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Using the Hopf fibration and starting from a four-dimensional noncommutative Moyal planeRu
23Ru

2 we
obtain a star product for the noncommutative~fuzzy! Rl

3 defined by@xi ,xj #5 ile i jkxk. Furthermore, we show
that there is a projection function which allows us to reduce the functions onRl

3 to that of the fuzzy sphere, and
hence we introduce a new star product on the fuzzy sphere. We will then briefly discuss how using our method
one can extract information about the field theory on the fuzzy sphere andRl

3 from the corresponding field
theories onRu

23Ru
2 space.
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I. INTRODUCTION AND PRELIMINARIES

In the past two years, motivated by string theory@1#, the
theories on the noncommutative Moyal plane have been
tensively studied~for a review see@2#!. The Moyal plane can
be defined through the functions of operator valued coo
natesX̂i satisfying

@X̂i ,X̂j #5 iQ i j , i 51, . . . ,d, ~1.1!

whereQ i j is a constant antisymmetric tensor. We will deno
such spaces byRQ

d . Let us restrict ourselves to the noncom
mutative spaces~not space-times! and taked53. In this
case, there always exists a rotation which reduces the
zero components ofQ i j to two,1 e.g., Q1252Q215u and
thereforeRQ

3 .Ru
23R. As a first generalization of the Moya

plane one may considerQ i j to be linearlyX dependent: i.e.,

@X̂i ,X̂j #5 ile i jk X̂k, i 51,2,3. ~1.2!

We will denote this space byRl
3 . It has been shown tha

these spaces can also arise within string theory@3–6#. Equa-
tion ~1.2! resembles the su~2! algebra whose generators a
X̂i /l. In fact, in generalX̂i ’s are reducible representations
su~2!. The irreducible representations of that algebra giv
by (2J11)3(2J11) Hermitian matrices will reduceRl

3 to
what is called a fuzzy sphereSl,J

2 @7–12#.2 In other words the
fuzzy sphereSl,J

2 is determined by the algebra~1.2! sub-
jected to

1We would like to comment that this is not always possible for
compact noncommutative three manifolds such as noncommut
three torus.

2Recently there has been a complete review over the field@13#.
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X̂i
25l2J~J11!; ~1.3!

i.e., the radius of the fuzzy sphere is given bylAJ(J11).
Therefore the fullRl

3 can be obtained when we consider t
set of fuzzy spheres with all possible radii:Rl

35(J50
` Sl,J

2 .
We should warn the reader thatRl

3 in thel→0 limit will not
reduce toR3 @8#. This will be seen more explicitly in Sec. I
~and in particular Sec. II B!. It has been shown that the fuzz
sphere in certain limits can be reduced to the commuta
sphereS2 and also the Moyal planeRu

2 @14#.
In order to formulate physics on noncommutative spac

one should be able to pass to the language of fields~func-
tions! instead of operators, where the algebra of operator
translated to the algebra of functions on a proper spa
though with a product different from the usual product
functions. This product is usually called star product. In fa
there exists a one-to-one correspondence~called Weyl corre-
spondence! between the operators and the functions@15,16#.
Given an operatorOf ,

Of5E dkeik•X̂ f̃ ~k!, ~1.4!

the corresponding function is3

f ~x!5E dkeik•x f̃ ~k!. ~1.5!

Then, the algebra ofX̂ will induce a star product on func
tions,

ve
3We only consider the functions which admit the Fourier expa

sion.
©2002 The American Physical Society25-1
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Of•Og5E dkdpeik•X̂eip•X̂ f̃ ~k!g̃~p!

5E dkdpei (k1p)•X̂2( i /2)ki pj [ X̂
i ,X̂j ] 1•••

3 f̃ ~k!g̃~p!. ~1.6!

For the case of the Moyal plane, the above Hausdorff exp
sion terminates and then we obtain the so-called Moyal
product,

Of•Og↔ f !g5eiQ i j (]/]xi )(]/]yj ) f ~x!g~y!ux5y . ~1.7!

It is easy to check thatxi!xj5xixj1( i /2)Q i j and hence
$xi ,xj%5xi!xj2xj!xi5 iQ i j .

In running the above Weyl-Moyal machinery we have im
plicitly assumed that eik•X̂↔eik•x or equivalently eik•x

5(e! ) ik•x511 ik•x2
1
2!

(k•x)!(k•x)1•••. However, to

obtain the algebra~1.1! we do not necessarily need to impo
this condition~which is in fact a special way of ordering, th
Weyl ordering!. More explicitly one can define infinitely
many star products all resulting in the same algebra.
example, in Eq.~1.7! if we add a general symmetric matri
to Q i j we will find the same algebra as before. This
equivalent to taking

xi!xj5xixj1
i

2
Q i j 1Ai j , ~1.8!

where Ai j ’s are constants andAi j 5Aji . In fact, the above
generalized star products correspond to different ways of
dering in the operator language. For theRu

2 case if we choose
Ai j 5(L/2)d i j ~this is always possible with a proper rot
tion!, we will obtain a new star product in which

~e! ! ik•x5eik•xe2Lk2/4. ~1.9!

More precisely, different star products of Eq.~1.9! resulting
from different orderings can be related by introducing t
proper weight functions into the ‘‘Tr’’ over the algebr
~which in the Moyal case is simply integral over the who
space!. Physically this means that instead of the usual sim
waves we are expanding our fields in terms of wave pac
of the width AL/2. It is easy to show that the above st
product will lead exactly to the same field theory results
the Moyal star product. More explicitly, different noncom
mutative versions of a given field theory~corresponding to
different star products resulting from differentAi j ’s! are all
related by a field redefinition.4

Another natural way of ordering arises if instead of Fo
rier expansion we use the Laurent expansion of the funct
and the corresponding harmonic oscillator basis@17#. Let us
considerRu

2 and define

4We are grateful to L. Susskind for a discussion on this point.
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A2u
, ~1.10!

then @z,z̄#!51. Any function f (x1,x2) can be expanded as

f ~z,z̄!5(
n,m

f mnz̄
mzn. ~1.11!

