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Proposal for the numerical solution of planar QCD
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Using quenched reduction, we propose a method for the numerical calculation of meson correlation func-
tions in the planar limit of QCD. General features of the approach are outlined, and an example is given in the
context of two-dimensional QCD.
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I. INTRODUCTION

The phenomenological appeal of planar QCD is w
known @1#. It is believed that a limit in which the number o
colors Nc goes to infinity while the coupling goes to ze
with fixed g2Nc produces the simpler planar theory whi
still preserving essential perturbative and nonperturba
features of the physicalNc53 case@2,3#. However, an ana-
lytical description of the planar limit has remained elusiv
This has left lattice gauge theory as the prevailing appro
for the conceptual and quantitative analysis of strong c
pling in QCD.

Recent numerical investigations with increasingNc @4,5#
indicate that someNc53 physical quantities are not far from
their Nc5` limits. This suggests that numerical results fro
planar QCD might have phenomenological value. Howev
in numerical lattice calculations, it is easier to deal with t
Nc53 case than to approach the planar limit by simply
creasingNc . An approach that arrives at the simpler plan
theory more directly is indicated. The Eguchi-Kawai@6# re-
duction offers such a shortcut. It has the potential to requ
much less computation because the planar limit of some
servables is obtained from a matrix model with only thed
3Nc

2 degrees of freedom ofd unitary matrices. Since the
dimension d enters linearly rather than exponentially,
seems that four dimensions has only twice the computatio
cost of two dimensions.

Using the Eguchi-Kawai reduction to approach the pla
limit of QCD by first going to infiniteNc and then to zero
lattice spacing might be beneficial because the two lim
may not commute@7,8#. Also the commutativity of the infi-
nite volume and infiniteNc limits might be questioned be
cause gauge theories are massless, and the construction@9#
does not apply. We begin with the assumption that mes
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meson correlation functions at non-zero momenta are ‘‘inf
red safe.’’ If our calculations in two dimensions are finite a
agree with analytical results, then we can be confident ab
calculations in four dimensions, where infrared problems
less serious.

In the Eguchi-Kawai model the entired-dimensional lat-
tice is reduced to a point. Nevertheless the matrix mo
incorporates the lattice structure. This is best understoo
momentum space@10#, where thed sets of eigenvalues of th
link matrices populate the momentumd-torus. To ensure tha
the torus is indeed covered, one needs to alter the Egu
Kawai proposal. The first suggestion for how to achieve t
was to freeze the eigenvalue variables and remove them f
the integration over gauge fields. The fluctuations of the
maining gauge degrees of freedom are not allowed to b
react on the eigenvalue distribution. The expectation valu
gauge invariant observables is subsequently averaged
different sets of angles. This produced the quenched Egu
Kawai model@10#. Related work on quenched reduced mo
els appeared in@11–13#. A more elegant method, which in
volves a change in the action by a ‘‘twist’’@14#, was
subsequently discovered. This clever approach has also
to the discovery of non-commutative gauge field theor
@15# starting from the lattice.

Nevertheless our proposal is in the quenched version@10#
because the introduction of fermions in the twisted case
somewhat restricted. The addition of fermions to reduc
models was first carried out in a continuum version in@11#. A
somewhat similar procedure on the lattice was introduced
@16,17#. In the latter version, the number of flavorsNf was a
free parameter and could be taken to infinity. This produce
reduced model leading to the Veneziano limit@18# rather
than to the ’t Hooft limit @1#. Following up on the idea of
@16#, a twisted version of theNf5Nc case was presented i
@19#. Since we want to have a variable number of flavors,
opt for the quenched version. In addition, the quenched v
sion is computationally simpler than the twisted one even
Nf5Nc because the Dirac operator is block-diagonal withNf
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blocks each of sizeNc3Nc . In the twisted case, one has
full NcNf3NcNf matrix.

Our proposal specifically targets mesonic observables
get glueball masses from a reduced model, we would nee
keep one direction unreduced as described in@20#. To inves-
tigate finite temperature, we would again need
Hamiltonian-like formulation@21#. In addition to the calcu-
lation of meson masses, our approach allows for the stud
fermion quenching effects~valence approximation effects!
and finite fermion number density at zero temperature. A
the pathologies of the valence approximation should dis
pear in the limit of largeNc with fixed Nf . The fermionic
bilinears which define the meson fields are the build
blocks of the four Fermi operators crucial to the study
weak decays. We envisage taking the 1/Nc approach to non-
leptonic weak decays@22# to the lattice where it could be
compared to more direct approaches and where some o
phenomenological input could be replaced by numerical d
obtained from ‘‘first principles.’’

There have been both practical and theoretical deve
ments that motivate a return to numerical work on pla
QCD. Theoretical progress has led to the new lattice fer
ons @23#, which might be able to solve some problems e
countered about 20 years ago@11#. The problems had to do
with the meaning of topological charge density in the
duced model, chiral anomalies, and theu-parameter depen
dence of the vacuum action density in the planar limit@24#.
Equally important are developments in computer hardwa
Since the initial numerical experiments on reduced mod
for planar QCD, computers have become 104 times more
powerful for fixed power consumption. We suggest that
duced model simulations are a worthy job for weakly~and
cheaply! linked PC clusters. Moreover, at infiniteNc , the
Wilson-Dirac operator in the argument of the sign functi
has no small eigenvalues when the pure gauge action o
reduced model is of the usual single plaquette type, and
rescaled lattice gauge coupling is large enough~but not infi-
nite!. This is unlike the situation in ordinary QCD@25#. Thus
the numerical implementation of the overlap Dirac opera
will be simpler than in ordinary QCD.

In Sec. II we define reduced models starting from or
nary formulations of lattice gauge theories. We show that
topological charge remains a nontrivial object even after
duction and that reduced models have, in some sense,
topological numbers than their unreduced counterparts.
briefly discuss chiral gauge theories. The meson-meson
relators, which are the most practical aspect of our propo
are also introduced. Section III is focused on the special c
of two dimensions in which we test the numerical metho
Although planar two-dimensional QCD (QCD2! has been
solved exactly in the weak coupling phase, additional a
lytical and numerical work is needed to extract the resu
that can be compared to Monte Carlo data. Although ther
a vast literature on QCD2, in the interest of clarity, we have
included a rather detailed account in the Appendix. In S
IV we describe some of our ideas for future developmen
We believe that there are many options for future resea
and that the potential for truly new and interesting results
quite high.
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II. GENERAL FRAMEWORK

A. Original lattice model and its topological charge

Before reduction, the lattice systems of interest are
fined on ad-dimensional hypercubic lattice with a totalV
sites on ad-torus of equal sides. Sites are labeled byx and
positive directions bym51,2, . . . ,d. There areSU(Nc)
gauge fieldsUm(x) on the links, and fermions interact wit
this gauge background.

Since we are going to deal later with fermions in t
fundamental representation, it is best to introduce the fie
now, even though we are first focusing on the pure ga
sector. The fermion fieldc is a vector inVs^ Vc^ Vl , the
tensor product of the spin, color, and lattice vector spac
respectively. Its components areca

i (x) with spin indexa,
color indexi and lattice positionx. There are several opera
tors acting on fermions: The Euclidean Diracgm’s act only
on spinorial indices,gm :Vs→Vs . The directional parallel
transportersTm act on the site index and the group inde
(Tm :Vc^ Vl→Vc^ Vl) as follows:

Tm~c!~x!5Um~x!c~x1m̂ !. ~1!

For Um(x)51, the Tm become commuting shift operator
Tm

0 . For V5Ld each Tm
0 is unitary and has eigenvalue

e(2pı/L)k, k50,1,2, . . . ,L21. Hence for evend, Tm is not
only unitary but also has unit determinant@detTm

0

5(21)d(L21)].
Gauge transformations are characterized by a collec

of g(x)PSU(Nc) acting onc pointwise, and only on the
group indices. The action is represented by a unitary oper
G(g):Vc^ Vl→Vc^ Vl with @G(g)c#(x)5g(x)c(x). The
Tm operators are gauge covariant

G~g!Tm~U !G†~g!5Tm~Ug! ~2!

with

Um
g ~x!5g~x!Um~x!g†~x1m̂ !. ~3!

The variablesUm(x) are distributed according to a probab
ity density that is invariant underU→Ug for any g.

For the commutators@Tm ,Tn#, we have

@Tm ,Tn#†@Tm ,Tn#5~12Pmn!†~12Pmn!522Pmn2Pmn
†

~4!

with the unitaryPmn given by

Pmn5Tn
†Tm

† TnTm . ~5!

The operatorsPmn are site diagonal with entries that are th
parallel transporters around plaquettes:

~Pmnc!~x!5Umn~x!c~x!, ~6!

