PHYSICAL REVIEW D 66, 025025 (2002

Coherent state induced star product onRi and the fuzzy sphere

A. B. Hammou
The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste, Italy

M. Lagraa
The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste, Italy
and Laboratoire de Physique Ttwque, Universited’Oran Es-Saia, 31100, Algeria

M. M. Sheikh-Jabbari
Department of Physics, Stanford University, Stanford, California 94305-4060
(Received 12 November 2001; published 31 July 2002

Using the Hopf fibration and starting from a four-dimensional noncommutative Moyal [ﬂéﬁd%f, we
obtain a star product for the noncommutatifezzy) R defined by[x',x/]=iX €;,x*. Furthermore, we show
that there is a projection function which allows us to reduce the functiorﬁ @a that of the fuzzy sphere, and
hence we introduce a new star product on the fuzzy sphere. We will then briefly discuss how using our method
one can extract information about the field theory on the fuzzy spherd%%ritbm the corresponding field
theories onk%x R? space.
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I. INTRODUCTION AND PRELIMINARIES 3

D X2=2\2(I+1); (1.3

In the past two years, motivated by string thefty, the =1

theories on the noncommutative Moyal plane have been ex-

tensively studiedfor a review se¢2]). The Moyal plane can i.€., the radius of the fuzzy sphere is given byJ(J+1).

be defined through the functions of operator valued coordiTherefore the fullR} can be obtained when we consider the

natesX' satisfying set of fuzzy spheres with all possible radﬁszLOSi 3

We should warn the reader thaf in the A — 0 limit will not

reduce toR® [8]. This will be seen more explicitly in Sec. II

(and in particular Sec. Il B It has been shown that the fuzzy

i ) ) ) sphere in certain limits can be reduced to the commutative

where®' is a codnstant antlsymmetr|c tensor. We will denotespheresz and also the Moyal plan‘B§ [14].

such spaces bifg . Let us restrict ourselves to the noncom- |, orqer to formulate physics on noncommutative spaces,

mutative spacegnot space—tlmesand ta'ked=3. In this  5ne should be able to pass to the language of fiéflasc-

case, there always exists a rotation which reduces the nofng) instead of operators, where the algebra of operators is

zero components 0Bj; to two,” e.9,,01,= =0 =0 and  translated to the algebra of functions on a proper space,

thereforeRg =Rj X< R. As a first generalization of the Moyal though with a product different from the usual product of

plane one may consid@;; to be linearlyX dependent: i.e., functions. This product is usually called star product. In fact

there exists a one-to-one correspondefoedied Weyl corre-
[X,XI]=inekXK, i=1,2,3. (1.2)  spondencebetween the operators and the functi¢hs,16.
Given an operato©y ,

(X XI1=i01, i=1,...d, (1.2

We will denote this space be. It has been shown that

these spaces can also arise within string thédn6]. Equa- Of= f dkék-*?(k), (1.4
tion (1.2) resembles the $B) algebra whose generators are

X'/\. In fact, in generaK'’s are reducible representations of
su2). The irreducible representations of that algebra give
by (2J+1)x (2J+1) Hermitian matrices will reduc&? to

fhe corresponding functiondis

what is called a fuzzy spheﬁyJ [7—12).2 In other words the f(x)= f dke* F (k). (1.5
fuzzy spheresiJ is determined by the algebrd.2) sub-
jected to

Then, the algebra ok will induce a star product on func-
tions,
We would like to comment that this is not always possible for the
compact noncommutative three manifolds such as noncommutative
three torus. 3We only consider the functions which admit the Fourier expan-
°Recently there has been a complete review over the [t sion.
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IR ~ 11ix?
of.og:f dkdpe* *eP XF(k)g(p) =T (1.10
V20
:J' dkd pd (k+ P X=([12)kipy X X+ then[z,z],=1. Any functionf(x!,x?) can be expanded as
xF(K)g(p). (1.6 H(z2)=2 fmi2"2". (11D
n,m

For the case of the Moyal plane, the above Hausdorff expan-

sion terminates and then we obtain the so-called Moyal staNOW replacingz andz by harrponic oscillator creation and
product, annihilation operators and a' we will obtain the corre-

sponding operator which is “normal ordered.” We will show
_ 01 (alax) (a1 dy; in Sec. Il that this normal ordering yields the following star
Of-Ong*g—e' (9l %;) (o ayl)f(X)g(YHX:y- (1.7 oroduct: gy g
It is easy to check thax'+x)=x'xI+(i/2)®" and hence
X xp=xax] = xlxx'=i0",
In running the above Weyl-Moyal machinery we have im-
plicity assumedthat éX—é&** or equivalently &>

7xz=77+1, z*xz=127 (1.12

which exactly corresponds to E€L.8) with All=(6/2)¢'.

