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Four-dimensional superconformal theories with interacting boundaries or defects
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Institut für Physik, Humboldt-Universita¨t zu Berlin, Invalidenstraße 110, D-10115 Berlin, Germany

~Received 27 March 2002; published 29 July 2002!

We study four-dimensional superconformal field theories coupled to three-dimensional superconformal
boundary or defect degrees of freedom. Starting with bulkN52, d54 theories, we construct Abelian models
preservingN52, d53 supersymmetry and the conformal symmetries under which the boundary/defect
is invariant. We write the action, including the bulk terms, inN52, d53 superspace. Moreover we
derive Callan-Symanzik equations for these models using their superconformal transformation properties
and show that the beta functions vanish to all orders in perturbation theory, such that the models remain
superconformal upon quantization. Furthermore, we study a model withN54 SU(N) Yang-Mills theory in the
bulk coupled to anN54, d53 hypermultiplet on a defect. This model was constructed by DeWolfe, Freed-
man, and Ooguri, and conjectured to be conformal based on its relation to an AdS configuration studied by
Karch and Randall. We write this model inN52, d53 superspace, which has the distinct advantage that
nonrenormalization theorems become transparent. UsingN54, d53 supersymmetry, we argue that the model
is conformal.

DOI: 10.1103/PhysRevD.66.025020 PACS number~s!: 11.30.Pb, 11.10.Gh, 11.25.Hf
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I. INTRODUCTION

Conformal field theories ind dimensions with a boundar
of codimension 1 have interesting general properties, wh
have been investigated in@1,2#. The essential feature of suc
field theories is that the conformal group in th
d-dimensional space is broken from SO(d,2) down to
SO(d21,2) in the presence of the boundary. The unbrok
conformal generators are those which leave the bound
invariant. In @2#, correlation functions for general bounda
conformal field theories were constructed by symmetry c
siderations and by deriving a boundary operator product
pansion. Due to the reduced conformal symmetry, these
relation functions are generally less constrained than
conformal field theories without a boundary.

There are examples of conformal field theories of t
type in which there are additional degrees of freedom a
defect or boundary. Such impurity theories were studied
instance in the context of matrix descriptions of compactifi
five-branes@3–5#, and also in the context of the AdS/CF
correspondence. Recently, Karch and Randall@6# proposed
an AdS/CFT duality for D3/D5-brane systems whose ne
horizon limit is AdS53S5 with D5-branes wrapping an
AdS43S2 submanifold. They conjecture the dual field theo
to be a four-dimensionalN54 Yang-Mills theory interacting
with a three-dimensional conformal field theory in such
way as to preserve the common conformal symmetries.
three-dimensional degrees of freedom were proposed t
the holographic description of modes on the D5-brane
which there is ‘‘locally localized gravity.’’

Within this context, there are two different scenarios.
the first, all of the D3-branes intersect the D5-branes. T
dual field theory is then expected to contain a defect
which the three-dimensional degrees of freedom are lo
ized. In the second scenario, some of the D3-branes en
the D5-branes, allowing for the interesting possibility of ha
0556-2821/2002/66~2!/025020~17!/$20.00 66 0250
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ing two four-dimensional conformal field theories with di
ferent central charges coupled at a common boundary
three-dimensional conformal field theory.

In the defect scenario, the AdS/CFT correspondence
subsequently investigated in detail by DeWolfe, Freedm
and Ooguri@7#. These authors explicitly construct the La
grangian of the dual field theory, which at the classical le
preserves a SO(3,2) conformal symmetry. The bulk com
nent is anN54, d54 super Yang-Mills theory, half the
modes of which are coupled to a defectN54, d53 hyper-
multiplet. In the construction of@7#, the bulk modes are
coupled to the defect modes in a manner preserving half
bulk supersymmetries by defining the defect inN51, d54
superspace. In analogy to earlier results in@8#, the defect
locus is written as a condition on both a spatial coordin

x250 and the Grassmann coordinateu5 ū. Evaluated at
the defect, bulkN51 superfields becomeN51, d53 su-
perfields which can be directly coupled to defect degrees
freedom. The SO(3,2) symmetries of the supergravity d
strongly suggest that the conformal invariance of the cla
cal theory is preserved by quantum corrections. There
also arguments in the context of matrix theory which sugg
conformal invariance@4,9#. Partial field-theoretical argu
ments for conformal invariance were given in@7#, and a
proof was given for the Abelian version of the model whi
has no bulk interactions.

In this paper we shall reconsider the defect model con
ered in@7#. We also construct other similar models prese
ing at leastN52, d53 supersymmetry. In addition to th
defect case, where there are no boundary conditions, we
consider boundaries with suitable supersymmetric bound
conditions. We shall write both bulk and defect/bounda
terms inN52, d53 superspace. In addition to being com
pact and making many of the unbroken symmetries manif
this notation has the distinct advantage that nonrenorma
©2002 The American Physical Society20-1
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tion theorems are more transparent due to the existenc
chiral superfields not present inN51, d53 language. Fur-
thermore inN52, d53 language it is easy to write Feyn
man graphs with bulk-boundary interactions. A similar pr
cedure for coupling four-dimensional supersymmet
actions to higher dimensional ones was developed in@10,11#
in the context of phenomenological model building.

We begin by considering an Abelian bulkN52 vector
multiplet with half the degrees of freedom coupled
chargedN52, d53 chiral multiplets at a defect~or bound-
ary! in such a way thatN52, d53 superconformal invari-
ance is classically preserved. For the boundary case, we
tain an additionald53 Chern-Simons term as a bounda
term of thed54 action. We then derive a Callan-Symanz
equation by considering the superconformal transforma
properties of the one-particle irreducible~1PI! action in N
52, d53 superspace. In the Abelian case, the bulk con
bution to the action is free, and when studying the renorm
ization properties of the 1PI action, it is sufficient to consid
the d53 theory since all vertices are confined to the bou
ary or defect. The Callan-Symanzik equation enables u
show that the beta function vanishes to all orders in per
bation theory, such that theN52, d53 superconformal
symmetry is preserved by quantum corrections. A crucial
gredient in the proof of quantum conformal invariance is
absence of quantum corrections involving the Chern-Sim
term. Such a term cannot contribute to the local supercon
mal transformation of the quantum action since its local fo
is not gauge invariant. This implies the absence of the ga
beta function. Nevertheless, the boundary or defect fields
quire an anomalous dimension in thisN52 model, which
does not affect superconformal invariance.

In the defect case no boundary conditions are imposed
bulk fields, whereas in the boundary case we impose N
mann boundary conditions, which—in contrast to Dirich
conditions—allow for coupling the electrically charge
boundary degrees of freedom to the bulk fields. We exp
mirror symmetric models with Dirichlet boundary condition
to exist as well. As far as the conformal invariance of t
models considered here is concerned, it does not ma
whether one has a defect or a boundary. We emphasize
unlike the defect model, the boundary model we constr
does not correspond to a D3/D5 system, which would req
Dirichlet boundary conditions@12#. It is nevertheless inter
esting as a toy model and is a first step toward conside
models in which there are different bulk central charges
opposite sides of the boundary. Such conformal field theo
might be expected to exist as holographic duals of the su
gravity configurations discussed in@6# in which two AdS5
backgrounds with different curvature are separated by
AdS4 submanifold.

We also consider the Abelian defect model of@7#, as well
as its boundary version. This model is a bulkN54 theory
with half the degrees of freedom coupled to a chargedN
54, d53 hypermultiplet localized on the defect. UsingN
52, d53 superspace, we derive the Callan-Symanzik eq
tion for this model and show that the beta functions a
anomalous dimensions vanish. In@7#, a similar proof was
02502
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given in component language using power counting a
symmetry arguments.1

Finally, we consider the non-Abelian version of the defe
model of@7#, whose conformal invariance has not been p
viously demonstrated. In the non-Abelian case, the anal
of potential quantum corrections is more involved, since
bulk action is no longer free. Assuming unbrokenN54, d
53 supersymmetry, we argue that the beta functions of
theory vanish as well.

The paper is organized as follows. In Sec. II we discu
the embedding ofN52, d53 superspace inN52, d54
superspace in the presence of a boundary or defect. M
over we decompose theN52, d54 vector multiplet under
N52, d53 supersymmetry. In Sec. III we construct the a
tion for a free AbelianN52, d54 vector multiplet in the
bulk coupled to a chargedN52, d53 chiral multiplet on a
boundary or defect. We investigate the superconformal tra
formation properties of the quantized version of this mod
derive its Callan-Symanzik equation, and show that its b
function vanishes. In Sec. IV, we consider the model of@7#
with N54 super Yang-Mills theory in the bulk coupled to
N54, d53 charged hypermultiplet at the defect or boun
ary. For the Abelian version of this model we show that th
model is not renormalized, using the superconformal tra
formation properties of the 1PI action again. In Sec. V
consider the non-Abelian version of this model and dem
strate its conformal invariance assuming unbrokenN54, d
53 supersymmetry. We conclude in Sec. VI.

