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I. INTRODUCTION meson correlation functions at non-zero momenta are “infra-
red safe.” If our calculations in two dimensions are finite and
The phenomenological appeal of planar QCD is wellagree with analytical results, then we can be confident about
known[1]. It is believed that a limit in which the number of calculations in four dimensions, where infrared problems are
colors N, goes to infinity while the coupling goes to zero less serious.
with fixed g®N, produces the simpler planar theory while  |n the Eqguchi-Kawai model the entitdimensional lat-
still preserving essential perturbative and nonperturbativgice is reduced to a point. Nevertheless the matrix model
features of the physicall.=3 case[2,3]. However, an ana- incorporates the lattice structure. This is best understood in
lytical description of the planar limit has remained elusive.momentum spacgl0], where thed sets of eigenvalues of the
This has left lattice gauge theory as the prevailing approacfink matrices populate the momentuvtorus. To ensure that
for the conceptual and quantitative analysis of strong couthe torus is indeed covered, one needs to alter the Eguchi-
pling in QCD. Kawai proposal. The first suggestion for how to achieve this
Recent numerical investigations with increasMg (4,5  was to freeze the eigenvalue variables and remove them from
indicate that somél.= 3 physical quantities are not far from the integration over gauge fields. The fluctuations of the re-
their N.=oo limits. This suggests that numerical results from maining gauge degrees of freedom are not allowed to back
planar QCD might have phenomenological value. Howeverreact on the eigenvalue distribution. The expectation value of
in numerical lattice calculations, it is easier to deal with thegauge invariant observables is subsequently averaged over
N.=3 case than to approach the planar limit by simply in-different sets of angles. This produced the quenched Eguchi-
creasingN.. An approach that arrives at the simpler planarkawai model[10]. Related work on quenched reduced mod-
theory more directly is indicated. The Eguchi-KaWéj re-  els appeared ifil1-13. A more elegant method, which in-
duction offers such a shortcut. It has the potential to requirgolves a change in the action by a “twistf14], was
much less computation because the planar limit of some olsubsequently discovered. This clever approach has also led
servables is obtained from a matrix model with only the to the discovery of non-commutative gauge field theories
><N§ degrees of freedom of unitary matrices. Since the [15] starting from the lattice.
dimensiond enters linearly rather than exponentially, it  Nevertheless our proposal is in the quenched version
seems that four dimensions has only twice the computationddecause the introduction of fermions in the twisted case is
cost of two dimensions. somewhat restricted. The addition of fermions to reduced
Using the Eguchi-Kawai reduction to approach the planamodels was first carried out in a continuum versioflifi]. A
limit of QCD by first going to infiniteN. and then to zero somewhat similar procedure on the lattice was introduced in
lattice spacing might be beneficial because the two limit§16,17. In the latter version, the number of flavdys was a
may not commuté7,8]. Also the commutativity of the infi- free parameter and could be taken to infinity. This produces a
nite volume and infiniteN, limits might be questioned be- reduced model leading to the Veneziano lifili8] rather
cause gauge theories are massless, and the construcf®n of than to the 't Hooft limit[1]. Following up on the idea of
does not apply. We begin with the assumption that meson-16], a twisted version of th&l;=N_ case was presented in
[19]. Since we want to have a variable number of flavors, we
opt for the quenched version. In addition, the quenched ver-
*Permanent address: Rutgers University, Department of Physicsion is computationally simpler than the twisted one even for
and Astronomy, Piscataway, NJ 08855. N;= N, because the Dirac operator is block-diagonal Wth
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blocks each of siz&l;XN;. In the twisted case, one has a Il. GENERAL FRAMEWORK
full NN X N:N; matrix.

Our proposal specifically targets mesonic observables. To _ _ )
get glueball masses from a reduced model, we would need to Before reduction, the lattice systems of interest are de-
keep one direction unreduced as describef®@}. To inves- f|_ned on ad-dimensional hy_percub_|c lattice with a tot¥l
tigate finite temperature, we would again need asne's'on ag—torgs of equal sides. Sites are labeledxognd
Hamiltonian-like formulatior[21]. In addition to the calcu- POSitive directions byu=1,2,...d. There areSU(N.)
lation of meson masses, our approach allows for the study dfauge fieldsU,,(x) on the links, and fermions interact with
fermion quenching effect¢valence approximation effegts this gauge backgrou.nd. ) ) )
and finite fermion number density at zero temperature. Alsg SINc€ we are going to deal later with fermions in the
the pathologies of the valence approximation should disapf_undamental representation, it is best_ to introduce the fields
pear in the limit of largeN, with fixed N;. The fermionic ~NOW. éven though we are first focusing on the pure gauge
bilinears which define the meson fields are the buildingS€ctor- The fermion fields is a vector inVs@V,®V, the
blocks of the four Fermi operators crucial to the study oft€nsor product of the spin, color, and lattice vector spaces,
weak decays. We envisage taking thallapproach to non- fespectively. Its components atg,(x) with spin indexa,
leptonic weak decayf22] to the lattice where it could be color |n(_1eX| and IatF|ce positiorx. There are several opera-
compared to more direct approaches and where some of it8"S acting on fermions: The Euclidean Dirgg’s act only
phenomenological input could be replaced by numerical dat@n Spinorial indices,y, :Vs—Vs. The directional parallel
obtained from “first principles.” transportersT,, act on the site index and the group index

There have been both practical and theoretical developtT.:Vc®V|—V@V)) as follows:
ments that motivate a return to numerical work on planar A
QCD. Theoretical progress has led to the new lattice fermi- T (P )=V, (X) (X + ). @
ons[23], which might be able to solve some problems en- ) _
countered about 20 years afti]. The problems had to do FOr Uu(X)= 1,dthe T t%ec':ome.commutmg shift operators
with the meaning of topological charge density in the re-1,- For V=L® eachT, is unitary and has eigenvalues
duced model, chiral anomalies, and thgarameter depen- €™/ k=0,1,2... L—1. Hence for everd, T, is not
dence of the vacuum action density in the planar lira#]. only unitary but also has unit determinar[tdeth
Equally important are developments in computer hardware— (_ 1 -1y,

Since the initial numerical experiments on reduced models Gayge transformations are characterized by a collection
for planar QC_:D, computers have _become“ Ibnes more  of g(x) e SU(N,) acting ony pointwise, and only on the
powerful for fixed power consumption. We suggest that reyroup indices. The action is represented by a unitary operator

duced model simulations are a worthy job for weakind  G(g):v. @V, —V, eV, with [G(g)#](X)=g(X)¥(x). The
cheaply linked PC clusters. Moreover, at infinitd;, the operators are gauge covariant
o

Wilson-Dirac operator in the argument of the sign function

has no small eigenvalues when the pure gauge action of the G(g)TM(U)GT(g)zTﬂ(Ug) 2
reduced model is of the usual single plaquette type, and the

rescaled lattice gauge coupling is large enodglt not infi-  with

nite). This is unlike the situation in ordinary QCR25]. Thus

the numerical implementation of the overlap Dirac operator U%(x)=g(x)UM(x)gT(x+ ,[L), ®)
will be simpler than in ordinary QCD.

In Sec. Il we define reduced models starting from ordi-The variabledJ ,(x) are distributed according to a probabil-
nary formulations of lattice gauge theories. We show that thety density that is invariant unde — U9 for any g.
topological charge remains a nontrivial object even after re- For the commutatorgT,,T,], we have
duction and that reduced models have, in some sense, more
topological numbers than their unreduced counterparts. We[TM,TV]T[TM,T,,]z(l— P,”)T(l— Pu)=2-P,,— PLV
briefly discuss chiral gauge theories. The meson-meson cor- (4)
relators, which are the most practical aspect of our proposal,
are also introduced. Section Ill is focused on the special caseith the unitaryP ,, given by
of two dimensions in which we test the numerical methods.

Although planar two-dimensional QCD (QGPhas been P.,=TITIT,T,. 5)
solved exactly in the weak coupling phase, additional ana-

lytical and numerical work is needed to extract the resultsThe operator®,,, are site diagonal with entries that are the
that can be compared to Monte Carlo data. Although there igarallel transporters around plaquettes:

a vast literature on QCPR in the interest of clarity, we have

included a rather detailed account in the Appendix. In Sec. (Pn.,#)(X)=U,,(X)#(X), (6)

IV we describe some of our ideas for future developments.