1 In order to study field theories on th& we need to build

= (ex)**=1+ik-x— 5-(k-X)*(k-X)+ - - -. However, to the corresponding star product. Along the above arguments,
_ 2! ) ) depending on the ordering we use for the operators we will

obtain the algebrél.1) we do not necessarily need to impose fing various star products oR? (and similarly onS? ). If

this condition(which is in fact a special way of ordering, the \ye take the Wey! orderingi.e., imposing the condition

Weyl ordering. More explicitly one can define infinitely (ex)**=gk"X] we will end up with the following star prod-
many star products all resulting in the same algebra. Foy-

example, in Eq(1.7) if we add a general symmetric matrix

to ® we will find the same algebra as before. This is AT P
equivalent to taking X'xx!=x"x!+ ?e” X - (1.13
Xixex) = xix) + i_@ij+Aij, (1.9 However, this s?'far p_)rodu_ct iS not so convgnient for c_ioing
2 field theory onRR; (it is suitable for perturbative expansions

. L in powers of\). In this work using the normal ordering of
where A'’s are constants anA/=Al". In fact, the above gperators on the Moyal plane, we obtain a new star product
generalized star products correspond to different ways of olpn R? . To obtain the star product we start with a four dimen-
dering in the operator language. For ﬂﬁlécase if we choose  gjgnal Moyal pIane,Rf,x ng parametrized byz;,z, and
A=(L/2)&" (this is always possible with a proper rota- choose the star product induced by the normal ordering. Re-
tion), we will obtain a new star product in which calling the Hopf fibration forR? [13], we show that the al-
gebra of operators oﬁf (for A= 0) is equivalent to a sub-
algebra of the functions oR?x R2 which are invariant under
z,—€ %z, andz,—€“z,, or equivalentlyR>=(R2Xx R?)/S'.

In this way one can read off the form of the star product in

(ex )ik<x:ék-xe*Lk2/4_ (1.9

More precisely, different star products of HG.9 resulting

from different orderings can be related by introducing the 5" . .
proper weight functions into the “Tr" over the algebra Ry induced by the star product on the four-dimensional

(which in the Moyal case is simply integral over the whole Moyal plane. In otherswords there exists a_dictionary which

space. Physically this means that instead of the usual simpléllows us to translatéy , the algebra of functions, and hence

waves we are expanding our fields in terms of wave packetie field theory on that, into that dk7xR;. As we dis-

of the width \L/2. It is easy to show that the above star cussed, the representations of Rﬁecan be understood as a

product will lead exactly to the same field theory results assum of irreducible representations on fuzzy spheres with dif-

the Moyal star product. More explicitly, different noncom- ferent radii. We show that there is a projection operafgr,

mutative versions of a given field theofgorresponding to which projects the functions ofi} on the S ;. Hence we

different star products resulting from differeat’s) are all  can extend our dictionary to translate the field theories on the

related by a field redefinitiof. fuzzy sphere in four-dimensional field theories on the Moyal

Another natural way of ordering arises if instead of Fou-plane.

rier expansion we use the Laurent expansion of the functions The paper is organized as follows. In Sec. Il, we first

and the corresponding harmonic oscillator b§&ig. Let us  review the harmonic oscillator basis and coherent states and

considerRk3 and define then use this basis to extract a new star product on the Moyal
plane. We use this star product to read off the induced star
product on theRf. We also show how the operatofand

“We are grateful to L. Susskind for a discussion on this point. functiong and, in particular, the derivative operators Bﬁ
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are related to the four-dimensional operat@nsd functiong D‘(i 5(1']: i elikck

In Sec. Ill, we introduce the projection operat®y which ’

enables us to single out an irreducibleJ{21)X (2J+1) i

dimensional representation out of the algebra of functions orﬁIf Wlejk rfmtroduce 6, the above will become[X',X']

the R3. We have moved some other useful identities involy- = f€XY). 13'h|s is the key observation which relaté§

ing P, to the Appendixes. In Sec. IV, we discuss how beR to the R} (with A= 6). In this section using the above

using our dictionary, the field theories fﬁi and the fuzzy realization we obtain an explicit form of the star product on
! 3

sphere can be studied through field theories on the fourkix

dimensional Moyal plane. The last section contains our con-

clusions and discussions. A. Coherent states

Let |[ny,n,) represent the energy eigenstates of the two-
dimensional harmonic oscillators whose creation and annihi-
lation operatorsaz anda, (a=1,2) satisfy the above com-

mutation relations. To any vectare (2 one can assign a
coherent state,

Il. STAR PRODUCT ON R}

In this section, first we will review and generalize the star
product deduced from coherent staf8gl1,19 and then we
will construct the star product on fuzzy three-dimensional
vector spac%f and its projection on the fuzzy spheres with
given radius.