II. DECOMPOSING NÄ2, dÄ4 MULTIPLETS UNDER
NÄ2, dÄ3 SUPERSYMMETRY

Our aim is to couple four-dimensional theories withN
52 or N54 supersymmetry to a three-dimensional boun
ary theory atx250. The super Poincare´ symmetries of the
four-dimensional bulk are broken by boundary conditio
and defect or boundary couplings. For the purpose of c
pling the bulk and boundary or defect actions, and for co
puting quantum corrections, it is convenient to write t
four-dimensional bulk contribution to the action in a la
guage in which only the preservedN52, d53 symmetry is
manifest.2 To this end it is necessary to know the decomp
sition of the higher dimensional multiplets under the low
dimensional supersymmetry.

A. EmbeddingNÄ2, dÄ3 in NÄ2, dÄ4

We begin by showing how to embedN52, d53 super-
space intoN52, d54 superspace. For this purpose we p
form a twofold coordinate transformation inN52, d54 su-
perspace,

1In @7#, it was argued that the quantum corrections to the de
field propagators give rise to divergences which are at most lo
rithmic, such that the defect fields acquire anomalous dimensi
Using ourN52 superspace approach, we are in fact able to sh
that for the elementary defect fields even the logarithmic div
gences are absent, such that these fields do not acquire anom
dimensions. However, composite operators may still have ano
lous dimensions, which we do not consider here.

2An analogous procedure was considered in@10# in coupling four-
dimensional boundary theories to five-dimensional bulk theorie
0-2
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~x,u1 ,ū1,u2 ,ū2!→~x,ũ1 ,ũ2 ,u”̃ 1 ,u”̃ 2!

→~x,u,ū,u” ,u”̄ !. ~2.1!

First, we define real spinorsũ i andu” i as

ũ i[
1

2
~u i1 ū i !, u”̃ i[

1

2i
~u i2 ū i !, i 51,2. ~2.2!

Each real spinor is an irreducible representation of the th
dimensional Lorentz group SU(1,1).SL(2,R).SO(1,2).
Subsequently, we rearrange them in the complex spinou
andu” ,

u[ũ12 i ũ2 , u” [u”̃ 12 iu”̃ 2 . ~2.3!

As we will see shortly, settingu” 50 yields anN52, d53
superspace.

In the absence of central charges, theN52, d54 super-
symmetry algebra is

$Qia ,Q̄j
ḃ%52saḃ

m
Pmd i

j , i , j 51,2,

$Qia ,Qj b%5$Q̄i
ȧ ,Q̄j

ḃ%50 . ~2.4!

The coordinate transformation~2.1, 2.2, 2.3! corresponds to
a redefinition of the four-dimensionalN52 supersymmetry
generators such that exp(uiQ

i1ūiQ̄
i)5exp(uQ1u”Q”1ūQ̄

1u”̄Q”̄ ). We define the new supersymmetry generators by

Qa[Q̃1a1 iQ̃2a , Q” a[Q”̃ 1a1 iQ”̃ 2a , ~2.5!

where

Q̃ia[
1

2
~Qia1Q̄i

ȧ!, Q”̃ ia[
i

2
~Qia2Q̄i

ȧ!, i 51,2.

~2.6!

In terms of these new generators the algebra acquires
form (M50,1,3)

$Qa ,Q̄b%52sab
M PM , $Q” a ,Q”̄ b%52sab

M PM ,

$Qa ,Qb%5$Q̄a ,Q̄b%5$Q” a ,Q” b%50,

$Q”̄ a ,Q”̄ b%5$Qa ,Q” b%5$Q” a ,Q b%50, ~2.7!

$Qa ,Q”̄ b%5$Q” a ,Q̄ b%522isab
2 P2 .

Here we have made use of the fact that the Pauli matricessM

are symmetric whiles2 is antisymmetric. The algebra now
02502
e-

he

splits into twoN52, d53 superalgebras, one generated
Qa , the other byQ” a . Both superalgebras are connected v
the generatorP2.3

The corresponding superspace covariant derivativ
which anticommute with the supersymmetry generators~2.5!
and satisfy an algebra analogous to~2.7!, are given by

D5
]

]u
1 isM ū]M1s2u”̄ ]2 ,

D̄52
]

]ū
2 iusM]M1u” s2]2 ,

D” 5
]

]u”
1 isMu”̄ ]M2s2ū]2 ,

D”̄ 52
]

]u”̄
2 iu” sM]M2us2]2 . ~2.8!

The subspace defined byu” 50 is preserved by the
N52, d53 algebra generated byQ andQ̄. If one introduces
a superspace boundary at

x250, u” 50

the generatorsP2 , Q” , andQ”̄ are broken, leaving the unbro
ken N52, d53 supersymmetry algebra

$Qa ,Q̄b%52sab
M PM ,

$Qa ,Qb%5$Q̄a ,Q̄b%50. ~2.9!

At the boundary, the derivativesD andD̄ given by Eq.~2.8!
reduce to three-dimensionalN52 covariant derivatives

D5
]

]u
1 isM ū]M , D̄52

]

]ū
2 iusM]M , ~2.10!

which satisfy theN52, d53 algebra

$Da ,D̄b%522sab
M PM , M50,1,3,

$Da ,Db%5$D̄a ,D̄b%50. ~2.11!

B. Decomposition of the 4D vector multiplet under 3DNÄ2

We now decompose the four-dimensionalN52 Abelian
vector superfieldC into 3D N52 superfields by performing
the transformation~2.1! and subsequently settingu” 50. We
show that theN52, d54 vector supermultipletC decom-
poses into

3A related discussion of this algebra may be found in@13#.
0-3
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Cuu” 505
1

2
~F1F̄1A2]2V!1 i

1

A2
S, ~2.12!

whereF,F̄ are chiral and antichiralN52, d53 supermul-
tiplets, respectively. The 3DN52 linear supermultipletS is
related to the 3D vector superfieldV by

S~x,u,ū ![
1

2i
«abD̄aDbV~x,u,ū !, ~2.13!

and satisfiesDDS5D̄D̄S50. Note that in the definition of
an Abelian linear multiplet the order of the derivatives
unimportant since«abD̄aDbV(x,u,ū)5«baDbD̄aV(x,u,ū).

We start from the decomposition of the vector multip
C underN51, d54 which is given by an expansion inu2
@14#,

C~ ỹ,u1 ,u2!5F8~ ỹ,u1!1 iA2u2
aWa8 ~ ỹ,u1!

1u2u2G8~ ỹ,u1!, ~2.14!

where theN51 chiral and vector multipletsF8 and Wa8
have the expansions

F8~ ỹ,u1!5f8~ ỹ!1A2u1c8~ ỹ!1u1u1F8~ ỹ!,

Wa8 ~ ỹ,u1!52 ila8 ~ ỹ!1u1aD8~ ỹ!2
i

2
~sms̄nu1!aFmn8 ~ ỹ!

1~u1u1!saḃ
m

]ml̄8 ḃ~ ỹ!. ~2.15!

While the bosonic componentsf8 of F8 andvm8 of Wa8 are
singlets under the global SU(2)R symmetry, the fermionsc8
of F8 andl8 of Wa8 form a SU(2) doublet.

We are now interested in the form ofC as given by~2.14!

in the coordinates (u,ū,u” ,u”̄ ) with u” 50. Since the 4DN
52 algebra in the form~2.7! reduces to the 3DN52 algebra
~2.9!, we expectC to decompose into 3DN52 superfields
at u” 50. Taking the inverse of the coordinate transformat
~2.2, 2.3! and settingu” 50, we get

u15
1

2
~u1 ū !, u25

i

2
~u2 ū !. ~2.16!

After substituting the coordinate transformation~2.16! into
Eq. ~2.14!, we can rearrange the components ofCuu” 50 into
3D N52 chiral (f,c;F) and linear multiplets (r,vM ,l;D).
For this purpose we define new scalars and vectors by

Ref[Ref8, Im f[
1

A2
v28 ,

r[A2 Imf8, FMN[FMN8 , ~2.17!

and also new complex spinors by

c[Rec81 i Rel8, c̄[Rec82 i Rel8,
02502
t

n

l[Im c82 i Im l8, l̄[Im c81 i Im l8. ~2.18!