We believe that there are many options for future research U ,,(x)=Ul(x—2)Ul(x—v—p)U (x—v—p)

and that the potential for truly new and interesting results is R

quite high. XU, (X—u). 7

A. Original lattice model and its topological charge
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U ,.(x) is associated with the elementary loop starting at site vz

X, going first in the negative direction, then in the negative [1+ml<|1-(2+ \/E)MZV €uv| - (14
w direction, and coming back round the plaquette.
The Wilson pure gauge action is given by This range is contained in the open interva<m<O0.

For evend, we define the Hermitian operator
sg:ﬁz Tr(P,,+PL,)
o Hu(m) =4, 1Dw(m) for which HZ,(m)=D{,(m)Dy(m).

—const-gY, THT, TIT,.T...  ® (19
mr It follows from Eqgs.(10) and (13) that Hyy has no zero ei-
In the continuum limit, configurations with all thel,,(x) ~ 9envalues so that its sign functier=sign(Hy) is well de-
close to the unit matrix are preferred. fined [27]. The topological charge of a gauge field configu-

All our operators are finite dimensional matrices. Theration is given by
norm of A is ||Al| with [|A||? the largest eigenvalue &'A.

We have Q= %Tr c. (16)
(T, T l=11=Py.l. (9 The value ofQ cannot be changed by a smooth deformation
_ _ ) that respects the boundt0). Close to continuum@ equals
The gauge invariant constraint the continuum topological charg@8]. The trace in Eq(16)
includes a sum over lattice sites. Leaving this sum out pro-
||[TM,TV]||<EW (10) duces a local functional of the lattice gauge background

which is a lattice version of the topological charge density

for all u>v does not change the continuum limit. It is tr FF(x). For a review, se€29].
equivalent to It is important that the prodf26] of the bound makes no
use of the special structure of the matricgs in Eq. (1)
except their unitarity. Thus any unitafy, with commutators
||1_UMV(X)H$€,U-V (1D close to zerq10) can be used in Eq$12) and(16) to define
) , homotopy classes for the gauge backgrounds. Of course, the
for every sitex. The e, are small fixed nonzero numbers, «qc4)" topological density has no meaning if the,’s are
independent of3 and ofN.. The probability distribution of 1,5 general.
the link variables ieS with integration ranges restricted by Although we spoke about fermions and used gamma ma-
Eq. (10). ) . . . . trices, they were auxiliary concepts. We only dealt with the
The lattice version of the massive continuum Dquc operapyre gauge sector. The gamma matrices played a role in de-
tor D(m): VS®VC®V|—>V§;®VC®V, is an element in the  fining the topological number, but the latter is just a function
algebra generated b, , T,, v, and thus is gauge covari- of the gauge field background. It will be important in the
ant. The Wilson-Dirac operatddy(m) is the sparsest pos- following discussion that this definition 6 can be non-zero

sible analogue of the continuum massive Dirac operatopn a finite lattice. One need not to go to an infinite lattice to
which obeys hypercubic symmetry. Fixing thparameter to  see non-zero topology.

its preferred valuer(=1),
B. Reduced model and reduced topological charge

The reduced model for lattice gauge fie[dd is defined
on a toroidal lattice with a single site. The matricBs be-
(12) ~ come unitary matrices with no restrictions on their structure
since they are equal to, [cf. Eq. (1)] on a single site
lattice. A connection between models differing only in the
number of sited/ can be established by takimdy, to infinity
with B/N. fixed. The leading behavior of traces of Wilson
loops written in terms of thd , is then independent o0¥.
Actually this is only true for8/N; small enough. It fails for

Dw=m+2> (1-X,), X!X,=1,
)73

One can then prove a general boj26|

12 large B/N. and thus also for the continuum lin{it0]. The

[N min(DW(M)Dw(mM) 1Y%= 1-(2+2) Zv €uv key to fixing the model is to understand that Méndepen-
. dence is caused by momentum space getting absorbed into

—|1+m|. (13)  the space of eigenvalues of the operafbys Consequently,

the quenched reduced lattice model is defined by freezing the
Here \y,in(M) is the smallest eigenvalue of the matiik. eigenvalues oT , to a set uniformly distributed over the unit
This bound has content only fon close to—1: circle for eachu [10],
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The angles B'M are randomly distributed in the interval 0.9 i .
[—,7]. The ordering of the angles for each directign
does not matter since one can go from one ordering to an-
other by appropriately changing the integration variables
V, . In other words, only the sets of eigenvalues are frozen, os |- .
not the ordering within each set. The matridgsare unitary %
and otherwise restricted only by E@.0).

The pure gauge action is invariant undﬂéL—NMDl’L
where theD ;L are arbitrary diagonal unitary matrices. Thus
the V,, should be thought of as taking values in the coset
spaceJ (N.)/(U(1))Ne. The most important symmetry of the
pure gauge action is gauge invariance which now acts by
conjugationTM—>QT#QT. One can think ofQ) as the re-
placement for G(g) in Eq. (2). The gauge group is
SU(N)/Z(Ng). &

The absolute minima of the action are givenys that
are simultaneously diagonal. These minima are changed oni 0.5 - £
into another by certain sets bf, matrices. In the double line 2
notation[10—13 of planar graphs, the crystdlmomentum
going through a line is given, component by component, by
the difference between the angular phases of the two eigen 04 .
values of T, associated with each of the color indices at-
tached to each component of the double line. Different ®
minima give different momenta, and the sum over minima '
together with the sum over color indices reproduces the or- 03 ' ' ' :

. . . . 0 0.2 0.4 0.6 0.8 1
dinary planar lattice Feynman diagrams. As the typical spac- o2
ing between &, and the closest), is of order 1N, it
follows that the momenta values are in effective correspon- FIG. 1. Plot of the maximum plaguette angle in unitsmofs a
dence with those in a finite volume of sixe=NJ. On the  function ofb?=B/N,. The data are al,=31 andN =37 for the
other hand, focusing on a single minimum might suggést two-dimensional model and aredt=17 andN.= 19 for the four-
=N,. In the twisted case, one typically gets=N.42 |n  dimensional model.
numerical simulations, it is important to ensure that all
minima are properly sampled. This extra constraintL0) on the commutators df , is not

In the continuum version of the reduced mofiel], the  necessary at infiniteN,. For d=2, when we get close
basic variables are traceless Hermitian matrigswith 1= enough to the continuum limit and the lattice gauge coupling
strictions on their eigenvalues. One could try a “geometric b2=gIN, is large enough, we are far below the Gross-

definition of topological chgrge, but it doe§ not work well Witten phase transitiof30], and the plaquette eigenvalue
[111'. Thg natural expression corresponding to the NONYistribution is contained in a small neighborhood of unity.
Abell_a_n field gtrength I$,.,=[Au.A,]. So long as the\,, This is evident in Fig. 1 where we have plotted the expecta-
are finite matrices, . . X
tion value of the maximum angle of the untraced plaquette in
units of 7 for two different values ofN. in the quenched
- model. This is also true in four dimensions where again there
TrREFoe, o TrAAAA=O (18 s a phase transition as seen in the Fig. 1. A similar result was
also found in the four-dimensional twisted Eguchi-Kawai
model [31]. The numerical evidence strongly indicates that
because of the cyclicity of the trace and the antisymmetry ofhe extra condition restricting the matrices is satisfied as long
the epsilon symbol. To get non-zero topological charge, onas we are close enough to continuum even if we use only the
needs to work with infiniteA, matrices, and a numerical simplest single plaquette Wilson action.
approach seems impossible. The topological charge of the A complete study of topological charge is beyond the
lattice reduced model is defined by Ed.6) using unitary  scope of this paper and our discussion will be brief. Consider
T,'s that are restricted only by Eq10). As already men- a two-dimensional gauge field background in which Thés
tioned, the definition of topological charge and the restrictionrepresent aJ(1) background that is & (1) instanton on a
on the commutator§l0) work exactly the same way as be- two-dimensional torus. Thel, have the structure of a
fore. “shift” and a “clock” matrix [32]:

07 g i

laquette angle

um pl

06 R

Maxim
HK

HE
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0 1 0 . 0 work in which one can at least pose questions about topology
at infinite N . This is interesting because the results of Teper

0 0 1 [4] support a finite nonvanishing limit to the topological sus-
T =X=| ... .. o0 L (19 ceptibility in the lattice planar limit. We do not know if there
are configurations that produ€=1 and have an action that
stays finite as\. goes to infinity.

