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We study four-dimensional superconformal field theories coupled to three-dimensional superconformal
boundary or defect degrees of freedom. Starting with B2, d=4 theories, we construct Abelian models
preserving /=2, d=3 supersymmetry and the conformal symmetries under which the boundary/defect
is invariant. We write the action, including the bulk terms, M=2, d=3 superspace. Moreover we
derive Callan-Symanzik equations for these models using their superconformal transformation properties
and show that the beta functions vanish to all orders in perturbation theory, such that the models remain
superconformal upon quantization. Furthermore, we study a mode\Vi#th SU(N) Yang-Mills theory in the
bulk coupled to anV’=4, d=3 hypermultiplet on a defect. This model was constructed by DeWolfe, Freed-
man, and Ooguri, and conjectured to be conformal based on its relation to an AdS configuration studied by
Karch and Randall. We write this model ik=2, d=3 superspace, which has the distinct advantage that
nonrenormalization theorems become transparent. Usiag, d=3 supersymmetry, we argue that the model

is conformal.
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[. INTRODUCTION ing two four-dimensional conformal field theories with dif-

ferent central charges coupled at a common boundary to a
Conformal field theories id dimensions with a boundary three-dimensional conformal field theory.

of codimension 1 have interesting general properties, which In the defect scenario, the AdS/CFT correspondence was
have been investigated i, 2]. The essential feature of such subsequently investigated in detail by DeWolfe, Freedman,
field theories is that the conformal group in the and Ooguri[7]. These authors explicitly construct the La-
d-dimensional space is broken from S0) down to  grangian of the dual field theory, which at the classical level
SO(—1,2) in the presence of the boundary. The unbrokerpreserves a SO(3,2) conformal symmetry. The bulk compo-
conformal generators are those which leave the boundarfent js anA=4, d=4 super Yang-Mills theory, half the
invariant. In[2], correlation functions for general boundary ,odes of which are coupled to a defet=4, d=3 hyper-
conformal field theories were constructed by symmetry Con?nultiplet. In the construction of7], the bulk modes are

Xéoupled to the defect modes in a manner preserving half the

pansion. Due to the reduced conformal symmetry, these O 1k supersymmetries by defining the defect\ir 1, d=4

relation functions are generally less constrained than inSu erspace. In analogy to earlier results@, the defect
conformal field theories without a boundary. perspace. 9y ’

There are examples of conformal field theories of thisIocus is written as a condition on both a spatial coordinate

type in which there are additional degrees of freedom at ¥2=0 and the Grassmann coordinate= 6. Evaluated at
defect or boundary. Such impurity theories were studied fothe defect, bulk\=1 superfields becom&/=1, d=3 su-
instance in the context of matrix descriptions of compactifiedoerfields which can be directly coupled to defect degrees of
five-braneg[3-5], and also in the context of the AdS/CFT freedom. The SO(3,2) symmetries of the supergravity dual
correspondence. Recently, Karch and Ranflllproposed strongly suggest that the conformal invariance of the classi-
an AdS/CFT duality for D3/D5-brane systems whose neareal theory is preserved by quantum corrections. There are
horizon limit is AdSXS°® with D5-branes wrapping an also arguments in the context of matrix theory which suggest
AdS,x S? submanifold. They conjecture the dual field theory conformal invariance[4,9]. Partial field-theoretical argu-
to be a four-dimensional/=4 Yang-Mills theory interacting ments for conformal invariance were given [iii], and a
with a three-dimensional conformal field theory in such aproof was given for the Abelian version of the model which
way as to preserve the common conformal symmetries. Thias no bulk interactions.
three-dimensional degrees of freedom were proposed to be In this paper we shall reconsider the defect model consid-
the holographic description of modes on the D5-brane orered in[7]. We also construct other similar models preserv-
which there is “locally localized gravity.” ing at leastV=2, d=3 supersymmetry. In addition to the
Within this context, there are two different scenarios. Indefect case, where there are no boundary conditions, we also
the first, all of the D3-branes intersect the D5-branes. Theonsider boundaries with suitable supersymmetric boundary
dual field theory is then expected to contain a defect orconditions. We shall write both bulk and defect/boundary
which the three-dimensional degrees of freedom are locakerms inN'=2, d=3 superspace. In addition to being com-
ized. In the second scenario, some of the D3-branes end gract and making many of the unbroken symmetries manifest,
the D5-branes, allowing for the interesting possibility of hav-this notation has the distinct advantage that nonrenormaliza-
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tion theorems are more transparent due to the existence gfven in component language using power counting and
chiral superfields not present iW=1, d=3 language. Fur- Symmetry arguments.

thermore inNV=2, d=3 language it is easy to write Feyn- Finally, we consider the non-Abelian version of the defect

man graphs with bulk-boundary interactions. A similar pro-mode! of[7], whose conformal invariance has not been pre-

cedure for coupling four-dimensional supersymmetricV'OUSIV dgmonstrated. In thej non.-Abehan_ case, the.anaIyS|s
actions to higher dimensional ones was developdd @y11] of potential quantum corrections is more involved, since the

in the context of phenomenological model building. bulk action is no longer free. Assuming unbrokafr-4, d

=3 supersymmetry, we argue that the beta functions of this
We begin by considering an Abelian bulk=2 vector theory?/an?s/h as V\yell. g

multiplet with half the degrees of freedom coupled ©  The paper is organized as follows. In Sec. Il we discuss
chargedV=2, d=3 chiral multiplets at a defecbr bound-  the embedding of\’=2, d=3 superspace V=2, d=4

ary) in such a way thatv=2, d=3 superconformal invari- superspace in the presence of a boundary or defect. More-
ance is classically preserved. For the boundary case, we obver we decompose th&=2, d=4 vector multiplet under
tain an additionad=3 Chern-Simons term as a boundary N=2, d=3 supersymmetry. In Sec. lll we construct the ac-
term of thed=4 action. We then derive a Callan-Symanzik tion for a free Abelian\'=2, d=4 vector multiplet in the
equation by considering the superconformal transformatiofUlk coupled to a charget=2, d=3 chiral multiplet on a

properties of the one-particle irreducibl&Pl) action in A’ boundary or defect. We investigate the superconformal trans-

—2,d=3 superspace. In the Abelian case, the bulk Contri_formatlon properties of the quantized version of this model,

. o ; derive its Callan-Symanzik equation, and show that its beta
bution to the action is free, and when studying the renormalfunction vanishes. In Sec. IV, we consider the mode| Tf

ization properties_of the 1PI qction, itis sufficient to considerith N=4 super Yang-Mills theory in the bulk coupled to a
the d=3 theory since all vertices are confined to the bound-z/= 4, d=3 charged hypermultiplet at the defect or bound-
ary or defect. The Callan-Symanzik equation enables us t@ry. For the Abelian version of this model we show that this
show that the beta function vanishes to all orders in perturmodel is not renormalized, using the superconformal trans-
bation theory, such that th&/=2, d=3 superconformal formation properties of the 1PI action again. In Sec. V we
symmetry is preserved by quantum corrections. A crucial inconsider the non-Abelian version of this model and demon-
gredient in the proof of quantum conformal invariance is thestrate its conformal invariance assuming unbrokén4, d
absence of quantum corrections involving the Chern-Simong 3 supersymmetry. We conclude in Sec. VI.
term. Such a term cannot contribute to the local superconfor-
mal transformation of the quantum action since its local form
is not gauge invariant. This implies the absence of the gauge
beta function. Nevertheless, the boundary or defect fields ac- Our aim is to couple four-dimensional theories with
quire an anomalous dimension in th\é&=2 model, which =2 or N=4 supersymmetry to a three-dimensional bound-
does not affect superconformal invariance. ary theory atx,=0. The super Poincarsymmetries of the

In the defect case no boundary conditions are imposed ofeur-dimensional bulk are broken by boundary conditions
bulk fields, whereas in the boundary case we impose New@nd defect or boundary couplings. For the purpose of cou-
mann boundary conditions, which—in contrast to DirichletPling the bulk and boundary or defect actions, and for com-
conditions—allow for coupling the electrically charged PUting quantum corrections, it is convenient to write the
boundary degrees of freedom to the bulk fields. We expe ur-dimensional bulk contribution to the action in a lan-

mirror symmetric models with Dirichlet boundary conditions guagfe 'rgzv.l\fh'(t:r?_ Onlydthte_ preserved= 2t dk=3 S){rrlrlrr;letry is
to exist as well. As far as the conformal invariance of the'anest. 10 this €nd [t 1S necessary 1o Know the decompo-

models considered here is concerned, it does not matt tion of the higher dimensional multiplets under the lower

whether one has a defect or a boundary. We emphasize tha|,menS|onaI supersymmetry.