Here we combined a 3D N51 scalar multiplet
(Im f8,Im c8;F8) and a vector multiplet (vM8 ,Im l8) to
form an N52 vector multiplet@15# or, more precisely, to
form anN52 linear multiplet (r,l,vM ;D). Let us also de-
fine new auxiliary fields

F[
1

2
~F82F8 * 2A2D8!,

D[
1

A2
~F81F8 * !1A2]2 Ref8. ~2.19!

The term]2 Ref8 in the definition of the auxiliary fieldD
seems unnatural at first sight but is required byN52, d
53 supersymmetry. The transverse derivative]2 appears
due to the expansion in the 2 direction since the boso
coordinatesỹm differ from xm only in the transverse direc
tion, i.e., if m52,

ỹm[xm1 iu1smū11 iu2smū25xm1 ius2ūd2
m . ~2.20!

With the above definitionsCuu” 50 can be expressed com
pletely in terms of 3DN52 superfields. A detailed calcula
tion in Appendix shows thatCuu” 50 can be written as

Cuu” 505
1

2
~F1F̄1A2]2V!1 i

1

A2
S, ~2.21!

whereS andF1F̄ read in components

S~x,u,ū !5r1ul̄1 ūl1 iuūD

1
1

2
ūsKu«MNKFMN1

i

2
~uu!ūs̄M]Ml̄

1
i

2
~ ūū !usM]Ml2

1

4
~uu!~ ūū !h3r,

~2.22!

F1F̄5~f1f* !1A2uc1A2ūc̄1uuF1 ū ūF*

1 iusM ū]M~f2f* !1
i

A2
~uu!ūs̄M]Mc

1
i

A2
~ ūū !usM]Mc̄2

1

4
~uu!~ ūū !h3~f1f* !.

~2.23!

The component expansion of the linear superfieldS is de-
rived in Appendix. Equation~2.21! coincides with Eq.~2.12!.
0-4
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III. A SUPERCONFORMAL NÄ2, dÄ4 THEORY WITH
CONFORMAL BOUNDARY COUPLINGS

A. NÄ2, dÄ4 action with manifest NÄ2,
dÄ3 supersymmetry

With the help of the decomposition~2.12! it is now
straightforward to construct the action for anN52, d54
vector supermultiplet in anN52, d53 superspace. As dis
cussed in Sec. II, the degrees of freedom of the fo
dimensionalN52 vector multipletC are contained in an
N52, d53 vector multipletV and anN52, d53 chiral
multiplet F. Strictly speaking, there are continuous sets
such multiplets labeled by the coordinatez[x2 transverse to
the boundary or defect. It will be convenient to work wi
the linear multipletS, which is related toV by Eq. ~2.13!.
Written in terms ofV, S, andF, the action of the free Abe
lian N52, d54 vector multiplet becomes

Sbulk
4D 5

1

8p
ImFtE dzd3xd2ud2ū@A2S

1 i ~A2]zV1F̄1F!#2G
5

1

g2E dzd3xd2ud2ūFS22
1

2
~A2]zV1F̄1F!2G

1
uYM

16p2E dzd3xd2ud2ūA2S~A2]zV1F̄1F!,

~3.1!

wheret5uYM/2p14p i /g2. In the case of a boundary atz
50, thez integration runs from 0 tò , whereas for a defec
the z integration runs from2` to `. The bulk action~3.1!
has manifest three-dimensional Lorentz invariance. Fo
dimensional Lorentz invariance is not manifest, and is
plicitly broken by the introduction of a boundary or defec
In the absence of either, four-dimensional Lorentz invaria
can be seen in component notation after integrating out a
iliary fields. For instance, the kinetic terms in thez direction
such as]zf8* ]zf8 arise upon integrating out the auxiliaryD
term.

Note that the term proportional to the theta angle in E
~3.1! is a total derivative in four dimensions, which can o
dinarily be ignored in an Abelian theory. However, in th
presence of a three-dimensional boundary atz50, it can be
rewritten as a boundary Chern-Simons term of the form

SCS5
uYM

8p2Ez50
d3xd2ud2ū SV. ~3.2!

The terms involving the productsSF,SF̄ in Eq. ~3.1! van-
ish after integrating the derivatives contained inS by parts.

The action ~3.1! is invariant under four-dimensiona
gauge transformations given by

V→V1L1L̄, S→S, F→F2A2]zL, ~3.3!
02502
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whereL(u,xW ,z) are N52, d53 chiral superfields, labeled
by the continuous indexz.

B. Boundary interaction

We now couple the bulk action~3.1! to three-dimensiona
degrees of freedom on a defect or boundary atz[x250. In
the following discussion we consider the boundary case.
results concerning the action and its renormalization prop
ties are also valid for the defect case since they do not
pend on the imposition of boundary conditions at least in
Abelian case considered here.

We may choose either Dirichlet or Neumann bounda
conditions. InN52, d53 superspace, Dirichlet boundar
conditions are given by

Suz5050, ~3.4!

which implies FMN50 at the boundary. We shall instea
choose Neumann boundary conditions given by

~A2]zV1F1F̄ !uz5050, ~3.5!

implying FM250 at z50. This choice is suitable for intro
ducing couplings to electrically charged matter at the bou
ary.

The boundary breaks half the bulk supersymmetries, le
ing only N52, d53 invariance. We shall couple half th
bulk degrees of freedom, i.e., theN52, d53 vector multip-
let V, to chargedN52, d53 chiral multiplets localized at
the boundary. The action consists of two parts,

S5Sbulk
4D 1Sboundary

3D . ~3.6!

For the bulk action we take free AbelianN52, d54 theory
as given inN52, d53 superspace~3.2!,

Sbulk
4D 5

1

g2E dzd3xd2ud2ūFS22
1

2
~A2]zV1F1F̄ !2G .

~3.7!

The boundary action includes both the boundary field kine
term and the interactions between bulk and boundary fie
For our model we consider the boundary degrees of freed
to be given by chiral superfieldsB1 and B2 of opposite
charge. Under gauge transformations

B1→eiLB1, B2→e2 iLB2 with L5L~u,xW ,z50!.
~3.8!

Together with a possible Chern-Simons term, the bound
part of the action is

Sboundary
3D 5E d3xd2ud2ū B̄6e6gVB6

1
uYM

8p2E d3xd2ud2ū VS, ~3.9!

where6 denotes summation overB1 andB2.
0-5
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The combined actionS5Sbulk
4D 1Sboundary

3D is classically in-
variant under conformal symmetries that leave the bound
invariant. We note that classically the three-dimensionaR
weights under the U(1)R group which determines the supe
current multiplet areR(B6)5 1

2 , R(B̄6)52 1
2 , R(F)51,

R(F̄ )521, and R(V)50. The classical dimensions ar
given byD(B6)5 1

2 , D(F)51, andD(V)50. The dimen-
sions in a superconformalN52, d53 theory satisfy the in-
equalityD>uRu @16#, which must be saturated for the chir
primariesB6 andF.

C. Superconformal transformations and renormalization

We proceed by studying the renormalization properties
our theory. It is crucial to note that it suffices to consider t
renormalization of the boundary 1PI action corresponding
~3.9! in view of obtaining theb functions since all vertices
are three dimensional and since our theory is Abelian. T
d54 part of the 1PI action is finite by construction. Non
theless the boundary action potentially receives quantum
rections from propagation through the bulk. We derive
Callan-Symanzik equation for the boundary theory by stu
ing its superconformal transformation properties.

We obtain the superconformal transformations of
fields by adapting results fromN51, d54 theory @17,18#.
The generator ofN52, d53 superconformal transforma
tions is given by

W5E d3xd2ud2ū$Va@wa~B6!1wa~V!#

1V̄b@w̄b~B̄6!1w̄b~V!#%. ~3.10!

Here V,V̄ are the parameters of the superconformal tra
formations that satisfyDaV̄b5D̄bVa. For the local super-
conformal transformations of the fields we have

wa~B6!5
1

4 FDaB6
d

dB6
2

1

4
DaS B6

d

dB6D G ,

wa~V!5
1

2
D̄bS D̄bDaV

d

dVD1
1

4
D̄2S DaV

d

dVD , ~3.11!

where the factor of14 5 1
2 RB in the expression forwa(B6) is

determined by theR weight RB5 1
2 of B6. We note that the

classical theory given by Eq.~3.9! is superconformally in-
variant,WS50. Applying Eq.~3.11! to the action~3.9! gives

waS[@wa~B6!1wa~V!#S5D̄bJab , ~3.12!

with Jab the supercurrent multiplet. Upon quantization the
will be a potential trace anomalyDaT, with T chiral, contrib-
uting to the right-hand side~RHS! of Eq. ~3.12!, whose ex-
plicit form is discussed in detail below.