We now make an observation that might be of relevance
to the issue off dependence in the planar limit. The set of
1 0 0 - 0 backgrounds satisfying Eq10) falls apart into non-empty
disconnected components beyond what is needed for distinct

o

= O
o O
o O

=

0 ¢ 02 0 topology. Even at fixedQ there are several components.

T,=Y=| O 0 ¢ 0 (200 These different components make separate contributions to
e O the partition function, and these contributions are not obvi-
0 0 N 0 M ously suppressed at infinit¢, . It could be that the particular

connected component that dominates at infilNtedepends
Here ¢=e?™Ne. and we takeN=N,. This Abelian back- discontinuously on parameters, and therefore the action den-
i © sity need no longer be differentiable with respect to its pa-

Abelian SU(N,) background in the reduced model. As far as'ameters. In _part@cular, this could induce_ a nonanal_yticity in
the spectra of the various lattice Dirac operators go, how wé’/Nc. and this might be a way of reconciling the naive scal-
look at the background is irrelevant. Hence, the reducedNd for the action density~Ncf(6/Nc)] with 27 periodic-
model hasQ=1 for this configuration. Moreover, calculat- ity in 6 [24]. _ _

ing the gauge field action, we easily can check that it stays 10 Seée that the set of gauge fields one integrates over
finite in the 't Hooft largeN,, limit. Similarly, one can easily ~SPlits into disconnected components, consider again the
check that Eq(10) is satisfied forN, beyond some finite @bove two-dimensional example. Complete the paij by a
value. T; and aT, of a perturbative nature so th@=0. The shift-

One expects no topological effects in two-dimensional?'OCk pair cannot be deformed smoothly to unity while.obey—
planar QCD. This is not in contradiction with our observa-ing the constraint on the commutator becayse the shlft-clpck
tion because the continuum limit is obtained when the fixed?@ir could be used to construct a two-dimensional lattice
parameter of the 't Hooft limifg/N_ is taken to infinity, and ~ Dirac operator which would have a two dimensional topo-
these backgrounds do not contribute. We learn that latticégical charge of unity. Thus, this set of fodr,’s hasQ
reduction may perform a “miracle” in the sense that one mayzo but is homotop|cally inequivalent to a set where all four
find topological effects that were not present in the originall 'S are perturbative and consequently also k&s0. In
continuum model. Whether or not these effects are relevarftPite of the fact that we are considering o8lJ(N;) and not
in the continuum limit is a dynamical question. U(N.), the two-dimensional Chern numbers associated with

What happens in four dimensions? We have seen théhe different two-dimensional tori included in the four-
what looks like an Abelian background before reduction carflimensional torus manage to survive in the reduced model.
appear as a non-Abelian background in the reduced model. Let us brleﬂy mention anomalies associated with chiral
(Actually, the results of33] say that for any finitdN.=3 on ferm_ions. Thg free energy of the reduced model with fermi-
a continuous torus, any allowed value @fcan be attained ©ns included is supposed to reproduce the free energy of the
by an Abelian background. We are not making use of thagriginal model at leading orded? and subleading orde, .
result here. In four dimensions, one can obtain a configura-Hence, anomalies should spoil the gauge invariance of the
tion that is nontrivial topologically, for example, by choosing reduced model too. In the overlap formalism, there are
an Abelian instanton in the 1-2 plane and another Abeliarsimple lattice Abelian gauge backgrour{@$] in which one
instanton in the 3-4 plane. These instantons would lead t6an prove that gauge invariance cannot be preserved if there
shift-clock pairs as above. We could take=N? and write ~ are anomalies in the continuum. Moreover, this happens al-
the T,’s as direct products oNXN matrices:T;=X®1, ready on finite lattices. These backgrounds can be “bor-
T,=Y®1, T;=1®X andT,=1®Y. All these matrices are rowed”to produce non-Abelian backgrounds in the reduced
in SU(N?). The topological charge of this backgroundQs quel with a similar effet;t. The ove_rlap line bundle is
=1. The spectra of thd,'s are highly degenerate in this twisted over the torus defined by variablgs J< that
example. To produce truly acceptable configurations in &nter through the family of gauge backgrounds described by
quenched reduced model, we would need to find deformal1=€P1®Y, T,=eP2®Y, T;=X®1, T,=Y®1 and, as in
tions of these matrices that lift the degeneracy while presenthe case of the “instanton,N.=N?. Again, we see the po-
ing Q=1. tential to move beyond the obstacles identified 1], but

The action of this configuration diverges linearly with there is a degeneracy of eigenvalues we need to eliminate.
N, just like the action of a continuum instanton. But we see
that there are configurations with non-zé&ppand the ques-
tion of their survival at infiniteN, is similar to the familiar In the original unreduced lattice model, massless fermions
question in the continuurfid4]. This indicates that in four are incorporated through the massless overlap Dirac operator
dimensions, the reduced lattice model could provide a frame-27]

ground on a lattice of aredl, can be viewed as a non-

C. Fermions
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The transporteeipuTM introduces a phase into the re-
9 +q 9, +q duced fermion operator. This suggests that there are several
P=p—gq P=p—gq options for definingQ, something we glossed over in Sec.
IIB. It is a bit strange that one seems to be able to define a
0 +p 9, +p topological charge that depends on the momentum carried by
the fermions. Probably, for configurations typical to the con-

tinuum limit, Q ends up not depending gn This is indeed
FIG. 2. A planar diagram representing the one gluon exchangéhe case for examples in Sec. IIB as long Mss large
contribution to the scalar-scalar correlation at momengim enough and the momenta are not too large.
It is quite easy to ad®; flavors of fermions and then go
1 to the topological limitN; ,N,— < with N; /N kept fixed. In
D0=§(1+ Yd+1€) (21)  this limit the fermionic determinant needs to be included in
the gauge field integration. Similarly, one can also introduce
fermions in representations other the fundamentals. Chiral
gauge theories will have anomalies because, as mentioned

dence on the fermion parallel transporter.
The reduced version db, is obtained by replacing the before, the backgr_ounds that produce them have a reduced
model representativi85s].

original transporter with the reduced fermion parallel trans-
porter. For fermion momenta 7<p,< andT, given in

Eg. (17), the reduced transporter &PxT,. With that re- IIl. TWO-DIMENSIONAL PLANAR QCD
placementD, becomes the redu_ced massless overlap Dirac pq gn exercise, we will calculate the scalar-scalar
operator. It depends on the fermion momentum. The external
line propagatof36] is

with e=sign(H,y). The operatoiD, has an implicit depen-

($(x) x(x)x(0)4(0)) (25)
g(p)= zi[Dfl—l]. (22)  and the pseudoscalar-pseudoscalar
m (o]
((X) Y3 (X) x(X) y34(0)) (26)

Consider the connected correlation function of the fer-

mion bilinear (LAN), #(x) ¥(x). In momentum space it is correlation functions in momentum space in the planar limit
given by of two-dimensional QCD(We use two different fieldsys
1 and y, to eliminate the disconnected piec&hese correla-
_ = tion functions are known exactly and are completely deter-
G(P)= Nc([<Trg(p)g(q)>gauge averagangle average mined by their Feynman diagrams. Nevertheless, they are
(23)  quite nontrivial. While they can be expressed as an infinite
sum over stable mesons with mass squares that are evenly
with P=p—q. Similar expressions can be derived for the spaced asymptotically, they also have free field behavior at
correlation functions of other bilinears. large momenta. Thus, we have the cohabitation of
The way reduction works is best understood by looking atasymptotic freedom and total confinement that is also present
an example. Figure 2 is a diagram showing the various moin four-dimensional planar QCD. Moreover, with an appro-
menta in the one gluon exchange contribution to a scalarpriate choice of limits, chiral symmetry is broken, and there
scalar correlator. All crystal momenta come from the diago-a Goldstone boson. If the potential infrared problems turn
nal entries of the fermion transporter and flow in theout to be tractable in two dimensions, we can be confident
directions indicated by the arrows. Tillemomenta are asso- that there will not be any difficulties in four dimensions
ciated with color and th@,q momenta with flavor. Single where infrared issues are less serious.
lines are fermions, and the double line is the exchanged In two-dimensional QCD, spontaneous chiral symmetry
gluon. The gluon carries momenturéi—6;. With the  breaking only occurs if one takes the linmit,—0 after the
quencheds; randomly distributed on the momenta tori, the planar limitN.—o at fixed 8/N.. In the reduced model for
summation over the color indicésandj induces the needed any finiteN,, we have exact chiral symmetry @k, =0, and
integrations over momenta. we can investigate the planar limit of the massless reduced
Note that we compute the meson correlators directly inmodel. The continuum limit is taken last. With, set to zero
momentum space. This is an important new feature with sevbefore the largeN, limit, we will not see direct signals of
eral potential applications. spontaneous symmetry breaking. The simplest assumption is
When the quarks are massive, the propagg(p) is[37]  that chirally invariant quantities will be well described by 't
Hooft’s solution, but chirally noninvariant observables will
1-7v4+1€ o4 not be. Thus the invariant combination to compare to the 't
2m (1+ )+ (1= p) ygr € (24) Hooft solution is

