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Analytical treatment of neutrino asymmetry equilibration from flavor oscillations
in the early universe

Yvonne Y. Y. Wong*
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716

~Received 19 March 2002; published 18 July 2002!

A recent numerical study by A. D. Dolgov, S. H. Hansen, S. Pastor, S. T. Petcov, G. G. Raffelt, and D. V.
Semikoz~DHPPRS! @Nucl. Phys.B632, 363 ~2002!# found that complete or partial equilibrium between all
active neutrino flavors can be achieved before the big bang nucleosynthesis epoch via flavor oscillations, if the
oscillation parameters are those inferred from the atmospheric and solar neutrino data, and, in some cases, if
u13 is also sizable. As such, cosmological constraints on the electron neutrino-antineutrino asymmetry are now
applicable in all three neutrino sectors. In the present work, we provide an analytical treatment of the scenarios
considered in DHPPRS, and demonstrate that their results are stable even for very large initial asymmetries.
The equilibration mechanism can be understood in terms of a Mikheyev-Smirnov-Wolfenstein-like effect for a
maximally mixed and effectively monochromatic system. We also comment on the DHPPRS’s choices of
mixing parameters, and their handling of collisional effects, both of which could impinge on the extent of
flavor equilibrium.

DOI: 10.1103/PhysRevD.66.025015 PACS number~s!: 14.60.Pq, 13.15.1g, 98.70.Vc
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I. INTRODUCTION

One of the open questions in cosmology is the possib
of admitting a large relic neutrino-antineutrino asymmet
For an ensemble of neutrinos and antineutrinos of flavora in
thermal and chemical equilibrium, this asymmetry may
alternatively expressed in terms of the chemical potentialjna

of the species. As of now, there are no direct observation
the cosmic neutrino background. Thus the existence or
erwise of any sizablej can only be established indirectl
from requiring consistency with big bang nucleosynthe
~BBN!, and from the study of the cosmic microwave bac
ground radiation~CMBR! spectrum. Presently, BBN limits
the chemical potential in thene sector to be at most of orde
1, while bounds onjnm

and jnt
are considerably less strin

gent@1#. A recent combined analysis of BBN and CMBR h
generated the constraints20.01,jne

,0.22, ujnm ,nt
u,2.6,

assuming no neutrino oscillations@2#.
The situation changes if one considers also the effect

neutrino oscillations. In a new numerical study by Dolgo
Hansen, Pastor, Petcov, Raffelt, and Semikoz~DHPPRS! @3#,
it was shown that, for the oscillation parameters inferr
from the atmospheric neutrino data and the large mix
angle ~LMA ! solution of the solar neutrino problem, com
plete equilibrium between all active flavors is establish
prior to the onset of BBN at temperatureT.1 MeV.1 For
other solar neutrino solutions, DHPPRS found that a par
equilibrium is possible if the mixing angleu13 is close to its
present experimental limit of tan2u13&0.065. Clearly, if fla-
vor equilibrium holds, constraints onjne

will apply to all
three flavors.

Central to the DHPPRS study is the inclusion of a high

*Electronic address: ywong@physics.udel.edu
1Equilibration of the neutrino flavors for the atmospheric a

LMA oscillation parameters was first suggested in Ref.@4#.
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nonlinear neutrino self-interaction potential in the evoluti
equation for the ensemble. Previously, this term was foun
give rise to synchronized vacuum oscillations characteri
strongly by the initial conditions@5#. This raises some ques
tions: How sensitive are the DHPPRS results to the ini
asymmetries? For instance, can the presence of a large a
metry in thenm or nt sector delay its equilibration with itsne
counterpart? Why do the final asymmetries exhibit osci
tory behavior in some but not all cases? Asymmetries t
oscillate out of phase with each other are certainly not
equilibrium.

To find the answers, we begin with an analysis of tw
flavor oscillations involvingne in the solar neutrino param
eter space. The knowledge gained therefrom will be app
to the three-flavor case, and, in particular, to investigating
role of u13. Whenever numerical quantities are called fo
e.g., the mass squared differences, we shall adopt the va
used in DHPPRS. These will be noted at the appropr
points. With the exception of the small mixing angle~SMA!
solution, the solar mixing angle is always taken to be ma
mal in DHPPRS. This provides a motivation for us to exa
ine also the more realistic case of large but not maxim
mixing.

II. TWO FLAVORS

A. Preliminary considerations

Consider a two-state system consisting ofne and nx ,
wherenx may benm , nt , or a linear combination thereof
We parametrize the transformation between the weak
mass eigenstates in vacuum with a mixing angleu:

S ne

nx
D 5S cosu sinu

2sinu cosu D S n1

n2
D , ~1!

where the statesn1,2 have massesm1,2, respectively. The
same parametrization applies to then̄e↔ n̄x system.
©2002 The American Physical Society15-1
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For each momentump, we write down the one-body re
duced density matricesr ( r̄ for antineutrinos! and express
them in terms of the functionP0 ( P̄0) and a ‘‘polarization’’
vectorP (P̄):

r5S ree rex

rxe rxx
D 5

1

2
@P01P•s#,

~2!

r̄5S r̄ee r̄xe

r̄ex r̄xx
D 5

1

2
@ P̄01P̄•s#,

whereP5Pxx1Pyy1Pzz, and s5sxx1syy1szz are the
Pauli matrices. In this notation, thene and nx distribution
functions atp are, respectively,

f ne
5

1

2
@P01Pz# f eq~0!,

~3!

f nx
5

1

2
@P02Pz# f eq~0!,

for which we have chosen the reference distribution funct
f eq(0) to be of Fermi-Dirac form,

f eq~j![
1

11ep/T2j
, ~4!

with chemical potentialj set to zero for all temperaturesT.
The distributionsf n̄e

and f n̄x
may be similarly established

from Eq. ~3! by replacingP0 andPz with their antineutrino
counterparts. The number density of a particle speciesc fol-
lows from taking the integral off c over all momenta,nc
5(1/2p2)* f cp2dp. Note that the functions (P0 ,P) and
( P̄0 ,P̄) carry both momentum and time dependence un
otherwise stated.