The sphere can be interpreted as the Hopf fibration,

|2,,2,)=|2) = e~ #De%22|0,0), 2.5

where zz=z7,z,. The coherent statelz) are normalized

SP={ze (?, 7z=p?—P={x=(x'x2x% eR3}, (z]z)=1, form an(overcompletgbasis for the Hilbert space
(21)  x, and are eigenstates of the annihilation operatoyig)
with =2,]Z). They are not orthonormal but satisfy
Xi=17,0 25, 12123, (2.2 (7lz)=e (1At e, (2.6

where the bar denotes complex conjugation ar$ are  The completeness relation reads
Pauli matrices. In this approach fields are functions of com-

plex varlablesza,za, a=1,2. The relatiorzz= p? leads to — e
S.(¥)2=x%2, with f du(z,2)|z)(z|=1, (2.7

x0=3

Za- 23 \wheredu(z,2) = (1/7?)dzdz,dz,dz, is the measure on the

two-dimensional complex pla
To any operatoff belonging to the algebréh generated
7€z, zelag by the creation and annihilation operators, we can associate a

Sincex'’s are invariant under the transformation

function f(z z) belonging to the algebra of functions on
The above Hopf fibration can be viewed as coordinates O%ZX]RZ denoted by d ted b -
P=CP!=SU(1). enoted byA, and generated by, andz, as

To get a nhoncommutative version of the above Hopf fi- o .
bration it is enough to make the coordinaesand z, be (Z|f|2)=1(z,2). (2.9
noncommutative| z,, EB]*: 8,p [With the star product de-
fined in Eqg.(1.12]. Then the corresponding operator lan-
guage is obtained by replacing coordinatgsand?a with
the creation and annihilation operators of a two-dimensional N
harmonic oscillatom,, anda;,, (fx9)(z,2)=(2ltg|2)= f du(n, (2 n)(7lgl2).

Then the product of operators corresponds to an associative
star product of the corresponding functions as

[8,,85]=3,4. (2.9

We note that the coordinates, are scaled so that they are  To get the explicit form of the star produ@.9), follow-
dimensionles§as in Eq.(1.10] and hence is scaled to one. iNg [18] we introduce the translation operators,
However, 6 can always be reintroduced on a dimensional

ang%/\/se'i' e~ 2al99m) + 14(dl32,) f ( 25 = <th |j7>
()
X'=3alo,sap, (2.4 = elna= 2002 §(7 7).
it is straightforward to show that (2.10
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whetre : : means that the derivatives are ordered to the right iand hence the subalgehd is closed under the star product
each term in the Taylor expansion of the exponential. Sub¢2.11), i.e., f,ge A5 thenfxge A;. Using this property and
stituting Eq.(2.10 into Eq.(2.9) and performing the integra- the fact that all the elements of; can be represented as

tion we obtain functions ofx' andx?, one can rewrite the star product of Eq.

. (2.1) in terms ofx"’s and their derivatives. To start with, we

(o ED=fzDepr —gzz. (1 M
aza 0z
a 1_ i
This is a new star product which is resulting from the normal (9_211: Ezﬁaﬂag’
ordering in the operator language. We note that this star
product is different from the Moyal star prodyd8].
Besides the coherent statigs,) we have the usual two- i: E iai 7 .17
dimensional harmonic oscillator bagis; ,n,), gz, 2ox PP '
(aDnl (aZ)"2 Note that the above expressions are only true when deriva-
ny,nz)= W mlo’ ). tives are acting on the functions id;. Now using the rela-

tion
However, it turns out that for our purposgeeduction of the - B B
four-dimensional algebra to that 8f) it is more convenient 2505,0%,,2,= 2( 81 X0+ €14x¥),
to use the Schwinger basis,
we obtain the desired star product in terms of the coordinates
(@)™ (@p) " X

lj.m)y=— . 0,0, (2.12
V(i +m)! V(= m)! -
(fxg)(x)
wherej=0,3,1, ... &, andmruns by integer steps over the 1 B PR o
range— j<ms=j. The coherent state can be expanded in the =exr{§(5"x°+ie”kxk)m o f(ug(v) :
|j,m) basis, U=v=x

(2.18

= J2)! m;j Z'1+m2127mVCi]+m|j’m>1 213 for any functionsf,g e A;. Note that the exponential in the
' expression of the star produ@.18 should be understood by

e—(?zlz) m=j

with its Taylor expansion. We would like to stress that our new
star product2.18, similar to that of Eq.(2.11), is associa-
2l (2))! tive. From Eq.(2.18), it follows that
T G (=t o N N
(J+miG—m) xtax=xxI+ 3 (81x0+i €Tk xk) (2.19
Now we consider the subalgebré;C A, generated by o i o1

i . . . X% x!'=x"%"+ X! (2.20
X', whose correspgndlng subalgebra of functiohs” A, is
generated byx'=32,0",525. Noting that X° [X°(X%+1) XOax=xO(O+ 1), (2.21

=3,(X)?] commutes with allX’s (i.e., [X°,f(X')]=0 for

any functionf), one can define thel, algebra as the subal- \here we have used the fact thal= Jx'x' and hence
gebra of 4, whose elements are commuting Wi, i.e., ax% ax'=x'1x°. To show the relation§2.20 and(2.21) one
. R o o can use the following equivalent definition:
via,a)eAd,, [X°f]=0=feAd;. (2.19