g(p)=

The parametep. fixes the bare lattice quark mass via, (p(x) x(X) x(0) (0)) — (4h(X) yax(X) x(0) y314(0)).
=2mu. (2
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For massive quarks, the situation is less subtle, and one
can consider the correlators separately. The planar limit of H
the reduced model is supposed to produce a UV regulated s
approximation to the 't Hooft solution. It is interesting to see ] o o )
in detail how this works. On the one hand, the very highfor any permutationo, all minima should be visited with
mass mesons are meaningless entities at finite ultraviolet cu@qual frequency for larg@/N . _ _
off, while on the other hand, they are responsible for the free One may ask whether the barriers between different
field short distance behavior. minima are high and whether they become infinite in the

It is believed that ordinary, massive two-dimensionallargeNc limit. The minima can be connected by sequences of
QCD has two phasd88]: a weak coupling one in which the t.ra_nspos]thn's. We do not know yvhether.the bgrners are in-
gauge coupling divided by the quark mass is small and dinite at infinite Nc and whether in two d|mer_15|ons, Where_
strong coupling one in which this ratio is large. In the strongthe Feynman diagrams capture all the physics, one can ig-
coupling phase, there are light baryonic states, but there is nPre the many minima.
pion whose mass vanishes @), in the chiral limit, and it is From now on, we will useo=yB/N. as the parameter
not clear how the larghl, limit should be defined. 't Hooft's held fixed asN. goes to infinity. In the planar limit, one
planar solution is in the weak coupling phase and does hav@PProaches the continuum linfiand hopefully the 't Hooft
a pion mass that vanishes g, It is interesting that the ~Solution whenb— . Comparing to a continuum definition
numerical results obtained ii5] seem to correspond to the Of the gauge coupling where the partition function is given
strong coupling phase and, nevertheless, also seem to admiP¥
large N, limit with the 't Hooft scaling of the gauge cou-

N¢

-1

1#]

sin sin N (31

W(i—J)’

pling. Thus it could be that in two-dimensional QCD there 1 )
exists a strong coupling planar phase that is defined through exp — p 2 TrEL (32)
the lattice and which differs from the 't Hooft's solution. g m
We will work in the weak coupling phase where 't Hooft's
solution should be valid. If there are indeed two planarVe 9€t
phases, convergence to the planar continuum limit of the
weak coupling phase might be slower than anticipated. , 1 1
g°=55= : (33
2B 2N.b?
A. Pure gauge
We can go to a “unitary gauge” in whicfi, is fixed to To get a feeling for the numbers, consider two-
the clock matrixY, with N=N.. DenotingT, by U the par- dimensional QCD with massless quarks. The lowest scalar
tition function is meson mass is approximately 0.967In taking a sequence
of increasing8’s andN,’s with b?=5, we find that this mass
:j dWe approaches 0.43 in lattice units. With a mass scale this large
U=WYW, WeU(N) ' in lattice units, we can expect good agreement with the con-
(28)  tinuum theory only for small momenta.
5, m(i—]) In two dimensions, quenching is not necessgt9,39.
S= 45% |Ujj[*sir? Ne We will use a version of the model where there is no longer

a need to perform the average over the angles. In this version
Terms withi =] do not contribute t& All absolute minima ~ the €igenvalues of thé,, matrices are siill frozen to the set
of Sare atU’= 5ije2|ﬂ'a'i/Nc_ Here o is a permutation of cqnsstmg of theN,, roots of unity. Thls qdds anew “trans-
0,1,2 ... N.—1. There are no other minima. lational” symmetry to the model in which each, is re-

For very large B/N., the relative weights of distinct Placed byz, T, with Z,Tc:l- This transformation preserves
minima are given by the ratios of determinants of small fluc-the eigenvalue sets. WitN. chosen to be a prime number,
tuations around the configurations. We parametrize the flucthe eigenvalues oT'; will span the same roots of unity for
tuating degrees of freedom by the off-diagonal entries of any O<k=<N;—1, and will simulate the situation on a torus
Hermitian matrixH which generates a conjugation around aof size Ni.

diagonal saddle: Let us summarize the symmetries of the bosonic action:
o o i 2170 IN.__ f217o; IN .

oUy=i[U7 H]jj=iH;[e” 77 Te—em7 7] (29) Sy(T1. T =Sy(z1T1,2,T,)  with [z,]=1
The diagonal terms of) do not contribute, and the second + +
order action is Sy(T1,To)=Sy(T1,T2)=Sy(T1,T5) (34)

m(oi—o; w(i—j =
8°S=16B2, |H;;|*sir? ( N Virp (N D (a0 So(T2:T2)=5(T2 To).
1] c c
These symmetries reflect invariances of the original toroidal

Since lattice theory.
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B. Fermions and meson observables p2
2_
The fermionic momentg,, can be chosen from the set Q _g- (39)
2mwjIN;, j=0,1,...N.—1 for fermions with periodic
boundary conditions and from the get 3,3, ... N.— 3 for

The basic formulas for the meson propagators with mas-

fermions with anti-periodic boundary conditions. Thus, thesive quarks are

momenta flowing in the fermion lines are identical in type to

those flowing in the gauge boson lines. With these momenta, o 9 2
the planar Feynman diagrams are similar to those of a system Pa(Q% )= ™ In
on a lattice withN? sites. R T = ven Q%+ u2  u?
The symmetries of Eq(34) imply that the meson field (40)
propagatorg23) obey the following relations: o 2 2
SQy= 3 |50
G(P1,P2):G(_P1,P2):G(P1,—Pz):G(_Pl,_Fé)) ’ n=Todd| Q%+ u2 w2|
5

G(P3,P1)=G(P;,—P1)=G(—P,,P;)=G(—P,,—P1).  Asymptotically u2~ 7n, and the residues approach a finite
limit, so the subtracted sums converge.
These symmetries will be strictly enforced by explicitly add-  The residues? are given in terms of the real, normalized
ing the contributions of all gauge field configurations con-wave functionsg,(x):
nected by the symmetry transformations of E2).

G will be denoted bysS for the scalar meson propagator 1 1 pn(x))?
and by P in the pseudoscalar case. 't Hooft's solution, to- rﬁz;y fo dx " . (42

gether with subsequent wofKO0], provide explicit formulas

for Sand P in momentum space. Since they are composite, o

there are ultraviolet divergences, and the unrenormalized for- FOr massless quarks, one needs to take the Kmit0.

mulas are divergent. Since their source is in free field theory! he relevant combination Sz +Pg, which is the regulated

these divergences can be regulated in many ways. We defiv€rsion of Eq.(27). For mq=0, the lowest meson mass is

the renormalized meson correlat@&sandPg by subtracting  Zero, and there is an infrared divergencepat0. This is

at zero momentum for massive quarks and at an arbitrarPamd'e_OI by making the subtraction at nonz&® More in-
The continuum results we strive to reproduce using oufn the Appendix.

reduced model are expressed in terms of the eigenvalues and

eigenfunctions of 't Hooft's Hamiltoniahl. It acts on square C. Numerical results in the reduced model

integrable functions defined on the intervgDd,1]. The —_ .