Umn~x!5Un
†~x2 n̂ !Um

† ~x2 n̂2m̂ !Un~x2 n̂2m̂ !

3Um~x2m̂ !. ~7!
9-2
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Umn(x) is associated with the elementary loop starting at
x, going first in the negativen direction, then in the negative
m direction, and coming back round the plaquette.

The Wilson pure gauge action is given by

Sg5b (
m.n

Tr~Pmn1Pmn
† !

5const2b (
m.n

Tr@Tm ,Tn#†@Tm ,Tn#. ~8!

In the continuum limit, configurations with all theUmn(x)
close to the unit matrix are preferred.

All our operators are finite dimensional matrices. T
norm of A is iAi with iAi2 the largest eigenvalue ofA†A.
We have

i@Tm ,Tn#i5i12Pmni . ~9!

The gauge invariant constraint

i@Tm ,Tn#i<emn ~10!

for all m.n does not change the continuum limit. It
equivalent to

i12Umn~x!i<emn ~11!

for every sitex. The emn are small fixed nonzero number
independent ofb and ofNc . The probability distribution of
the link variables iseS with integration ranges restricted b
Eq. ~10!.

The lattice version of the massive continuum Dirac ope
tor D(m): Vs^ Vc^ Vl→Vs^ Vc^ Vl is an element in the
algebra generated byTm , Tm

† , gm and thus is gauge covar
ant. The Wilson-Dirac operatorDW(m) is the sparsest pos
sible analogue of the continuum massive Dirac opera
which obeys hypercubic symmetry. Fixing ther parameter to
its preferred value (r 51),

DW5m1(
m

~12Xm!, Xm
† Xm51,

~12!

Xm5
12gm

2
Tm1

11gm

2
Tm

† .

One can then prove a general bound@26#

@lmin„DW
† ~m!DW~m!…#1/2>F12~21A2! (

m.n
emnG1/2

2u11mu. ~13!

Here lmin(M) is the smallest eigenvalue of the matrixM.
This bound has content only form close to21:
02501
e
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r

u11mu<F12~21A2! (
m.n

emnG1/2

. ~14!

This range is contained in the open interval22,m,0.
For evend, we define the Hermitian operator

HW~m!5gd11DW~m! for which HW
2 ~m!5DW

† ~m!DW~m!.
~15!

It follows from Eqs.~10! and ~13! that HW has no zero ei-
genvalues so that its sign functione[sign(HW) is well de-
fined @27#. The topological charge of a gauge field config
ration is given by

Q5
1

2
Tr e. ~16!

The value ofQ cannot be changed by a smooth deformat
that respects the bounds~10!. Close to continuum,Q equals
the continuum topological charge@28#. The trace in Eq.~16!
includes a sum over lattice sites. Leaving this sum out p
duces a local functional of the lattice gauge backgrou
which is a lattice version of the topological charge dens
tr FF̃(x). For a review, see@29#.

It is important that the proof@26# of the bound makes no
use of the special structure of the matricesTm in Eq. ~1!
except their unitarity. Thus any unitaryTm with commutators
close to zero~10! can be used in Eqs.~12! and~16! to define
homotopy classes for the gauge backgrounds. Of course
‘‘local’’ topological density has no meaning if theTm’s are
that general.

Although we spoke about fermions and used gamma
trices, they were auxiliary concepts. We only dealt with t
pure gauge sector. The gamma matrices played a role in
fining the topological number, but the latter is just a functi
of the gauge field background. It will be important in th
following discussion that this definition ofQ can be non-zero
on a finite lattice. One need not to go to an infinite lattice
see non-zero topology.

B. Reduced model and reduced topological charge

The reduced model for lattice gauge fields@6# is defined
on a toroidal lattice with a single site. The matricesTm be-
come unitary matrices with no restrictions on their structu
since they are equal toUm @cf. Eq. ~1!# on a single site
lattice. A connection between models differing only in th
number of sitesV can be established by takingNc to infinity
with b/Nc fixed. The leading behavior of traces of Wilso
loops written in terms of theTm is then independent ofV.
Actually this is only true forb/Nc small enough. It fails for
large b/Nc and thus also for the continuum limit@10#. The
key to fixing the model is to understand that theV indepen-
dence is caused by momentum space getting absorbed
the space of eigenvalues of the operatorsTm . Consequently,
the quenched reduced lattice model is defined by freezing
eigenvalues ofTm to a set uniformly distributed over the un
circle for eachm @10#,
9-3
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Tm5VmDmVm
† , Dm5diag~eium

1
,eium

2
, . . . ,eiu

m

Nc
!.

~17!

The anglesum
i are randomly distributed in the interva

@2p,p#. The ordering of the angles for each directionm
does not matter since one can go from one ordering to
other by appropriately changing the integration variab
Vm . In other words, only the sets of eigenvalues are froz
not the ordering within each set. The matricesVm are unitary
and otherwise restricted only by Eq.~10!.

The pure gauge action is invariant underVm→VmDm8
where theDm8 are arbitrary diagonal unitary matrices. Th
the Vm should be thought of as taking values in the co
spaceU(Nc)/„U(1)…Nc. The most important symmetry of th
pure gauge action is gauge invariance which now acts
conjugationTm→VTmV†. One can think ofV as the re-
placement for G(g) in Eq. ~2!. The gauge group is
SU(Nc)/Z(Nc).

The absolute minima of the action are given byTm’s that
are simultaneously diagonal. These minima are changed
into another by certain sets ofVm matrices. In the double line
notation@10–13# of planar graphs, the crystald momentum
going through a line is given, component by component,
the difference between the angular phases of the two ei
values ofTm associated with each of the color indices
tached to each component of the double line. Differ
minima give different momenta, and the sum over minim
together with the sum over color indices reproduces the
dinary planar lattice Feynman diagrams. As the typical sp
ing between aum

i and the closestum
j is of order 1/Nc , it

follows that the momenta values are in effective corresp
dence with those in a finite volume of sizeV5Nc

d . On the
other hand, focusing on a single minimum might suggesV
5Nc . In the twisted case, one typically getsV5Nc

d/2. In
numerical simulations, it is important to ensure that
minima are properly sampled.

In the continuum version of the reduced model@11#, the
basic variables are traceless Hermitian matricesAm with re-
strictions on their eigenvalues. One could try a ‘‘geometr
definition of topological charge, but it does not work we
@11#. The natural expression corresponding to the n
Abelian field strength isFmn5@Am ,An#. So long as theAm
are finite matrices,

Tr FF̃}emnrsTr AmAnArAs50 ~18!

because of the cyclicity of the trace and the antisymmetry
the epsilon symbol. To get non-zero topological charge,
needs to work with infiniteAm matrices, and a numerica
approach seems impossible. The topological charge of
lattice reduced model is defined by Eq.~16! using unitary
Tm’s that are restricted only by Eq.~10!. As already men-
tioned, the definition of topological charge and the restrict
on the commutators~10! work exactly the same way as be
fore.
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This extra constraint~10! on the commutators ofTm is not
necessary at infiniteNc . For d52, when we get close
enough to the continuum limit and the lattice gauge coupl
b25b/Nc is large enough, we are far below the Gros
Witten phase transition@30#, and the plaquette eigenvalu
distribution is contained in a small neighborhood of uni
This is evident in Fig. 1 where we have plotted the expec
tion value of the maximum angle of the untraced plaquette
units of p for two different values ofNc in the quenched
model. This is also true in four dimensions where again th
is a phase transition as seen in the Fig. 1. A similar result
also found in the four-dimensional twisted Eguchi-Kaw
model @31#. The numerical evidence strongly indicates th
the extra condition restricting the matrices is satisfied as l
as we are close enough to continuum even if we use only
simplest single plaquette Wilson action.

A complete study of topological charge is beyond t
scope of this paper and our discussion will be brief. Consi
a two-dimensional gauge field background in which theTm’s
represent aU(1) background that is aU(1) instanton on a
two-dimensional torus. TheTm have the structure of a
‘‘shift’’ and a ‘‘clock’’ matrix @32#:

FIG. 1. Plot of the maximum plaquette angle in units ofp as a
function of b25b/Nc . The data are atNc531 andNc537 for the
two-dimensional model and are atNc517 andNc519 for the four-
dimensional model.
9-4
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T1[X5S 0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . 0 1

1 0 . . . 0 0

D ~19!

T2[Y5S 1 0 0 . . . 0

0 z 0 . . . 0

0 0 z2 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . 0 zN21

D . ~20!