At the level of functions the commutator witk® corre- (fxg)(x,x0)=f

1 -
X'+ = (8x0+i €lkxk)
L 2

sponds to the derivative operatgg,

d

; - d '
An oA I —— — 0 i i\0
r&0 _ X— X"+ =X - ,
i[XO.F] Lof= 52000 2,00 F(2.2). (215 Py 2 ﬁyl)g(y YY)

b.
y=X

Therefore, the elements of the algebtgare functions ok, ~ The above is valid for any function which admits Taylor
and z,, subjected tol,f(z,zZ)=0. We would like to stress expansion. Using Eq2.19 it is easy to check that
that the operator’, is in fact a derivative operator with

respect to the star produ€2.11), [X,x],=i€ek

XK. (2.22
Lo(fxg)=(Lof)xg+f*x(Ly9), (2.16 Furthermore,

025025-4



COHERENT STATE INDUCED STAR PRODUC. .. PHYSICAL REVIEW D 66, 025025 (2002

with =(x")?=(x%)?, which is the spherical coordinate basis.
Finally the measure can be expressed as

[x°x'],=0,

8 X *x) = xxx=x% (x°+1). .
Equation(2.22 shows that the algebtd; equipped with the J’ du(z,2)f(x' X% = ;J; xodxojo singd
star produc{2.18 can be viewed as an algebra of functions
on the]Rf endowed with a Euclidean metri; . It is easy to
see that the star produ@.19) is invariant under the classical
SQ(3) group. This S@) symmetry of k] is the residual
symmetry of the Poisson structure iR5xR5 which is
Usp(1)*xUsp(1l) moded out by the (1) factor. We would
like to note that, as it is clear from our construction, there are
two ways for computing the star product of any functions of That is, the measure oR? differs from the usuati®x in a
x"'s: to use definition(2.18 or, to consider the function as factor of 14°. This, in particular, implies that the radial part
functions ofz, andz, and use Eq(2.11), and of course the of the line element foR3, which is the set of all possible
result would be the same. fuzzy spheres with different radii, is different from the usual

It is worth noting that if instead of the four-dimensional R3. However, the measure on the fuzzy sphere which is the

star product of Eq(2.11) one uses the usual Moyal star angular part of the measure Bf remains the same as usual.
product, the reduction to a three-dimensional star product

2 X
X [ def(x',x%
0

d3x

=J—Of(x‘,x°).

mX

(2.25

which is expressible only in terms af’s, unlike Eq.(2.18),
will not have a simple form.

B. The measure

To formulate field theory orik? we need to find the cor-
responding measure which should depend onlyx¢s and

IIl. REDUCTION TO THE FUZZY SPHERE

The fuzzy sphereSf'J, following the discussions in the
introduction, is defined as (2-1)X(2J+1) irreducible
representation of the &) algebra ofRf. In this section,

introducing a proper projection operatét;, we show how

should be related to the four-dimensional measure oithe star product of functions ol can also be used as the

RZx R2 given by

(2.23

1 _
du(z,2)= —2dzldzldzzd22.
a

Let us writez, in a more convenient basis,
z,=Rcos6e'"t, z,=Rsinf4e'’,

with 0<6;<7/2 and 0<6,<. In this coordinate system
the measure takes the form

1
du(z,z)= 5 R*dRsin 205d26;d6,d6,.
(2)

One can easily check that andx® (and hence any function
of them) depend only orR, #=265, and¢= 0,— ;. There-
fore, without any loss of generality we can write

fdﬂ(z,?)f(xi,xo)=%f:R3dR

T 2w .
xf sinedaf dof(x',x%),
0 0

(2.24)

where we have performed the integration od¥et- 8, which

gives a factor of 2r. Remembering thaR?=zz=2x°, x''s
in this basis will be of the form
x3=x%cos#,

x'=x%singcosp, x*>=x’sindsing,

star product on the fuzzy sphe® ;.

A. The projection operator P,
Let 213 denote the algebra of operators on the fuzzy
sphere of radius,S, ; [defined through Eqg1.2),(1.3]. An

arbitrary element of A;,f;, can be expanded in the
Schwinger basis for fixed,

2 f\r]n,m’

mm’'=-J

J,my(J,m’|, (3.

on the other hand the operatbe A5 can be written as

(3.2

]=0

Therefore to reduce the algehrb; to that of S ;,A4;, it is
enough to project it as

,f\]zl,:\):;,f\ﬁ‘], (33)

where

Note that an arbitrary element 0314 can be expanded ab
=Ej,jlym,m,f'n'1fm,|j,m)<j’,m’|, while elements ofA; are of the
form f=3; o f1 o 1J.m)(j,m’|. The latter follows directly from

the definition of thed, [Eq. (2.14)].