For scale transformations and forR transformations we
have
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Va
D5

1

2
ua2

i

2
xMsM

abūb , ~3.13!

Va
R5 iuaū2, ~3.14!

respectively, for which Eq.~3.10! defines the transformation
operatorsWD and WR. From dimensional analysis the 1P
action satisfies

S m
]

]m
1WDDGbdy

3D 50, ~3.15!

with m the renormalization scale.
For investigating the superconformal transformation pro

erties of the quantized theory in a perturbation expansion
all orders, we have to ensure well-defined finite local ope
tor insertions. For this purpose we follow the Bogolubo
Parasiuk-Hepp-Zimmermann~BPHZ! approach@19#. This is
very convenient in the present situation since our argumen
based on symmetry considerations for operator inserti
and we do not need to perform explicit calculations beyo
one loop. Since the theory given by Eq.~3.9! is massless, it
requires regularization by an auxiliary mass term which m
be taken to zero at the very end of the calculation as
scribed below. With regularization, the BPHZ effective a
tion corresponding to Eq.~3.9! has the form

Gboundary
3D, eff 5zBE d3xd2ud2ūB̄6e6gVB6

1zvE d3xd2ud2ūVS2M S E d3xd2uB1B2

1E d3xd2ūB̄1B̄2 D . ~3.16!

The BPHZ effective action is not to be confused with t
Wilsonian or 1PI effective action and has the advantage
being local. It is related to the nonlocal 1PI action via t
action principle. This means that for the derivative of the 1P
action with respect to a field or coupling we have

d

dV
G1PI5FdGeff

dV G•G1PI. ~3.17!

Here the square brackets denote a well-defined finite lo
operator insertion. The RHS of this equation is the gene
ing functional for 1PI Green functions with an insertion
the local operatordGeff/dV.

The field renormalization coefficientszB and zV in Eq.
~3.16! are perturbative power series in the coupling, start
with the classical value

zB511•••, zV5uYM1•••. ~3.18!

Gauge fixing terms contributing to the 1PI action are a
required in principle. A possible gauge condition is given,
instance, byD̄D̄DDV1]zF50. However, the gauge fixing
terms are not essential for the analysis of symmetry trans
0-6
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mations performed here, since their operator insertions v
ish when acting on physical states, i.e., inside Green’s fu
tions.

For the superconformal transformation of the bound
1PI action, given by applying Eq.~3.10! with Eq. ~3.11! to
the 1PI action corresponding to Eq.~3.16!, we obtain

E d3xd2ud2ū„Va@wa~B6!1wa~V!#

1V̄b@w̄b~B6!1w̄b~V!#…Gbdy
3D

52
1

8E d3xd2ud2ū~VaDa@MB1B2#•Gbdy
3D

1V̄bD̄b@MB̄1B̄2#•Gbdy
3D !, ~3.19!

with @MB1B2# a well-defined local mass insertion as d
fined in Eq.~3.17!. This mass insertion potentially gives ris
to a chiral trace anomalyT. According to the standard BPHZ
procedure we have to expand the mass insertion into aZim-
mermann identity@20#, reminiscent of the operator produ
expansion, before being able to setM to zero. This gives

@MB1B2#5@uD̄2B̄6e6gVB61vD̄2VS1w~B1B2!2#

1M @B1B2#, ~3.20!

with a similar relation for@MB̄1B̄2# which is obtained by
complex conjugation. The first bracket on the RHS conta
a basis of local field polynomials of the same dimension a
chirality as the LHS, with coefficientsu,v,w of orderO(\)
and higher. On the RHS,M may now safely be put to zer
since the last term is a so-called ‘‘soft’’ insertion. One of t
key points in view of the renormalization properties of t
theory is now that the coefficientv vanishes due to gaug
symmetry requirements:4 The contribution to Eq.~3.20! in-
volving the local Chern-Simons term has to be absent s
this term is not gauge invariant. Moreover the coefficienw
is zero due to the chirality of (B1B2)2, such thatR symme-
try is preserved. We note, however, that the coefficientu in
Eq. ~3.20! is nonzero in general.

With the help of the superconformal Ward identity w
now derive a Callan-Symanzik equation which will allow
to prove conformal invariance for our model. The superc
formal transformation of the 1PI action is given by

E d3xd2ud2ū~Vawa1V̄bw̄b!Gbdy
3D

52
1

8E d3xd2ud2ū

~VaDaD̄21V̄bD̄bD2!@uB̄6e6gVB6#•Gbdy
3D , ~3.21!

4For purely three-dimensional Chern-Simons theories a sim
nonrenormalization argument for the Chern-Simons term may
found in @21#.
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with wa as in Eqs.~3.11!, ~3.12!. For scale transformation
as given by Eqs.~3.13!, ~3.21!, and~3.15! imply

m
]

]m
Gbdy

3D 52
1

2E d3xd2ud2ūu@B̄6e6gVB6#•Gbdy
3D .

~3.22!

Using Eq.~3.22! as well as the action principle~3.17! and
the Zimmermann identity~3.20!, we derive the Callan-
Symanzik equation by making use of the fact that derivati
with respect to the fields and couplings give rise to lo
insertions of the form

gBB6
d

dB6
Gbdy

3D 5~gBzB22gBu!@D̄D̄B̄6e6gVB6#•Gbdy
3D ,

~3.23!

and similar results forV and g. We obtain the Callan-
Symanzik equation by comparing the coefficients of the
sertions. In the present case the Callan-Symanzik equa
has just the simple form

S m
]

]m
2gBNBDGbdy

3D 50, ~3.24!

N B[E d3xd2uB6
d

dB6
1E d3xd2ūB̄6

d

dB̄6
.

Subject to the condition

4gBzB1~128gB!u50, ~3.25!

Equation~3.24! coincides with Eq.~3.22!. The term involv-
ing u in Eq. ~3.22! has been absorbed into an anomalo
dimension for the chiral boundary fields. This anomalo
dimension is nonzero, as we confirm by an explicit one-lo
calculation in Appendix B 3. The beta function in the Calla
Symanzik equation vanishes, such that we have a confor
theory. We may also write a superconformal Ward ident
expressing superconformal invariance. Using

wa
(g)[wa

(g)~B6!1wa~V!,

wa
(g)~B6!5

1

4 FDaB6
d

dB6
2

1

4
~112gB!DaS B6

d

dB6D G ,

~3.26!

we have

E d3xd2ud2ū~Vawa
(g)1V̄bw̄(g) b! Gbdy

3D 50. ~3.27!

This shows explicitly that the theory is superconformal w
the boundary fields acquiring anomalous dimensions.

r
e

0-7
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IV. AN ABELIAN NÄ4 SUPERCONFORMAL FIELD
THEORY WITH BOUNDARY

A. NÄ4, dÄ4 action with manifest NÄ2,
dÄ3 supersymmetry

We now turn to the case ofN54 supersymmetry. In this
case we have to consider anN52 hypermultiplet in the bulk
in addition to theN52 vector multiplet considered before
Similarly to the decomposition of theN52, d54 vector
multiplet underN52, d53 in Sec. II B, the degrees of free
dom of the hypermultiplet can be rearranged into twoN
52, d53 chiral superfieldsQ1 andQ2. The bulk multiplets
(S,Q2) and (F,Q1) fit into N54, d53 linear and hyper-
multiplets with the bosonic and fermionic components

S,Q2→r,q2P~3,1!,

l,l2P~2,2!, vMP~1,1!,

F,Q1→ Ref,q1P~1,3!, c,l1P~2,2!,

Im fP~1,1!, ~4.1!

where (r V ,r H) denotes the representation of SU(2V
3SU(2)H,SU(4). Thecomponents ofS and f are given
by the analysis of Sec. II. The multipletQ2 contains the
complex scalarq2 which we have chosen to beq2[Im f18
2 i Im f28 with f18 andf28 being the scalars of the 4D hype
multiplet. In N52 notation, the SU(2)V symmetry of the
triplet (r,Req2 ,Im q2) will not be manifest in the action bu
is required by theR symmetry ofN54, d53. In our con-
ventions the six scalars ofN54 supersymmetry are given b
XV5(Im f8,Im f18 ,Im f28) and XH5(Ref8,Ref18 ,Ref28),
with r5A2 Imf8 as in Eq.~2.18!.

The bulk action is obtained by rewriting the standa
N54, d54 SYM action inN52, d53 language. In terms
of superfieldsS,F,Q1, andQ2, we find

Sbulk5
1

g2E dzd3xd2ud2ūFS22
1

2
~A2]zV1F1F̄ !2

1Q̄iQi G1E dzd3xd2ue i j Qi]zQj

1E dzd3xd2ūe i j Q̄i]zQ̄j . ~4.2!