Now replacingz and z̄ by harmonic oscillator creation an
annihilation operatorsa and a† we will obtain the corre-
sponding operator which is ‘‘normal ordered.’’ We will sho
in Sec. II that this normal ordering yields the following st
product:

z! z̄5zz̄11, z̄!z5zz̄, ~1.12!

which exactly corresponds to Eq.~1.8! with Ai j 5(u/2)d i j .
In order to study field theories on theRl

3 we need to build
the corresponding star product. Along the above argume
depending on the ordering we use for the operators we
find various star products onRl

3 ~and similarly onSl,J
2 ). If

we take the Weyl ordering@i.e., imposing the condition
(e!) ik•x5eik•x# we will end up with the following star prod-
uct:

xi!xj5xixj1
il

2
e i jkxk . ~1.13!

However, this star product is not so convenient for doi
field theory onRl

3 ~it is suitable for perturbative expansion
in powers ofl). In this work using the normal ordering o
operators on the Moyal plane, we obtain a new star prod
on Rl

3 . To obtain the star product we start with a four dime
sional Moyal plane,Ru

23Ru
2 , parametrized byz1 ,z2 and

choose the star product induced by the normal ordering.
calling the Hopf fibration forRl

3 @13#, we show that the al-
gebra of operators onRl

3 ~for l5u) is equivalent to a sub-
algebra of the functions onRu

23Ru
2 which are invariant under

z1→eiaz1 andz2→eiaz2, or equivalentlyRl
3.(Ru

23Ru
2)/S1.

In this way one can read off the form of the star product
Rl

3 induced by the star product on the four-dimension
Moyal plane. In other words there exists a dictionary whi
allows us to translateRl

3 , the algebra of functions, and henc
the field theory on that, into that ofRu

23Ru
2 . As we dis-

cussed, the representations of theRl
3 can be understood as

sum of irreducible representations on fuzzy spheres with
ferent radii. We show that there is a projection operator,PJ ,
which projects the functions onRl

3 on theSl,J
2 . Hence we

can extend our dictionary to translate the field theories on
fuzzy sphere in four-dimensional field theories on the Mo
plane.

The paper is organized as follows. In Sec. II, we fi
review the harmonic oscillator basis and coherent states
then use this basis to extract a new star product on the M
plane. We use this star product to read off the induced
product on theRl

3 . We also show how the operators~and
functions! and, in particular, the derivative operators onRl

3

5-2
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are related to the four-dimensional operators~and functions!.
In Sec. III, we introduce the projection operatorPJ which
enables us to single out an irreducible (2J11)3(2J11)
dimensional representation out of the algebra of functions
theRl

3 . We have moved some other useful identities invo
ing PJ to the Appendixes. In Sec. IV, we discuss how
using our dictionary, the field theories onRl

3 and the fuzzy
sphere can be studied through field theories on the fo
dimensional Moyal plane. The last section contains our c
clusions and discussions.

II. STAR PRODUCT ON Rl
3

In this section, first we will review and generalize the s
product deduced from coherent states@8,11,18# and then we
will construct the star product on fuzzy three-dimensio
vector spaceRl

3 and its projection on the fuzzy spheres wi
given radius.

The sphere can be interpreted as the Hopf fibration,

S35$zWPC2; z̄z5r2%→S25$x5~x1,x2,x3!PR3%,
~2.1!

with

xi5 1
2 z̄asab

i zb , i 51,2,3, ~2.2!

where the bar denotes complex conjugation ands i ’s are
Pauli matrices. In this approach fields are functions of co
plex variablesza ,z̄a , a51,2. The relationz̄z5r2 leads to
( i(x

i)25x02, with

x05 1
2 z̄aza . ~2.3!

Sincexi ’s are invariant under the transformation

z→eia z, z̄→e2 ia z̄.

The above Hopf fibration can be viewed as coordinates
S25CP1[S3/U(1).

To get a noncommutative version of the above Hopf
bration it is enough to make the coordinatesza and z̄a be
noncommutative:@za ,z̄b#!5dab @with the star product de
fined in Eq. ~1.12!#. Then the corresponding operator la
guage is obtained by replacing coordinatesza and z̄a with
the creation and annihilation operators of a two-dimensio
harmonic oscillatoraa andaa

† ,

@aa ,ab
† #5dab .

We note that the coordinatesza are scaled so that they ar
dimensionless@as in Eq.~1.10!# and henceu is scaled to one.
However, u can always be reintroduced on a dimensio
analysis.

Given

X̂i5 1
2 aa

†sab
i ab , ~2.4!

it is straightforward to show that
02502
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@X̂i ,X̂j #5 i e i jk X̂k

~if we reintroduce u, the above will become@X̂i ,X̂j #

5 iue i jk X̂k). This is the key observation which relatesRu
2

3Ru
2 to theRl

3 ~with l5u). In this section using the abov
realization we obtain an explicit form of the star product
Rl

3 .