025025-5
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J
Py= > [3,m}{J,m|.

m=-J

(3.9

It is easy to check thaﬁh is a(rank 2]+ 1) projection op-
erator, i.e.,

ﬁ’J:ﬁ)J, ﬁ"]ﬁ)KzﬁJKﬁK, JZO l,:\)\]:]. (35)

P, can also be studied as an operator.4y. Noting the
definition of the|j,m) basis[Eq. (2.12)], it is straightforward
to check that

a,P;=P; 18,, alP;=P, A, (3.6

and therefore

[aja, P;]=0. (3.7

PHYSICAL REVIEW D 66, 025025 (2002

The above operator relations can be written in terms of
functions and the corresponding star prodi2cl]) or (2.18.
However, we are interested in the explicit form of the func-

tion corresponding td®;. To obtain that one can use the
coherent states,

(@Pyf2)= 5557 (227 = g8 > (2x)P=Py(x).
(3.19

Then Eq.(3.5 will read as
P3(x°)x P (x%) = 63k Pk (x%), (3.19

with the star product given in Eq2.18. To show this last

equation we should exparieh(x°) in powers ofx® and then

use the following identity:
(x0)?%Py(x°%) = (x9)?P,_y,

(3.19

From Eq.(3.6) we learn that the projected creation and an-VAVith Py-1=0 for J—1<0. The proof is shown in Appendix

nihilation operators are zero
a§a=|53a2|53=0, a3a=|53aa|5‘]=0,
and Eq.(3.7) results in

[)A(i’|5J]=0, (38)

or equivalentlyP; is only a function ofX°, and hence any
function in 213 commutes withﬁ’J. (This can be used as

another equivalent definition fofz.) Then,
feds, f,=PltP,=1P,, (3.9
and hence

.AAJ:ﬁJASI-/’AvBﬁJ:ﬁJA4ﬁJ- (31@

The operatolP; can also be expanded in terms of the coher-

ent states. First we recall ER.13),

j:oc
|Z>:E 12);,
j=0
R e—(?zlz) m=j _
D=y 2, A N
(3.1)

We note thafz); are orthogonal to each othé(z|z),=0 for

any j #k) but not normalized to one. With the definition of

|z);’s and P; we have

and therefore

B. More on the projection operator P

So far we have shown how using projection oper#&tgr
the algebra of functions oR%2x k2 and onR? (A4, and Aj,
respectively, can be reduced to that of the fuzzy sphedg,
defined by Eq.(3.10. In this subsection we would like to
elaborate more on the projection operagrand its proper-

ties.

Let us definef; as

fi(z.2)= (24F|2);=(2|P,TP)|2)=P;xf+P;, (3.19

for anyf e A,. Itis clear that by definitiorf; is a function in

A;j. If we start with the operators ind; instead(i.e., f
e A3) then

f,(x1,x0)=(Z|tP;|z)=f*P;=P;«f, (3.18

and f(x',x°) = =7 of;(x',x%). With the above definition we

have

(f*g)j:fj*gja

and

fj*gjr=0, J#]/

By a simple analysis one can show that #sdependence of

f;(x',x% is of the form,

f,(x,x%)=T;(x)P;(x?), (3.19

whereX =x1/x° is the angular part of'’s. In other words,

T,(x)=(fxP))/P;. (3.20

Here we will show some more identities involvirfg,

(some more are gathered in Appendixwhich turns out to

025025-6
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be useful in working out the field theory manipulations on D(fxg)=Dfxg+ fxDg.
the fuzzy sphere. The generators of the algeljaare

Xi=X%xP3(x%)=xP;_15(x)=IXP;(x°. (3.2) In the Moyal plane, where the noncommutativity parameter
is a constant, the usual, and d,, are proper derivative op-
erators. However, it is easy to see that the uspaly/ox' are

not good derivatives with respect to the star product of Eq.
(2.18. It is clear that, in the operator language, any operator

To evaluate the above star products either @dld) or Eq. which acts as a commutator will satisfy the Leibniz ryle.

(2.18 may be used. In the same way one can show that the Moyal plane, i.efa,,¢]< d, ¢ and[al,d]— —d,¢.)
In Sec. lll, we showed thaf, [given by Eq.(2.15] is in

x° projected ors)z\]J, as we expect gives the radidsi.e.,

x3=x%P;(x%) =JIP;(x?). (3.22

[X), x5, =[x, xI ], % P(x%) =i ekx*x Py(x%) =i ekxk, fact a derivative operator with respect to tB& direction

