk ,gk ,bk ;d!522lk1nddgk1O~g2!,

bg~lk ,gk ;a,d!5~d22!gk2~d22!vdgk
21O~g3!,

bb~lk,gk,bk;d!5gd1~42d!bk1O~g2!. ~E3!

Heregd , nd , andvd are defined as in Eqs.~5.8!, ~5.12! and
~5.18!, respectively, andO(gn) stands for terms ofnth and
higher orders in the couplings g1(k)5lk , g2(k)5gk and
g3(k)5bk . Now g* is obtained as the nontrivial solution t
bg50, which reads

g* 5vd
215~4p!d/221$h43~d!Fd/221

1 ~0!

1h44~d!Fd/2
2 ~0!%21. ~E4!

Inserting Eq.~E4! into bl50 leads to
02502
e

l* 5
ndd

2vd
5

d~d23!

2
Fd/2

1 ~0!$h43~d!Fd/221
1 ~0!

1h44~d!Fd/2
2 ~0!%21. ~E5!

Quite remarkably, also these results agree completely w
those of Ref.@2# which follow from the pure Einstein-Hilber
truncation.@See Eqs.~H6! and ~H7! of this reference.#

Now we usebb in order to determineb* . However,
since the term linear inbk vanishes ford54, the expanded
bb of Eq. ~E3! is not sufficient in this case. Therefore w
consider also those terms of second order in the coupl
which are linear inbk . For these terms we find

]2bb

]lk]bk
U

lk5gk5bk50

50,

ad[
]2bb

]gk]bk
U

lk5gk5bk50

~E6!
52~4p!12d/2$2h39~d!12h45~d!Fd/2

2 ~0!23dd,4%.

Taking the nonvanishing term of Eq.~E6! into account, and
insertingg of Eq. ~E4! into bb50 then leads to
*
b* 5
gd

d242advd
21

5
~4p!2d/2$h31~d!Fd/222

1 ~0!1h32~d!Fd/221
2 ~0!1h33~d!Fd/2

3 ~0!%

d241$2h39~d!12h45~d!Fd/2
2 ~0!23dd,4%$h43~d!Fd/221

1 ~0!1h44~d!Fd/2
2 ~0!%21

. ~E7!

Employing the shape function~3.11! with s51 we obtain from Eqs.~E4!, ~E5! and ~E7! in d54 dimensions

l* 5z~3!S 13p2

144
1

79

24D
21

'0.287,

g* 5S 13p

144
1

79

24p D 21

'0.751, ~E8!

b* 5
419~13p21474!

~4p!2906768
'0.0018.

Here we used the expressions for the threshold functions derived in Appendix F. The numbers in Eq.~E8! should be compared
to the exact result~5.33!.

APPENDIX F: PROPERTIES OF THE THRESHOLD FUNCTIONS

In this appendix we summarize various important properties of the threshold functionsCn;m
p;q , C̃n;m; l

p;q , Fn
p andF̃n

p which are
defined by Eqs.~A29!, ~A30! and ~A31!.

Expanding the generalized threshold functionsCn;m
p;q , C̃n;m; l

p;q about vanishing couplings yields
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Cn;m
p;q ~gkbk ,22lk ;d!5S 22

d21

d22D q

Fn
p1q2m~0!12~p1q!S 22

d21

d22D q

Fn
p1q2m11~0!lk12~p1q!~p1q11!

3S 22
d21

d22D q

Fn
p1q2m12~0!lk

2232pqS 22
d21

d22D q11

Fn
p1q2m21~0!gkbk1O~g3!, ~F1!

C̃n;m;0
p;q ~gkbk ,22lk ;d!5S 22

d21

d22D q

F̃n
p1q2m~0!12~p1q!S 22

d21

d22D q

F̃n
p1q2m11~0!lk12~p1q!~p1q11!

3S 22
d21

d22D q

F̃n
p1q2m12~0!lk

2232pqS 22
d21

d22D q11

F̃n
p1q2m21~0!gkbk1O~g3!, ~F2!