A. Coherent states

Let un1 ,n2& represent the energy eigenstates of the tw
dimensional harmonic oscillators whose creation and ann
lation operatorsaa

† andaa (a51,2) satisfy the above com

mutation relations. To any vectorzWPC2 one can assign a
coherent state,

uz1 ,z2&[uzW&5e2( z̄z/2)ezaaa
†
u0,0&, ~2.5!

where z̄z5 z̄aza . The coherent statesuzW& are normalized

^zWuzW&51, form an~overcomplete! basis for the Hilbert space
H, and are eigenstates of the annihilation operatorsaauzW&
5zauzW&. They are not orthonormal but satisfy

^hW uzW&5e2(h̄h/2)2( z̄z/2)1h̄z. ~2.6!

The completeness relation reads

E dm~ z̄,z!uzW&^zWu51, ~2.7!

wheredm( z̄,z)5(1/p2)dz̄1dz1dz̄2dz2 is the measure on the
two-dimensional complex planeC2.

To any operatorf̂ belonging to the algebraÂ4 generated
by the creation and annihilation operators, we can associa

function f (zW,z̄W) belonging to the algebra of functions o
Ru

23Ru
2 denoted byA4 and generated byza and z̄a as

^zWu f̂ uzW&5 f ~zW,z̄W !. ~2.8!

Then the product of operators corresponds to an associa
star product of the corresponding functions as

~ f !g!~zW,z̄W !5^zWu f̂ ĝuzW&5E dm~h̄,h!^zWu f̂ uhW &^hW uĝuzW&.

~2.9!

To get the explicit form of the star product~2.9!, follow-
ing @18# we introduce the translation operators,

e2za(]/]ha)1ha(]/]za) f ~zW,z̄W !5
^zWu f̂ uhW &

^zWuhW &

5:e(ha2za)(]/]za): f ~zW,z̄W !,

~2.10!
5-3
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where : : means that the derivatives are ordered to the righ
each term in the Taylor expansion of the exponential. S
stituting Eq.~2.10! into Eq.~2.9! and performing the integra
tion we obtain

~ f !g!~zW,z̄W !5 f ~zW,z̄W !exp
]Q

]za

]W

] z̄a

g~zW,z̄W !. ~2.11!

This is a new star product which is resulting from the norm
ordering in the operator language. We note that this
product is different from the Moyal star product@18#.

Besides the coherent statesuza& we have the usual two
dimensional harmonic oscillator basisun1 ,n2&,

un1 ,n2&5
~a1

†!n1

A~n1!!

~a2
†!n2

A~n2!!
u0,0&.

However, it turns out that for our purpose~reduction of the
four-dimensional algebra to that ofRl

3) it is more convenient
to use the Schwinger basis,

u j ,m&5
~a1

†! j 1m

A~ j 1m!!

~a2
†! j 2m

A~ j 2m!!
u0,0&, ~2.12!

where j 50,1
2 ,1, . . . ,̀ , andm runs by integer steps over th

range2 j <m< j . The coherent state can be expanded in
u j ,m& basis,

uzW&5(
j 50

`
e2( z̄z/2)

A~2 j !!
(

m52 j

m5 j

z1
j 1mz2

j 2mACj 1m
2 j u j ,m&, ~2.13!

with

Cj 1m
2 j 5

~2 j !!

~ j 1m!! ~ j 2m!!
.

Now we consider the subalgebraÂ3,Â4 generated by
X̂i , whose corresponding subalgebra of functionsA3,A4 is
generated byxi5 1

2 z̄asab
i zb . Noting that X̂0 @X̂0(X̂011)

5( i(X̂
i)2# commutes with allX̂i ’s ~i.e., @X̂0, f̂ (X̂i)#50 for

any function f̂ ), one can define theÂ3 algebra as the suba
gebra ofÂ4 whose elements are commuting withX̂0, i.e.,

; f̂ ~a†,a!PÂ4 , @X̂0, f̂ #50⇒ f̂ PÂ3 . ~2.14!

At the level of functions the commutator withX̂0 corre-
sponds to the derivative operatorL0,

i @X̂0, f̂ #↔L0f [
i

2
~ z̄a]̄a2za]a! f ~z,z̄!. ~2.15!

Therefore, the elements of the algebraA3 are functions ofza

and z̄a subjected toL0f (z,z̄)50. We would like to stress
that the operatorL0 is in fact a derivative operator with
respect to the star product~2.11!,

L0~ f !g!5~L0f !!g1 f !~L0g!, ~2.16!
02502
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and hence the subalgebraA3 is closed under the star produ
~2.11!, i.e., f ,gPA3 then f !gPA3. Using this property and
the fact that all the elements ofA3 can be represented a
functions ofxi andx0, one can rewrite the star product of E
~2.11! in terms ofxi ’s and their derivatives. To start with, w
recall that

]

]za
5

1

2
z̄bsba

i ]

]xi
,

]

] z̄a

5
1

2

]

]xi
sab

i zb . ~2.17!

Note that the above expressions are only true when der
tives are acting on the functions inA3. Now using the rela-
tion

z̄bsba
i sar

j zr52~d i j x01 i e i jkxk!,

we obtain the desired star product in terms of the coordina
xi ,

~ f !g!~xW !

5expF1

2
~d i j x01 i e i jkxk!

]

]ui

]

]v j G f ~uW !g~vW !U
u5v5x

,

~2.18!

for any functionsf ,gPA3. Note that the exponential in th
expression of the star product~2.18! should be understood b
its Taylor expansion. We would like to stress that our n
star product~2.18!, similar to that of Eq.~2.11!, is associa-
tive. From Eq.~2.18!, it follows that

xi!xj5xixj1 1
2 ~d i j x01 i e i jkxk! ~2.19!

x0!xi5x0xi1 1
2 xi ~2.20!

x0!x05x0~x01 1
2 !, ~2.21!

where we have used the fact thatx05Axixi and hence
]x0/]xi5xi /x0. To show the relations~2.20! and ~2.21! one
can use the following equivalent definition:

~ f !g!~xi ,x0!5 f S xi1
1

2
~d i j x01 i e i jkxk!