The first term is the same as in our first model; cf. Eq.~3.1!
The remaining terms are kinetic terms forQ1 and Q2. The
chiral part e i j Qi]zQj is the four-dimensional Lorentz
completion of theQ̄iQi term, as can be seen in compone
notation after integrating out auxiliary fields. Und
N54, d53 supersymmetry,V and Q2 belong to a vector
multiplet, whileF andQ1 belong to a hypermultiplet.

One may also include a Chern-Simons term at the bou
ary or defect. However, there is no off-shellN54, d53
Chern-Simons term@15,22,23#. This may seem surprising
since one might expect to be able to induce such a term
boundary by writing the bulkuYM term in N54, d53 su-
02502
t

d-

t a

perspace. However, such a superspace representation
not exist. We may consider instead adding a Chern-Sim
term which breaks the supersymmetry further toN53, d
53. The AbelianN53, d53 Chern-Simons term@24,25# is
written in N52, d53 superspace as

SCS5
uYM

8p2 F E d3xd2ud2ūSV1E d3xd2uQ2
2

1E d3xd2ūQ̄2
2G . ~4.3!

Note that in a renormalizable model withN53, d53 super-
symmetry written inN52, d53 superspace, all the term
except the Chern-Simons term preserveN54, d53 super-
symmetry~see@23#!.

B. Boundary interaction

As above, we couple the 4D bulk action to a thre
dimensional theory on the defect or boundary atz50, where
the supersymmetry is broken down toN54, d53 such that
only SU(2)V3SU(2)H,SU(4) is preserved. The boundar
N52 superfieldsB1,B2 form anN54, d53 hypermultip-
let with bosonic componentsb1,b2P(1,2) and fermionic
x1,x2P(2,1). The SU(2)V symmetry of the doublet
(x1,x̄2) will not be visible in the boundary action due to th
N52, d53 language.

There are again two options for choosing boundary c
ditions. We could impose Dirichlet boundary conditions
the linear multiplet (S,Q2),

Suz5050, Q2uz5050, ~4.4!

and leave the hypermultiplet unconstrained. This is not
adequate option as there is no coupling to the boundary
permultiplet. It is, however, possible to work with atwisted

hypermultiplet (B̂1,B̂2) which is related to an ordinary hy
permultiplet by interchanging the group SU(2)V with
SU(2)H , i.e., the componentsb̂1,b̂2P(2,1) and x̂1,x̂2

P(1,2). We will not pursue this option.
Instead, we can extend the Neumann boundary condit

~3.5! to

~]zV1F1F̄ !uz5050, Q1uz5050, ~4.5!

and couple the linear multiplet to the boundary.
With these boundary conditions the action, which cons

again of two parts, is given by

S5Sbulk
4D 1Sboundary

3D , ~4.6!

with Sbulk
4D given by Eq.~4.2! and with the classical boundar

action given by
0-8
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Sbdy
3D 5E d3xd2ud2ū~B̄1egVB11B̄2e2gVB2!

1
ig

A2
F E d3xd2uB1Q2B21c.c.G

1
uYM

8p2 F E d3xd2ud2ūVS1E d3xd2uQ2
2

1E d3xd2ūQ̄2
2G . ~4.7!

In the first line we couple the vector multiplet (V,Q2) to the
charged boundary fieldsB1,B2. The terms involvingQ2

2

andQ̄2
2 are theN53, d53 supersymmetry completions o

the Chern-Simons termVS.

C. Renormalization

Quantum conformal invariance of thisN54 model was
already demonstrated in@7# using power counting and sym
metry arguments in component notation. Here we use a
the BPHZ approach withinN52, d53 superspace in orde
to prove the finiteness of the theory. In addition to conform
invariance we also show that—unlike in theN52 model of
Sec. III—the elementary fields do not acquire anomalous
mensions. Again it is sufficient to consider the boundary c
tribution to the 1PI action in order to determine the ren
malization properties of the complete model.

For this purpose we add an auxiliary mass term to
boundary action~4.7! for regularization and obtain for th
BPHZ effective action

G bdy
3D , eff5zBE d3xd2ud2ū~B̄1egVB11B̄2e2gVB2!

1
ig

A2
F E d3xd2uB1Q2B21c.c.G

1zvE d3xd2ud2ūVS1zQ2
E d3xd2uQ2

2

1zQ2
E d3xd2ūQ̄2

2

2M S E d3xd2uB1B21E d3xd2ūB̄1B̄2 D .

~4.8!

The local superfield transformation of the 1PI action is n
given by

E d3xd2ud2ū~Vawa1V̄aw̄a!Gbdy
3D

52
1

8E d3xd2ud2ū~VaDa@MB1B2#•Gbdy
3D

1V̄bD̄b@MB̄1B̄2#•Gbdy
3D ),
02502
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wa[wa~B6!1wa~Q2!1wa~V!, ~4.9!

with the superconformal field transformations as in E
~3.11! and

wa~Q2!5
1

4 FDaQ2

d

dQ2
2

1

2
DaS Q2

d

dQ2
D G . ~4.10!

The Zimmermann identity as in Eq.~3.20! now has the form

@MB1B2#5@uD̄2B̄6e6gVB61vB1Q2B21wD̄2VS

1yQ2
2#1M @B1B2#. ~4.11!

The coefficientw vanishes again by the gauge noninvarian
of D̄2VS. v and y vanish due to the chirality ofB1Q2B2

andQ2
2, such that the three-dimensional 1PI action is inva

ant under the three-dimensional U(1)R symmetry transfor-
mation generated by

WR5E d3xd2ud2ū

$VRa@wa~B6!1wa~V!1wa~Q2!#

1V̄b
R@w̄b~B̄6!1w̄b~V!1w̄b~Q2!#%, ~4.12!

with Va
R5 iuaū2. Similarly, chirality ensures the absence

any quartic (B1B2)2 term.
After using the Zimmermann identity, we may safely s

the soft mass term to zero and obtain, withwa as in Eq.
~4.9!,

E d3xd2ud2ū~Vawa1V̄bw̄b!Gbdy
3D

52
1

8E d3xd2ud2ū

~VaDaD̄21V̄bD̄bD2!@uB̄6e6gVB6#•Gbdy
3D , ~4.13!

and thus for the scale transformations by virtue of E
~3.21! and ~3.15!

m
]

]m
Gbdy

3D 52
1

2E d3xd2ud2ūu@B̄6e6gVB6#•Gbdy
3D .

~4.14!

The coefficientu in Eq. ~4.14!, which is defined in Eq.
~4.11!, is related tov in Eq. ~4.11! by N54, d53 supersym-
metry. Sincev vanishes,u vanishes as well if we assum
N54, d53 supersymmetry to be preserved upon quanti
tion. In this case we have immediately demonstrated con
mal invariance, as well as the absence of any anoma
dimensions.

Furthermore, we may also show conformal invariance a
the absence of any anomalous dimensions for the cas
nonvanishing theta angle, in which we cannot setu50 based
on N54 supersymmetry arguments. For this purpose we
0-9
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rive the Callan-Symanzik equation corresponding to E
~4.14!. In analogy to Eq.~3.22! leading to Eq.~3.24!, we
write

S m
]

]m
1bg]g2gBNB2gQ2

NQ2
2gVNVDGbdy

3D 50, ~4.15!

where

NQ2
[E d3xd2uQ2

d

dQ2
1E d3xd2ūQ̄2

d

dQ̄2

,

NV[E d3xd2ud2ūV
d

dV
, ~4.16!

andNB is as in Eq.~3.24!. Applying the derivative operator
involving the beta and gamma functions in Eq.~4.15! to Gbdy

3D

generates operator insertions, for instance as in Eq.~3.23!,
and further insertions as given by Eq.~4.11!. Comparing
these insertions to the RHS of Eq.~4.14!, we find that Eq.
~4.15! holds subject to the conditions

bg]gzB22gBzB2
1

2
~128gB!u50, ~4.17!

bg2gVg50, ~4.18!

bg22ggB2ggQ2
50, ~4.19!

bg]gzV22zVgV50, ~4.20!

bg]gzQ2
22zQ2

gQ2
50 ~4.21!

on the insertion coefficients. Here, Eq.~4.18! is a conse-
quence of gauge invariance. Equations~4.19!, ~4.20!, and
~4.21! are consequences of the fact thatv, w, andy in Eq.
~4.11! vanish, respectively. From Eqs.~4.18! and ~4.20! we
obtain

gV~g]g22!zV50. ~4.22!