unlike the defect model, the boundary model we construct A. Embedding N=2, d=3 in N'=2, d=4
does not correspond to a D3/D5 system, which would require We begin by showing how to embet=2, d=3 super-

Dirichlet boundary condition$12]. It is nevertheless inter- rgace intaV=2, d=4 superspace. For this purpose we per-

Il. DECOMPOSING AN=2,d=4 MULTIPLETS UNDER
N=2,d=3 SUPERSYMMETRY

esting as a toy model and is a first step toward considerin . Lo >
models in which there are different bulk central charges o ergpzct:vg/ofold coordinate transformation ff=2, d=4 su-
opposite sides of the boundary. Such conformal field theorie '
might be expected to exist as holographic duals of the super-_____
g;ac\ﬁgozc:’:glsguﬁgog%gi?\?scsfr?/a[grén avyglzgg\grgtggsi)y a lin [7], it was argued that the quantum corrections to the defect

. ﬁeld propagators give rise to divergences which are at most loga-
AdS, submanifold.

. . rithmic, such that the defect fields acquire anomalous dimensions.
We also consider the Abelian defect modeldf, as well Using our N=2 superspace approach, we are in fact able to show

as its boundary version. This model is a billk=4 theory  y,at for the elementary defect fields even the logarithmic diver-
with half the degrees of freedom coupled to a chargéd gences are absent, such that these fields do not acquire anomalous
=4, d=3 hypermultiplet localized on the defect. Usind  dimensions. However, composite operators may still have anoma-
=2,d=3 superspace, we derive the Callan-Symanzik equapus dimensions, which we do not consider here.

tion for this model and show that the beta functions and 2An analogous procedure was considereflli@l] in coupling four-
anomalous dimensions vanish. [Ii], a similar proof was dimensional boundary theories to five-dimensional bulk theories.
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(X, 01 ,FL, 02 ,?)H(X,El ,’éz ,707 1 ,’é 2)

—(x,0,0,0,0). 2.9
First, we define real spinor& and ¢, as
~ 1 - ~ 1 —
0iE§(0i+0), 69iEE(0i—0), i=1,2. (22)
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splits into twoN'=2, d=3 superalgebras, one generated by
Q... the other by® . Both superalgebras are connected via
the generatoP,.?

The corresponding superspace covariant derivatives,
which anticommute with the supersymmetry generatdrs
and satisfy an algebra analogous(207), are given by

Each real spinor is an irreducible representation of the three-

dimensional Lorentz group SU(1&)SL(2R)=S0(1,2).

Subsequently, we rearrange them in the complex spifiors

andd,

0=0,-i0,. (2.3

As we will see shortly, setting =0 yields anN=2, d=3
superspace.

In the absence of central charges, f\fe-2, d=4 super-
symmetry algebra is

{Qio. Qpt=20",P, 8, i,j=12,
{QianjB}:{aidvajB}zo- (24)

The coordinate transformatig®.1, 2.2, 2.3 corresponds to
a redefinition of the four-dimension&/'=2 supersymmetry

generators such that expQ'+6Q)=exp(EQ+0Q+6Q
+696). We define the new supersymmetry generators by

QaEbla—‘riQZa’ QaEQ1a+iQ2av (25)

where

~ 1 — ~ i —
0, =5(Qut Qi) B1,=5(Qu-0l), =12
(2.6

In terms of these new generators the algebra acquires {he

form (M=0,1,3)

{Qa 165}:202ABPM , Q4 ,6B}=202"BPM )
{QayQﬁ}:{aayaﬁ}:{QmQﬁ}:O,
{6a!6B}I{Qa!QB}:{Qa1QB}:O! (27)

{Qa 165}:{Qa 16,8}: _Zia-iﬁPZ'

Here we have made use of the fact that the Pauli mattites
are symmetric whiles? is antisymmetric. The algebra now

J i M 2
D=a6+la' 0+ o d,,
N J H M 2
D=_&§_|0(T (9M+$O' &2,

J i M 2
D:(}$+|(T @aM_O' 0(?2,

— d
D=——_—i690'Mz9M—00282. (28)

o

The subspace defined by =0 is preserved by the

N=2,d=3 algebra generated @anda If one introduces
a superspace boundary at

the generator®,, @, and@ are broken, leaving the unbro-
ken N=2, d=3 supersymmetry algebra

{Qa 16;3}: ZUZA;;PM )

At the boundary, the derivatived andD given by Eq.(2.8
reduce to three-dimensionAl=2 covariant derivatives

J
D= —

—(90+|0'M05M,

— J
D=———i0cMsy, (2.10
30

hich satisfy the\/'=2, d=3 algebra

{D,.Dgt=—20M:Py, M=0,13,

{D,,Dg}={D,,Dg=0. (2.11)

B. Decomposition of the 4D vector multiplet under 3DA/=2

We now decompose the four-dimensioné2 Abelian
vector superfield into 3D N'=2 superfields by performing
the transformatiori2.1) and subsequently setting=0. We
show that theN'=2, d=4 vector supermultiple¥ decom-
poses into

3A related discussion of this algebra may be found1i].
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1 — 1 A=Imy/ —iImN', A=Imy' +ilmn'. (2.1
1P|6,=O=§((I)+CD+\/§(92V)+i—E, (2.12 v v (.18

V2
Here we combined a 3DN=1 scalar multiplet
where®,® are chiral and antichira\'=2, d=3 supermul- (Im@’.Im#’;F’) and a vector multiplet «(,Im\’) to

tiplets, respectively. The 3V=2 linear supermultipleE is ~ form an A/=2 vector multiplet[15] or, more precisely, to

related to the 3D vector superfieldby form an /=2 linear multiplet p,\,v\ ;D). Let us also de-
fine new auxiliary fields

3(X,6,0)= %s“ﬁDaDBV(x,e, 6), (2.13 1
F=S(F'—F'*—\2D"),
and satisfie® D3, =DDX =0. Note that in the definition of
an Abelian linear multiplet the order of the derivatives is
unimportant since **D ,D gV(x, 6, 6) = &”“D 43D ,V(X, 6, 6). D= i(F’ +F'*)+2d,Red’. 2.19
We start from the decomposition of the vector multiplet V2
¥ underN=1, d=4 which is given by an expansion i
[14], The termd, Re¢’ in the definition of the auxiliary field
~ _ ~ seems unnatural at first sight but is required &% 2, d
W(Y,01,0,)=D'(y,00) +iN205W.(Y,61) =3 supersymmetry. The transverse derivatite appears
~ due to the expansion in the 2 direction since the bosonic
+60,60,G'(y,0,), (2.149

coordinatesy” differ from x* only in the transverse direc-

where theA’=1 chiral and vector multipletsb’ and W/,  1On: € ifn=2,

have the expansions _ _ _ _
YE=XF+i 00" 01 +1 0,04 0°=x"+1002065. (2.20
O’ (y,01)= ' () +2610' (¥) + 616:F ' (Y),
_ With the above definitionsV|,_, can be expressed com-
i — ; . ) ) ]
, o~ NI (T LT , o~ pletely in terms of 3DNV=2 superfields. A detailed calcula
Waly,61)==1a(¥)+ 01,D7(y) =5 (070761)aF 1, (¥) tion in Appendix shows tha¥|,_, can be written as

+(0:61) 09N A(Y). (2.15 . )
V)p_o== (P+D+20,V)+i—=3,  (2.2))
While the bosonic components’ of @' andv,, of W, are 2 V2
singlets under the global SU(R)symmetry, the fermiong’

of @' and\' of W/, form a SU(2) doublet.
We are now interested in the form ¥f as given by(2.14)

in the coordinates 4, 6,4 ,4) with 4 =0. Since the 4DV
=2 algebra in the fornf2.7) reduces to the 3IV=2 algebra
(2.9, we expect¥V to decompose into 3V=2 superfields 1 MINK i — . =
at ¢ =0. Taking the inverse of the coordinate transformation + 500k 0™ " Fynt 5 (06) 00 Ik
(2.2, 2.3 and settingd =0, we get