3
]

]yj
,x01

1

2
xi

]

]yi D g~yi ,y0!U
y5x

b .

The above is valid for any function which admits Tayl
expansion. Using Eq.~2.19! it is easy to check that

@xi ,xj #!5 i e i jkxk. ~2.22!

Furthermore,
5-4
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@x0,xi #!50,

d i j x
i!xj5xW!xW5x0!~x011!.

Equation~2.22! shows that the algebraA3 equipped with the
star product~2.18! can be viewed as an algebra of functio
on theRl

3 endowed with a Euclidean metricd i j . It is easy to
see that the star product~2.18! is invariant under the classica
SO~3! group. This SO~3! symmetry ofRl

3 is the residual
symmetry of the Poisson structure inRu

23Ru
2 which is

Usp(1)3Usp(1) moded out by the U~1! factor. We would
like to note that, as it is clear from our construction, there
two ways for computing the star product of any functions
xi ’s: to use definition~2.18! or, to consider the function a
functions ofza and z̄a and use Eq.~2.11!, and of course the
result would be the same.

It is worth noting that if instead of the four-dimension
star product of Eq.~2.11! one uses the usual Moyal sta
product, the reduction to a three-dimensional star prod
which is expressible only in terms ofxi ’s, unlike Eq.~2.18!,
will not have a simple form.

B. The measure

To formulate field theory onRl
3 we need to find the cor

responding measure which should depend only onxi ’s and
should be related to the four-dimensional measure
Ru

23Ru
2 given by

dm~z,z̄!5
1

p2
dz̄1dz1dz̄2dz2 . ~2.23!

Let us writeza in a more convenient basis,

z15R cosu3eiu1, z25R sinu3eiu2,

with 0<u3<p/2 and 0<ua<p. In this coordinate system
the measure takes the form

dm~z,z̄!5
1

~2p!2
R3dRsin 2u3d2u3du1du2 .

One can easily check thatxi andx0 ~and hence any function
of them! depend only onR, u52u3, andf5u22u1. There-
fore, without any loss of generality we can write

E dm~z,z̄! f ~xi ,x0!5
1

2pE0

`

R3dR

3E
0

p

sinuduE
0

2p

df f ~xi ,x0!,

~2.24!

where we have performed the integration overu21u1 which
gives a factor of 2p. Remembering thatR25 z̄z52x0, xi ’s
in this basis will be of the form

x15x0 sinu cosf, x25x0 sinu sinf, x35x0 cosu,
02502
e
f

ct

n

with ((xi)25(x0)2, which is the spherical coordinate bas
Finally the measure can be expressed as

E dm~z,z̄! f ~xi ,x0!5
1

pE0

`

x0dx0E
0

p

sinudu

3E
0

2p

df f ~xi ,x0!

5E d3x

px0 f ~xi ,x0!. ~2.25!

That is, the measure onRl
3 differs from the usuald3x in a

factor of 1/x0. This, in particular, implies that the radial pa
of the line element forRl

3 , which is the set of all possible
fuzzy spheres with different radii, is different from the usu
R3. However, the measure on the fuzzy sphere which is
angular part of the measure ofRl

3 remains the same as usua

III. REDUCTION TO THE FUZZY SPHERE

The fuzzy sphere,Sl,J
2 , following the discussions in the

introduction, is defined as (2J11)3(2J11) irreducible
representation of the su~2! algebra ofRl

3 . In this section,

introducing a proper projection operator,P̂J , we show how
the star product of functions onRl

3 can also be used as th
star product on the fuzzy sphereSl,J

2 .

A. The projection operator P̂J

Let ÂJ denote the algebra of operators on the fuz
sphere of radiusJ,Sl,J

2 @defined through Eqs.~1.2!,~1.3!#. An

arbitrary element of ÂJ , f̂ J , can be expanded in th
Schwinger basis for fixedJ,

f̂ J5 (
m,m852J

J

f m,m8
J uJ,m&^J,m8u, ~3.1!

on the other hand the operatorf̂ PÂ3 can be written as5

f̂ 5(
j 50

`

f̂ j . ~3.2!

Therefore to reduce the algebraÂ3 to that ofSl,J
2 ,ÂJ , it is

enough to project it as

f̂ J5 P̂J
† f̂ P̂J , ~3.3!

where

5Note that an arbitrary element ofÂ4 can be expanded asf̂

5( j , j 8,m,m8 f m,m8
j j 8 u j ,m&^ j 8,m8u, while elements ofÂ3 are of the

form f̂ 5( j ,m,m8 f m,m8
j u j ,m&^ j ,m8u. The latter follows directly from

the definition of theÂ3 @Eq. ~2.14!#.
5-5
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P̂J5 (
m52J

J

uJ,m&^J,mu. ~3.4!

It is easy to check thatP̂J is a ~rank 2J11) projection op-
erator, i.e.,

P̂J
†5 P̂J , P̂JP̂K5dJKP̂K , (

J50

`

P̂J51. ~3.5!

P̂J can also be studied as an operator inÂ4. Noting the
definition of theu j ,m& basis@Eq. ~2.12!#, it is straightforward
to check that

aaP̂J5 P̂J21/2aa , aa
† P̂J5 P̂J11/2aa

† , ~3.6!

and therefore

@ab
†aa ,P̂J#50. ~3.7!