bougr;ldary conditions are Dirichlet for massi\% c}uarks and we ha"'? focused on two cases. The firsgis1 V‘.’h'Ch’ as

von Neumann for massless quarks. For massive qublis, explained in the Appendix, corresponds to an intermediate

positive definite. For massless quarks, it has one eigenstal _ark mass. Thg other case Is massless quarks, where the
with zero eigenvalue, and all other eigenvalues are strictl)(; _wal_symmetry IS _sppntaneously broken at wgikcoy-
positive. There are no degeneracies, and the eigenvall¢s ofpllng in the planar limit. Other values of are briefly dis-
provide the masses squared of the meson bound states. In tﬁléssed' . . _ .
following discussion, all dimensionful quantities are con- Nur’?erlcal results_are obtalne_d by working in the “unitary
verted to their dimensionless counterparts using the scale gauge: and.generatlng gauge .f'elm§ that are related tof
by conjugation. Every conjugation belongs to%(2) sub-
group of SU(N.). A proposed conjugation is accepted or
(36) rejected by the Metropolis algorithm. Ti®&U(2) elements
™ are picked so that the acceptance rate is close to 0.5. One
iteration is defined as a sequence of attempted updates for an
which has the units of mass squared. In these dimensionlessitire set olN.(N,—1)/2 SU(2) subgroups o8U(N,). The
variables, subgroups in the set are defined by placingS$t#2) matrix
in the (n,n),(n,m),(m,n),(m,m) entries of theSU(N.) T,
Hd?n:,uﬁd)n. n=0,12.... (37 matrix. The indices obey £n<m=N;. Fermionic mea-
surements are made every 100 iterations, and 1000 iterations
The quark mass enters by the dimensionless parameter ~ are used for thermalization.
Fermionic propagators are computed using @4). This
2 is done by diagonalizindd,y, exactly, constructinges, and
y= -3 (38  then performing an exact diagonalizationyfe. The propa-
gator,g(p1,p2), at any mass, is obtained from the spectral
decomposition ofyze. This is done for all values gb, and
The squared momentuf? is replaced by the dimensionless p, and at a fixed value of ;. The “bare” scalar and pseu-
variableQ? doscalar propagators are

2 gzNC

e
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1 0.1 T T T T T N3 o
So(P)= g2 .2 TO(P1+P1.p2+P2)g(P1,P2) N7 )

c P1.P2 "Ng=41" —x—
+9(p1—Py1,p2+P2)a(p1,p2) T l
+9(p1+P2,p2+P1)g(p1,p2) onl 1 |
+9(p1+P2,p2— P1)g(P1,P2)] (42) "

1 0.2+ * E
Po(P)= 3 > TIg(pi+P1.p2+P2)g(p1,p2) P
4Nc P1.P2 %
0.3 | ]
+9(p1—P1.p2+P2)g"(p1.p2) ”;;
- X
+9(p1+P2,p2+ P19’ (P1,p2) g %
e} 0.4 % .
+9(p1+P2,p2=P1)9"(P1,P2) - 43 o x
There are different vecto®= (P, ,P,) which correspond to 05
the same value d®?=4% sir?(P,/2). By definition, the lat-
tice meson propagators are a functionPSfonly. This func- 0 L
tion is obtained by averaging over all momenta with the '
sameP?. After a final average over several values Tof,
these propagators are the reduced model's approximation t¢ |

Eq. (40).
We first compare numerical results to the continuum

keepingy=1 fixed. In order to study the approach to the 0.8

continuum limit, we carried out simulations at five values of

b2: 1,2,3,4,5. At each value df?, we generated gauge field

configurations atN.=31, 37, and 41 to see how the limit -0.9

N.=c is approached. The lattice momen{&? range from

0 to 2y/2 while \JQ?, reaches a maximum of 7 Bf=1 and

a maximum of 16 ab®=5. In this range of momenta, good FIG. 3. Plot ofP (Q? 1) ath?=5 for No=31,37,41.

estimates oPg(Q?,1) andSg(Q?,1) are obtained by includ- o2

ing only the first 100 terms in the sum over states. Since w

have included the first 2000 eigenvalusse the Appendix 1,=4.16036, which is slightly above/0?=4. Hence, all

our “theoretlzcal" data are \Z/ery accurate. . the masses contributing to the scalar propagator are above
Let S (Q%1) andP (Q%1) denote the regularized, re- {he region of Q where the pseudoscalar propagator con-
duced model scalar and pseudoscalar propagators. As in thgyged well to its continuum limit. Thus, the difference we

CO”“”UUQ"L we subtract the propagators at zero momentuifoynd between the scalar and pseudoscalar propagators is
Data atb“=5 are shown in Figs. 3 and 4. At lower values of jikely to be a finiteb? effect.

=4, and the lowest pseudoscalar masg¢s-2.69713,
Svhich is below/Q2=4. However, the lowest scalar mass is

b, theN. dependence is even weaker. Evebat5, we find The difference between the two propagators can also be
thatN.=41 is large enough to provide accurate numbers foseen by extracting an effective mass. We set the momentum
Ng=00. in one direction to zero and Fourier transform on the other

We study the approach to the continuum limit in Figs. 5component to produce a function of a conjugate, discrete
and 6. Looking at differenb? values, we see that the pseu- “spatial” variable. Figure 7 is a semilogarithmic plot of the
doscalar propagator approaches its continuum limit morecalar and pseudoscalar propagators at sample parameter val-
smoothly than the scalar propagator. Ri@?<4, the num- uesb?=5 andN.=41. We see that the pseudoscalar propa-
bers seem to have converged to th#ir limit, and there  gator is a better fit to a straight line.
is reasonable agreement with the continuum result. On the One can get an effective mass in either channel by forcing
other hand, the scalar propagator has not yet converged to iggraight line fits. The resulting effective masseblat=41 are
b2=o limit in any region of Q2. It shows some overall shown in Fig. 8 as a function dd?. Although both masses
agreement with continuum results, but it is less convincingappear to approach the correct continuum values, the finite
than in the pseudoscalar case. In addition, the pseudoscalaf effects on the scalar mass are much stronger.
propagator seems to approach its continuum limit monotoni- We now turn our attention to the behavior of the pseudo-
cally, but the scalar propagator does not. scalar propagator as a function of,/e. We numerically

The main difference between the scalar and pseudoscalaomputed this propagator as a function (P2 at several
propagators is that the lowest mass in the pseudoscalar chavelues ofmg/e for b2=5 andN.=37. An effective mass
nel is smaller than the lowest mass in the scalar channel. lwas extracted as before. This effective mass is plotted as a
the pseudoscalar propagator, we have agreement belofanction of m,/e in Fig. 9.
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FIG. 4. Plot ofS (Q?,1) ath?=5 for N,=31,37,41. FIG. 5. Plot ofP (Q? 1) atN,=41 forb®>=1,2,3,4,5.
The empirical fit The comparison for the subtracted meson propagator is
shown in Fig. 10 and is quite good. The deviations that now
m m.\ —078 appear at smalfD can be mostly attributed to finité, effects
_”:2+o_51( _q) (44)  which are sizable now because of the massless pseudoscalar
m
q mode.

shown in the plot works quite well.
With increasingmg /e, the ratiom_/my approaches 2, as IV SUMMARY AND CONCLUSIONS
expected. However, the subleading behavior does not match The main objective of this paper was to introduce a new
the expression derived in the Appendix which had.33  program whose aim is the numerical solution of planar QCD.
rather than—0.78 in the exponent. On the other hand,/e  OQur first test was an application to two-dimensional planar
is clearly not proportional ta/mg /e as would be appropriate QCD. Much more can be done on this test case; our results
for light quarks. We get 0.78 instead of 0.5 in the exponentare just the very first steps. We hope to carry out similar
The fit indicates that the masses we used are in an interm@reparatory studies in four dimensions.
diate region. Our numerical experiment in two dimensions shows that
Finally we look at massless quarks. To compare the latticeeduction can reproduce some correct numbers, but that pre-
data to theory, we need to pick a subtraction point. We usedise agreement would require a more substantial effort. It
JQ?=3. For any finiteN,, the scalar and pseudoscalar should be kept in mind that QGDn the planar limit is quite
propagators are identical for massless quarks. As explainethallenging numerically. This model was chosen as our test
earlier, the common value of these reduced model propag@ase only because we have exact theoretical information
tors ought to be compared with the continuliyk, defined  about it. In four dimensions, the planar limit of QCD might
by be approached more rapidly.
Perhaps surprisingly, two dimensions might be even
harder than four dimensions in the reduced model frame-
(45) work. If all minima of the pure gauge action are correctly
sampled N~ V0. Therefore, roughly, the number of inte-