[ 1 _
i +5(00)00“"&@—Z(ee)((w)msp,

1 — —

whereS, and®+® read in components

S(X,60,0)=p+ ON+ O\ +i606D

(2.22
After substituting the coordinate transformati¢h16 into
Eq. (2.14), we can rearrange the componentsitff, _ into D+ D =(p+ *)+ 200+ 200+ 00F + 00F*
3D N=2 chiral (¢, #;F) and linear multipletsg,vy ,\;D).
For this purpose we define new scalars and vectors by — i _
+i0aMOoy(p— ¢*)+ E((9¢9)(9<7“",9M¢

1
Re¢=Red’, Im¢p= —zvé’

2 R
+ E(GG)GU omp— Z(BB)(GG)Dg(qH— ).
P 2 |m¢ y FMN FMN’ (217) (223)
and also new complex spinors by
. The component expansion of the linear superfiglds de-
Jy=Rey'+iReN’, yYy=Rey’'—iRe\’, rived in Appendix. Equatio2.21) coincides with Eq(2.12).
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lll. A SUPERCONFORMAL N/=2, d=4 THEORY WITH where A (6,x,z) are V=2, d=3 chiral superfields, labeled
CONFORMAL BOUNDARY COUPLINGS by the continuous index

A. N=2, d=4 action with manifest N'=2,
d=3 supersymmetry B. Boundary interaction

With the help of the decompositiof2.12 it is now We now couple the bulk actiof8.1) to three-dimensional
straightforward to construct the action for =2, d=4 degrees of freedom on a defect or boundarg=ak,=0. In
vector supermultiplet in alv=2, d=3 superspace. As dis- the following discussion we consider the boundary case. Our
cussed in Sec. Il, the degrees of freedom of the fourresults concerning the action and its renormalization proper-
dimensional =2 vector multiplet¥ are contained in an ties are also valid for the defect case since they do not de-
N=2, d=3 vector multipletV and anA/’=2, d=3 chiral  pend on the imposition of boundary conditions at least in the
multiplet ®. Strictly speaking, there are continuous sets ofAbelian case considered here.
such multiplets labeled by the coordinate x, transverse to We may choose either Dirichlet or Neumann boundary
the boundary or defect. It will be convenient to work with conditions. InN=2, d=3 superspace, Dirichlet boundary
the linear multipletS, which is related tov by Eq.(2.13.  conditions are given by
Written in terms ofV, X, and®, the action of the free Abe-

lian A/=2, d=4 vector multiplet becomes 2[z=0=0, 34
1 o which implies F,y=0 at the boundary. We shall instead
%ak=8—lm rf dzdPxd?0d?6[ /23 choose Neumann boundary conditions given by
ar

_ (V20,V+®+®)[,-4=0, (3.5
+i(¢§azv+q>+q>)]2}
implying Fy,=0 atz=0. This choice is suitable for intro-
1 1 o ducing couplings to electrically charged matter at the bound-
=—2J dch’xdzﬁdzﬁ[iz—E(\/fazv+<b+d>)2} ary.
g The boundary breaks half the bulk supersymmetries, leav-
ing only =2, d=3 invariance. We shall couple half the
Oym f dzcPxd20d20\23 (\20,V + D + D) bulk degrees of freedom, i.e., thé=2, d=3 vector multip-
1672 ‘ ’ let V, to chargedNV=2, d=3 chiral multiplets localized at
the boundary. The action consists of two parts,

_ 4D D
where 7= 0y /2w +4milg?. In the case of a boundary at S=Shi* Ssoundary 39
=0, thez integration runs from 0 tee, whereas for a defect For the bulk action we take free Abeliavi=2, d=4 theory
the z integration runs from- to «. The bulk action(3.1) a5 given in\'=2, d=3 superspacé3.2),

has manifest three-dimensional Lorentz invariance. Four-

dimensional Lorentz invariance is not manifest, and is ex- 1 1 _
plicitly broken by the introduction of a boundary or defect. E,k=—2J dzdPxd?6d?6 22—5(\/502V+<D+CI>)2 .

In the absence of either, four-dimensional Lorentz invariance 9

can be seen in component notation after integrating out aux- 3.7
iliary fields. For instance, the kinetic terms in théirection
such asi,¢'* d,¢' arise upon integrating out the auxilialy
term.

Note that the term proportional to the theta angle in Eq
(3.1) is a total derivative in four dimensions, which can or-
dinarily be ignored in an Abelian theory. However, in the
presence of a three-dimensional boundaryg=a0, it can be
rewritten as a boundary Chern-Simons term of the form

J’_

(3.

The boundary action includes both the boundary field kinetic
term and the interactions between bulk and boundary fields.
For our model we consider the boundary degrees of freedom
to be given by chiral superfield8® and B~ of opposite
charge. Under gauge transformations

B*—e B, B —e B~ with A=A(6,x,z=0).

(3.8
Ovm 3 2T Together with a possible Chern-Simons term, the boundary
SCS:_zJ d°xd“6d=6 XV. (3.2 part of the action is
8mw<Jz=0
— 3D _ 3vA2pA2 ) REaTOVR*
The terms involving the produc®,>® in Eq. (3.1) van- oundary_f d°xd<¢d°6 B-e~9'B

ish after integrating the derivatives containedirby parts.
The action (3.1) is invariant under four-dimensional Oywm 3 2
gauge transformations given by +Q d°xd“0d*6 VX, 3.9

VoV+A+A, 3—3, &—d—24,A, (3.3 where= denotes summation ov&" andB".
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The combined actio$= Si,+ Sooundan,iS classically in- 1 V-
variant under conformal symmetries that leave the boundary Q=506 5x oyl 0, (3.13
invariant. We note that classically the three-dimensidRal
weights under the U(Xk) group which determines the super-
current multiplet areR(B*)=3%, R(B*)=—3, R(®)=1,
R(®)=-1, and R(V)=0. The classical dimensions are respectively, for which Eq(3.10 defines the transformation
given byD(B*)=%, D(®)=1, andD(V)=0. The dimen- operatorsW® and WR. From dimensional analysis the 1Pl
sions in a superconformal’=2, d=3 theory satisfy the in- action satisfies
equalityD=|R| [16], which must be saturated for the chiral
primariesB* and ®. (

Q=169 (3.14

d
,u,—-i—WD

3D _
” ri8=0, (3.19

C. Superconformal transformations and renormalization . o
with u the renormalization scale.

We proceed by studying the renormalization properties of For investigating the superconformal transformation prop-
our theory. It is crucial to note that it suffices to consider theerties of the quantized theory in a perturbation expansion to
renormalization of the boundary 1PI action corresponding tal| orders, we have to ensure well-defined finite local opera-
(3.9 in view of obtaining theg functions since all vertices tor insertions. For this purpose we follow the Bogolubov-
are three dimensional and since our theory is Abelian. Th@arasiuk-Hepp-Zimmerman@®PH2Z) approact 19]. This is
d=4 part of the 1PI action is finite by construction. None- very convenient in the present situation since our argument is
theless the boundary action potentially receives quantum copased on symmetry considerations for operator insertions
rections from propagation through the bulk. We derive aand we do not need to perform explicit calculations beyond
Callan-Symanzik equation for the boundary theory by studyone loop. Since the theory given by H8.9) is massless, it
ing its superconformal transformation properties. requires regularization by an auxiliary mass term which may

We obtain the superconformal transformations of thepe taken to zero at the very end of the calculation as de-
fields by adapting results fronvV=1, d=4 theory[17,18.  scribed below. With regularization, the BPHZ effective ac-
The generator ofN=2, d=3 superconformal transforma- tion corresponding to Eq3.9) has the form
tions is given by

3D, eff _ 3vd2pd2pRE a*rOVR*
w=f d3x20dZ6{ Q[ W, (B*) +w,(V)] Fboundary ZBJ d'xd"od"0B e 2B