From Eq.~3.6! we learn that the projected creation and a
nihilation operators are zero

aJa
† 5 P̂Jaa

† P̂J50, aJa5 P̂JaaP̂J50,

and Eq.~3.7! results in

@X̂i ,P̂J#50, ~3.8!

or equivalentlyP̂J is only a function ofX̂0, and hence any
function in Â3 commutes withP̂J . ~This can be used a
another equivalent definition forÂ3.! Then,

f̂ PÂ3 , f̂ J5 P̂J
† f̂ P̂J5 f̂ P̂J , ~3.9!

and hence

ÂJ5 P̂JÂ35Â3P̂J5 P̂JÂ4P̂J . ~3.10!

The operatorP̂J can also be expanded in terms of the coh
ent states. First we recall Eq.~2.13!,

uzW&5 (
j 50

j 5`

uzW& j ,

uzW& j5
e2( z̄z/2)

A~2 j !!
(

m52 j

m5 j

z1
j 1mz2

j 2mACj 1m
2 j u j ,m&.

~3.11!

We note thatuzW& j are orthogonal to each other~j^zWuzW&k50 for
any j Þk) but not normalized to one. With the definition o
uzW& j ’s and P̂j we have

P̂j uzW&5uzW& j , ~3.12!

and therefore

P̂j5E dm~ z̄z!uzW& j j ^zWu. ~3.13!
02502
-

-

The above operator relations can be written in terms
functions and the corresponding star product~2.11! or ~2.18!.
However, we are interested in the explicit form of the fun
tion corresponding toP̂J . To obtain that one can use th
coherent states,

^zWuP̂JuzW&5
1

~2J!!
e2 z̄z~ z̄z!2J5

1

~2J!!
e22x0

~2x0!2J5PJ~x0!.

~3.14!

Then Eq.~3.5! will read as

PJ~x0!!PK~x0!5dJKPK~x0!, ~3.15!

with the star product given in Eq.~2.18!. To show this last
equation we should expandPJ(x

0) in powers ofx0 and then
use the following identity:

~x0!2l!PJ~x0!5~x0!2l PJ2 l , ~3.16!

with PJ2 l50 for J2 l ,0. The proof is shown in Appendix
A.

B. More on the projection operator PJ

So far we have shown how using projection operatorPJ ,
the algebra of functions onRu

23Ru
2 and onRl

3 (A4 andA3,
respectively!, can be reduced to that of the fuzzy sphere,AJ
defined by Eq.~3.10!. In this subsection we would like to
elaborate more on the projection operatorPJ and its proper-
ties.

Let us definef j as

f j~z,z̄!5 j^zWu f̂ uzW& j5^zWuP̂j f̂ P̂ j uzW&5Pj! f !Pj , ~3.17!

for any f̂ PÂ4. It is clear that by definitionf j is a function in
Aj . If we start with the operators inÂ3 instead ~i.e., f̂

PÂ3) then

f j~xi ,x0!5^zWu f̂ P̂ j uzW&5 f !Pj5Pj! f , ~3.18!

and f (xi ,x0)5( j 50
` f j (x

i ,x0). With the above definition we
have

~ f !g! j5 f j!gj ,

and

f j!gj 850, j Þ j 8.

By a simple analysis one can show that thex-dependence of
f j (x

i ,x0) is of the form,

f j~xi ,x0!5 f̃ j~ x̃i !Pj~x0!, ~3.19!

wherex̃i5xi /x0 is the angular part ofxi ’s. In other words,

f̃ j~ x̃i !5~ f !Pj !/Pj . ~3.20!

Here we will show some more identities involvingPj
~some more are gathered in Appendix A! which turns out to
5-6
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be useful in working out the field theory manipulations
the fuzzy sphere. The generators of the algebraAJ are

xJ
i 5xi!PJ~x0!5xi PJ21/2~x0!5Jx̃i PJ~x0!. ~3.21!

x0 projected onSl,J
2 , as we expect gives the radiusJ, i.e.,

xJ
05x0!PJ~x0!5JPJ~x0!. ~3.22!

To evaluate the above star products either Eq.~2.11! or Eq.
~2.18! may be used. In the same way one can show that

@xJ
i ,xJ

j #!5@xi ,xj #!!PJ~x0!5 i e i jkxk!PJ~x0!5 i e i jkxJ
k ,

@xJ
0 ,xJ

i #!50,

xW J!xW J5d i j xJ
i !xJ

j 5J~J11!Pj~x0!. ~3.23!

Hence,xJ
i can be viewed as coordinates of a sphere o

given radiusJ embedded into the fuzzy spaceRl
3 . Each

sphere is described by the algebra of functionsAJ,A3 gen-
erated byxJ

i . The spheres of different radii 0<J,` fill the
whole Rl

3 or in terms of algebras% J50
` AJ5A3. Finally we

would like to present an important identity, the proof
which is shown in Appendix A,

f ~ x̃i !!x05 f ~ x̃i !x0, ~3.24!

where x̃i5xi /x0, and therefore any function of the angul
coordinatesx̃i commutes with any function which only has
radial dependence. This is in fact what one intuitively e
pects as the radial coordinatex0 labels different representa
tions of the su~2! algebra.

IV. FIELD THEORY ON Rl
3 AND THE FUZZY SPHERE

In previous sections we have given the necessary m
ematical tools to constructRl

3 andSl,J
2 algebra of the opera

tors, the algebra of functions, and the star product on th
in terms of the four-dimensional Moyal planeRu

23Ru
2 . In

addition, introducing the projection operator,PJ , we dis-
cussed how the fuzzy sphere algebra is resulting from tha
Rl

3 . In this section as an application of our mathemati
construction we show how the action of field theories onRl

3

and the fuzzy sphere are induced from the correspond
actions on the Moyal plane. Hence we can deduce field
oretical information onRl

3 and Sl,J
2 from the more familiar

and simpler case of the Moyal plane. However for reduc
the actions, besides what we have already introduced
should know what are the derivative operators onRl

3 in
terms of the derivative operators onRu

23Ru
2 . These deriva-

tives are needed for writing the kinetic terms of actions.
this section we show that the derivative along the radial
ordinate ofRl

3 , as we expect, is a discrete one.