Here z5e2pı/Nc, and we takeN5Nc . This Abelian back-
ground on a lattice of areaNc can be viewed as a non
AbelianSU(Nc) background in the reduced model. As far
the spectra of the various lattice Dirac operators go, how
look at the background is irrelevant. Hence, the redu
model hasQ51 for this configuration. Moreover, calcula
ing the gauge field action, we easily can check that it st
finite in the ’t Hooft largeNc limit. Similarly, one can easily
check that Eq.~10! is satisfied forNc beyond some finite
value.

One expects no topological effects in two-dimensio
planar QCD. This is not in contradiction with our observ
tion because the continuum limit is obtained when the fix
parameter of the ’t Hooft limitb/Nc is taken to infinity, and
these backgrounds do not contribute. We learn that lat
reduction may perform a ‘‘miracle’’ in the sense that one m
find topological effects that were not present in the origi
continuum model. Whether or not these effects are relev
in the continuum limit is a dynamical question.

What happens in four dimensions? We have seen
what looks like an Abelian background before reduction c
appear as a non-Abelian background in the reduced mo
~Actually, the results of@33# say that for any finiteNc>3 on
a continuous torus, any allowed value ofQ can be attained
by an Abelian background. We are not making use of t
result here.! In four dimensions, one can obtain a configur
tion that is nontrivial topologically, for example, by choosin
an Abelian instanton in the 1-2 plane and another Abe
instanton in the 3-4 plane. These instantons would lead
shift-clock pairs as above. We could takeNc5N2 and write
the Tm’s as direct products ofN3N matrices:T15X^ 1,
T25Y^ 1, T351^ X andT451^ Y. All these matrices are
in SU(N2). The topological charge of this background isQ
51. The spectra of theTm’s are highly degenerate in thi
example. To produce truly acceptable configurations in
quenched reduced model, we would need to find defor
tions of these matrices that lift the degeneracy while pres
ing Q51.

The action of this configuration diverges linearly wi
Nc , just like the action of a continuum instanton. But we s
that there are configurations with non-zeroQ, and the ques-
tion of their survival at infiniteNc is similar to the familiar
question in the continuum@34#. This indicates that in four
dimensions, the reduced lattice model could provide a fra
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work in which one can at least pose questions about topol
at infiniteNc . This is interesting because the results of Tep
@4# support a finite nonvanishing limit to the topological su
ceptibility in the lattice planar limit. We do not know if ther
are configurations that produceQ51 and have an action tha
stays finite asNc goes to infinity.

We now make an observation that might be of relevan
to the issue ofu dependence in the planar limit. The set
backgrounds satisfying Eq.~10! falls apart into non-empty
disconnected components beyond what is needed for dis
topology. Even at fixedQ there are several component
These different components make separate contribution
the partition function, and these contributions are not ob
ously suppressed at infiniteNc . It could be that the particula
connected component that dominates at infiniteNc depends
discontinuously on parameters, and therefore the action d
sity need no longer be differentiable with respect to its p
rameters. In particular, this could induce a nonanalyticity
u/Nc , and this might be a way of reconciling the naive sc
ing for the action density@;Nc

2f (u/Nc)# with 2p periodic-
ity in u @24#.

To see that the set of gauge fields one integrates o
splits into disconnected components, consider again
above two-dimensional example. Complete the pairT1,2 by a
T3 and aT4 of a perturbative nature so thatQ50. The shift-
clock pair cannot be deformed smoothly to unity while obe
ing the constraint on the commutator because the shift-cl
pair could be used to construct a two-dimensional latt
Dirac operator which would have a two dimensional top
logical charge of unity. Thus, this set of fourTm’s has Q
50 but is homotopically inequivalent to a set where all fo
Tm’s are perturbative and consequently also hasQ50. In
spite of the fact that we are considering onlySU(Nc) and not
U(Nc), the two-dimensional Chern numbers associated w
the different two-dimensional tori included in the fou
dimensional torus manage to survive in the reduced mod

Let us briefly mention anomalies associated with chi
fermions. The free energy of the reduced model with ferm
ons included is supposed to reproduce the free energy o
original model at leading orderNc

2 and subleading orderNc .
Hence, anomalies should spoil the gauge invariance of
reduced model too. In the overlap formalism, there
simple lattice Abelian gauge backgrounds@35# in which one
can prove that gauge invariance cannot be preserved if t
are anomalies in the continuum. Moreover, this happens
ready on finite lattices. These backgrounds can be ‘‘b
rowed’’ to produce non-Abelian backgrounds in the reduc
model with a similar effect. The overlap line bundle
twisted over the torus defined by variablesup1,2u<p that
enter through the family of gauge backgrounds described
T15eip1^ Y, T25eip2^ Y, T35X^ 1, T45Y^ 1 and, as in
the case of the ‘‘instanton,’’Nc5N2. Again, we see the po
tential to move beyond the obstacles identified in@11#, but
there is a degeneracy of eigenvalues we need to elimina

C. Fermions

In the original unreduced lattice model, massless fermi
are incorporated through the massless overlap Dirac ope
@27#
9-5
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Do5
1

2
~11gd11e! ~21!

with e5sign(HW). The operatorDo has an implicit depen-
dence on the fermion parallel transporter.

The reduced version ofDo is obtained by replacing the
original transporter with the reduced fermion parallel tra
porter. For fermion momenta2p,pm<p andTm given in
Eq. ~17!, the reduced transporter iseipmTm . With that re-
placement,Do becomes the reduced massless overlap D
operator. It depends on the fermion momentum. The exte
line propagator@36# is

g~p!5
1

2m
@Do

2121#. ~22!

Consider the connected correlation function of the f
mion bilinear (1/ANc),c̄(x)c(x). In momentum space it is
given by

G~P!52
1

Nc
Š@^Tr g~p!g~q!&gauge average#‹angle average

~23!

with P5p2q. Similar expressions can be derived for t
correlation functions of other bilinears.

The way reduction works is best understood by looking
an example. Figure 2 is a diagram showing the various m
menta in the one gluon exchange contribution to a sca
scalar correlator. All crystal momenta come from the diag
nal entries of the fermion transporter and flow in t
directions indicated by the arrows. Theu momenta are asso
ciated with color and thep,q momenta with flavor. Single
lines are fermions, and the double line is the exchan
gluon. The gluon carries momentumu i2u j . With the
quenchedu i randomly distributed on the momenta tori, th
summation over the color indicesi and j induces the neede
integrations over momenta.

Note that we compute the meson correlators directly
momentum space. This is an important new feature with s
eral potential applications.

When the quarks are massive, the propagatorg(p) is @37#

g~p!5
1

2m

12gd11e

~11m!1~12m!gd11e
. ~24!

The parameterm fixes the bare lattice quark mass viamq
52mm.

FIG. 2. A planar diagram representing the one gluon excha
contribution to the scalar-scalar correlation at momentumP.
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The transportereipmTm introduces a phase into the re
duced fermion operator. This suggests that there are sev
options for definingQ, something we glossed over in Se
II B. It is a bit strange that one seems to be able to defin
topological charge that depends on the momentum carrie
the fermions. Probably, for configurations typical to the co
tinuum limit, Q ends up not depending onp. This is indeed
the case for examples in Sec. II B as long asN is large
enough and the momenta are not too large.

It is quite easy to addNf flavors of fermions and then go
to the topological limitNf ,Nc→` with Nf /Nc kept fixed. In
this limit the fermionic determinant needs to be included
the gauge field integration. Similarly, one can also introdu
fermions in representations other the fundamentals. Ch
gauge theories will have anomalies because, as mentio
before, the backgrounds that produce them have a redu
model representative@35#.

III. TWO-DIMENSIONAL PLANAR QCD

As an exercise, we will calculate the scalar-scalar

^c̄~x!x~x!x̄~0!c~0!& ~25!

and the pseudoscalar-pseudoscalar

^c̄~x!g3x~x!x̄~x!g3c~0!& ~26!

correlation functions in momentum space in the planar lim
of two-dimensional QCD.~We use two different fields,c
and x, to eliminate the disconnected piece.! These correla-
tion functions are known exactly and are completely det
mined by their Feynman diagrams. Nevertheless, they
quite nontrivial. While they can be expressed as an infin
sum over stable mesons with mass squares that are ev
spaced asymptotically, they also have free field behavio
large momenta. Thus, we have the cohabitation
asymptotic freedom and total confinement that is also pre
in four-dimensional planar QCD. Moreover, with an appr
priate choice of limits, chiral symmetry is broken, and the
a Goldstone boson. If the potential infrared problems tu
out to be tractable in two dimensions, we can be confid
that there will not be any difficulties in four dimension
where infrared issues are less serious.