+(_25[V_Vﬂ(§i)+WB(V)]}. (3.10 +va d3xd?6d?oVS — M( f d*xd?6B* B~
Hereﬂ,ﬁ are the parameters of the superconformal trans- +J d3xd20—B+§). (3.16
formations that satisfyD “Q)#=DAQ%. For the local super-
conformal transformations of the fields we have The BPHZ effective action is not to be confused with the

Wilsonian or 1PI effective action and has the advantage of

L1 . 0 1 ) being local. It is related to the nonlocal 1PI action via the
Wo(BT)= 71 DaB™ ———7Da BT —— 1|, action principle This means that for the derivative of the 1Pl
6B~ 6B~ . . . .
action with respect to a field or coupling we have
V)= 08 5,0,v->| + 257 v 3.1 O pae ore e (3.17)
Wo(V)= 5D BpDaViy |+ 307 DaViy ) (313 NG|V '

where the factor of = 1Rg in the expression fow,(B*) is Here the square brackets denote a well-defined finite local
determined by the WéigﬁtR =1 of B*. We notg that the OPerator insertion. The RHS of this equation is the generat-
classical theory given by E&S 5) is suberconformally in- Ing functional for 1PI Green functions with an insertion of

- o - : : the local operatosI ®f/ 5V.
W . Appl Eq.(3.1 h .
variant,WS=0. Applying Eq.(3.11) to the action(3.9) gives The field renormalization coefficientg and zy in Eq.

. _ (3.16 are perturbative power series in the coupling, starting
W, S=[W,(B*) +W,(V)]S=D"T,4, (3.12  with the classical value

with 7,5 the supercurrent multiplet. Upon quantization there zg=1+---, zZy=0Oyyt---. (3.18
will be a potential trace anomaly 7, with 7 chiral, contrib- o o _
uting to the right-hand sidéRHS) of Eq. (3.12, whose ex- Gauge fixing terms contributing to the 1PI action are also

plicit form is discussed in detail below. required in principle. A possible gauge condition is given, for
For scale transformations and f& transformations we instance, byDDDDV+ d,®=0. However, the gauge fixing
have terms are not essential for the analysis of symmetry transfor-
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mations performed here, since their operator insertions varwith w, as in Eqs.(3.11), (3.12. For scale transformations
ish when acting on physical states, i.e., inside Green'’s funcas given by Eqgs(3.13, (3.21), and(3.15 imply
tions.

For the superconformal transformation of the boundary J s 1 V-,
1P!I action, given by applying Ed3.10 with Eq. (3.11) to o Thay=— §J d®xd?6d?u[B e 9B~ ]-I'hq,.
the 1Pl action corresponding to E@.16), we obtain ® (3.22
f d3xd20d20(Q[w,(B*) +w,(V)] Using Eqg.(3.22 as well as the action principl€8.17) and
the Zimmermann identity(3.20, we derive the Callan-

O TwBIREY LB 3D Symanzik equation by making use of the fact that derivatives
QA WEB ) WV D by with respect to the fields and couplings give rise to local

1 _ insertions of the form
=— éf d*xd?9d?6(Q*D [MB*B~]-I'jq,

S _

+QDFMB'B 1-TR), (3.19 'YBBtgrgc?y:(')’BZB_ZVBU)[DDBteigVBi]'Fgc?y'
with [MB"B~] a well-defined local mass insertion as de- (323
fined in EQ.(3.17). This mass insertion potentially gives rise . .
to a chiral trace anomaly. According to the standard BPHZ and S|m_|lar fes%*'ts forv and 9 We obtam .the Callan-_
procedure we have to expand the mass insertion iffora Syman2|k equation by comparing the coefﬂuents.of the in-
mermann identitf20], reminiscent of the operator product S€Ttions. In the present case the Callan-Symanzik equation
expansion, before being able to $étto zero. This gives has just the simple form

MB*B~]=[uD?B*e*9"B*+yD?VS +w(B*B")? J
[ 1=[u vDVE+wW(BTBT)] wy s~ veNa T30, (3.24
+M[B*B], (3.20
with a similar relation fof MB*B~] which is obtained by NBEJ P2 4 +j 4Pxd?aB= s _
complex conjugation. The first bracket on the RHS contains oB* oB*

a basis of local field polynomials of the same dimension and
chirality as the LHS, with coefficients,v,w of orderO(#%)  gupject to the condition
and higher. On the RHSVI may now safely be put to zero

since the last term is a so-called “soft” insertion. One of the
key points in view of the renormalization properties of the

theory is now that the coefficient vanishes due to gauge ) . . .
symmetry requirementsThe contribution to Eq(3.20) in- Equation(3.24) coincides with Eq(3.22. The term involv-

volving the local Chern-Simons term has to be absent sinc9 U iN EQ. (3.22 has been absorbed into an anomalous

this term is not gauge invariant. Moreover the coefficient dimension for the chiral boundary fields. This anomalous

is zero due to the chirality off*B~)2, such thaR symme- dlmen5|_on is nonzero, as we confirm by an epr|C|t one-loop

try is preserved. We note, however, that the coefficieirt calculatlpn in Appendlx B 3. The beta function in the Callan-

Eq. (3.20 is nonzero in general. Symanzik equation vam;hes, such that we have a cpnfor_mal
With the help of the superconformal Ward identity we the€ory. We may also write a superconformal Ward identity

now derive a Callan-Symanzik equation which will allow us &XPressing superconformal invariance. Using

to prove conformal invariance for our model. The supercon-

formal transformation of the 1Pl action is given by w=w(B*) +w,(V),

4ypzg+(1-8yg)u=0, (3.29

f d*xd?6d26(Q W, + QWA IR DB*

a

1
MNR*y= =
wi(B%)=7

+6)
B=—| |,
OB~

(3.2

1
- 7(1+2%)D,

oB*

1 _
= §f d*xd?6d*6
we have
(Q°D,D?+Q,DPD?)[uB“e*9YB*]-T55, (3.21)
f dxd?0d?0(Q W+ QWM A) TER =0. (3.27)
“For purely three-dimensional Chern-Simons theories a similar

nonrenormalization argument for the Chern-Simons term may bdhis shows explicitly that the theory is superconformal with
found in[21]. the boundary fields acquiring anomalous dimensions.
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IV. AN ABELIAN AN/=4 SUPERCONFORMAL FIELD perspace. However, such a superspace representation need
THEORY WITH BOUNDARY not exist. We may consider instead adding a Chern-Simons
- _ , . : - term which breaks the supersymmetry furtherA=3, d
A N=4, d;isa:ltjlon with manifest =2, =3. The Abelian\/'=3, d=3 Chern-Simons terf24,25 is
= persymmetry - .
written in N'=2, d=3 superspace as

We now turn to the case 0¥=4 supersymmetry. In this
case we have to consider Afi=2 hypermultiplet in the bulk
in addition to the\/=2 vector multiplet considered before. _Owm
Similarly to the decomposition of th&/=2, d=4 vector SCS_8772
multiplet under\/=2, d=3 in Sec. I B, the degrees of free-
dom of the hypermultiplet can be rearranged into tho 3 T~ 2
=2, d=3 chiral superfield€; andQ,. The bulk multiplets +f d*xd*6Q; } 4.3
(2,Q,) and @,Q.) fit into N=4, d=3 linear and hyper-
multiplets with the bosonic and fermionic components

f d3xd20d?g3 Vv + f d3xd?6Q,2

Note that in a renormalizable model witti= 3, d=3 super-

3,Q,—p, 0o (3,1), symmetry written in\/=2, d=3 superspace, all the terms
except the Chern-Simons term preseVe4, d=3 super-
NA,e (2,2, vye(l,), symmetry(see[23)).