A. Derivative operators

The derivative operators are generally operators wh
satisfy the Leibniz rule with respect to star product,
02502
a

-

h-

,

of
l

g
e-

g
ne

-

h

D~ f !g!5Df !g1 f !Dg.

In the Moyal plane, where the noncommutativity parame
is a constant, the usual]a and ]̄a are proper derivative op
erators. However, it is easy to see that the usual] i5]/]xi are
not good derivatives with respect to the star product of E
~2.18!. It is clear that, in the operator language, any opera
which acts as a commutator will satisfy the Leibniz rule.~In
the Moyal plane, i.e.,@aa ,f̂#↔ ]̄af and @aa

† ,f̂#↔2]af.!
In Sec. III, we showed thatL0 @given by Eq.~2.15!# is in

fact a derivative operator with respect to theS1 direction
which is moded out for reducingRu

23Ru
2 to Rl

3 . From the
su~2! algebra ofRl

3 , which is the algebra of angular mo

menta, we learn thati @X̂i ,.# gives the proper derivatives, bu
not all of them; yet the radial derivative is not specified.
terms of functions,

i @X̂i ,f̂#↔Lif[^zu i @X̂i ,f̂#uz&

5
i

2
sab

i ~ z̄a]̄b2zb]a!f~z,z̄!. ~4.1!

One can explicitly show thatLi do satisfy the Leibniz rule
with respect to star products of Eqs.~2.11! and~2.18!. Using
Eq. ~2.17! one can rewriteLi in terms ofxi and] i , and of
course the result is the usual angular momentum opera
i.e., Li5e i jkxj]k .

As we discussed the radial coordinatex0 can only take

discrete values ofj 50,1
2 ,1, . . . .Therefore, the derivative in

this direction is expected to be a discrete difference a
hence it is not necessarily fulfilling the Leibniz rule. On th
other hand we note that]/]x0, despite being a derivative, i
not a Hermitian operator. One can check that the operat

D5 1
2 ~ z̄a]̄a1za]a!, ~4.2!

which corresponds tox0(]/]x0), is the Hermitian operator
which appears in the kinetic terms of the actions. To sh
that D is in fact acting like a discrete derivative it is enoug
to note that

DPj52x0~Pj 21/22Pj !5@2 jP j2~2 j 11!Pj 11/2#.

Hence, for any arbitrary function ofx,

f~xi ,x0!5(
j 50

f j~x!5(
j

f̃~ x̃i !Pj~x0!,

we have
5-7
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PJ!Df~x!5PJ!( f̃~ x̃i !!DPj~x0!

5( f̃~ x̃i !!PJ!DPj~x0!

52J~f̃J@ x̃!2f̃J21/2~ x̃!#PJ , ~4.3!

which clearly shows thatD gives the expected discrete d
rivative.

We have introduced four Hermitian operators which a
the proper derivatives expressed in terms ofxi , x0 and can
be used instead of]a and ]̄a . We also note that

@L0 ,Li #50, @L0 ,D#50, @Li ,D#50. ~4.4!

Equation~4.4! confirms our previous arguments on the r
duction of theA4 algebra toA3 andAJ .

We close this part by commenting that for the formulati
of field theories one should also include the time direct
which is commutative with the space directions. The tim
derivative is therefore the same as usual.

B. Field theories onRl
3ÃR

Along our previous discussions, given a field theory
Ru

23Ru
23R (R stands for the time direction! the correspond-

ing field theory onRl
33R is obtained by restricting the field

to be onlyx-dependent~or elements ofA3 algebra!. As an
explicit example let us consider the scalar theory
Ru

23Ru
23R,

S5E dtdm~ z̄,z!@] tf!] tf2]af! ]̄af1V!~f!#,

~4.5!

where the star products are that of Eq.~2.11! andV! is the
potential term in which all the products betweenf ’s are
carried out with the star product of Eq.~2.11!. We should
remind the reader that with the star product~2.11!, unlike the
Moyal star product,

E dm~ z̄,z! f !gÞE dm~ z̄,z! f g; ~4.6!

i.e., we cannot remove the star product in the quadratic te
of the action. However, still we have the cyclicity of the st
product inside the integral,

E dm~ z̄,z! f 1! f 2!•••! f n

5E dm~ z̄,z! f n! f 1!•••! f n21 . ~4.7!

The same is also true for the star product of Eq.~2.18!,
02502
e

-

n
e

n

s

E d3x

x0 f 1~x!! f 2~x!!•••! f n~x!

5E d3x

x0 f n~x!! f 1~x!!•••! f n21~x!. ~4.8!

Restrictingf to be onlyx-dependent, the potential term
replaced with the same functional form off, with the star
product of Eq.~2.18!. The kinetic term is more involved
becausefPA3 (L0f50), but we cannot conclude tha
]af,]̄afPA3. However, with a little algebra one can sho
that

f!h4f5 1
2 f!~x0] i] if!. ~4.9!

Recalling the discussion of Sec. II B, one can write the act
~4.5! in terms ofRl

33R parameters,

S5E dt
d3x

px0 H ] tf!] tf1
1

2
f!~x0] i] if!1V!~f!J .

~4.10!

We would like to comment that, since] i are not derivative
operators with respect to the star product~2.18!, the spatial
part of the kinetic term should be handled with special ca
On the other hand if one tries to use the ‘‘proper derivativ
~i.e.,D,Li), as it is shown in Appendix B, the form of kineti
terms of the action are not as simple as inserting the
product into the commutative expressions.