In two-dimensional QCD, spontaneous chiral symme
breaking only occurs if one takes the limitmq→0 after the
planar limitNc→` at fixedb/Nc . In the reduced model for
any finiteNc , we have exact chiral symmetry atmq50, and
we can investigate the planar limit of the massless redu
model. The continuum limit is taken last. Withmq set to zero
before the largeNc limit, we will not see direct signals of
spontaneous symmetry breaking. The simplest assumptio
that chirally invariant quantities will be well described by
Hooft’s solution, but chirally noninvariant observables w
not be. Thus the invariant combination to compare to the
Hooft solution is

^c̄~x!x~x!x̄~0!c~0!&2^c̄~x!g3x~x!x̄~0!g3c~0!&.
~27!

e

9-6
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For massive quarks, the situation is less subtle, and
can consider the correlators separately. The planar limi
the reduced model is supposed to produce a UV regul
approximation to the ’t Hooft solution. It is interesting to s
in detail how this works. On the one hand, the very hi
mass mesons are meaningless entities at finite ultraviolet
off, while on the other hand, they are responsible for the f
field short distance behavior.

It is believed that ordinary, massive two-dimension
QCD has two phases@38#: a weak coupling one in which th
gauge coupling divided by the quark mass is small an
strong coupling one in which this ratio is large. In the stro
coupling phase, there are light baryonic states, but there i
pion whose mass vanishes asAmq in the chiral limit, and it is
not clear how the largeNc limit should be defined. ’t Hooft’s
planar solution is in the weak coupling phase and does h
a pion mass that vanishes asAmq. It is interesting that the
numerical results obtained in@5# seem to correspond to th
strong coupling phase and, nevertheless, also seem to ad
large Nc limit with the ’t Hooft scaling of the gauge cou
pling. Thus it could be that in two-dimensional QCD the
exists a strong coupling planar phase that is defined thro
the lattice and which differs from the ’t Hooft’s solution.

We will work in the weak coupling phase where ’t Hooft
solution should be valid. If there are indeed two plan
phases, convergence to the planar continuum limit of
weak coupling phase might be slower than anticipated.

A. Pure gauge

We can go to a ‘‘unitary gauge’’ in whichT2 is fixed to
the clock matrixY, with N5Nc . DenotingT1 by U the par-
tition function is

Z5E
U5WYW†, WPU(N)

dWeS,

~28!

S54b(
i j

uUi j u2sin2
p~ i 2 j !

Nc
.

Terms withi 5 j do not contribute toS. All absolute minima
of S are atUi j

s 5d i j e
2ıps i /Nc. Here s is a permutation of

0,1,2, . . . ,Nc21. There are no other minima.
For very largeb/Nc , the relative weights of distinc

minima are given by the ratios of determinants of small flu
tuations around the configurations. We parametrize the fl
tuating degrees of freedom by the off-diagonal entries o
Hermitian matrixH which generates a conjugation around
diagonal saddle:

dUi j 5 i @Us,H# i j 5 iH i j @e2ıps j /Nc2e2ıps i /Nc#. ~29!

The diagonal terms ofU do not contribute, and the secon
order action is

d2S516b(
i j

uHi j u2sin2
p~s i2s j !

Nc
sin2

p~ i 2 j !

Nc
. ~30!

Since
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iÞ j

Usin
p~s i2s j !

Nc
U5)

iÞ j
Usin

p~ i 2 j !

Nc
U ~31!

for any permutations, all minima should be visited with
equal frequency for largeb/Nc .

One may ask whether the barriers between differ
minima are high and whether they become infinite in t
largeNc limit. The minima can be connected by sequences
transpositions. We do not know whether the barriers are
finite at infinite Nc and whether in two dimensions, wher
the Feynman diagrams capture all the physics, one can
nore the many minima.

From now on, we will useb5Ab/Nc as the paramete
held fixed asNc goes to infinity. In the planar limit, one
approaches the continuum limit~and hopefully the ’t Hooft
solution! whenb→`. Comparing to a continuum definition
of the gauge coupling where the partition function is giv
by

expH 2
1

4g2 (
mn

Tr Fmn
2 J , ~32!

we get

g25
1

2b
5

1

2Ncb
2

. ~33!

To get a feeling for the numbers, consider tw
dimensional QCD with massless quarks. The lowest sc
meson mass is approximately 0.967/b. In taking a sequence
of increasingb ’s andNc’s with b255, we find that this mass
approaches 0.43 in lattice units. With a mass scale this la
in lattice units, we can expect good agreement with the c
tinuum theory only for small momenta.

In two dimensions, quenching is not necessary@10,39#.
We will use a version of the model where there is no long
a need to perform the average over the angles. In this ver
the eigenvalues of theTm matrices are still frozen to the se
consisting of theNc roots of unity. This adds a new ‘‘trans
lational’’ symmetry to the model in which eachTm is re-
placed byzmTm with zm

Nc51. This transformation preserve
the eigenvalue sets. WithNc chosen to be a prime numbe
the eigenvalues ofTm

k will span the same roots of unity fo
any 0<k<Nc21, and will simulate the situation on a toru
of sizeNc

2 .
Let us summarize the symmetries of the bosonic actio

Sg~T1 ,T2!5Sg~z1T1 ,z2T2! with uzmu51

Sg~T1 ,T2!5Sg~T1
† ,T2!5Sg~T1 ,T2

†! ~34!

Sg~T1 ,T2!5Sg~T2 ,T1!.

These symmetries reflect invariances of the original toroi
lattice theory.
9-7
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B. Fermions and meson observables

The fermionic momentapm can be chosen from the se
2p j /Nc , j 50,1, . . . ,Nc21 for fermions with periodic
boundary conditions and from the setj 5 1

2 , 3
2 , . . . ,Nc2 1

2 for
fermions with anti-periodic boundary conditions. Thus, t
momenta flowing in the fermion lines are identical in type
those flowing in the gauge boson lines. With these mome
the planar Feynman diagrams are similar to those of a sys
on a lattice withNc

2 sites.
The symmetries of Eq.~34! imply that the meson field

propagators~23! obey the following relations:

G~P1 ,P2!5G~2P1 ,P2!5G~P1 ,2P2!5G~2P1 ,2P2!

~35!
G~P2 ,P1!5G~P2 ,2P1!5G~2P2 ,P1!5G~2P2 ,2P1!.

These symmetries will be strictly enforced by explicitly ad
ing the contributions of all gauge field configurations co
nected by the symmetry transformations of Eq.~34!.

G will be denoted byS for the scalar meson propagat
and by P in the pseudoscalar case. ’t Hooft’s solution, t
gether with subsequent work@40#, provide explicit formulas
for S andP in momentum space. Since they are compos
there are ultraviolet divergences, and the unrenormalized
mulas are divergent. Since their source is in free field the
these divergences can be regulated in many ways. We d
the renormalized meson correlatorsSR andPR by subtracting
at zero momentum for massive quarks and at an arbit
momentum point for massless quarks.

The continuum results we strive to reproduce using
reduced model are expressed in terms of the eigenvalues
eigenfunctions of ’t Hooft’s HamiltonianH. It acts on square
integrable functions defined on the interval@0,1#. The
boundary conditions are Dirichlet for massive quarks a
von Neumann for massless quarks. For massive quarks,H is
positive definite. For massless quarks, it has one eigen
with zero eigenvalue, and all other eigenvalues are stri
positive. There are no degeneracies, and the eigenvaluesH
provide the masses squared of the meson bound states.
following discussion, all dimensionful quantities are co
verted to their dimensionless counterparts using the sca

e2[
g2Nc

p
~36!

which has the units of mass squared. In these dimension
variables,

Hfn5mn
2fn , n50,1,2, . . . . ~37!

The quark mass enters by the dimensionless parameter

g5
mq

2

e2
. ~38!

The squared momentumP2 is replaced by the dimensionles
variableQ2
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Q25
P2

e2
. ~39!

The basic formulas for the meson propagators with m
sive quarks are

PR~Q2,g!5 (
n>0 even

` F r n
2

Q21mn
2

2
r n

2

mn
2G

~40!

SR~Q2,g!5 (
n>1 odd

` F r n
2

Q21mn
2

2
r n

2

mn
2G .

Asymptoticallymn
2;p2n, and the residues approach a fini

limit, so the subtracted sums converge.
The residuesr n

2 are given in terms of the real, normalize
wave functionsfn(x):

r n
25

1

p
gF E

0

1

dx
fn~x!

x G2

. ~41!

For massless quarks, one needs to take the limitg→0.
The relevant combination isSR1PR , which is the regulated
version of Eq.~27!. For mq50, the lowest meson mass
zero, and there is an infrared divergence atp50. This is
handled by making the subtraction at nonzeroQ2. More in-
formation aboutH and the evaluation of Eq.~40! is collected
in the Appendix.