_ which is moded out for reducing2X R2 to R3. From the
[x9.x5].=0, su2) algebra ofR3, which is the algebra of angular mo-
I o menta, we learn thafX',.] gives the proper derivatives, but
Xg*Xy= i Xyxxh=J(I+1)P;(x°). (323 not all of them; yet the radial derivative is not specified. In

i ) ) terms of functions,
Hence,x; can be viewed as coordinates of a sphere of a

given radiusJ embedded into the fuzzy spadfﬁ%. Each

sphere is described by the algebra of functighs A; gen- i[X,¢]e Lip=(z|i[X',$]|2)
erated byx';. The spheres of different radii0J < fill the _

whole R? or in terms of algebragy’_,.A,=Aj,. Finally we L =
would like to present an important identity, the proof of ZU“B(Z“(?‘* Z0a)(2.2). (4.1)
which is shown in Appendix A,

f(X)*x°=f(x"x°, (3.24  One can explicitly show thaf; do satisfy the Leibniz rule
with respect to star products of Ed2.11) and(2.18). Using
wherex' =x/x°, and therefore any function of the angular Eq. (2.17) one can rewriteC; in terms ofx' and4;, and of
coordinates' commutes with any function which only has a course the result is the usual angular momentum operator,
radial dependence. This is in fact what one intuitively ex-1-8 Li= €jX dy .

pects as the radial coordinat® labels different representa- ~ AS We discussed the radial coordina¢ can only take
tions of the s(R) algebra. discrete values of=0,3,1, . .. .Therefore, the derivative in
this direction is expected to be a discrete difference and
IV. FIELD THEORY ON R$ AND THE FUZZY SPHERE hence it is not necessarily fulfilling the Leibniz rule. On the

. . ) other hand we note that 9x°, despite being a derivative, is
In previous sections we have given the necessary mathyot 3 Hermitian operator. One can check that the operator
ematical tools to construdty andS; ; algebra of the opera-

tors, the algebra of functions, and the star product on them,

in terms of the four-dimensional Moyal plaf&xR2. In A=3(z,0,+2,3,), (4.2)
addition, introducing the projection operatd?;, we dis-

cussed how the fuzzy sphere algebra is resulting from that of

R2. In this section as an application of our mathematicalwhich corresponds ta®(/dx°), is the Hermitian operator
construction we show how the action of field theories]l?tin which appears in the kinetic terms of the actions. To show
and the fuzzy sphere are induced from the correspondinthatA is in fact acting like a discrete derivative it is enough
actions on the Moyal plane. Hence we can deduce field thgo note that

oretical information oriR? and SiJ from the more familiar

and simpler case of the Moyal plane. However for reducing

the actions, besides what we have already introduced one APj=2X%(Pj_1,—P))=[2jP;—(2j+1)P,1].

should know what are the derivative operators & in
terms of the derivative operators & R2. These deriva-
tives are needed for writing the kinetic terms of actions. In
this section we show that the derivative along the radial co-
ordinate ofR?, as we expect, is a discrete one.

Hence, for any arbitrary function of,

$(X X0 =2 ¢;(x)=2 $(X)P;(x),
A. Derivative operators =0 ]

The derivative operators are generally operators which
satisfy the Leibniz rule with respect to star product, we have
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- o d3x
PJ*Agb(X):PJ*E P(X )*AP]-(X ) f XTfl(X)*fZ(X)*' <xfL(X)
d3x
=3 B(X)*P e AP (x0) :fan(x)*fl(x)*'"*fn—l(x)- (4.9

Restricting¢ to be onlyx-dependent, the potential term is
replaced with the same functional form @f with the star

] ] ) product of Eq.(2.18. The kinetic term is more involved,
which clearly shows thai gives the expected discrete de- becaused e A; (Loh=0), but we cannot conclude that

rivative. - . .
We have introduced four Hermitian operators which are&“¢’(9“¢e“43' However, with a little algebra one can show

the proper derivatives expressed in termsdof x° and can that
be used instead of, andd,. We also note that dxy=3%dx(x%9,0,0). 4.9

=2J(P[X)— bs_1 ¥ ]P;, (4.3

[Lo,L]=0, [Lo,A]=0, [£;,A]=0. (4.4 Reca_IIing the discgssion of Sec. II B, one can write the action
(4.5 in terms of Ry X R parameters,

Equation(4.4) confirms our previous arguments on the re- d3x 1

duction of theA, algebra to4; and A;. S:f dt_o{&t¢*at¢+_¢*(Xoai¢9i¢)+v*(¢) _
We close this part by commenting that for the formulation X 2

of field theories one should also include the time direction (4.10

which is commutative with the space directions. The time . . -
derivative is therefore the same as usual. We would like to comment that, singg are not derivative

operators with respect to the star prod(2tl8), the spatial
_ . . part of the kinetic term should be handled with special care.
B. Field theories onRyXRR On the other hand if one tries to use the “proper derivative”
Along our previous discussions, given a field theory on(i-€.,A,£;), as itis shown in Appendix B, the form of kinetic
REZXREX R (R stands for the time directignihe correspond- tern;s (t)f ttheﬂ?ctlon aret ”tQt as simple as inserting the star
ing field theory orR3X R is obtained by restricting the fields Product Into the: commutative expressions.
to be onlyx-dependentor elements of4; algebra. As an

explicit example let us consider the scalar theory on C. Field theories on the fuzzy sphere
R2XR2X R, In this section we would like to discuss how using our
formalism one can study field theory on the fuzzy sphere
S:f dth(zZ)[ﬁtQS*(?th—ﬁa¢*3a¢+V*(¢)], Si,J..As we hsave previogsly discussed in Sec. IlIB, any
5 functionf on R} can be written as
where the star products are that of Fg.11) andV, is the f:}j: fJ(leXO):Ej: fi(xHP;(x%),