C. Field theories on the fuzzy sphere

In this section we would like to discuss how using o
formalism one can study field theory on the fuzzy sph
Sl,J

2 . As we have previously discussed in Sec. III B, a
function f on Rl

3 can be written as

f 5(
j

f j~xi ,x0!5(
j

f̃ j~ x̃i !Pj~x0!,

wherex̃i5xi /x0 are the angular part ofxi ’s, and f̃ j ( x̃
i) is the

corresponding function onSl,J
2 given by Eq.~3.20!. It is easy

to show that

TrP̂J5(
j ,m

^ j ,muP̂Ju j ,m&5(
m

^J,muJ,m&

5E dm~z,z̄!PJ~z,z̄!

5E d3x

px0 PJ~x0!52J11,

which is giving the dimension of an irreducible represen
tion of spin J. Using the above observation one can, the
fore, deduce the field theory on the fuzzy sphere start
from the one onRl

3 by simply performing the integration
over x0 and dividing the result by the factor 2J11 for a
sphere of radiusJ. Then as a result we have
5-8
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E dV

4p
f̃ 1J! f̃ 2J!•••! f̃ nJ5

1

~2J11!

3E d3x

px0 ~ f 1! f 2!•••! f n!!PJ ,

~4.11!

where the star product of the functions defined onSl,J
2 is

defined in terms of the star product~2.18! of the correspond-
ing functions onRl

3 through Eq.~3.20!. Now the action for a
scalar field, for example, on the fuzzy sphere of a giv
radiusJ will be expressed inRl

3 as

SJ5
1

~2J11!
E dt

d3x

px0

3@] tf!] tf2Lif!Lif1V!~f!#!PJ , ~4.12!

and as we have already explained, performing the integra
over thex0 part will result in

SJ5E dt
dV

4p
@] tf̃J!] tf̃J2Lif̃J!Lif̃J1V!~f̃J!#.

~4.13!

Noting the fact that any (2J11)3(2J11) Hermitian
matrix can be expanded in terms of spherical harmo
Ylm l<2J, instead of working with matrices, spherical ha
monics are usually used for field theory manipulations on
fuzzy sphere. So, to complete our dictionary for the fuz
sphere, we would like to show how theYlm’s can be ex-
pressed in terms ofx coordinates. This will automatically
lead to the proper star product between theYlm’s. The clas-
sical spherical harmonics are a set of orthonormal functi
obeying

L i
2Yl ,m5 l ~ l 11!Yl ,m ,

L3Yl ,m5mYl ,m . ~4.14!

Following @8# we introduce the highest weight functions
A3 algebra,6

c l ,l~x!5(
j

cj ,lx1
l !Pj , ~4.15!

wherex15x11 ix2 and cl are normalization factors. Then
by virtue of Eq.~3.16!, for each term~of specific value ofj )
in the suml 50,1, . . . ,2j and in additionL1c l ,l50 for all
( l<2 j ). In order to reduce on theSl,J

2 , one should multiply
Eq. ~4.15! by PJ ,

c l ,l
J ~x!5cJ,lx1

l !PJ , l<2J. ~4.16!

6Note that, unlike the commutative case, any function onRl
3 can

be expanded through the spherical harmonics.
02502
n

n
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s

Acting onc l ,l
J with the operatorL2 will lead to the functions

~4.14!,7

Yl ,m
J 5Nl ,m~L2! l 2mc l ,l

J , ~4.17!

wherem runs by integer steps over the range2 l<m< l . Any
function in Sl,J

2 can be expanded in terms ofYl ,m
J as

FJ~x!5 (
( l ,m)

al ,mYl ,m
J , ~4.18!

where the sum over (l ,m) meansl 50, . . . ,2J, 2 l<m< l ,
andal ,m are complex coefficients obeying

al ,2m5~2 !mal ,m* , ~4.19!

which guarantees the reality conditionF* (x)5F(x). How-
ever, we note that in Eq.~4.16! still there isx0 dependence,
which can be removed by integration overx0 or simply by
dividing by PJ ,

Ỹl ,m
J 5Yl ,m

J /PJ , ~4.20!

and therefore, any functionF̃ on Sl,J
2 can be expanded as i

Eq. ~4.18!

F̃J~x!5 (
( l ,m)

al ,mỸl ,m
J , ~4.21!

where nowỸl ,m
J depend only on the angular part ofx as it

should be.

V. DISCUSSION

In this paper we have constructed a dictionary wh
translates different descriptions ofRl

3 ~the set of fuzzy
spheres with all possible radii! or the fuzzy spheres into eac
other. The fuzzy sphere andRl

3 may be studied through th

operators which are functions of the coordinatesX̂i , the gen-
erators of the su~2! algebra. On the other hand there is a
ways a corresponding algebra of functions with the pro
star product which is equivalent to the operator algebra. T
latter is the appropriate language for performing field the
ries. Starting from the four-dimensional Moyal plane a
reducing that on a circle, we have constructedRl

3 and from
there we read off the star product induced from the Mo
plane. Then we discussed how the algebra of functions
the fuzzy sphere can be realized as different sectors of
algebra of functions onRl

3 ~and of course with the same sta
product!. If we reintroduceu in our expressions, we would
obtain a factor ofu in the exponential factor in Eq.~2.18!.
Then, it can be checked directly from the definition of o
star product~2.18! that in thel ~or u) →0 limit we will find
the usual product of functions.