C. Numerical results in the reduced model

We have focused on two cases. The first isg51 which, as
explained in the Appendix, corresponds to an intermed
quark mass. The other case is massless quarks, wher
chiral symmetry is spontaneously broken at weakg2 cou-
pling in the planar limit. Other values ofg are briefly dis-
cussed.

Numerical results are obtained by working in the ‘‘unita
gauge’’ and generating gauge fieldsT1 that are related toY
by conjugation. Every conjugation belongs to anSU(2) sub-
group of SU(Nc). A proposed conjugation is accepted
rejected by the Metropolis algorithm. TheSU(2) elements
are picked so that the acceptance rate is close to 0.5.
iteration is defined as a sequence of attempted updates fo
entire set ofNc(Nc21)/2 SU(2) subgroups ofSU(Nc). The
subgroups in the set are defined by placing theSU(2) matrix
in the (n,n),(n,m),(m,n),(m,m) entries of theSU(Nc) T1
matrix. The indices obey 1<n,m<Nc . Fermionic mea-
surements are made every 100 iterations, and 1000 itera
are used for thermalization.

Fermionic propagators are computed using Eq.~24!. This
is done by diagonalizingHW exactly, constructinge, and
then performing an exact diagonalization ofg3e. The propa-
gator,g(p1 ,p2), at any mass, is obtained from the spect
decomposition ofg3e. This is done for all values ofp1 and
p2 and at a fixed value ofT1. The ‘‘bare’’ scalar and pseu
doscalar propagators are
9-8



he

n

m
e
o
d
it

d
-
w

-

tu
of

fo

. 5
u-
or

th
to
l
in
ca
n

a
h
l.
el

is

ove
n-
e
rs is

be
tum

her
ete
e
r val-
a-

ing

nite

o-

as a
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S0~P!5
1

4Nc
2 (

p1 ,p2

Tr@g~p11P1 ,p21P2!g~p1 ,p2!

1g~p12P1 ,p21P2!g~p1 ,p2!

1g~p11P2 ,p21P1!g~p1 ,p2!

1g~p11P2 ,p22P1!g~p1 ,p2!# ~42!

P0~P!5
1

4Nc
2 (

p1 ,p2

Tr@g~p11P1 ,p21P2!g†~p1 ,p2!

1g~p12P1 ,p21P2!g†~p1 ,p2!

1g~p11P2 ,p21P1!g†~p1 ,p2!

1g~p11P2 ,p22P1!g†~p1 ,p2!#. ~43!

There are different vectorsP5(P1 ,P2) which correspond to
the same value ofP2[4(msin2(Pm/2). By definition, the lat-
tice meson propagators are a function ofP2 only. This func-
tion is obtained by averaging over all momenta with t
sameP2. After a final average over several values ofT1,
these propagators are the reduced model’s approximatio
Eq. ~40!.

We first compare numerical results to the continuu
keepingg51 fixed. In order to study the approach to th
continuum limit, we carried out simulations at five values
b2: 1,2,3,4,5. At each value ofb2, we generated gauge fiel
configurations atNc531, 37, and 41 to see how the lim
Nc5` is approached. The lattice momentaAP2 range from
0 to 2A2 while AQ2, reaches a maximum of 7 atb251 and
a maximum of 16 atb255. In this range of momenta, goo
estimates ofPR(Q2,1) andSR(Q2,1) are obtained by includ
ing only the first 100 terms in the sum over states. Since
have included the first 2000 eigenvalues~see the Appendix!,
our ‘‘theoretical’’ data are very accurate.

Let SL(Q2,1) and PL(Q2,1) denote the regularized, re
duced model scalar and pseudoscalar propagators. As in
continuum, we subtract the propagators at zero momen
Data atb255 are shown in Figs. 3 and 4. At lower values
b, theNc dependence is even weaker. Even atb255, we find
thatNc541 is large enough to provide accurate numbers
Nc5`.

We study the approach to the continuum limit in Figs
and 6. Looking at differentb2 values, we see that the pse
doscalar propagator approaches its continuum limit m
smoothly than the scalar propagator. ForAQ2,4, the num-
bers seem to have converged to theirb2→` limit, and there
is reasonable agreement with the continuum result. On
other hand, the scalar propagator has not yet converged
b25` limit in any region of Q2. It shows some overal
agreement with continuum results, but it is less convinc
than in the pseudoscalar case. In addition, the pseudos
propagator seems to approach its continuum limit monoto
cally, but the scalar propagator does not.

The main difference between the scalar and pseudosc
propagators is that the lowest mass in the pseudoscalar c
nel is smaller than the lowest mass in the scalar channe
the pseudoscalar propagator, we have agreement b
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AQ254, and the lowest pseudoscalar mass ism052.69713,
which is belowAQ254. However, the lowest scalar mass
m154.16036, which is slightly aboveAQ254. Hence, all
the masses contributing to the scalar propagator are ab
the region of Q where the pseudoscalar propagator co
verged well to its continuum limit. Thus, the difference w
found between the scalar and pseudoscalar propagato
likely to be a finiteb2 effect.

The difference between the two propagators can also
seen by extracting an effective mass. We set the momen
in one direction to zero and Fourier transform on the ot
component to produce a function of a conjugate, discr
‘‘spatial’’ variable. Figure 7 is a semilogarithmic plot of th
scalar and pseudoscalar propagators at sample paramete
uesb255 andNc541. We see that the pseudoscalar prop
gator is a better fit to a straight line.

One can get an effective mass in either channel by forc
straight line fits. The resulting effective masses atNc541 are
shown in Fig. 8 as a function ofb2. Although both masses
appear to approach the correct continuum values, the fi
b2 effects on the scalar mass are much stronger.

We now turn our attention to the behavior of the pseud
scalar propagator as a function ofmq /e. We numerically
computed this propagator as a function ofAP2 at several
values ofmq /e for b255 and Nc537. An effective mass
was extracted as before. This effective mass is plotted
function of mq /e in Fig. 9.

FIG. 3. Plot ofPL(Q2,1) atb255 for Nc531,37,41.
9-9
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The empirical fit

mp

mq
5210.51S mq

e D 20.78

~44!

shown in the plot works quite well.
With increasingmq /e, the ratiomp /mq approaches 2, a

expected. However, the subleading behavior does not m
the expression derived in the Appendix which has21.33
rather than20.78 in the exponent. On the other hand,mp /e
is clearly not proportional toAmq /e as would be appropriate
for light quarks. We get 0.78 instead of 0.5 in the expone
The fit indicates that the masses we used are in an inte
diate region.

Finally we look at massless quarks. To compare the lat
data to theory, we need to pick a subtraction point. We u
AQ253. For any finiteNc , the scalar and pseudoscal
propagators are identical for massless quarks. As expla
earlier, the common value of these reduced model propa
tors ought to be compared with the continuumMR defined
by

MR~Q2!5
1

2p (
n>0

` F r n
2

Q21mn
2 2

r n
2

321mn
2G . ~45!

FIG. 4. Plot ofSL(Q2,1) atb255 for Nc531,37,41.
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The comparison for the subtracted meson propagato
shown in Fig. 10 and is quite good. The deviations that n
appear at smallQ can be mostly attributed to finiteNc effects
which are sizable now because of the massless pseudos
mode.

IV. SUMMARY AND CONCLUSIONS

The main objective of this paper was to introduce a n
program whose aim is the numerical solution of planar QC
Our first test was an application to two-dimensional plan
QCD. Much more can be done on this test case; our res
are just the very first steps. We hope to carry out sim
preparatory studies in four dimensions.

Our numerical experiment in two dimensions shows t
reduction can reproduce some correct numbers, but that
cise agreement would require a more substantial effort
should be kept in mind that QCD2 in the planar limit is quite
challenging numerically. This model was chosen as our
case only because we have exact theoretical informa
about it. In four dimensions, the planar limit of QCD mig
be approached more rapidly.

Perhaps surprisingly, two dimensions might be ev
harder than four dimensions in the reduced model fram
work. If all minima of the pure gauge action are correc
sampled,Nc;V1/d. Therefore, roughly, the number of inte

FIG. 5. Plot ofPL(Q2,1) atNc541 for b251,2,3,4,5.
9-10
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gration variables,Nc
2 , decreases with the dimension at

fixed equivalent number of lattice sites. One might not ne
more lattice sites in four dimensions than in two beca
infrared effects are stronger in two dimensions.