potential term in which all the products betweéis are
carried out with the star product of E¢R.11). We should
remind the reader that with the star prod(&l1), unlike the
Moyal star product,

wherex'=x'/x° are the angular part of’s, andT;(x") is the
corresponding function oi?»fyJ given by Eq.(3.20. It is easy
to show that

j d,u(ZZ)f*gif du(z,2)fg; (4.6) T”sJ:;n <j,m||5J|J':m>:%: (J,m[J,m)

i.e., we cannot remove the star product in the quadratic terms B (z?)P (z?)
of the action. However, still we have the cyclicity of the star KL 254
product inside the integral,

d3x o
o :JWPJ(X)ZZJ‘FL
f du(z,z)fxfox- - xf
which is giving the dimension of an irreducible representa-
tion of spinJ. Using the above observation one can, there-
_ - fore, deduce the field theory on the fuzzy sphere starting
= | du(z,z)fpxfox- - xf_q. 4, . . ! .
f G AL @.D from the one onR? by simply performing the integration

over x° and dividing the result by the factorJa1 for a
The same is also true for the star product of Eq18), sphere of radiug. Then as a result we have
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dQ. - ~ 1
J EflJ*fZJ*' . '*fn‘]:m
d3x
X J 71_ﬁxj(flﬁfzﬁ- coxf)x Py,

(4.1

where the star product of the functions defined S, is

PHYSICAL REVIEW D 66, 025025 (2002

Acting on z,//ﬂ, with the operatoi’ _ will lead to the functions
(414,

VP n =N (L) ™ (4.17

wheremruns by integer steps over the rangés=m=|. Any
function in S ; can be expanded in terms ¥f , as

) _ J
defined in terms of the star produ@ 18 of the correspond- q’J(X)—(%) armYim (4.18
ing functions onlk? through Eq.(3.20. Now the action for a '
scalar field, for example, on the fuzzy sphere of a givenyhere the sum overl (m) meansl =0, ...,2), —l<m=I,

radiusJ will be expressed i3 as

1 dd3x
SJ_(2J+1)f v

X[dipxdip—Lip*Lip+V.(P)]xP;, (412

anda, ,, are complex coefficients obeying
a—m=(=)"aly, (4.19

which guarantees the reality conditidr* (x) = ®(x). How-
ever, we note that in Eq4.16 still there isx® dependence,
which can be removed by integration owét or simply by

and as we have already explained, performing the integratiojviding by P;,

over thex® part will result in

dQ - ~ ~ ~ ~
SJ:f dtﬂ[at%*at%_£i¢3*£i¢J+V*(¢J)]-
(4.13
Noting the fact that any (2+1)x(2J+1) Hermitian

Y=Y /Ps, (4.20

and therefore, any functio® on S)Z\’J can be expanded as in
Eq. (4.18

matrix can be expanded in terms of spherical harmonic, EDJ(X)= E a,,m?fm, (4.20
(1,m) '

Y\m 1=2J, instead of working with matrices, spherical har-
monics are usually used for field theory manipulations on the

fuzzy sphere. So, to complete our dictionary for the fuzz
sphere, we would like to show how thg,’'s can be ex-
pressed in terms ok coordinates. This will automatically
lead to the proper star product between ¥hg's. The clas-

sical spherical harmonics are a set of orthonormal functions

obeying
LAY m=10+1)Y, 1,
L3Y|m=mY| . (4.14
Following [8] we introduce the highest weight functions in
Aj; algebré
lﬂl,l(x):; P (4.19

wherex, =x'+ix? andc, are normalization factors. Then,
by virtue of Eq.(3.16), for each tern{of specific value of))

in the suml=0,1, ...,2 and in additionf_ ¢, ;=0 for all
(I=2j). In order to reduce on thﬁf’J, one should multiply
Eq. (4.19 by Py,

lv//i],l(x):CJ,IXI-I—*PJ; I<2J. (4.16

5Note that, unlike the commutative case, any functiori&f{man
be expanded through the spherical harmonics.

Yy

where now?ﬂ’m depend only on the angular part »fas it
should be.

V. DISCUSSION

In this paper we have constructed a dictionary which
translates different descriptions (ﬂf (the set of fuzzy
spheres with all possible raglior the fuzzy spheres into each
other. The fuzzy sphere arRE may be studied through the

operators which are functions of the coordinatésthe gen-
erators of the s2) algebra. On the other hand there is al-
ways a corresponding algebra of functions with the proper
star product which is equivalent to the operator algebra. The
latter is the appropriate language for performing field theo-
ries. Starting from the four-dimensional Moyal plane and
reducing that on a circle, we have construcigdand from
there we read off the star product induced from the Moyal
plane. Then we discussed how the algebra of functions on
the fuzzy sphere can be realized as different sectors of the
algebra of functions oit? (and of course with the same star
produc). If we reintroduced in our expressions, we would
obtain a factor off in the exponential factor in Eq2.18).
Then, it can be checked directly from the definition of our
star product2.18 that in the\ (or §) —0 limit we will find

the usual product of functions.