[

1
Mr(Q%)=5— 2

n=0

r2 r2

n
Q%+ un 3+ un)
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FIG. 6. Plot ofS, (Q“,1) atN.=41 forb°=1,2,3,4,5. FIG. 7. Plot of the scalar and pseudoscalar propagators in real

space ab®=5 andN.=41.

gration variablesN?, decreases with the dimension at a
fixed equivalent number of lattice sites. One might not neecf to the 't Hooft limit, we might get meson widths in addi-
more lattice sites in four dimensions than in two becausdion to the meson masses. Recall that the momentum enters
infrared effects are stronger in two dimensions. very differently here so that one might even contemplate a
The ultraviolet cutoff is increased by decreasing the 'tdirect analytical continuation in momentum to physical val-
Hooft scaled coupling?, which is the same as taking obf ~ ues. The Veneziano limit, as a function Nf/N., would
parameter to infinity. Numerically we have learned that ongdrovide — quantitative  assessments of the valence
needs largeN, values to see convergence to the planar limitapproximation—something of great value at this point in
for larger values ob?. The associated cost could be reducedtime.
by improving the lattice action and our fermionic operators. Furthermore, the old problem of dealing with complex
Already from[4], we learn that simple improvement meth- actions numerically might be more tractable in reduced mod-
ods have a beneficial effect. After reduction, the relative ben€ls because the number of integration variables seems to be
efit from improvement might be less than in regular simula-S0 much smaller. This would open new ways to looksat
tions. Of course, one needs to rethink what kind ofdependence and at finite baryonic density. We conclude that
algorithms are best suited for reduced models. pursuing our proposal further is a risk that is worth taking
We have determined numerically that the eigenvalue disand look forward to further developments in this direction.
tribution of the parallel transporters around plaquettes has
support in only a small neighbor.hood of unity when we are ACKNOWLEDGMENTS
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cluster of W. Pickett's condensed matter theory group at UC We write P/(Y X) . (d/dy)[P/(y=x)] in Eq. (A1)
. . and perform an integration by parts. Then, we add and sub-
Davis where some of the calculations were done.

tract ¢’ (X) in the integral, ending up with

¢(1)— ¢(x)

APPENDIX 1 1
§+1—x)¢(x)+ 1-x

(Hp)(x)=v

In this appendix we describe the combination of numeri-
cal and analytical methods used to produce the theoretical H(X)— ¢(0)
predictions for the meson correlators. Without exception we -
are only dealing with the case of quarks of degenerate mass.

1, (1—ﬂ2
x 2? a5

Our presentation is fairly detailed. 1 @' (y)—d'(X)
The 't Hooft's Hamiltonian H, is defined by —j d —y—>x (A2)
1 1 P _
(Hp)(X)=vy| =+ —) ¢(x)—f dy We now assume asymptotics of the type
X 1=x (y—x)?
X[ d(y) = p(X)]. (A1) d(x)~xP  for x—0. (A3)
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1.2

regime. This is why we were justified in using the asymptotic
expression fokp under the integral sign, for what seemed to
be the entire range. The integffbr x=0) is done using the

ur—1t
fdu Jdu

=(cotum—cotBm)+

0.8

0.6 (Ab)

aa
sin( )
which is — 7 cot@.

The terms containing logarithms cancel and to cancel the
subleading singularitiegwhich are still too strong to be
matched by a term linear igpg—which is what would be
necessary for an eigenstptge need

0.4

MU{(Q)

0.2

v—1+ B cotwB=0. (AB)

This formula can be found in 't Hooft’s original papEs].

For light quarks,y—0, and we get
-0.2

1
,8~;\/3_y for y—0. (A7)

-0.4

For massless quarks the asymptotic analysis needs to be

06 . ) . . L . . redone. In this case the Hamiltonian has the constant func-
0 2 4 6 8 10 12 14 16 tion as the lowest eigenstate. Thus, the actiorHobn a
Q function is determined by the derivative of the latter:
FIG. 10. Plot of the meson propagator for massless quarks as a
function ofb?. Theb?=1 data are aN.= 37, theb?=2,4 data are (Hob)(x) = #(1)—p(x)  ¢(x)—¢(0)
atN.=41 and theb?=3,5 data are alN,=47. 1-x X
_ 2 ’ g
We plug this in and evaluate far~0. We use the asymptotic —Eqb’(x)log(l X) _fld P (y)—¢ (x).
form over the entire integration range inside the integral, but 2 X y—X
shall later make sure that only the regionyo€lose to zero (A8)
contributes to the final expression. Also assume that30
<1. Then the two most singular termsxat 0 are contained
in We assume
@' (x)~x* for x—0 (A9)

4 B s
(Hp)(X)~(y—1)xF~ 1+ EXB Nogx?
with 0<a<1 and check for consistency. This will give a

L[ ub-1-1 1 condition ona, which will have a solution in the required
— BxF- f du ———+ —— interval. As before, we take the asymptotic form throughout
0 u—1 u+1 . . .
the integration range, and leave it to the end to check that the
1 contributions kept only came from the asymptotic regime.
+BxFog . (A4)  We find

a

Integration variables were changed in the integyedux. He)(x)=— Lx%x“logx—x“f 1/xduu _
The term 1/(+ 1) was added and subtracted. The subtracteé 1ta u-1

integral is trivial and gives the second term that contains a (A10)
logarithm in Eq.(A4). The integral converges as the upper

limit goes to infinity. Thus, even if we stop the integration at The u integral is rewritten by adding and subtracting terms
a large finite numbeA the answer would be some number chosen for their large behavior, with the objective of iso-
which will depend orA only slightly. But, if A is finite, the lating the contribution from the region near the end pgint
range ofy’s is from zero toAx, so it is all in the asymptotic =0:

4+
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i u*—1 ux [u*—1 . 1 massless and massive quarks are distinct, as one might have
du U—1 =J du U—1 —ut o+ utrl guessed would be appropriate for a manifestation of sponta-
0 0 neous symmetry breaking in the planar limit.
1 X
+—+log——. (A11) 2. Massive quarks: y=1
aX® 1+X

Equation(A6) simplifies wheny=1: its roots areB,=k
Collecting terms in the integral and using —3% with k=1,2, ... . Thedouble series in EqA16) col-
lapses into a single series amﬂ(x) has the simple structure
of \/x times a series in for thex—0 asymptotic regime. For
the eigenvectors, there isxa~»1—x symmetry, so the struc-
ture should be

o B P T pw
J duuw? =—cot— for p<q (Al2)
0 1-u® g q

we get
(X)) =2X(1—Xx) () (A18)
o 1 1& a—1__
f u:mo(m), (A13)  Wheref, is either even or odd about the center of the seg-
0 1-u? ment (0,1). It is convenient to map this segment to0l(1).

For y=1 the Hamiltonian is particularly simple:
As a result, we get

1P
x° Ho=-[ay o, (A1)

(Hop)(x)=— %— a+1+7TXaCOt7Ta(+ ---. (A19)

) ) ) __Under the change of variables—»2x—1, and still using a
a is the unique solution between 0 and 1 of the equation: yrime to denote derivatives with respect to the new variable,
1 we get

— (A15)

T Cotma=

1 P
(H¢)(X)=—2f dy-—'(y). (A20)
. . . -1 y—X
This equation is the same as E@\6), extended to ¥
<2, with B=a+1 and withy=0. Since the leading term is 4 \anishes at the end points, go=const is not an eigen-
a constant, we see that the next period of the cotangent in Eg¢iate  The eigenfunctions are defined over the segment

(AB) provides the subleading behavior. _ (—1,1) and have the structutdropping the superscript de-
In summary we conjecture that the eigenfunctions fornoting the value ofy)

massive quarks have the following expansion nea0:
dnly)= Vl_yzfn(y)- (A21)

We shall use Chebyshev polynomials of the fifEt and
second(U) kind to parametrizé , [41]. Some of their prop-
erties are listed below:

dUX)~(agxPr+alxPiti+ .. )+ (adxPe+adxfe i+ ...
+...+(agxﬁk+a‘ixﬁk+1+...)+... (A16)

whereB,, k=1,2, ... are, in increasing order, all the posi-
tive solutions of Eq(A6). When the quark mass is taken to sin(n+1)6
zero the entire series associated with the first root is replaced U,(cosh)=
by a constant.