The ultraviolet cutoff is increased by decreasing the
Hooft scaled couplinge2, which is the same as taking ourb2

parameter to infinity. Numerically we have learned that o
needs largerNc values to see convergence to the planar lim
for larger values ofb2. The associated cost could be reduc
by improving the lattice action and our fermionic operato
Already from @4#, we learn that simple improvement met
ods have a beneficial effect. After reduction, the relative b
efit from improvement might be less than in regular simu
tions. Of course, one needs to rethink what kind
algorithms are best suited for reduced models.

We have determined numerically that the eigenvalue
tribution of the parallel transporters around plaquettes
support in only a small neighborhood of unity when we a
at reasonably weak gauge coupling. As a result, the spec
of the Wilson-Dirac operator develops a gap around ze
This in turn would speed up the numerical algorithms used
implement the lattice overlap propagators.

Reduction would also provide a means for evaluat
1/Nc corrections. Thus, one might not only get numbers
the planar limit but also an estimate for their accuracy in
context of real QCD. By going to the Veneziano limit inste

FIG. 6. Plot ofSL(Q2,1) atNc541 for b251,2,3,4,5.
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of to the ’t Hooft limit, we might get meson widths in add
tion to the meson masses. Recall that the momentum en
very differently here so that one might even contemplat
direct analytical continuation in momentum to physical v
ues. The Veneziano limit, as a function ofNf /Nc , would
provide quantitative assessments of the vale
approximation—something of great value at this point
time.

Furthermore, the old problem of dealing with comple
actions numerically might be more tractable in reduced m
els because the number of integration variables seems t
so much smaller. This would open new ways to look atu
dependence and at finite baryonic density. We conclude
pursuing our proposal further is a risk that is worth taki
and look forward to further developments in this direction
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APPENDIX

In this appendix we describe the combination of nume
cal and analytical methods used to produce the theore
predictions for the meson correlators. Without exception
are only dealing with the case of quarks of degenerate m
Our presentation is fairly detailed.

The ’t Hooft’s Hamiltonian,H, is defined by

~Hf!~x!5gS 1

x
1

1

12xDf~x!2E dy
P

~y2x!2

3@f~y!2f~x!#. ~A1!

FIG. 8. Plot of the effective mass extracted from the scalar
pseudoscalar propagators as a function ofb2 at Nc541.
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1. Asymptotics of wave functions

There is anx→12x symmetry under which the eigen
functions ofH will be either even or odd. We wish to dete
mine the correct boundary conditions on the wave functio
and thus define the Hilbert space on whichH acts. We shall
focus on thex50 end point. The above reflection aboutx
5 1

2 determines then the boundary conditions at the other
point.

We write P/(y2x)252(d/dy)@P/(y2x)# in Eq. ~A1!
and perform an integration by parts. Then, we add and s
tract f8(x) in the integral, ending up with

~Hf!~x!5gS 1

x
1

1

12xDf~x!1
f~1!2f~x!

12x

2
f~x!2f~0!

x
2

1

2
f8~x!logS 12x

x D 2

2E
0

1

dy
f8~y!2f8~x!

y2x
. ~A2!

We now assume asymptotics of the type

f~x!;xb for x→0. ~A3!

d FIG. 9. Plot of the effective mass extracted from the pseu
scalar propagator as a function ofmq /e at Nc537.
9-12
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We plug this in and evaluate forx;0. We use the asymptoti
form over the entire integration range inside the integral,
shall later make sure that only the region ofy close to zero
contributes to the final expression. Also assume that 0,b
,1. Then the two most singular terms atx50 are contained
in

~Hf!~x!;~g21!xb211
b

2
xb21logx2

2bxb21E
0

1/x

duFub2121

u21
1

1

u11G
1bxb21log

1

x
. ~A4!

Integration variables were changed in the integral:y5ux.
The term 1/(u11) was added and subtracted. The subtrac
integral is trivial and gives the second term that contain
logarithm in Eq.~A4!. The integral converges as the upp
limit goes to infinity. Thus, even if we stop the integration
a large finite numberA the answer would be some numb
which will depend onA only slightly. But, if A is finite, the
range ofy’s is from zero toAx, so it is all in the asymptotic

FIG. 10. Plot of the meson propagator for massless quarks
function of b2. Theb251 data are atNc537, theb252,4 data are
at Nc541 and theb253,5 data are atNc547.
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t
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regime. This is why we were justified in using the asympto
expression forf under the integral sign, for what seemed
be the entire range. The integral~for x50) is done using the
m→1 limit of

E
0

`

du
ub212um21

u21
1E

0

`

du
um21

u11

5p~cotmp2cotbp!1
p

sin~mp!
~A5!

which is 2p cotpb.
The terms containing logarithms cancel and to cancel

subleading singularities~which are still too strong to be
matched by a term linear inf—which is what would be
necessary for an eigenstate! we need

g211pb cotpb50. ~A6!

This formula can be found in ’t Hooft’s original paper@3#.
For light quarks,g→0, and we get

b;
1

p
A3g for g→0. ~A7!

For massless quarks the asymptotic analysis needs t
redone. In this case the Hamiltonian has the constant fu
tion as the lowest eigenstate. Thus, the action ofH on a
function is determined by the derivative of the latter:

~Hf!~x!5
f~1!2f~x!

12x
2

f~x!2f~0!

x

2
1

2
f8~x!logS 12x

x D 2

2E
0

1

dy
f8~y!2f8~x!

y2x
.

~A8!

We assume

f8~x!;xa for x→0 ~A9!

with 0,a,1 and check for consistency. This will give
condition ona, which will have a solution in the required
interval. As before, we take the asymptotic form througho
the integration range, and leave it to the end to check that
contributions kept only came from the asymptotic regim
We find

~Hf!~x!52
1

11a
xa1xa logx2xaE

0
1/xdu

ua21

u21
1•••.

~A10!

The u integral is rewritten by adding and subtracting term
chosen for their largeu behavior, with the objective of iso
lating the contribution from the region near the end poiny
50:

a

9-13
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E
0

1/x

du
ua21

u21
5E

0

1/x

duFua21

u21
2ua211

1

u11G
1

1

axa
1 log

x

11x
. ~A11!

Collecting terms in the integral and using

E
0

`

duup21
P

12uq
5

p

q
cot

pp

q
for p,q ~A12!

we get

E
0

` ua1ua2122

12u2
5p cot~pa!. ~A13!

As a result, we get

~Hf!~x!52
1

a
2

xa

a11
1pxa cotpa1•••. ~A14!

a is the unique solution between 0 and 1 of the equatio

p cotpa5
1

a11
. ~A15!

This equation is the same as Eq.~A6!, extended to 1,b
,2, with b5a11 and withg50. Since the leading term i
a constant, we see that the next period of the cotangent in
~A6! provides the subleading behavior.

In summary we conjecture that the eigenfunctions
massive quarks have the following expansion nearx50:

fn
g~x!;~a0

1xb11a1
1xb1111••• !1~a0

2xb21a1
2xb2111••• !

1•••1~a0
kxbk1a1

kxbk111••• !1••• ~A16!

wherebk , k51,2, . . . are, in increasing order, all the pos
tive solutions of Eq.~A6!. When the quark mass is taken
zero the entire series associated with the first root is repla
by a constant.

In the massless case we also can say that, for any ex
eigenstate ofH, (HfE)(x)5EfE(x),E.0 we have

fE~x!5NS 12
aE

a11
xa11D

1terms that vanish faster asx→0. ~A17!

The value of 0,a,1 can be easily calculated numericall
Note that the subleading correction at the end point hold
an ever decreasing range as the energy of the state,E, in-
creases.

In conclusion, the Hilbert space appropriate to the Ham
tonian for the case of massless quarks consists of sq
integrable functions on the segment obeying von Neum
boundary conditionsf8(0)5f8(1)50. In the massive case
the boundary conditions were Dirichlet,f(0)5f(1)50 in-
stead. Note that the internal Hilbert spaces correspondin
02501
q.
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massless and massive quarks are distinct, as one might
guessed would be appropriate for a manifestation of spo
neous symmetry breaking in the planar limit.

2. Massive quarks:gÄ1

Equation~A6! simplifies wheng51: its roots arebk5k
2 1

2 with k51,2, . . . . Thedouble series in Eq.~A16! col-
lapses into a single series andfn

1(x) has the simple structure
of Ax times a series inx for thex→0 asymptotic regime. For
the eigenvectors, there is ax→12x symmetry, so the struc
ture should be

fn
1~x!52Ax~12x! f n~x! ~A18!

where f n is either even or odd about the center of the s
ment (0,1). It is convenient to map this segment to (21,1).

For g51 the Hamiltonian is particularly simple:

~Hf!~x!52E
0

1

dy
P

y2x
f8~y!. ~A19!