®,Q:— Re¢,q1e(1,3), ¢,N\e(2,2, B. Boundary interaction

Im¢e(1,1), (4.2) As above, we couple the 4D bulk action to a three-
dimensional theory on the defect or boundaryat, where
where ¢y,ry) denotes the representation of SU(2) the supersymmetry is broken downAé=4, d=3 such that
X SU(2),CSU(4). Thecomponents o and ¢ are given only SU(2),XSU(2),CSU(4) is preserved. The boundary
by the analysis of Sec. Il. The multipl€, contains the N=2 superfieldB*,B~ form anA'=4, d=3 hypermultip-
complex scalaqg, which we have chosen to tg=Im ¢; let with bosonic components®,b™ (1,2) and fermionic
—i Im ¢}, with ¢, and ¢} being the scalars of the 4D hyper- X . x_€(2,1). The SU(2) symmetry of the doublet
multiplet. In N’=2 notation, the SU(2) symmetry of the (x",x ) will not be visible in the boundary action due to the
triplet (p,Req,,Imq,) will not be manifest in the action but A=2, d=3 language.
is required by theR symmetry of V=4, d=3. In our con- There are again two options for choosing boundary con-
ventions the six scalars df=4 supersymmetry are given by ditions. We could impose Dirichlet boundary conditions on
Xy=(Im ¢',Im¢;,Im ¢,) andX,=(Re¢’,Red;,Rep,), the linear multiplet £,Q5),
with p=+2Im¢' as in Eq.(2.18.
The bulk action is obtained by rewriting the standard 2[;-0=0, Q2|;-0=0, (4.4
N=4,d=4 SYM action inN/=2, d=3 language. In terms

of superfields>, ©.,Qy, andQ;, we find and leave the hypermultiplet unconstrained. This is not an

1 1 B adequate option as there is no coupling to the boundary hy-
Sbulk:_f dzoexdzadzﬁ{zz— (V2o N+ D+ D)2 permultiplet. It LS hAowever, possible to work withtaisted
g 2 hypermultiplet 87,B~) which is related to an ordinary hy-
permultiplet by interchanging the group SU(2)with
+f dzcPxd?0€;;Q;9,Q; SU(2)y, i.e., the component®® b~ e(2,1) and x*,x~
€ (1,2). We will not pursue this option.

+QiQ;

Instead, we can extend the Neumann boundary conditions

+J’ dZd’ngZgEijai(?zaj . (42) (35) to

The first term is the same as in our first model; cf. B11)
The remaining terms are kinetic terms 1@ and Q,. The
chiral part €;Q;d,Q; is the four-dimensional Lorentz
completion of theQ;Q; term, as can be seen in componentand couple the linear multiplet to the boundary.
notation after integrating out auxiliary fields. Under  With these boundary conditions the action, which consists
N=4, d=3 supersymmetryV and Q, belong to a vector again of two parts, is given by
multiplet, while ® andQ; belong to a hypermultiplet.

One may also include a Chern-Simons term at the bound- _ 4D D
ary or defect. However, there is no off-sheéil=4, d=3 S=Shik* Ssoundary 4.9
Chern-Simons tern{15,22,23. This may seem surprising
since one might expect to be able to induce such a term at\with Spoy given by Eq.(4.2) and with the classical boundary
boundary by writing the bulldyy term in N=4, d=3 su-  action given by

(ON+D+D)|,_0=0, Qi],_0=0, (4.5

025020-8
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—— — w,=w,(BT)+w +w,(V), 4.9
s§5y=Jd3xd29d20(3+egVB++B—e—gVB—) S Wa(B) Q) FWaV) 49

with the superconformal field transformations as in Eg.

i 3.11) and
+£U d®xd?¢B, Q,B_+c.c. (3.1
2 (Q)lDQa 1D(Q5 (4.10
w =— —— = — .
6YM . — . , @ 2 4 o 25Q2 2 @ 25Q2
+— jdxd 6d 0V2+fdxd 0Q3
8w The Zimmermann identity as in E(3.20 now has the form
+fd3xd2%22}- (4.7) [MB*B~]=[uD?B*e*9"B* +yB+Q,B~ +WD?VY
+yQ3]+M[BTB 1. (4.11)

In the first line we couple the vector multiplé? (Q,) to the
charged boundary field8*,B~. The terms involvingQ,?

and 622 are theN=3, d=3 supersymmetry completions of
the Chern-Simons terns..

The coefficientv vanishes again by the gauge noninvariance
of D?VX. v andy vanish due to the chirality oB*Q,B"~
andQ3, such that the three-dimensional 1P| action is invari-
C. Renormalization ant _under the three-dimensional Ugl3ymmetry transfor-
mation generated by

Quantum conformal invariance of thi§=4 model was

already demonstrated [i7] using power counting and sym- —
i - ; WR= [ d3xd?6d?e
metry arguments in component notation. Here we use again
the BPHZ approach withiclv=2, d=3 superspace in order R .
to prove the finiteness of the theory. In addition to conformal {7 W (BT) + W, (V) + W, (Q2)]
invariance we also show that—unlike in thé=2 model of

ORFBREY 1 ol o
Sec. lll—the elementary fields do not acquire anomalous di- +QB[Wﬁ(B ) HWAV) +WA(Qp)]} (412

mensions. Again it is sufficient to consider the boundary con- _
tribution to the 1Pl action in order to determine the renor-with Q,%=i6,62. Similarly, chirality ensures the absence of
malization properties of the complete model. any quartic B"B7)? term.

For this purpose we add an auxiliary mass term to the After using the Zimmermann identity, we may safely set
boundary action4.7) for regularization and obtain for the the soft mass term to zero and obtain, with, as in Eq.
BPHZ effective action (4.9,

I oay =28 f d*xd?6d’6(B*e9VB* +B e 9VB") f d3xd20d20(Q W, + Q WA T,

1 _
=- gf d*xd*6d*6

[ f d®xd?6B, Q,B_+c.c.

ig
+_
V2

_ (0D D2+ Q0 ,DPD)[uB*e*9B*]-. T (4.13
+2, f d*xd20020VS + 2, f d*xd?6Q3 g [ 1 Teay
and thus for the scale transformations by virtue of Egs.

+2q, J d3xd?6Q,2 (3.21) and(3.19

d 1 A TD + ~t +
Mﬁrﬁgf—ﬂ d*xd?gd?gu[B*e*9VB*]-T'ha,.
(4.14

The coefficientu in Eq. (4.14), which is defined in Eq.
The local superfield transformation of the 1PI action is now(4.11), is related ta in Eq. (4.11) by N'=4, d=3 supersym-
given by metry. Sincev vanishes,u vanishes as well if we assume
N=4, d=3 supersymmetry to be preserved upon quantiza-
J dsxdzadzg(QaWaJrﬁaV_va)rggy tion. In this case we have immediately demonstrated confor-
mal invariance, as well as the absence of any anomalous
1 _ dimensions.
=_ _f d3xd?6d?6(Q*D [MBTB~]- rggy Furthermore, we may also show conformal invariance and
8 the absence of any anomalous dimensions for the case of
— . —— nonvanishing theta angle, in which we cannotiset0 based
+QgDP[MB'B ]-T'hq),  onA=4 supersymmetry arguments. For this purpose we de-

—M(fd3xd205+s+f d3xdzﬁ+§).

4.9
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rive the Callan-Symanzik equation corresponding to Eg.

(4.14). In analogy to Eq.3.22 leading to Eq.(3.24), we
write

Jd
( S +B%4— veNs— vo,No,~ 7’va> I‘ggyzo, (4.19

where

3y 42 9 3vAd2a0). g
NQZE d°xd 9Q25_Q2+ dxd HQQE,

2

P
— 3vA2 2
Nv_f dixd?0d?oV =,

(4.16
and g is as in Eq(3.24). Applying the derivative operators
involving the beta and gamma functions in £4.15 to rggy
generates operator insertions, for instance as in(Eg@3,
and further insertions as given by E@.11). Comparing
these insertions to the RHS of E@.14), we find that Eq.
(4.19 holds subject to the conditions

Bgang—ZszB—%(1—8y5)u=0, (4.17
B°=y9=0, (4.18
B°—=29v8—97q,=0, (4.19
B94zy—22yyy=0, (4.20
Bgangz—ZzszQfO (4.21)

on the insertion coefficients. Here, E@.18 is a conse-
quence of gauge invariance. Equatia@sl9, (4.20, and
(4.21) are consequences of the fact thatw, andy in Eq.
(4.11) vanish, respectively. From Eq&t.18 and (4.20 we
obtain

W(9dyg—2)zy=0. (4.22
Since zy= Oy\ + (higher order terms), dog—2)z,#0 if
6ym#0.2° Then Eq.(4.22 implies thaty, vanishes to all
orders in perturbation theory. Furthermore, faj=0, Eq.
(4.18 implies B9=0 to all orders. From Eq(4.21) then
follows yq,=0, from Eq.(4.19 yg=0, and from Eq(4.17)

u=0.° Thus all quantum corrections vanish and the theory is

finite.