7Here we will not try to compute the exact values of the norm
ization factors which are very important if one wants to do expli
field theory calculation.
5-9
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Here we have concentrated on completing the mathem
cal tools. Using our results one can easily study the fi
theories on a fuzzy sphere through the Moyal field theor
As a result we would like to mention the IR-UV mixing
which is a general feature of noncommutative Moyal fie
theories. So, using our method, we expect to be able to t
the same phenonemon for the fuzzy sphere field theo
This, in fact, has been explicitly checked by using the sph
cal harmonics@12,19#. There are several interesting ope
problems one can address here. Using our formulation
have a straightforward way of introducing fermions on t
fuzzy sphere, starting from the fermions on the Moyal pla
Furthermore, we have a simple handle on the vector ga
fields on the fuzzy sphere.

The other interesting question is the solitonic solutions
the fuzzy sphere@20,21#. In our approach, one can easi
obtain the solitonic solutions on the fuzzy sphere from
solitonic solutions on the Moyal plane which respect the
tational su~2! symmetry. As an explicit example we woul
like to note that the fuzzy sphere itself can be thought of a
solitonic solution in the Moyal field theory, as it can be ide
tified with the projector,Pj . We postpone a full study o
such solutions to future works.
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APPENDIX A: PROOF OF SOME USEFUL IDENTITIES
THAT HAVE BEEN USED IN THE PAPER

The proof for Eq.~3.16! is

~x0!2l!Pj~x0!5~x0!2l Pj 2 l . ~A1!

To show the above we should perform the star product
plicitly, i.e.,

~x0!2l!Pj~x0!5S x01
1

2
xi

]

]yi D 2l

Pj~y0!Uy5x

5~x0!2l (
n50

2l

Cn
2l S xi

2x0

]

]yi D n

Pj~y0!U
y5x

,

~A2!

with Cn
2l5@(2l )!/n!(2 l 2n)! #. Since ] i Pj5(xi /x0)]0Pj ,

where]05]/]x0 is the derivative with respect tox0, after
straight forward calculations one can show that
02502
ti-
d
s.

ce
s.
i-

e

.
ge

n

e
-

a
-

-

f
5
-

x-

~x0!2l!Pj~x0!5~x0!2l (
n50

2l

Cn
2l 1

2n ]0
nPj~x0!

5~x0!2l S 11
1

2

]

]x0D 2l

Pj . ~A3!

On the other hand it is easy to check that

S 11
1

2

]

]x0D Pj5Pj 21/2. ~A4!

Therefore,

~x0!2l!Pj~x0!5H ~x0!2l Pj 2 l~x0! for j > l ,

0 for j , l .
~A5!

Equivalently one can prove Eq.~3.16! using the operator
language. From Eq.~3.6! it follows that:

:~ x̂0!2l : P̂j5~ 1
2 !2laa1

†
•••aa2l

† aa1
•••aa2l

P̂ j

5~ 1
2 !2laa1

†
•••aa2l

† P̂j 2 laa1
•••aa2l

. ~A6!

Applying the coherent states we will find Eq.~3.16!.
Some more identities:

xJ
i !xJ

j 5xi!xj!PJ~x0!5@xixj1 1
2 ~d i j x01 i e i jkxk!#!PJ~x0!

5xixj
1

~2J22!!
e22x0

~2x0!2J221 1
2

3~d i j x01 i e i jkxk!
1

~2J21!!
e22x0

~2x0!2J21

5@J~J2 1
2 !x̃i x̃ j1 1

2 J~d i j 1 i e i jk x̃k!#PJ , ~A7!

and

xJ
0!xJ

05x0x0
1

~2J22!!
e22x0

~2x0!2J22

1
1

2

d i j x0)

~2J21!!
e22x0

~2x0!2J21

5F2J~2J21!

4
1

J

2G!PJ5J2PJ , ~A8!

from which we deduce

xW J!xW J5d i j xJ
i !xJ

j 5~x0!2
1

~2J22!!
e22x0

~2x0!2J22

1
3

2
x0

1

~2J21!!
e22x0

~2x0!2J21

5xJ
0!~xJ

011!5J~J11!Pj~x0!. ~A9!

Another important relation is the star product betweenx0

and x̃i ,
5-10



al

l

ial

COHERENT STATE INDUCED STAR PRODUCT . . . PHYSICAL REVIEW D 66, 025025 ~2002!
x0! x̃i5S x01
1

2
xj

]

]xj D x̃i

5x0x̃i1
1

2
xj S d i j

x0
2

xixj

~x0!3D
5x0x̃i5 x̃i!x0, ~A10!

which in turn results in Eq.~3.24!. Then using the above
relations one can check that

~xi !2l!PJ~x0!5~ x̃i !2l!~x0!2l!PJ~x0!

5~ x̃i !2l!@~x0!2l PJ2 l~x0!#5~xi !2l PJ2 l~x0!.

~A11!

APPENDIX B: MORE ON KINETIC TERMS

If we write the kinetic terms of the four dimension
theory as

f!h4f, ~B1!

where
n

nd
n-

y

th

un
,

02502
h45]a]̄a , ~B2!

then, forf ’s with L0f50, in terms of the three-dimensiona
derivatives we have,

2f!~x0h4f!5f!~LiLi1DD!f1f!Df. ~B3!

The last termf!Df is there becauseD is not a derivative
~or in other words, it is a discrete derivative in the rad
direction!. On the other hand, we note that

x0h4f5h4~x0f!2f2Df. ~B4!

Consequently, we obtain

2f!h4~x0f!5f!~LiLi1DD!f1f!f. ~B5!

As another way of writing the kinetic term we have

E f!Df5E S 1

2
]af! ]̄af2f!f D
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1

2E f!@~h412!f#. ~B6!
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