Under the change of variablesx→2x21, and still using a
prime to denote derivatives with respect to the new variab
we get

~Hf!~x!522E
21

1

dy
P

y2x
f8~y!. ~A20!

f vanishes at the end points, sof5const is not an eigen
state. The eigenfunctions are defined over the segm
(21,1) and have the structure~dropping the superscript de
noting the value ofg)

fn~y!5A12y2f n~y!. ~A21!

We shall use Chebyshev polynomials of the first~T! and
second~U! kind to parametrizef n @41#. Some of their prop-
erties are listed below:

Un~cosu!5
sin~n11!u

sinu

Tn~cosu!5cosnu

E
21

1

dy
P

y2x

Tn~y!

A12y2
5pUn21~x!

E
21

1

dy
P

y2x
A12y2Un~y!52pTn11~x! ~A22!

E
21

1

dxA12x2Un~x!Um~x!5
p

2
dn,m

2~x221!Um21~x!Un21~x!5Tn1m~x!2Tun2mu~x!.

The indicesn andm above are non-negative and vary in th
ranges in which the equations make sense.

We represent a given functionf(y) as
9-14
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f~y!5A12y2(
n50

`

anUn~y!. ~A23!

A short calculation then gives

f8~y!52
1

A12y2 (
n50

`

~n11!anTn11~y!. ~A24!

Using the properties of the Chebyshev polynomials listed
Eq. ~A22! we find

~Hf!~x!52E
21

1

dy
P

y2x

1

A12y2 (
n50

`

~n11!anTn11~y!

52p (
n50

`

~n11!anUn~x!. ~A25!

Supposef(x) is an eigenstate ofH with eigenvalueE,
(Hf)(x)5Ef(x). Then,

EA12y2(
n50

`

anUn~y!52p (
n50

`

~n11!anUn~y!.

~A26!

One can proceed now by using orthogonality on one of
sides of the equation. We choose to multiply the equation
A12y2Um(y) and integrate overy:

E(
n50

`

anE
21

1

dy~12y2!Un~y!Um~y!5p2~m11!am .

~A27!

We need to evaluate the integral on the left-hand s
Using an identity in Eq.~A22! we find

E
21

1

~12y2!Un~y!Um~y!5
1

2E21

1

@Tun2mu~y!2Tn1m12~y!#

[jnm5jmn . ~A28!

By y→2y we see thatjnm50 for n2m odd. Also,

(
n50

`

jmnan5
p2

E
~m11!am . ~A29!

We defined new coefficients

bn5An11 an . ~A30!

We also defined a new matrixX

Xmn5
1

Am11
jmn

1

An11
. ~A31!

We end up needing the eigenvalues of the symmetric ma
X:
02501
n

e
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(
n50

`

Xmnbn5
p2

E
bm . ~A32!

To calculate the entriesjmn we go to angular variables,y
5cosu:

jmn5
1

2E0

p

du sinu@cos~n2m!u2cos~n1m12!u#.

~A33!

We need one elementary integral, for even integerk:

E
0

p

du sinu cosku52
2

k221
. ~A34!

For oddk the integral vanishes. This leads, forn2m even, to

jmn5
1

~n1m12!221
2

1

~n2m!221
. ~A35!

In particular, on the diagonal we have

jnn511
1

4~n11!221
. ~A36!

For n2m odd the matrix elementjmn vanishes. The matrix
X is given by

Xmn5
1

A~m11!~n11!

3F 1

~n1m12!221
2

1

~n2m!221
G ~A37!

for n2m even andXmn50 for n2m odd. If l is an eigen-
value ofX, E5p2/l is an eigenvalue of the ’t Hooft Hamil
tonian.

For high states one can use the diagonal terms as an
proximation. One gets the asymptotic estimate

En;p2~n11! ~A38!

with the state labeln starting atn50.
We need to determine the normalization convention

the infinite vectors (b0 ,b1 , . . . ) that would make the eigen
states fE(x) (HfE5EfE) normalized to unity by
*0

1fE
2(x)51. fE(x) is parametrized by

fE~x!52Ax~12x! (
n50

` bn
E

An11
Un~2x21! ~A39!

wherex is in the original range (0,1). Introducing the expa
sion we find

15
p2

2E (
n50

`

~bn
E!2 ~A40!

where
9-15
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(
n50

`

Xmnbn5
p2

E
bm . ~A41!

We are now ready to compute the residues forg51. We
need to calculate

rn
15E

0

1dx

x
fn~x!. ~A42!

Here, g was set to unity and the eigenfunction is assum
correctly normalized. Changing variables, we arrive at

rn
15 (

k50

`

ak
(n)I k ~A43!

with

I k5E
0

p

du

sin
u

2

cos
u

2

sin~k11!u. ~A44!

We change the integration variableu to p2u and average
the expressions. Then, fork even we have to calculate

I k5E
0

p

du
sin~k11!u

sinu
. ~A45!

Use

sin~k11!u

sinu
5(

j 50

k

eı(k22 j )u ~A46!

to conclude that for evenk only the j 5k/2 term in the sum
makes a contribution, giving

I k5p. ~A47!

For k odd

I k52E
0

p

du
sin~k11!u

sinu
cosu. ~A48!

By the same technique as above we get non-zero contr
tions only from j 5(k61)/2 ~for odd k, k>1). Hence, fork
odd:

I k52p. ~A49!

Only the absolute value ofrn
1 is determined, since the sign o

the wave function is not fixed by normalization. The fin
answer is

urn
1u5pU (

k>0, k2n5even

bk
(n)

Ak11
U . ~A50!

Here, the normalization condition is
02501
d

u-

l

(
k>0, k2n5even

~bk
(n)!25

2E(n)

p2
. ~A51!

In each sector the eigenvalues were obtained numeric
by diagonalizing a truncation of the infinite matrixX of Eq.
~A31!. The residues were obtained using Eq.~A50! with the
eigenfunctions of the truncated matrixX normalized accord-
ing to Eq. ~A51!. In each sector a matrix of size 200
32000 was diagonalized and this produced accurate e
mates of the lowest 1000 eigenvalues in that sector.
lowest pole contributing to the pseudoscalar is atm0
52.69713 and the lowest pole contributing to the scalar is
m154.16036. Asymptotically, the eigenvalues are given

mn
25p2n1 3

4 p21O1/n. The residues, r n
2 , reach an

asymptotic value ofp2. The even residues approach th
number monotonically from above (r 0

2511.7596864) and
the odd residues approach this number monotonically fr
below (r 1

259.03541704).

3. Massless quarks

We now turn to the evaluation of eigenvalues and resid
in the case of massless quarks. The correct boundary co
tions for the massless case are von Neumann so we choo
diagonalize the Hamiltonian in the basis of cosine functio

^xun&5A2cospnx, n>1; ^xu0&51. ~A52!

The states are numbered, starting with 0. The ground sta
known exactly and by keepingn>1 we are in a space or
thogonal to it. Just as before, even and oddn states do not
mix, so we can diagonalize the Hamiltonian in each of the
subspaces separately,

^nuHum&5E
0

1

dxE
0

1

dyE
0

`

tdte2tux2yu

3@cos~pnx!2cos~pny!#

3@cos~pmx!2cos~pmy!#. ~A53!

To do the integrals we introduce, with no restriction on t
integersn,m, the integral

I n,m5
1

2E0

1

dxE
0

1

dyE
0

`

tdte2tux2yu@eıpnx2eıpny#

3@eıpmx2eıpmy#. ~A54!

By changing variablesx→12x andy→12y we see that

I n,m5~21!n1mI n,m* . ~A55!

We now restrict ourselves to evenn1m. This is enough to
get all nonzero matrix elementŝnuHum&. In this case we
learn thatI n,m is real,
9-16
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I n,m1I n,2m5E
0

1E
0

1E
0

`

tdte2tux2yu@eıpnx2eıpny#

3@cos~pmx!2cos~pmy!#. ~A56!

But, sinceI n,m is real we can take the real part to prove

^nuHum&5I n,m1I n,2m . ~A57!

We need onlyI n,m for n1m even. Using the symmetry unde
exchange ofx andy we get

I n,m5E
0

1

dxE
0

x

dyE
0

`

tdte2t(x2y)@eıpnx2eıpny#

3@eıpmx2eıpmy#. ~A58!

Using the above, and restricting in the end ton,m>1 and
evenn1m we get

^nuHum&5p2ndn,m12E
0

`

tdtH @11~21!n21e2t#

3F 1

t21p2n2
1

1

t21p2m2

2
p2~n21m2!

~ t21p2n2!~ t21p2m2!
G

2~12e2t!F 1

t21p2~n1m!2

1
1

t21p2~n2m!2G J . ~A59!