SWe check explicitly in Appendix B 2 that the ordgf contribu-
tion to z, vanishes.

SWe confirm thatyg=0 at one loop by an explicit calculation in
Appendix B 4.

PHYSICAL REVIEW D66, 025020 (2002

V. NON-ABELIAN THEORY
A. Construction of the model

We now construct the non-Abelian generalization of the
defect action(4.6), which preservesV=4, d=3 supersym-
metry, using N'=2, d=3 superspace. This model corre-
sponds to a stack of D3 branes intersected by a D5-brane.
The action was given iZw=1, d=3 language if7].

The bulk field content of the model i=2, d=3 super-
space is as follows. There is a vector multipletransform-
ing as

v —iAT v

eVe M gVelh

(5.9
whereA is a chiral multiplet. Bothv and A are matrices in
the fundamental representation of the 8J(Lie algebra.
The linear multiplets, is defined by

S=e,5D,(e VD geY). (5.2
Under gauge transformations
S e Aselh, (5.3
While % is not Hermitian, it satisfies
ST=eVse V. (5.4

We also require three adjoint chiral superfie@s, Q,, and
&, with the gauge transformation properties

Q—e Qe (5.9
d—e Mpelt—e Mg, (5.6)

Note that® is a connection in the direction and the opera-
tor 9,— ® transforms covariantly.

For vanishingé angle theAN’=4, d=4 super Yang-Mills
action can then be written iW=2, d=3 superspace as

1 —

Sbu'k:_zf dzdxd?0d?0 Tr{S2—[e V(d,+ D T)e'+P]?
9
+e’V6ieVQi}+J dzcfxd?0 Tr €, Q[ — d,+ P,Q;]

+f dzdxd?0 Tr €; Qi[d,+ ,Q;]. (5.7

The defect or boundary component of the action which
preservesV=4, d=3 supersymmetry is, iN=2, d=3 su-
perspace,

Sboundary:f d*xd?6d?6(B1eVB1+Boe ™ VB,)

+<Jd3xd2682QzBl+c.c. ) (5.8

HereB; is in the fundamental anB, in the antifundamental
representation of the gauge group such that

025020-10
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B, e AB;, B,-B,et with A=A( 0,x,2=0). term, the one added by hand has a quantized level and cannot
(5.9) restoreN'=4, d=3 supersymmetry whefly,,=21.

Together,B; andB, form anA/=4, d=3 hypermultiplet. C. Conformal invariance

By construction, the model given by Ed5.7), (5.8), co-
incides with the model given ivV=1, d=3 language in7].

One may also include @), term in the bulk N=4  We discuss the relation between thé&=2 and theAN=1
theory. It is clear how to write such a term ixi=1 or ¥ formulations in more detail in Appendix C. There are several
=2 superspace. These different superspace representatidivees of reasoning that suggest the quantum conformal in-
differ only by total derivatives which are irrelevant in the variance of the defect model. One argument is based on its
absence of a boundary, such th¥i=4 supersymmetry is role[7] as the holographic dual of a supergravity configura-
preserved. However in the presence of a boundary, the dition discussed if6]. In this case one expects conformal
ferent superspace representations of@hg term in the bulk  invariance as a reflection of the isometries of the supergrav-
induce Chern-Simons terms with different amounts of superity configuration, in which a D5-brane spans an Adsib-
symmetry on the boundary, and some of the supersymmetnpanifold embedded in AdS Another argument is that the
may be broken. For instance we may write a balk, term  model is a matrix model for a type IIB five-brane compacti-
in =2, d=3 superspace as fied on a two-toru$4,9]. Quantum conformal invariance was

proven in[7] in the Abelian case, in which there are no

3 Y v interactions in the bulk, but remains to be proven in the

f d xf dzTri[e ¥(d,+dT)e’+P]. non-Abelian case. We will not attempt a rigorous proof here,
(5.10 but we give an argument for conformal invariance using our
' N=2, d=3 formulation of the model. The argument relies

In the absence of a boundary, adding such a term does néf the assumption that the classi¢ét4, d=3 supersym-
break\'=4, d=4 supersymmetry. However, in the presenceMetry is unbroken by quantum corrections. Ideally, one
of a boundary az=0, Eq. (5.10 induces anN=2, d=3 would like to find a proof using a minimal number of as-
Chern-Simons term, such thaf=4, d=3 supersymmetry is Sumptions about which classical symmetries are preserved
broken down toA’=2, d=3. In a non-Abelian theory, this DYy quantum corrections.
Chern_simons term iS Of course not the Who'e Story’ Since Let us ﬁrst Consider the implications Of the Unbroken Su-
one must also add the contributionsfafF /\F coming from  Persymmetry. "_W=_ 2, d=3 superspace, one can make use
infinity. We emphasize that the induced Chern-Simons tern®f nonrenormalization of the superpotential
need not have a quantized lever quantizedéyy,). In the
non-Abelian case, tha/=2, df3 Chern-Simons term does W= BzQzBﬁ'J dze; TrQi[—d,+®,Q;]. (5.13
not have a local representation ivi=2, d=3 superspace.
Instead one introduces an auxiliary directiprsuch that the
Chern-Simons term is given Hy6,27]

B. Comments on Chern-Simons terms

_ bywm
1672

The second term in the superpotential is rather surprising,
since it gives the bulk kinetic terms fd@ which involve
1 derivatives in thez direction. Since the superpotential is not
Scszf d?’Xf dtTre(t)e”VWs,e¥® renormalized, these kinetic terms are protected against quan-
0 tum corrections. In the absence of a defect, Lorentz invari-
ance would then imply the nonrenormalization of all the ki-
netic terms forQ. In other words, the Kier potential term
S (t)=D*e VD eV, (5.1  Tre”'Qie'Q in the bulk action is also not renormalizéd.
However, in the presence of a defect, Lorentz invariance is

where V(t,)?) satisfies the boundary conditior\é(o,i)=0 broken and this argument is not available to us.

- - Instead, let us consider thi€=4, d=3 completion of the
and V(1x)=V(x). Note the resemblance between Egs. - ! ; i .
(5.1 and (5.10. The A’=3, d=3 completion of Eq(5.11) superpotential. The completion of the first term in Eg13

is obtained by adding the chiral terms is EieVBi , Which is therefore also not renormalized. The
=4, d=3 completion of the second term is [&F (4,

with

. o 5 +®dMeV+d]%. Supersymmetry does not place any con-
Sfod xd“6 TrQ5+c.c. (5.12  straints on the renormalization of the remaining term
Tr(2%2+e VQeVQ).
However, there is no knowo\'=4, d=3 Chern-Simons Note that in the case of th&=4 bulk theory without a

term. Although one can have a bulk theta angle preservindefect, there are arguments for conformal invariance based
N=4, d=4 supersymmetry, the introduction of a boundaryon the conservation of aR symmetry current in the same
when 6y # 27 apparently allows at most=3, d=3 su-

persymmetry. One might try to cancel the induced Chern——

Simons term by adding another boundary Chern-Simons ‘In fact this is another way of proving nonrenormalization of the
term by hand. However, unlike the induced Chern-Simonsnetric on the Higgs branch iv=2, d=4 gauge theorief28].
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multiplet as the stress-energy teng28]. Such arguments do
not work when a defect is included. In this case, one can
define a classically conserv&symmetry current as

@.P) @.P)

JM=J(N3')+f dz 3y, (5.19

where J(3) is the contribution of defect termg,,, is the
four-dimensionalR current, andM is a three-dimensional
Lorentz index with values 0,1,3. The charge associated with

the current(5.14) generates th&® symmetry transformations

of the combined bulk and defect action. It is the lowest com-

ponent of a supercurre[jI“B=JMa,\”‘,F+ ---. Let us consider
the possible anomalies of this current. There is no reason to boundary

expectR symmetry to be broken by quantum corrections.