C̃n;m;1
p;q ~gkbk ,22lk ;d!5S 22

d21

d22D q

„F̃n
p1q2m21~0!1nF̃n11

p1q2m~0!…12~p1q!S 22
d21

d22D q

3„F̃n
p1q2m~0!1nF̃n11

p1q2m11~0!…lk12~p1q!~p1q11!S 22
d21

d22D q

3„F̃n
p1q2m11~0!1nF̃n11

p1q2m12~0!…lk
2232pqS 22

d21

d22D q11

„F̃n
p1q2m22~0!

1nF̃n11
p1q2m21~0!…gkbk1O~g3!. ~F3!

Here O(g3) stands for terms of third and higher orders in the couplings g1(k)5lk , g2(k)5gk and g3(k)5bk . Quite
remarkably, every fixed order of these expansions depends only on the ‘‘conventional’’ threshold functionsFn

p and F̃n
p at

vanishing arguments.
By using Eq.~A31! the corresponding expansions ofFn

p andF̃n
p about vanishing argument can be read off directly fro

Eqs.~F1! and ~F2!. They are given by

Fn
p~22lk!5Fn

p~0!12pFn
p11~0!lk12p~p11!Fn

p12~0!lk
21O~lk

3!

~F4!
F̃n

p~22lk!5F̃n
p~0!12pF̃n

p11~0!lk12p~p11!F̃n
p12~0!lk

21O~lk
3!.

For n50 the threshold functions are universal in the sense that they do not depend onR(0)(y). In fact, settingn50 in
Cn;m

p;q , C̃n;m; l
p;q , Fn

p andF̃n
p leads to

C0;m
p;q ~v,w;d!5C̃0;m; l

p;q ~v,w;d!5~11w!2pS 32pv2
d22

2~d21!
~11w! D 2q

~F5!

and

F0
p~w!5F̃0

p~w!5~11w!2p. ~F6!

There exists a second class of universal values of certain threshold functions. Using the boundary conditions forR(0)(y) one
may easily verify that, for vanishing argument and forn115p>1, Fn

p assumes the universal value

Fp21
p ~0!5

1

G~p!
. ~F7!

Let us now be more specific and opt for the family of exponential cutoffs~3.11!. In this case the integral that definesFn
p

can be carried out analytically for the vanishing argument. Using the integral representation of the polylogarithm@49#,

Lin~x!5
1

G~n!
E

0

`

dz
xzn21

ez2x
, ~F8!

one obtains forp50, . . . ,4

Fn
0~0!5n~n11!s2nz~n11! ~F9!
025026-47
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Fn
1~0!5ns2n$z~n11!2Lin11~12s!% ~F10!

Fn
2~0!5H s22n~12s!21Lin21~12s!, sÞ1,

1, s51
~F11!

Fn
3~0!55

@2~n21!~12s!2#21s32n$~22s!Lin22~12s!2sLin23~12s!%, nÞ1,sÞ1

@2n21~n21!#21~2n2121!, nÞ1,s51

2@2~12s!2#21s32n$~22s!Li21
(1,0)~12s!2sLi22

(1,0)~12s!%, n51,sÞ1

ln~2!, n5s51

~F12!

Fn
4~0!5

¦

[6(n21)(n22)(12s)3] 21s42n{2( s223s13)Lin23(12s)23s(22s)Lin24(12s)

1s2Lin25(12s)}, nÞ1,2,sÞ1,

@~n21!~n22!#21~12232n1322n!, nÞ1,2,s51,

[6(2n23)(12s)3] 21s42n{2( s223s13)Lin23
(1,0)(12s)23s(22s)Lin24

(1,0)(12s)

1s2Lin25
(1,0)(12s)}, nP$1,2%,sÞ1,

ln~27/16!, n5s51,

ln~4/3!, n52,s51.
~F13!
sh
in

f

e

Here we defined

Lin
(k,l )~x![

dk

dnk

dl

dxl
Lin~x! ~F14!

and used the relations

Lin~1!5z~n!, Lin
(0,1)~x!5

Lin21~x!

x
~F15!

with z denoting the Riemann zeta function. For nonvani
ing arguments an analytic solution to the integrals defin
the threshold functions is not known.