Since zV5uYM1(higher order terms), (g]g22)zV5” 0 if
uYM5” 0.5 Then Eq. ~4.22! implies thatgV vanishes to all
orders in perturbation theory. Furthermore, forgV50, Eq.
~4.18! implies bg50 to all orders. From Eq.~4.21! then
follows gQ2

50, from Eq.~4.19! gB50, and from Eq.~4.17!

u50.6 Thus all quantum corrections vanish and the theor
finite.

5We check explicitly in Appendix B 2 that the orderg2 contribu-
tion to zV vanishes.

6We confirm thatgB50 at one loop by an explicit calculation i
Appendix B 4.
02502
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V. NON-ABELIAN THEORY

A. Construction of the model

We now construct the non-Abelian generalization of t
defect action~4.6!, which preservesN54, d53 supersym-
metry, using N52, d53 superspace. This model corre
sponds to a stack of D3 branes intersected by a D5-br
The action was given inN51, d53 language in@7#.

The bulk field content of the model inN52, d53 super-
space is as follows. There is a vector multipletV transform-
ing as

eV→e2 iL†
eVeiL, ~5.1!

whereL is a chiral multiplet. BothV andL are matrices in
the fundamental representation of the SU(N) Lie algebra.
The linear multipletS is defined by

S[eabD̄a~e2VDbeV!. ~5.2!

Under gauge transformations

S→e2 iLSeiL. ~5.3!

While S is not Hermitian, it satisfies

S†5eVSe2V. ~5.4!

We also require three adjoint chiral superfieldsQ1 , Q2, and
F, with the gauge transformation properties

Qi→e2 iLQie
iL, ~5.5!

F→e2 iLFeiL2e2 iL]ze
iL. ~5.6!

Note thatF is a connection in thez direction and the opera
tor ]z2F transforms covariantly.

For vanishingu angle theN54, d54 super Yang-Mills
action can then be written inN52, d53 superspace as

Sbulk5
1

g2E dzd3xd2ud2ū Tr$S22@e2V~]z1F†!eV1F#2

1e2VQ̄ie
VQi%1E dzd3xd2u Tr e i j Qi@2]z1F,Qj #

1E dzd3xd2ū Tr e i j Q̄i@]z1F̄ ,Q̄j #. ~5.7!

The defect or boundary component of the action wh
preservesN54, d53 supersymmetry is, inN52, d53 su-
perspace,

Sboundary5E d3xd2ud2ū~B̄1eVB11B2e2VB̄2!

1S E d3xd2uB2Q2B11c.c.D . ~5.8!

HereB1 is in the fundamental andB2 in the antifundamenta
representation of the gauge group such that
0-10
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B1→e2 iLB1 , B2→B2eiL with L5L~u,xW ,z50!.
~5.9!

Together,B1 andB2 form anN54, d53 hypermultiplet.

B. Comments on Chern-Simons terms

One may also include auYM term in the bulkN54
theory. It is clear how to write such a term inN51 or N
52 superspace. These different superspace representa
differ only by total derivatives which are irrelevant in th
absence of a boundary, such thatN54 supersymmetry is
preserved. However in the presence of a boundary, the
ferent superspace representations of theuYM term in the bulk
induce Chern-Simons terms with different amounts of sup
symmetry on the boundary, and some of the supersymm
may be broken. For instance we may write a bulkuYM term
in N52, d53 superspace as

SuYM
5

uYM

16p2E d3xE dzTr S@e2V~]z1F†!eV1F#.

~5.10!

In the absence of a boundary, adding such a term does
breakN54, d54 supersymmetry. However, in the presen
of a boundary atz50, Eq. ~5.10! induces anN52, d53
Chern-Simons term, such thatN54, d53 supersymmetry is
broken down toN52, d53. In a non-Abelian theory, this
Chern-Simons term is of course not the whole story, si
one must also add the contributions of* trF`F coming from
infinity. We emphasize that the induced Chern-Simons te
need not have a quantized level~or quantizeduYM). In the
non-Abelian case, theN52, d53 Chern-Simons term doe
not have a local representation inN52, d53 superspace
Instead one introduces an auxiliary directiont, such that the
Chern-Simons term is given by@26,27#

SCS5E d3xE
0

1

dt Tr S~ t !e2V(t)] te
V(t)

with

S~ t ![D̄a~e2V(t)DaeV(t)!, ~5.11!

where V(t,xW ) satisfies the boundary conditionsV(0,xW )50
and V(1,xW )5V(xW ). Note the resemblance between Eq
~5.11! and ~5.10!. TheN53, d53 completion of Eq.~5.11!
is obtained by adding the chiral terms

SQ2
5E d3xd2u Tr Q2

21c.c. ~5.12!

However, there is no knownN54, d53 Chern-Simons
term. Although one can have a bulk theta angle preserv
N54, d54 supersymmetry, the introduction of a bounda
when uYM5” 2p apparently allows at mostN53, d53 su-
persymmetry. One might try to cancel the induced Che
Simons term by adding another boundary Chern-Sim
term by hand. However, unlike the induced Chern-Simo
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term, the one added by hand has a quantized level and ca
restoreN54, d53 supersymmetry whenuYM52p.

C. Conformal invariance

By construction, the model given by Eqs.~5.7!, ~5.8!, co-
incides with the model given inN51, d53 language in@7#.
We discuss the relation between theN52 and theN51
formulations in more detail in Appendix C. There are seve
lines of reasoning that suggest the quantum conformal
variance of the defect model. One argument is based on
role @7# as the holographic dual of a supergravity configu
tion discussed in@6#. In this case one expects conform
invariance as a reflection of the isometries of the superg
ity configuration, in which a D5-brane spans an AdS4 sub-
manifold embedded in AdS5. Another argument is that the
model is a matrix model for a type IIB five-brane compac
fied on a two-torus@4,9#. Quantum conformal invariance wa
proven in @7# in the Abelian case, in which there are n
interactions in the bulk, but remains to be proven in t
non-Abelian case. We will not attempt a rigorous proof he
but we give an argument for conformal invariance using o
N52, d53 formulation of the model. The argument relie
on the assumption that the classicalN54, d53 supersym-
metry is unbroken by quantum corrections. Ideally, o
would like to find a proof using a minimal number of a
sumptions about which classical symmetries are prese
by quantum corrections.

Let us first consider the implications of the unbroken s
persymmetry. InN52, d53 superspace, one can make u
of nonrenormalization of the superpotential

W5B2Q2B11E dze i j Tr Qi@2]z1F,Qj #. ~5.13!

The second term in the superpotential is rather surpris
since it gives the bulk kinetic terms forQ which involve
derivatives in thez direction. Since the superpotential is n
renormalized, these kinetic terms are protected against q
tum corrections. In the absence of a defect, Lorentz inv
ance would then imply the nonrenormalization of all the
netic terms forQ. In other words, the Ka¨hler potential term
Tr e2VQ̄ie

VQi in the bulk action is also not renormalized7

However, in the presence of a defect, Lorentz invariance
broken and this argument is not available to us.

Instead, let us consider theN54, d53 completion of the
superpotential. The completion of the first term in Eq.~5.13!
is B̄ie

VBi , which is therefore also not renormalized. TheN
54, d53 completion of the second term is Tr@e2V(]z
1F†)eV1F#2. Supersymmetry does not place any co
straints on the renormalization of the remaining te
Tr (S21e2VQ̄ie

VQi).
Note that in the case of theN54 bulk theory without a

defect, there are arguments for conformal invariance ba
on the conservation of anR symmetry current in the sam

7In fact this is another way of proving nonrenormalization of t
metric on the Higgs branch inN52, d54 gauge theories@28#.
0-11
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multiplet as the stress-energy tensor@29#. Such arguments do
not work when a defect is included. In this case, one
define a classically conservedR symmetry current as

JM5J(3)
M 1E dzJ(4)

M ~5.14!

where J(3) is the contribution of defect terms,J(4) is the
four-dimensionalR current, andM is a three-dimensiona
Lorentz index with values 0,1,3. The charge associated w
the current~5.14! generates theR symmetry transformations
of the combined bulk and defect action. It is the lowest co
ponent of a supercurrentJ ab5JMsM

ab1•••. Let us consider
the possible anomalies of this current. There is no reaso
expectR symmetry to be broken by quantum correction
However, unlike in the four-dimensional case, one can fin
potential anomaly multiplet such that theR current is con-
served, but the~three-dimensional! stress tensor has nonze
trace. For instance, one could consistently write for the
percurrent anomaly

D̄aJ ab;bgE dzDbD̄D̄ Tr~S21e2VQ̄ie
VQi !, ~5.15!