However, unlike in the four-dimensional case, one can find a FIG- 1. Azdependent contribution to a bulk-bulk propagator.
potential anomaly multiplet such that thecurrent is con-

served, but théthree-dimensionaistress tensor has nonzero With f(2) falling off with the distance from the defect.

trace. For instance, one could consistently write for the suClearly the anomaly in Eq(5.15 is not consistent with
percurrent anomaly counterterms of this form since irsintegrand has no explicit

z dependence as given liyz) in Eq. (5.17). Therefore this
— o — Ry anomaly must be absent agd=0 in (5.15.
DT ap~B J dzDgDD Tr(X°+e""Qie"Q)), (5.15 Furthermore we may also rule out the possibility of any
counterterms of the forn6.17) and thus of any explicithz
The anomaly multiplet on the right-hand side of Eg.15 is  dependent anomalies contributing to E§.15: In addition
gauge invariant. It implies a nonzero trace for the stressto having thez dependence described, any counterterm
energy tensor; however, there is a conserRaxirrent since, would have to be expressible as an integral of a local opera-

with [DD,ﬁ]:16[jS+8iDUM5(;M, tor over all of N=2, d=3 superspace. In other words,
dependent counterterms as introduced in &g17) would

{Dayﬁﬂ}jaﬁz 1689(05+8iD oMDdy) have to take the asymptotic form
szTr(22+e‘V5ieVQi). (5.16 f d3xdzed26z A0, (5.18

The difference between the standaké=1, d=4 anomaly  whereA is a mass scales>0, andt=0. The local operator

W“W, and theA’=2,d=3 expressiofdz DDX?is thatthe O must therefore have dimension less than 2, and be non-
latter is a gauge invariant term) chirally projected by chiral. It must also be gauge invariant upon integration.
DD. On the other handW*W, cannot be written as the However, there is no such operator available to us. The only

chiral projection of a gauge invariant term. It is well known gpparent possibility is a bulk Chern-Simons te@v Lcs,
that chirally projected anomalies may be absorbed in a repyt there is no such term preserving=4, d=3 supersym-
definition of the supercurrenf,z, such thaiR symmetry is  metry. Furthermore, there is no parity anomaly which could
manifestly conserved even if scale invariance is brokemyenerate it. We therefore conclude that the model is closed
[17,29. under the renormalization group, requiring no additional
The anomaly equationt5.19 is therefore permitted by dependent interactions. Sinc€=4, d=3 supersymmetry
N=4, d=3 supersymmetry. Nevertheless, this anomalyalso prevents renormalization of the defect interactions, we
must be absent for the following reason. Consider correlatiofind that the theory is conformal.
functions of bulk fields in the limit of large, with fixed One can also consider a variant of the model given by
momentap parallel to the defect. These receive the usuaEgs.(5.7),(5.8) in which anA’=3, d=3 Chern-Simons term
contributions from diagrams involving only bulk fields. Such localized at the defectnot to be confused with the bulk
contributions are finite due to the finiteness of the=4, Chern-Simons term discussed abpigeadded by hand to the
d=4 theory. Contributions from diagrams which involve classical action. This still does not break conformal invari-
bulk-defect interactiongésee Fig. 1 arez dependent and fall ance at the quantum level. The addition of\&=3 Chern-
off with distance from the defect. Therefore any local coun-Simons term break&/=4 only in a very mild way. The\V/

terterms from such diagrams would have an expfidepen- =3 multiplets are the same as thé=4 multiplets. Further-
dence. This means that the corresponding counterterms comore, in a renormalizable theonyy=3 supersymmetry au-
tributing to the action would be of the schematic form tomatically impliesA’=4 supersymmetry for all terms ex-

cept the Chern-Simons term. There is now the apparent
3 2T A= possibility of generating a bulk Chern-Simons term of the
f d*xd"od af dzf(z)0(z,x) (517 type discussed in the previous paragraph. However, such a
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term, in addition to being nonlocal, has a chiral componenstress-energy tensor. In this case conformal invariance is po-
and therefore cannot arise from perturbative quantum corredentially broken by insertions of the form

tions. Of course such a/=3 conformal model does not o

arise as a holographic dual of the AdS configuratiof6dfin ~ [TM,]-T3P=[uW yM(9y,—iAy) ¥ +ve"NPAFp]- TP
which a D5-brane wraps an Ag®S’ submanifold of (6.2
AdS; X S°. This configuration has SU(X)SU(2) isometry

corresponding to theV=4, d=3 R symmetry group. The Againuv has to vanish since"""AyFyp is not gauge in-

N=3 Chern-Simons term breaks this symmetry to its diagvariant.u gives rise to an anomalous dimension for the fer-
onal SU(2) subgroup. mion field, such that we have again a conformal field theory

with an anomalous dimension for the boundary field. Such
theories may arise also in the context of critical phenomena
VI. CONCLUSIONS of systems with interacting boundaries or defects.

In this paper we have studied superconformal field theo-
ries coupled to boundary or defect degrees of freedom in ACKNOWLEDGMENTS
such a way as to preserve the superconformal symmetries, We are grateful to Luis Alvarez-Gatmdose Barbm
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structed new Abelian theories of this type which we showe
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to be conformally invariant. We have also given an argument, e first version of this paper. Our research is funded by

that the non-AbeliadV=4, d=3 model constructed ifiV]is 1o prG (Deutsche Forschungsgemeinschatftithin the
conformally invariant by excluding the possibility of coun- Emmy Noether program, grant ER301/1-2
terterms which asymptotically fall off with the distance from ’ '

the boundary. Our arguments rely greatly on the useVof _
=2, d=3 superspace, which was used to express both the APPENDIX A: LINEAR MULTIPLET AND
boundary/defect and bulk components of the action. DECOMPOSITION OF W

Theories of the type discussed here are of interest in a 1. Component expansion of the 3DV=2 linear multiplet
variety of systems. In the context of AAS/CFT duality, it . . . .
would be interesting to try to construct a conformally invari- For_ thfﬁgxpansmn of théAbell_an) Im_ear mu_IhpIetE
ant boundary model in which there are four-dimensional con=(1/2)¢“”"D,D sV, we have to differentiate twice the 3D
formal field theories with different central charges on oppo-vector superfield/ which in Wess-Zumino gauge is given by
site sides of the boyndary. For this purposeMe_Z, d=3 V= _ Haggp_ HUM§UM+i(0¢9)ﬁ—i(0—6) o\
superspace formalism and the supersymmetric boundary
conditions introduced in this paper may prove to be useful. 1 _
The AdS dual of such a theory would presumably consist of +5(00)(60)D. (A1)
two AdS spaces of different curvature separated by an AdS
subm.anifolc[G]..It may also pe interesting'to consider defecttha real scalap stems from the second component of the
t_heonQS that arise fro_m o_rblfolds oSf t_hé3 in the AdS con-  four-vectory , | ie., p=uv,. In chiral coordinates
figuration of [6]. Orbifolding the S° in the conventional
AdS;x S° background gives string theory duals of laye M_ M ig My —

. , ) =x"+i6c"6, M=0,1,3, A2
conformal field theories with less thafi=4 supersymmetry yr=xnrive (A2)
[30]. In the background of6] which leads to the defect R . ~
model of[ 7], a D5-brane wraps an AdS S? submanifold of the denva_uveDa. takes the simple formD,=—J,. For
AdS;x S°. By orbifolding theS® one could conceivably ob- DgV(y.0,6) we find

tain largeN conformal defect models with less or no super- — — — .=
t P Dy, 0.6)= — 03, 87p(y) — o1, 701 (¥) + 21 66N (y)

symmetry.
—i(00)\ 5(y) + 05(00)[D(y) +idMop(y)]

Moreover, we expect further interesting nonsupersymmet-
ric boundary or defect conformal theories of this type to

exist. A simple example is, for instance, the minimal nonsu- —i(e_e)(aM;Na) anN(y)—i(a_f))
persymmetric model given by p

Mmoo

X (aMa?0) gamp(Y) +(06)(06) o, I\,
S=fdzonF’“’FW+f A3V Mgy —iAw) Y, (6.1 (A3)
z=0

Using the identity oMoN= ypMN—ioMN yMN=diag(1-1,
with a boundary fermiont’ coupled to a bulk gauge field —1), we end up with
A, . In the Abelian case this model is conformal, as may be
seen straightforwardly by using the method of Secs. Il and
IV without supersymmetry: Instead of the supercurrent
anomaly, a conformal transformation of the boundary or de- o o
fect 1PI action now gives an insertion of the trace of the +i(60)8May\, (A4)