In the massless case we also can say that, for any excited
eigenstate of, (H¢g)(X)=E¢e(x),E>0 we have

sing

T,(cosé)=cosno

aE 1 P Tn(y)
= - atl dy—— =mU,_1(X
$e(X) %1 PR ) f_l yy—x iy mU - 1(X)
+terms that vanish faster as—0. (A17) 1 p
_ _ J’ dy——VI-y?Un(y)= = 7T 1(X) (A22)
The value of B<a<1 can be easily calculated numerically. J-1 ~Y—X

Note that the subleading correction at the end point holds in
an ever decreasing range as the energy of the dEatis-
creases.

In conclusion, the Hilbert space appropriate to the Hamil-
f[onian for the case of massless quarks ponsists of SquarQ(xz—l)Um,l(x)Un,l(x)=Tn+m(x)—T|n,m‘(x).
integrable functions on the segment obeying von Neumann
boundary conditiong’ (0)=¢'(1)=0. In the massive case, The indicesn andm above are non-negative and vary in the
the boundary conditions were Dirichlet(0)=¢(1)=0 in- ranges in which the equations make sense.
stead. Note that the internal Hilbert spaces corresponding to We represent a given functiop(y) as

1
f dx\/l—xzun(x)um(x)=g5n,m
-1
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(A23)

B(y)= vl—yznZO a,Un(y).

A short calculation then gives

¢ (y)=— go (N+D)a,Toi1(y). (A24)

1
iy

Using the properties of the Chebyshev polynomials listed in

Eqg. (A22) we find

o

v Wgo (N+1)a,Tpa1(y)

1
-1

(H¢)(X)=ZJ dy

[

=2w20 (n+1)a,U(X). (A25)

Supposed(x) is an eigenstate oH with eigenvalueE,
(He)(X)=E¢(x). Then,

Eu—yzngo anun<y>=27n20 (n+1)a,un(y).
(A26)

One can proceed now by using orthogonality on one of th{(
sides of the equation. We choose to multiply the equation by

J1-y2U,(y) and integrate ovey:

“ 1
EnZ:o anffldY(l—yz)Un(y)Um(yF 72(m+1)ay,.
(A27)
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772

—b

= - (A32)

E Xmnbn=
n=0

To calculate the entrie§,,, we go to angular variabley,
=Cos¥.
1(= )
§mn=§J désing[cogn—m)H—cogn+m+2)40].
0
(A33)

We need one elementary integral, for even intdger

f désindcoskf=— (A34)
0 k?

For oddk the integral vanishes. This leads, for m even, to

1 1
= — . A35
£mn (n+m+2)2—1 (n—-m)?—1 (A35)

In particular, on the diagonal we have
Enn=1+ ! (A36)

" 4n+1)2-1

or n—m odd the matrix elemeng,,, vanishes. The matrix
is given by
X 1
™ J(m+1)(n+1)
1 1

X
(n+m+2)°-1 (n—m)?>-1

(A37)

We need to evaluate the integral on the left-hand side.

Using an identity in Eq(A22) we find

1 111
f (1_y2)Un(y)Um(y):§f [T|n—m\(y)_Tn+m+2(y)]
-1 -1

=&nm= &mn- (A28)
By y— —y we see that,,,=0 for n—m odd. Also,
E gmnan:_(m_l'l)am- (A29)
n=0 E
We defined new coefficients
by=+n+1 a,. (A30)
We also defined a new matrix
Xmp= ! & ! (A31)
mn vm+1 mn\/n+1'

We end up needing the eigenvalues of the symmetric matri
X:

for n—m even andX,,,=0 for n—m odd. If \ is an eigen-
value ofX, E=7?/\ is an eigenvalue of the 't Hooft Hamil-
tonian.

For high states one can use the diagonal terms as an ap-
proximation. One gets the asymptotic estimate

E,~m%(n+1) (A38)

with the state labeh starting atn=0.
We need to determine the normalization convention on
the infinite vectorsi§q,b4, . . .) that would make the eigen-

states ¢e(x) (Hoe=E¢g) normalized to unity by
J5p2(x)=1. ¢e(x) is parametrized by
¢E(x)=2\/x(1—x)nzoﬁUH(ZX—l) (A39)

wherex is in the original range (0,1). Introducing the expan-
sion we find

71_2

E\2
2E nZO (bn)

1 (A40)

X
where
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71_2

HZO Xinnbn="5 bm- (A41)

We are now ready to compute the residuesyerl. We
need to calculate

id
pi= f =X 400, (A42)

o X

Here, y was set to unity and the eigenfunction is assume

correctly normalized. Changing variables, we arrive at

o0

pﬁ=k§0 a1 (A43)
with
)
- SNzt
'k:f dog—sin(k+1)6. (A44)
0

COSE

We change the integration variabteto 77— 6 and average
the expressions. Then, fareven we have to calculate

7 sin(k+1)0
= fo dQW (A45)
Use
. k
sin(k+1)6 L
W:Z g'(k=2j)0 (A46)

j=0

to conclude that for evek only the j =k/2 term in the sum
makes a contribution, giving

l = . (A47)

For k odd

cos6.

= — foﬂdo—s'n(k+01w (A48)
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(n)

2E
(b(kn))Zz

k=0, k—n=even w

5 (A51)

In each sector the eigenvalues were obtained numerically
by diagonalizing a truncation of the infinite matriof Eq.
(A31). The residues were obtained using E&50) with the
eigenfunctions of the truncated matdxnormalized accord-
ing to Eg. (A51). In each sector a matrix of size 2000

2000 was diagonalized and this produced accurate esti-

ates of the lowest 1000 eigenvalues in that sector. The
lowest pole contributing to the pseudoscalar is &t
=2.69713 and the lowest pole contributing to the scalar is at
mn1=4.16036. Asymptotically, the eigenvalues are given by

wi=m’n+27%+O1lin. The residues, r2, reach an
asymptotic value ofz?. The even residues approach this
number monotonically from aboverj=11.7596864) and
the odd residues approach this number monotonically from
below (r2=9.03541704).

3. Massless quarks

We now turn to the evaluation of eigenvalues and residues
in the case of massless quarks. The correct boundary condi-
tions for the massless case are von Neumann so we choose to
diagonalize the Hamiltonian in the basis of cosine functions:

(x|ny=\2cosmnx, n=1; (x|0)=1. (A52)
The states are numbered, starting with 0. The ground state is
known exactly and by keeping=1 we are in a space or-
thogonal to it. Just as before, even and odstates do not
mix, so we can diagonalize the Hamiltonian in each of these
subspaces separately,

1 1 ]
<n|H|m>=f dxf dyj tdte™ -Vl
0 0 0

X [cog 7nx)—cog mny)]

X[ cog mmx)—cog 7my)]. (A53)

To do the integrals we introduce, with no restriction on the
integersn,m, the integral

By the same technique as above we get non-zero contribu-

tions only fromj=(k=1)/2 (for oddk, k=1). Hence, fok
odd:

(A49)

|k:_7T.

Only the absolute value gf} is determined, since the sign of

171 1 o
Inm=—J dxf dyJ tdte X Vi[e' ™ — ' ™Y]
o 2Jo Jo o

X [T g!mmy], (AS4)

the wave function is not fixed by normalization. The final BY changing variables—1—x andy—1-y we see that

answer is
b{"
—evenKk+ 1|

Here, the normalization condition is

lppl=m (A50)

>
=0, k—n

k

lpm=(=1)" M

(A55)

We now restrict ourselves to eventm. This is enough to
get all nonzero matrix element®|H|m). In this case we
learn thatl, , is real,
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11 © sint x sint
|nm+|n,m:f f J tdte X Vl[e! X — g Si(x)= — dt—=—z+J dto = — 2 1 si(x)
' ' oJoJo X t 2 0 t 2
(A62)
X[cog mmx)—cog mmy)]. (A56)
* t
But, sincel, ., is real we can take the real part to prove ci(x)= —f dt?zCi(x). (A63)
X
<n|H|m)=In,m+Iny,m. (A57)

The asymptotics go as follows: For integer and large positive

We need onlyt , ,, for n+m even. Using the symmetry under k
exchange ok andy we get
. (-t 1
ci(wk)= +0O

1 X %
o= f dx f dy f tdte M e gimny] (m? O\ (k)
0 0 0
_ k—1
X[emmx_ elﬂ-my]. (A58) S|( Wk): ( 1L i O 1 3) .
™ 7K)
Using the above, and restricting in the enchion=1 and ( (AB4)

evenn+m we get
To find the residues in the case of massless quarks one
o needs to take the—0 limit on the massive formula:
<n|H|m>=w2n5n,m+2f tdt{ [1+(—1)""te ]
0

LX)
pa= ﬁf dx———. (AG5)
1 1 0 X
+
t?+7n? P+ a’m? Y(x) is the nth (ordered by eigenvalue and starting from
2(n2-+ m?) n=0) normalized eigenstate of the Hamiltonian with mass
w

parametery.
The entire contribution comes from the lower end of the
integral, because only from there does one get a singularity

(124 72n2) (124 w2m?)