The matrix elements ofH can be expressed in terms
sine-integral and cosine-integral functions. FornÞm, with
n1m even:

^nuHum&5 logS n22m2

nm D 2

1
n21m2

n22m2
logS m

n D 2

1
4

n22m2
@n2ci~pn!2m2ci~pm!#

22$ci@p~n1m!#1ci@p~n2m!#%.

~A60!

For n5m:

^nuHun&5p2n22 logn1 log
4

p2
22~11g!12@pn si~pn!

1~21!n#14 ci~pn!22 ci~2pn!. ~A61!

One needs to distinguish between Si, Ci and si, ci. Here
the definitions for the functions used in Eqs.~A60! and
~A61!:
02501
re

si~x!52E
x

`

dt
sint

t
52

p

2
1E

0

x

dt
sint

t
52

p

2
1Si~x!

~A62!

ci~x!52E
x

`

dt
cost

t
5Ci~x!. ~A63!

The asymptotics go as follows: For integer and large posi
k

ci~pk!5
~21!k21

~pk!2
1OS 1

~pk!4D
si~pk!5

~21!k21

pk
1OS 1

~pk!3D .

~A64!

To find the residues in the case of massless quarks
needs to take theg→0 limit on the massive formula:

rn
g5AgE

0

1

dx
fn

g~x!

x
. ~A65!

fn
g(x) is the nth ~ordered by eigenvalue and starting fro

n50) normalized eigenstate of the Hamiltonian with ma
parameterg.

The entire contribution comes from the lower end of t
integral, because only from there does one get a singula
in g that can compensate the vanishing prefactor. Thus, o
the asymptotic behavior of the wave function is needed. I
given by

fn
g~x!5An

gxb(g)1 terms that vanish faster asx→0.
~A66!

Hence,

rn
05

p

A3
An

0 . ~A67!

In general,An
0 is difficult to obtain, as it is fixed by the

normalization of the wave function and depends on its val
throughout the interval. But, forn50 we know that, at small
g, f0(x) tends to 1. Hence,A0

051 and we get

r0
05

p

A3
. ~A68!

For arbitraryn we need to compute numerically thenth wave
function for the massless case, normalize it, and getAn

0 from
its values at the end point,

An
05fn

0~0!. ~A69!

A sign ambiguity remains, as the sign of the wave functi
remains undetermined by the normalization condition. B
only (rn

0)2 enters in the amplitude so everything is well d
termined.
9-17
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The eigenvalues were obtained from a truncation ofH in
Eq. ~A53! to size 100031000 in each sector. The residu
are obtained from the end point of the normalized eigenv
tor as given by Eq.~A67!. The lowest non-zero eigenvalue
a scalar meson~having an antisymmetric wave function! at
m152.4233 and its residue isr 1

257.58941916. Asymptoti-
cally, the eigenvalues are described bymn

25p2n22 log(n)
1O(1). The constant term is close to12 p2 but due to the
log(n) term it is hard to determine it accurately. The residu
are relatively difficult to estimate due to slow convergen
They asymptote tor n

25p2 and are monotonic inn.

4. Light versus heavy quarks

We wish to determine whetherg51 should be viewed as
a light quark mass or as a heavy quark mass. To do this
first find the leading behavior of the pion mass for very sm
quark masses. This behavior has the typical structure indu
by spontaneous chiral symmetry breaking. We then comp
the leading chiral approximation to the pion mass with
exact value. If the quarks are light the approximation sho
work well numerically. If the quarks are heavy the appro
mation should be off. We also compute the pion mass
very heavy quarks. Again we compare the approximate
pression to the exact value.

To compute the pion mass (n50 state! to leading order in
the assumed small quark mass we start from

~m0
g!25E

0

1

dxf0
g~x!~Hf0

g!~x!

5gE
0

1

@f0
g~x!#2S 1

x
1

1

12xD
2E

0

1

dxE
0

1

dy
P

~y2x!2
f0

g~x!@f0
g~y!2f0

g~x!#.

~A70!

We symmetrize both terms, the first under parityx→12x,
the second under interchange ofx with y, to get

~mo
g!252gE

0

1@f0
g~x!#2

x
1

1

2E0

1

dxE
0

1

dyFf0
g~y!2f0

g~x!

y2x G2

.

~A71!

As g→0 the first term is dominated by the end point cont
bution. Actually, also the second term is dominated by
end point contribution. As before, we use the asympto
behavior throughout the integration range, but ascertain
the end that we were dominated by the end points. From
first term we get a contribution:

p

A3
Ag1O~g!. ~A72!

The second term requires more work:
02501
c-

s
.

e
ll
ed
re
e
d
-
r

x-

e
c
at
e

1

2E0

1

dxE
0

1

dyFyb2xb

y2x G2

5
1

2E0

1

dxxb21E
0

1/x

duFub21

u21 G2

.

~A73!

The u integral is done extending the upper limit to infinit
The correction needed to account for this approximation w
be of higher order inb. The u integral is done as follows
Write @1/(u21)#252(d/du)@1/(u21)# and do the integral
by parts to obtain

E
0

`

duFub21

u21 G2

52122bE
0

`

du
u2b212ub21

12u

52122bp@cot~2bp!2cot~bp!#

5
2

3
~bp!21O~b4!. ~A74!

Doing the remainingx integral we learn that the double in
tegral gives a contribution equal to that of the first term.

In summary we get, converting to physical units:

mp
2 52mquguApN

3
1O~mq

2!. ~A75!

This is the result found by ’t Hooft@42#. Equation~A75! can
be rewritten in variables rendered unitless by usingg2N/p as
a mass-square scale as

mp
2 5Ag

2p

A3
~A76!

mp

mq
5

mp

Ag
5A2p

A3
g21/4'

1.90

g1/4
.

For g51 we found numerically thatmp /mq52.7 establish-
ing thatg51 corresponds to quite light quarks, but still th
O(mq

2) corrections to Eq.~A75! make a substantial contribu
tion.

The pion is, by definition, the lowest energy eigenstate
the ’t Hooft Hamiltonian in the sector of functions symmetr
underx→12x.

For g large the first term in the ’t Hooft Hamiltonian
dominates, so the pion wave function will try to minimize i
contribution by being concentrated around the pointx5 1

2 .
Making the wave function too narrow incurs a price from t
second term. This suggests a variational estimate for
leading and subleading order in 1/g. The trial wave function
is

f~x!5S l

p D 1/4

@e2(l/2)[x2(1/2)]22e2l/8#. ~A77!

f(x) is normalized to unity up to corrections that are exp
nentially small inl.

The expectation value of the ’t Hooft Hamiltonian in th
statef is
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^fuHuf&5gE
0

1S 1

x
1

1

12xDf2~x!

1
1

2E0

1

dxE
0

1

dyFf~y!2f~x!

y2x G2

. ~A78!

Contributions from the end points of the integral in t
first term are exponentially small inl and will be neglected,
under the assumption~to be later justified! thatl diverges as
g→`. Thus we can calculate the contribution of the fi
term by infinite range Gaussian integration, obtaining

4g1
8g

l
1O~l22!. ~A79!

The second term is

1

2
Al

pE0

1

dxE
0

1

dyFe2(l/2)[x2(1/2)]22e2(l/2)[y2(1/2)]2

x2y
G2

.

~A80!

The integral ~excluding the prefactor! has a finitel→`
limit:

E
2`

`

duE
2`

`

dvS e2u2/22e2v2/2

u2v D 2

. ~A81!

The expression (u2v)2 in the denominator is represented b
an integral overt of e2t(u2v)2

from zero to infinity. Theu,v
integrals of each one of the terms can be done by Gaus
integration, and calculating the appropriate 232 determi-
nants one finds that the above integral is given by
a-

t

D

02501
t

an

2pE
0

`F 1

At
2

1

At1 1
4

G52p. ~A82!

Hence

^H&;4g1
8g

l
1Apl. ~A83!

Extremizing onl gives

l5S 16

Ap
D 2/3

g2/3. ~A84!

Thus, indeedl is large forg large and the wave function i
close to a delta function aroundx5 1

2 . For the unitless pion
mass square we find

mp
2 ;4g1~16p!1/3

3

2
g1/3. ~A85!

For largeg we expect, therefore,

mp

mq
;2~110.69g22/3!. ~A86!

Using this formula blindly forg51 gives mp /mq;3.4
instead of the true value of 2.7. We see that the true valu
midway between the leading answer corresponding to li
pions ~1.9! and the leading plus subleading expression va
for heavy quarks. Thus,g51 corresponds to intermediat
gauge coupling~in units of quark mass!.
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