_ N
E(y,0,0)=p+0)\+0)\+i00D+EGUMNHFMN
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where the field strengtk ),y is given by Substituting the coordinate transformatié®.16) and the
component expansions df’, W/, andG’ into Eq. (2.14),

we find for ¥, _,(y*, 6, 6)
FMNEO')MUN_O')NUM' (AS) |6970(y )

Further expansion leads to

1 1
B o B W ,- o—¢+\/_0(z// +|)\)+Ta(¢; —iN')
2(X,0,0)=p+ O+ ON+i606D
iy P +Eaa(F’—F’*—\/ED')—Ea?(F’JrF'*)
+ EHO'KBSMNKFMN-F 5(00)00“”(9“,,)\ 4 2
e B + TGOF* —F' = 3D") + 2200 OF,
+5(66) oM g\ — 7(00)(60)0sp. (AB) 4 4 my
Pl N
2. Detailed calculation of ¥ at @ =0 +3 E(W) Ootd, (" —iN")
In this appendix we show some details of the calculation
of \If=_<b’+,i V263W,+6,0,G' at § =0. Since the chiral +I—i(00)§a“& @+
superfield®’ is in the adjoint representation, in the Abelian 22 w
case the auxiliary fiel@&' is given by
1 I
—2(00)(06)D¢’*. (A8)

G'(y.0,)= f d?6'®’ (y—2i 6,06, 6,)

:F’*(Y/)—i Zalamamal(;,) We _nozv use th_e re;d_eﬂmﬂon@.l?)_—(z.lg) and expand
~ W|y—o in y*=x*+i6c*654 . We obtain the component ex-
—(60,0)0¢" *(y). (A7) pansion of Eq(2.21):

. 1 — 1 1 —
—O(Y+iN)— ——= 060D+ = 0OF + —00F* — 0™ 0y Im ¢

1
BTN TR P

W|,_o(X,0,0)=Rep+i— O(Y+ik)+

i

1
+_00' 0[7‘va+ 90K08 MNK FMN+

V2

—(060) Moy (P—iN)

: % 2

1
+= —(60)00M0M($—I)\)— —(ae)(aa)m3¢' *— E0026(92;)

22

i _ 1
+—(606) 09\ — (00) 09N+ 5

2

—=(06)(66),D

y; '

10— 1
=§(<I>+d>+\/§a2V)+i—E

2

(A9)

with 3=0ay, . The expansion yields terms involving the transverse derivativ&Vhile some of these terms cancel higher
order terms, the termi, Re¢’ is absorbed in the definition @, the auxiliary field of the linear field . The remaining ones
form the superfield,V.

8S1(2,R) invariant products are defined in the following way?= 6¢,, , ?Eaﬁ‘*, 66= 0"5(,:3“0,1.
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v bulk
v v

} } boundary
B B B B

FIG. 3. One-loop contribution to the boundary propagator.
FIG. 2. One-loop contribution to the bulk propagator.

APPENDIX B: FEYNMAN RULES AND ONE-LOOP Fi-ﬁ:l)o _ zf d3p d*k d40d40’V(—5,0)
CONTRIBUTIONS P (2m)3 (2m)®
1. Free 3D and 4D propagators D2p2 512, D2D2 512, L
We use an\'=2, d=3 superspace formulation for calcu- T ~ k2 16 WV(F’ﬂH o
lating quantum corrections. The use of superspace Feynman (pFkK)
rules automatically guarantees the cancellation of delta func- (B5)

tion singularities and interactions at the boundary, which are
explicitly present in the component formulati@dl].

When both ends are pinned on the boundary, the free 4D IS0 zS,l)f d3xd*ovs + - - .. (B6)
chiral and gauge vector propagators are given by

- -5 Equation(B5) corresponds to the graph shown in Fig. 2 with
GEY gy =2 GY P p)=—2= (B1) the external legs removed as appropriate for a 1Pl contribu-
2|p| Ipl tion. This ensures that this 1Pl contribution is three dimen-
sional. Performing the two functional derivatives with re-
where spect toV we obtain
8, =8 (X=x")8(0-0')5%6-0'). (B2 I fioop=2v e D D g 66%), (B7)

: . where
These expressions are thé=2, d= 3 version of results ob-

tained in[32] for the 4D/5D case in component form. The

power of the momentum in the denominator is reduced as .2y _ & W ZJ d*k 1
compared to standard three-dimensional propagators, which 1P §v(1)5V(2) 1100 (2m)3 (p+K)2Kk?
makes Feynman graphs potentially more divergent than in a . (B8)

pure three-dimensional theory. The standard free 3D propa-

gators for the chiral boundary or defect fields are Applying 875D755 to both sides of Eq(B7) then gives

. W_g B9
Gg,(P)= p2 i=12. (B3) 2'=0, (BY)

sincel“(ﬁg,op is independent of the Grassmann variables.

2. One-loop contribution to the Chern-Simons term
o o 3. /=2 model: One-loop correction to the boundary
We calculate the one-loop contribution to the coefficient propagator for the defect field B

z, of the Chern-Simons term within the BPHZ approach. . ] o

The calculation is analogous to the standard calculation of A standard one-loop calculation gives a contribution to
the one-loop contribution to the 4D gauge propagator giventhe 1PI action. By virtue of Eq¢B1) and(B3), we find

for instance, in[29,33. The BPHZ approach allows us to

show in a simple way that the one-loop contribution to the bulk - =~
Chern-Simons term id= 3 vanishes due to supersymmetry. , s ~ N
The action principle of the BPHZ approach gives / \
2 2 / \
BT :Lrgf{mp, (B4) 0, + &
NDINV2) |, VDL)SV(2) 1 L boundary
B B B B

where the contributions relevant here are FIG. 4. One-loop contribution to the boundary propagator.
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APPENDIX C: THE N'=4 MODEL OF EQ. (5.9
IN N=1, d=3 LANGUAGE

dd d3k . —
Igp=0 f > d*0B(p, 6,6)
(2m)® (2m)° . . .

By construction, the model given by Ed5.7),(5.9) is the

-1 1. N=2, d=3 formulation of the model constructed fi] in
Xm ﬁB(p,G,G) (B10)  A=1, d=3 notation. To demonstrate this we note that the
P gauge fieldv decomposes intf26]
for the super-Feynman graph of Fig. 3. Sirléi@';—' is loga- B 1.
rithmically divergent, it follows thatyg#0 in general. VaTa= —i['*%,, T3+ 51 6,%0,,0%T? (C1)

4. N'=4 model: Additional one-loop correction to the boundary
propagator for the defect field B

In addition to the expressio(B10), in the N=4 model
we find the following one-loop contribution to the 1Pl action f PxdZe (Va )V i— o
0.((Vg))Vg'+bd'q), i=1,2, C2
I (see Fig. & xd“0,((Va)Va' +baaq), i (C2

under N=1, d=3 supersymmetry. Her®, is defined in
(2.2). The kinetic term in(5.8) decomposes into

where theN'=1, d=3 superfieldg; is defined as the lowest
component in &, expansion oB;, q;= Bi|”92=o- The cova-
riant derivative in Eq(C2) is given byV =D —iI'#T? with D
the N'=1, d=3 derivative. The kinetic term in Eq.C2)
coincides with the boundary kinetic term given in E4.27)

of [7] andbq'q; contributes to the superpotential term Eq.
(4.29 of [7]. b contains the auxiliary field defined in Eq.
(2.21) above and thug, Re¢', which coincides with one of
the three hypermultiplet scalar normal derivativi@gXy”
(B11) that appear in the superpotent{@l29 of [7]. The superpo-
tential term in Eq«(5.8) contains a complex auxiliary fielfl
and thus the two remaining hypermultiplet scalar derivatives
of the form DXy

dp  d3k I
P 2] d*0d*0'B(—p, 0,6
BB~ 9 2m)° (2m)° (—p )

2R kP ?

4

— , 7 7
D2>( DZ) s, o,

—Zf Ip _dk 40B(p,0,0) —— ~B(5.0,0)
J (2m)® (2m)° e 2|p+k| k? P26

We see that this exactly cancels the contribuiiBa0) such
that yg=0 at least to one loop.
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