The anomaly multiplet on the right-hand side of Eq.~5.15! is
gauge invariant. It implies a nonzero trace for the stre
energy tensor; however, there is a conservedR current since,
with @DD,D̄D̄#516h318iDsMD̄]M ,

$Da,D̄b%Jab516bg~h318iDsMD̄]M !

E dzTr~S21e2VQ̄ie
VQi !. ~5.16!

The difference between the standardN51, d54 anomaly
WaWa and theN52, d53 expression*dz D̄D̄S2 is that the
latter is a gauge invariant term (S2) chirally projected by
D̄D̄. On the other hand,WaWa cannot be written as the
chiral projection of a gauge invariant term. It is well know
that chirally projected anomalies may be absorbed in a
definition of the supercurrentJab , such thatR symmetry is
manifestly conserved even if scale invariance is brok
@17,29#.

The anomaly equation~5.15! is therefore permitted by
N54, d53 supersymmetry. Nevertheless, this anom
must be absent for the following reason. Consider correla
functions of bulk fields in the limit of largez, with fixed
momentapW parallel to the defect. These receive the us
contributions from diagrams involving only bulk fields. Suc
contributions are finite due to the finiteness of theN54,
d54 theory. Contributions from diagrams which involv
bulk-defect interactions~see Fig. 1! arez dependent and fal
off with distance from the defect. Therefore any local cou
terterms from such diagrams would have an explicitz depen-
dence. This means that the corresponding counterterms
tributing to the action would be of the schematic form

E d3xd2ud2ūE dz f~z!Ô~z,xW ! ~5.17!
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with f (z) falling off with the distance from the defect
Clearly the anomaly in Eq.~5.15! is not consistent with
counterterms of this form since itsz integrand has no explici
z dependence as given byf (z) in Eq. ~5.17!. Therefore this
anomaly must be absent andbg50 in ~5.15!.

Furthermore we may also rule out the possibility of a
counterterms of the form~5.17! and thus of any explicitlyz
dependent anomalies contributing to Eq.~5.15!: In addition
to having the z dependence described, any counterte
would have to be expressible as an integral of a local op
tor over all of N52, d53 superspace. In other words,z
dependent counterterms as introduced in Eq.~5.17! would
have to take the asymptotic form

E d3xdzd2ud2ūz2sL tÔ, ~5.18!

whereL is a mass scale,s.0, andt>0. The local operator
Ô must therefore have dimension less than 2, and be n
chiral. It must also be gauge invariant upon integratio
However, there is no such operator available to us. The o
apparent possibility is a bulk Chern-Simons termÔ5LCS,
but there is no such term preservingN54, d53 supersym-
metry. Furthermore, there is no parity anomaly which co
generate it. We therefore conclude that the model is clo
under the renormalization group, requiring no additionaz
dependent interactions. SinceN54, d53 supersymmetry
also prevents renormalization of the defect interactions,
find that the theory is conformal.

One can also consider a variant of the model given
Eqs.~5.7!,~5.8! in which anN53, d53 Chern-Simons term
localized at the defect~not to be confused with the bulk
Chern-Simons term discussed above! is added by hand to the
classical action. This still does not break conformal inva
ance at the quantum level. The addition of aN53 Chern-
Simons term breaksN54 only in a very mild way. TheN
53 multiplets are the same as theN54 multiplets. Further-
more, in a renormalizable theory,N53 supersymmetry au
tomatically impliesN54 supersymmetry for all terms ex
cept the Chern-Simons term. There is now the appa
possibility of generating a bulk Chern-Simons term of t
type discussed in the previous paragraph. However, su

FIG. 1. Az dependent contribution to a bulk-bulk propagator.
0-12
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term, in addition to being nonlocal, has a chiral compon
and therefore cannot arise from perturbative quantum cor
tions. Of course such anN53 conformal model does no
arise as a holographic dual of the AdS configuration of@6#, in
which a D5-brane wraps an AdS43S2 submanifold of
AdS53S5. This configuration has SU(2)3SU(2) isometry
corresponding to theN54, d53 R symmetry group. The
N53 Chern-Simons term breaks this symmetry to its di
onal SU(2) subgroup.

VI. CONCLUSIONS

In this paper we have studied superconformal field th
ries coupled to boundary or defect degrees of freedom
such a way as to preserve the superconformal symmet
leaving the boundary or defect locus invariant. We co
structed new Abelian theories of this type which we show
to be conformally invariant. We have also given an argum
that the non-AbelianN54, d53 model constructed in@7# is
conformally invariant by excluding the possibility of coun
terterms which asymptotically fall off with the distance fro
the boundary. Our arguments rely greatly on the use oN
52, d53 superspace, which was used to express both
boundary/defect and bulk components of the action.

Theories of the type discussed here are of interest
variety of systems. In the context of AdS/CFT duality,
would be interesting to try to construct a conformally inva
ant boundary model in which there are four-dimensional c
formal field theories with different central charges on opp
site sides of the boundary. For this purpose theN52, d53
superspace formalism and the supersymmetric boun
conditions introduced in this paper may prove to be use
The AdS dual of such a theory would presumably consis
two AdS spaces of different curvature separated by an A
submanifold@6#. It may also be interesting to consider defe
theories that arise from orbifolds of theS5 in the AdS con-
figuration of @6#. Orbifolding the S5 in the conventional
AdS53S5 background gives string theory duals of largeN
conformal field theories with less thanN54 supersymmetry
@30#. In the background of@6# which leads to the defec
model of@7#, a D5-brane wraps an AdS43S2 submanifold of
AdS53S5. By orbifolding theS5 one could conceivably ob
tain largeN conformal defect models with less or no supe
symmetry.

Moreover, we expect further interesting nonsupersymm
ric boundary or defect conformal theories of this type
exist. A simple example is, for instance, the minimal non
persymmetric model given by

S5E dzd3xFmnFmn1E
z50

d3xC̄gM~]M2 iAM !C, ~6.1!

with a boundary fermionC coupled to a bulk gauge field
Am . In the Abelian case this model is conformal, as may
seen straightforwardly by using the method of Secs. III a
IV without supersymmetry: Instead of the supercurre
anomaly, a conformal transformation of the boundary or
fect 1PI action now gives an insertion of the trace of t
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stress-energy tensor. In this case conformal invariance is
tentially broken by insertions of the form

@TM
M#•G3D5@uC̄gM~]M2 iAM !C1v«MNPAMFNP#•G3D.

~6.2!

Again v has to vanish since«MNPAMFNP is not gauge in-
variant.u gives rise to an anomalous dimension for the f
mion field, such that we have again a conformal field the
with an anomalous dimension for the boundary field. Su
theories may arise also in the context of critical phenom
of systems with interacting boundaries or defects.
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APPENDIX A: LINEAR MULTIPLET AND
DECOMPOSITION OF C

1. Component expansion of the 3DNÄ2 linear multiplet

For the expansion of the~Abelian! linear multiplet S

[(1/2i )«abD̄aDbV, we have to differentiate twice the 3D
vector superfieldV which in Wess-Zumino gauge is given b

V52us2ūr2usM ūvM1 i ~uu!ūl̄2 i ~ ūū !ul

1
1

2
~uu!~ ūū !D. ~A1!

The real scalarr stems from the second component of t
four-vectorvm , i.e., r[v2. In chiral coordinates

yM5xM1 iusM ū, M50,1,3, ~A2!

the derivativeD̄a takes the simple formD̄a52 ]̄a . For
DbV(y,u,ū) we find

DbV~y,u,ū !52sbg
2 ūgr~y!2sbg

M ūgvM~y!12iubūal̄a~y!

2 i ~ ūū !lb~y!1ub~ ūū !@D~y!1 i ]MvM~y!#

2 i ~ ūū !~sMs̄Nu!b]MvN~y!2 i ~ ūū !

3~sMs̄2u!b]Mr~y!1~uu!~ ūū !sbg
M ]Ml̄g.

~A3!

Using the identitysMs̄N5hMN2 isMN,hMN5diag(1,21,
21), we end up with

S~y,u,ū !5r1ul̄1 ūl1 iuūD1
i

2
ūsMNuFMN

1 i ~uu!ūsM]Ml̄, ~A4!
0-13
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where the field strengthFMN is given by

FMN[]MvN2]NvM . ~A5!

Further expansion leads to

S~x,u,ū !5r1ul̄1 ūl1 iuūD

1
1

2
ūsKu«MNKFMN1

i

2
~uu!ūs̄M]Ml̄

1
i

2
~ ūū !usM]Ml2

1

4
~uu!~ ūū !h3r. ~A6!