"Here we will not try to compute the exact values of the normal-
ization factors which are very important if one wants to do explicit
field theory calculation.
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Here we have concentrated on completing the mathemati- 2l
cal tools. Using our results one can easily study the field  (x°)2'%P;(x%)=(x%? > Cﬁ'fﬁ[‘,Pj(xo)
theories on a fuzzy sphere through the Moyal field theories. n=0
As a result we would like to mention the IR-UV mixing,
which is a general feature of honcommutative Moyal field =(x°)2'
theories. So, using our method, we expect to be able to trace
the same phenonemon for the fuzzy sphere field theories,

This, in fact, has been explicitly checked by using the spheri©n the other hand it is easy to check that

1 9 2l
1+EW) P.. (A3)

cal harmonics[12,19. There are several interesting open 1 9
problems one can address here. Using our formulation we 1+ EW) P;=P;_1p. (A4)
X

have a straightforward way of introducing fermions on the
fuzzy sphere, starting from the fermions on the Moyal planeTherefore
Furthermore, we have a simple handle on the vector gauge '
fields on the fuzzy sphere.

The other interesting question is the solitonic solutions on (xo)z'*Pj(xo)z{
the fuzzy spherd20,21. In our approach, one can easily
obtain the solitonic solutions on the fuzzy sphere from theEquivaIentIy one can prove E43.16 using the operator
solitonic solutions on the Moyal plane which respect the rO7anguage. From Eq3.6) it follows that:
tational si2) symmetry. As an explicit example we would

(x9)2P;(x%)  for j=I,
0 for j<I. (AS)

like to note that the fuzzy sphere itself can be thought of as a :(5(0)2':|5]-:(%)2'a2 ..al a,--a, Ie,j

solitonic solution in the Moyal field theory, as it can be iden- 1 2% 2

tified with _the projector,P;. We postpone a full study of —(1H2al ...al P _a,---a, . (A6)
such solutions to future works. a ay’ ) 1 2l

Applying the coherent states we will find E.16).
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APPENDIX A: PROOF OF SOME USEFUL IDENTITIES 1
THAT HAVE BEEN USED IN THE PAPER Xg*xgzxoxo efzxo(ZXo)zJ—z
. (2J-2)!
The proof for Eq.(3.16) is o
1 8MxY) o
+- 77 a2 0y23-1
(X2 P;(x%) = (x%)2P,_,. (A1) 22— (&)

2J(23-1) J

To ;hoyv the above we should perform the star product ex- _ ( ) +|xP,=3%P;, (A8)

plicitly, i.e., 4 2

from which we deduce

(XO)ZI*Pj(XO): y=Xx

1 9)\?
0 i (\/0
X"+ ZX—ay') Pi(y")

N ; ; 50 B
X% Xy= 8 Xyxxh = (x°)? e 2 (2x9)2I-2

(23-2)!

2l Xi g \n
= ()2 3, C§'(ﬁ ;) Pi(Y°)

' 3 1
y 3 20 - —2x05,0\23-1
y=x T3 @it T (&)
(A2)
_ =xJx (xJ+1)=J(I+1)P;(x°). (A9)
with C2'=[(21)!/n!(21—n)!]. Since d;P;=(x'/x%)d,P;,
where d,=3/9x° is the derivative with respect ®°, after Another important relation is the star product betwaen

straight forward calculations one can show that andx',
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Oxxi—= | %04 Exj_‘?_ i 4= o (B2
27 ox!
then, for¢’s with Lo =0, in terms of the three-dimensional
1 (s xix derivatives we have,
=x%+ x| —— —53
2 o (x93 0
X —dx(XUad) = px(LiLi+AN)p+ pxA.  (BI)
=x%% =X'*x°, (A10) The last term¢p*A ¢ is there becausa is not a derivative

o ) ) (or in other words, it is a discrete derivative in the radial
which in turn results in Eq(3.24. Then using the above direction. On the other hand, we note that
relations one can check that

i =i "0,0=04(x"¢)— p—A¢.
()2 Py (x%) = (R + (X #P(x0) e =y

2R (O)P . (x0)]= (x)2 P, (xO). Consequently, we obtain

(A11) —*04(x°p) = (LiLi+AN) g+ px . (BD)

APPENDIX B: MORE ON KINETIC TERMS As another way of writing the kinetic term we have

If we write the kinetic terms of the four dimensional 1 —
theory as J’ ¢*A¢_f (Eﬁaqﬁ*ﬁad,_dﬁ(ﬁ)
¢*D4¢, (Bl) 1
=—= *[(Os+2)¢]. B6
where qus [(O4+2)¢] (B6)
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