For the exponential cutoff~3.11! with s51 there even
exists a very useful relation amongFn

p(0) andF̃n
p(0). One

may easily verify that

Fn
p~0!5F̃n

p21~0!. ~F16!

This relation allows us to calculate theF̃n
p(0) integrals ana-

lytically as well.

APPENDIX G: PROOF OF THE INEQUALITY „6.14…

In this appendix we prove the inequality~6.14!. As a first
step we consider the function

f ~a,y!5aAa~a2y!2A12y ~G1!
02502
-
g

with a.1 and 0<y<2/5. @For a51 this function vanishes
identically: f (1,y)[0.# An upper bound for this function
may be obtained as follows. For the first two derivatives of
with respect toy we obtain

f (0,1)~a,y![
d

dy
f ~a,y!

52
a2

2Aa~a2y!
1

1

2A12y
,

f (0,2)~a,y![
d2

dy2
f ~a,y!

52
a3

4@a~a2y!#3/2
1

1

4~12y!3/2
. ~G2!

Solving f (0,1)(a,y)50 for y leads to thesinglesolution

y5y0[
a~a11!

a21a11
. ~G3!

Since f (0,2)(a,y0)5(a21a11)3/2(a321)/(4a3).0, we
havef (a,y0)< f (a,y) for all yP@0,1# anda.1. Hence, for
a.1 fixed but arbitrary,f monotonically decreases in th
interval yP@0,y0# wherey0,1.

Furthermore,y05y0(a) is a monotonically increasing
function of a for all a>1. Therefore we have thaty0(a)
>y0(a51)52/3. As a consequence,f monotonically de-
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creases in the interval 0<y<2/3 for any value ofa.1.
Since we restricted our considerations toyP@0,2/5# we ob-
tain f (a,y)< f (a,0).

(Rk) f̄s̄ may be obtained fromf by replacing

a→ L l~4,0!/k21R(0)
„L l~4,0!/k2

…

L l~4,0!/k2
,

y→ R

3L l~4,0!
5

4

l ~ l 13!
, ~G4!

and multiplying the result by 9bk„D l(4,0)…2/8. Note that for
all l>2 we haveL l(4,0)>5R/6 so thaty<2/5 is indeed
satisfied. Moreover, a.1 is satisfied as long a
R(0)

„L l(4,0)/k2
….0. If R(0)

„L l(4,0)/k2
…50, the cutoff in

the scalar sector is zero anyway: (Rk) s̄s̄5(Rk) f̄s̄

5(Rk) f̄f̄50. Hence, for positive values ofbk , f (a,y)
< f (a,0) leads to

~Rk!f̄s̄<
9

8
bkk

4R(0)
„L l~4,0!/k2

…$2L l~4,0!/k2

1R(0)
„L l~4,0!/k2

…%. ~G5!

Next we insert (Rk) s̄s̄ and (Rk) f̄f̄ of Eq. ~6.12! into
(Rk) f̄f̄(Rk) s̄s̄2(Rk) f̄s̄

2 and then use Eq.~G5!. This yields
-
na

se

ic

d

02502
~Rk!f̄f̄~Rk!s̄s̄2~Rk!f̄s̄
2

>S k4R(0)
„L l~4,0!/k2

…

32pgk
D 2

3H 18pgkbk„2L l~4,0!/k2

1R(0)
„L l~4,0!/k2

……2
3

16J . ~G6!

Obviously the positivity condition (Rk) f̄f̄(Rk) s̄s̄2(Rk) f̄s̄
2

.0 now boils down to

v~k2,l ,R!12L l~4,0!/k21R(0)
„L l~4,0!/k2

…

.
1

96pgkbk
. ~G7!

Here v is the non-negative function ofk, l and R which
represents the contributions to2(Rk) f̄s̄

2 neglected on the
RHS of Eq.~G6!. We see that Eq.~6.14! is a sufficient con-
dition for the inequality ~G7! to be valid, i.e., for
(Rk) f̄f̄(Rk) s̄s̄2(Rk) f̄s̄

2 to be positive. This is what we
wanted to prove.
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