2. Detailed calculation ofC at u” Ä0

In this appendix we show some details of the calculat
of C5F81 iA2u2

aWa81u2u2G8 at u” 50. Since the chiral
superfieldF8 is in the adjoint representation, in the Abelia
case the auxiliary fieldG8 is given by

G8~ ỹ,u1![E d2ū1F̄8~ ỹ22iu1sū1,u1!

5F8 * ~ ỹ!2 iA2u1sm]mc̄8~ ỹ!

2~u1u1!hf8 * ~ ỹ!. ~A7!
02502
n

Substituting the coordinate transformation~2.16! and the
component expansions ofF8, Wa8 , andG8 into Eq. ~2.14!,

we find8 for Cuu” 50( ỹm,u,ū)

Cuu” 505f81
1

A2
u~c81 il8!1

1

A2
ū~c82 il8!

1
1

4
uu~F82F8 * 2A2D8!2

1

2
uū~F81F8 * !

1
1

4
ū ū~F8 * 2F82A2D8!1

1

4
A2ūsmnuFmn8

1
i

2

1

A2
~ ūū !usm]m~c̄82 i l̄8!

1
i

2

1

A2
~uu!ūsm]m~c̄81 i l̄8!

2
1

4
~uu!~ ūū !hf8 * . ~A8!

We now use the redefinitions~2.17!–~2.19! and expand
Cuu” 50 in ỹm5xm1 ius2ūd2

m . We obtain the component ex
pansion of Eq.~2.21!:
er
Cuu” 50~x,u,ū !5Ref1 i
1

A2
r1

1

A2
u~c1 i l̄ !1

1

A2
ū~ c̄1 il!2

1

A2
uūD1

1

2
uuF1

1

2
ū ūF* 2usM ū]M Im f

1
1

A2
usM ū]2vM1

1

2

i

A2
ūsKu«MNKFMN1

i

2

1

A2
~ ūū !usM]M~ c̄2 il!

1
i

2

1

A2
~uu!ūs̄M]M~c2 i l̄ !2

1

4
~uu!~ ūū !h3f8 * 2

1

A2
us2ū]2r

1
i

A2
~uu!ū]2l̄2

i

A2
~ ūū !u]2l1

1

2

1

A2
~uu!~ ūū !]2D

5
1

2
~F1F̄1A2]2V!1 i

1

A2
S, ~A9!

with h3[]M]M . The expansion yields terms involving the transverse derivative]2. While some of these terms cancel high
order terms, the term]2 Ref8 is absorbed in the definition ofD, the auxiliary field of the linear fieldS. The remaining ones
form the superfield]2V.

8SL(2,R) invariant products are defined in the following way:u2[uaua , ū2[ūaūa, uū[uaūa5 ūaua .
0-14
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APPENDIX B: FEYNMAN RULES AND ONE-LOOP
CONTRIBUTIONS

1. Free 3D and 4D propagators

We use anN52, d53 superspace formulation for calcu
lating quantum corrections. The use of superspace Feyn
rules automatically guarantees the cancellation of delta fu
tion singularities and interactions at the boundary, which
explicitly present in the component formulation@31#.

When both ends are pinned on the boundary, the free
chiral and gauge vector propagators are given by

GQ
bdy→ bdy~pW !5

dzz8
7

2upW u
, GV

bdy→ bdy~pW !5
2dzz8

7

2upW u
, ~B1!

where

dzz8
7

5d3~xW2xW8!d2~u2u8!d2~ ū2 ū8!. ~B2!

These expressions are theN52, d53 version of results ob-
tained in @32# for the 4D/5D case in component form. Th
power of the momentum in the denominator is reduced
compared to standard three-dimensional propagators, w
makes Feynman graphs potentially more divergent than
pure three-dimensional theory. The standard free 3D pro
gators for the chiral boundary or defect fields are

GBi
~pW !5

dzz8
7

pW 2
, i 51,2. ~B3!

2. One-loop contribution to the Chern-Simons term

We calculate the one-loop contribution to the coefficie
zV of the Chern-Simons term within the BPHZ approac
The calculation is analogous to the standard calculation
the one-loop contribution to the 4D gauge propagator giv
for instance, in@29,33#. The BPHZ approach allows us t
show in a simple way that the one-loop contribution to t
Chern-Simons term ind53 vanishes due to supersymmetr
The action principle of the BPHZ approach gives

d2

dV~1!dV~2!
G1PIU

1 loop

5
d2

dV~1!dV~2!
G1 loop

eff , ~B4!

where the contributions relevant here are

FIG. 2. One-loop contribution to the bulk propagator.
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G1-loop
1PI 5g2E d3p

~2p!3

d3k

~2p!3
d4ud4u8V~2pW ,u!

3
D̄2D2

16

dzz8
7

~pW 1kW !2

D2D̄2

16

dzz8
7

kW2
V~pW ,ū !1•••,

~B5!

G1 loop
eff 5zV

(1)E d3xd4uVS1•••. ~B6!

Equation~B5! corresponds to the graph shown in Fig. 2 wi
the external legs removed as appropriate for a 1PI contr
tion. This ensures that this 1PI contribution is three dime
sional. Performing the two functional derivatives with r
spect toV we obtain

G1 loop
(2) 5zV

(1)«abDaD̄b~u2ū2!, ~B7!

where

G1 loop
(2) [

d2

dV~1!dV~2!
G1PIU

1 loop

5g2E d3k

~2p!3

1

~pW 1kW !2kW2
.

~B8!

Applying «gdDgD̄d to both sides of Eq.~B7! then gives

zV
(1)50, ~B9!

sinceG1 loop
(2) is independent of the Grassmann variables.

3.NÄ2 model: One-loop correction to the boundary
propagator for the defect field B

A standard one-loop calculation gives a contribution
the 1PI action. By virtue of Eqs.~B1! and ~B3!, we find

FIG. 3. One-loop contribution to the boundary propagator.

FIG. 4. One-loop contribution to the boundary propagator.
0-15
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GBB̄
1PI

5g2E d3p

~2p!3

d3k

~2p!3
d4uB~pW ,u,ū !

3
21

2upW 1kW u

1

kW2
B̄~pW ,u,ū ! ~B10!

for the super-Feynman graph of Fig. 3. SinceGBB̄
1PI is loga-

rithmically divergent, it follows thatgB5” 0 in general.

4.NÄ4 model: Additional one-loop correction to the boundary
propagator for the defect field B

In addition to the expression~B10!, in the N54 model
we find the following one-loop contribution to the 1PI actio
GBB̄

1PI
~see Fig. 4!:

GBB̄
1PI

5g2E d3p

~2p!3

d3k

~2p!3
d4ud4u8B~2pW ,u,ū !

3S 2
D̄2

4
D S 2

D8 2

4 D dzz8
7

2upW 1kW u

dzz8
7

kW2
B̄~pW ,u,ū !

5g2E d3p

~2p!3

d3k

~2p!3
d4uB~pW ,u,ū !

1

2upW 1kW u

1

kW2
B̄~pW ,u,ū !.

~B11!

We see that this exactly cancels the contribution~B10! such
that gB50 at least to one loop.
n

.

02502
APPENDIX C: THE NÄ4 MODEL OF EQ. „5.8…
IN NÄ1, dÄ3 LANGUAGE

By construction, the model given by Eqs.~5.7!,~5.8! is the
N52, d53 formulation of the model constructed in@7# in
N51, d53 notation. To demonstrate this we note that t
gauge fieldV decomposes into@26#

VaTa52 iGaaũ2aTa1
1

2
i ũ2

aũ2abaTa ~C1!

under N51, d53 supersymmetry. Hereũ2 is defined in
~2.2!. The kinetic term in~5.8! decomposes into

E d3xd2ũ1„~¹qi !¹qi1bqiq̄i…, i 51,2, ~C2!

where theN51, d53 superfieldqi is defined as the lowes
component in aũ2 expansion ofBi , qi5Bi u ũ250. The cova-

riant derivative in Eq.~C2! is given by¹5D2 iGaTa with D
the N51, d53 derivative. The kinetic term in Eq.~C2!
coincides with the boundary kinetic term given in Eq.~4.27!
of @7# and bqiq̄i contributes to the superpotential term E
~4.29! of @7#. b contains the auxiliary fieldD defined in Eq.
~2.21! above and thus]2 Ref8, which coincides with one of
the three hypermultiplet scalar normal derivativesD6XH

A

that appear in the superpotential~4.29! of @7#. The superpo-
tential term in Eq.~5.8! contains a complex auxiliary fieldf
and thus the two remaining hypermultiplet scalar derivativ
of the formD6XH

A.
s.
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