1—et in v that can compensate the vanishing prefactor. Thus, only
—(1-e7) 2+ 72(n+m)? the asymptotic behavior of the wave function is needed. It is
given by
1 .
4 | (A59) #(x)=AxP + terms that vanish faster as- 0.
t>+ 72(n—m)? (A66)
The matrix elements of can be expressed in terms of Hence,
sine-integral and cosine-integral functions. Fo# m, with
n+m even: o T o
pn:ﬁAn : (AB7)
’ i (nZ_mZ)Z n2+m2| (m)z
(n[H[m)=log nm n2_m2'09 n In generaI,Aﬂ is difficult to obtain, as it is fixed by the

normalization of the wave function and depends on its values
throughout the interval. But, far=0 we know that, at small

24 2
+ nz_mz[n ci(mn) —m-ci(7m)] v, ¢o(X) tends to 1. Henceé\gzl and we get
=2{ci{m(n+m)]+ci[7(n—m)]}. T

Po="- (A68)
(A60) V3
Forn=m: For arbitraryn we need to compute numerically théh wave

function for the massless case, normalize it, andAgefrom

4 . .
(n[H|n)=m?n—2logn+log—; —2(1+ y)+2[ 7nsi(wn) Its values at the end point,
v

Ar=n(0). (A69)
+(=1)"]+4 ci(wn)—2 ci(2mn). (A1) ) o ) ) .
A sign ambiguity remains, as the sign of the wave function
One needs to distinguish between Si, Ci and si, ci. Here areemains undetermined by the normalization condition. But,
the definitions for the functions used in Eq#60) and only (pﬂ)2 enters in the amplitude so everything is well de-
(A61): termined.
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The eigenvalues were obtained from a truncatiotdah 111 1 2 1 1Ux
Eq. (A53) to size 100x 1000 in each sector. The residues EJO dXL dy = EL dxxﬂ‘lfO du
are obtained from the end point of the normalized eigenvec- (A73)
tor as given by Eq(A67). The lowest non-zero eigenvalue is
a scalar mesofhaving an antisymmetric wave functivat  The y integral is done extending the upper limit to infinity.
p#1=2.4233 and its residue is;=7.58941916. Asymptoti- The correction needed to account for this approximation wil
cally, the eigenvalues are described p§=m?n—210g(")  be of higher order in3. The u integral is done as follows:
+0(1). The constant term is close for? but due to the Write [1/(u—1)]2= — (d/du)[1/(u—1)] and do the integral
log(n) term it is hard to determine it accurately. The residuespy parts to obtain
are relatively difficult to estimate due to slow convergence.
They asymptote to2= 72 and are monotonic im. = [uf-1)? o y2Brloypt

J e =—1—2/3JO du—l—u

du

0

4. Light versus heavy quarks

We wish to determine whether= 1 should be viewed as =~ 1-2pmlcot2fm)~cot fm)]

a light quark mass or as a heavy quark mass. To do this we 2
first find the leading behavior of the pion mass for very small =§(B7T)2+ o(B). (A74)
guark masses. This behavior has the typical structure induced

by spontaneous chiral symmetry breaking. We then comparging the remaining integral we learn that the double in-
the leading chiral approximation to the pion mass with theie oy gives a contribution equal to that of the first term.
exact value. If the quarks are light the approximation should |, summary we get, converting to physical units:
work well numerically. If the quarks are heavy the approxi- ’
mation should be off. We also compute the pion mass for 7N
very heavy quarks. Again we compare the approximate ex- me=2mq|g| \/?4— O(mg).
pression to the exact value.

To compute the pion mass €0 statg to leading order in
the assumed small quark mass we start from

(A75)

This is the result found by 't Hooft42]. Equation(A75) can
be rewritten in variables rendered unitless by usjfly/ 7 as
a mass-square scale as

1
(ud)?= fodx¢5<x><H¢3>(x>

2 2
1 1 1 Mﬂ_: 'yﬁ
= Y, 2\
| 63001 (X+—1_X) ‘ -
m; Mg 27 . 1.90
- [ax[Cay—— 3001830~ 63001 N
07 Jo Y (y—x2 PO @ Vy VY y

(A70) For y=1 we found numerically tham,/m,= 2.7 establish-
ing thaty=1 corresponds to quite light quarks, but still the

We symmetrize both terms, the first under pasity1— X, (_Q(mg) corrections to Eq(A75) make a substantial contribu-
the second under interchangeofvith y, to get tion.

The pion is, by definition, the lowest energy eigenstate of
o Lhy(x)]> 11 1 Ay)— 302 the 't Hooft Hamiltonian in the sector of functions symmetric
(o)™ =2y | ————+ 5| dx| dy|————
o X 2Jo Jo y—X

underx—1—x.

For y large the first term in the 't Hooft Hamiltonian

(A71)  dominates, so the pion wave function will try to minimize its
contribution by being concentrated around the poimts.

As y—0 the first term is dominated by the end point contri- Making the wave function too narrow incurs a price from the
bution. Actually, also the second term is dominated by thesecond term. This suggests a variational estimate for the
end point contribution. As before, we use the asymptotideading and subleading order im1/The trial wave function
behavior throughout the integration range, but ascertain as
the end that we were dominated by the end points. From the
first term we get a contribution:

)N 1/4
¢>(x)=(;) [e—(x/z)[x—(uz)]z_e—x/s]_ (A77)

1\/;4' O(y). (A72) ¢(x) is normalized to unity up to corrections that are expo-
V3 nentially small in\.
The expectation value of the 't Hooft Hamiltonian in the
The second term requires more work: state¢ is
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1 1 -
(¢lH|¢)= yf( 1z X)¢2(X) 27’] 2 =2 (A82)

& Vet
IR

Contributions from the end points of the integral in the HY ~ 4+ ﬂJr = A83
first term are exponentially small d and will be neglected, (H)~4y - (A83)
under the assumptiofto be later justifiefithat\ diverges as
y—. Thus we can calculate the contribution of the first Extremizing on\ gives
term by infinite range Gaussian integration, obtaining 16128

7\:(—) Y (A84)

Jm

Thus, indeed\ is large fory large and the wave function is
close to a delta function around= 3. For the unitless pion

¢(y) ¢() A78)  Hence

8y
4y+ ~ O(N"2). (A79)

The second term is

1\ﬁ N N e—(x/Z)[x—(l/Z)]z_e—(x/Z)[y—(l/Z)]z2 mass square we find
=\/—| dx|[ dy .
2 Wfo fo X—y 3
(A80) wi~4y+(16m) 1/35 Y3, (A85)
met integral (excluding the prefactprhas a finiteA —oo For largey we expect, therefore,
imit:
e U2 gvi2|? D 2(1+0.69y2%) A86
J duJ dv( ° ) (A81) mq (17069779, (A89

Using this formula blindly fory=1 givesm,/my~3.4
The expression(—v)? in the denominator is represented by instead of the true value of 2.7. We see that the true value is
an integral ovet of e (U~ »)? from zero to infinity. Theu,v midway between the leading answer corresponding to light
integrals of each one of the terms can be done by Gaussignons (1.9 and the leading plus subleading expression valid
integration, and calculating the appropriatx2 determi-  for heavy quarks. Thusy=1 corresponds to intermediate

nants one finds that the above integral is given by gauge couplindin units of quark mags
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