The evolution ofP and P̄ is governed by the quantum
kinetic equations~QKEs! @6#

Ṗ51FDm2

2p
B2

8A2GFp

3mW
2

EeezG3P

1A2GF~J2 J̄!3P,
~5!

Ṗ̄52FDm2

2p
B2

8A2GFp

3mW
2

EeezG3P̄

1A2GF~J2 J̄!3P̄,

where Dm25m2
22m1

2, B5sin 2ux2cos 2uz, GF is the
Fermi constant,mW is the mass of theW boson, Eee
5(7/60)p2T4 is the electron-positron energy density, and
are assuming, at this stage, that the background medium
not distinguish betweennm and nt . Observe that refractive
matter effects for this system are entirelyCP
symmetric—we have dropped theCP asymmetric term pro-
portional to the difference between the charged lepton
02501
n
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antilepton number densities. This difference is expected to
of the order of the baryon asymmetry, and is negligible
comparison with theCP symmetric background. The las
term in Eq.~5! comprising the integrated polarization vecto

J5
1

2p2E P f eq~0!p2dp,

~6!

J̄5
1

2p2E P̄ f eq~0!p2dp,

arises from neutrino self-interaction@7#, and is by definition
also time dependent.

We have chosen to ignore the effects of collisions
now, since, for the bulk of the momentum distribution, t
neutrino mean free pathG21;(GF

2p T4)21 is larger than an
effective oscillation length;2p(Vx

21Vz
2)21/2, where

Vx5
Dm2

2p
sin 2u,

~7!

Vz52
Dm2

2p
cos 2u2

8A2GFp

3mW
2

Eee,

given the mass squared differences and mixing angles of
various solar neutrino solutions@8#. The evolution of this
two-state system is therefore primarily oscillation-driven. W
also do not consider repopulation from the background

consistency with theG50 assumption, and henceṖ05 Ṗ̄0
50.

Note that the collisionless approximation strictly does n
apply to nm↔nt oscillations in the atmospheric paramet
space. These oscillations become operational at higher
peratures, where frequent ‘‘non-forward’’ scattering on t
background medium modifies significantly the system’s d
namics~i.e., the system is ‘‘collision-driven’’!. One should
also be cautious when dealing with oscillation-driven s
tems~such asne↔nx)—residual effects from collisions ma
still be sizable, especially if there is a substantial period
large mixing. This issue will be revisited later in Sec. II D
but let us emphasise at this point that a full treatment
collisional effects on active-active neutrino oscillations
considerably more complicated than is implied in DHPPR
The fact that both neutrino flavors can now participate
momentum-changing scattering processes gives rise to
terms in the evolution equation in addition to the simp
damping ofPx andPy encountered in the active-sterile cas
See, for example, Ref.@9# for details.

Ideally, we would like to compare the distribution func
tions of the two neutrino species concerned. When ther
and chemical equilibria prevail, these are completely spe
fied by the chemical potentialsjne

52jn̄e
, and jnx

52jn̄x
,

which are related to the neutrino-antineutrino asymmet
Lna

5(nna
2nn̄a

)/ng via

Lna
5

1

12z~3!
~p2jna

1jna

3 !, ~8!
5-2



-
is-

ha

,
ce

a

r-

ar-
n-

e

-

ANALYTICAL TREATMENT OF NEUTRINO ASYMMETRY . . . PHYSICAL REVIEW D 66, 025015 ~2002!
wherea5e,x, ng52z(3)T3/p2 is the photon number den
sity, andz is the Riemann zeta function. A non-thermal d
tribution ~e.g., due to oscillations! generally has no well-
defined chemical potential. However, if we demand only t
equality between the number densities ofne and nx ~and
separately,n̄e andn̄x) be established for flavor equilibration
then it is sufficient to track the evolution of the differen
betweenLne

andLnx
,

Lne
2Lnx

5
1

2p2ng
E @~ f ne

2 f n̄e
!2~ f nx

2 f n̄x
!#p2dp

5
1

2p2ng
E ~Pz2 P̄z! f eq~0!p2dp

5
1

ng
~Jz2 J̄z!, ~9!

regardless of whether thermal and/or chemical equilibria
in place.
se

r
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io

a
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B. Derivation of a collective evolution equation

Let us now examine the time development of the ‘‘no

malized’’ vectorI[(J2 J̄)/ng , for which we construct from
Eqs.~5! and ~6! an evolution equation

İ5B3
1

2p2ng
E Dm2

2p
~P1P̄! f eq~0!p2dp2z

3
1

2p2ng
E 8A2GFp

3mW
2

Eee~P1P̄! f eq~0!p2dp. ~10!

Equilibration between the two neutrino species will necess
ily imply I z50. Note, however, that the converse is not ge
erally true.

Equation ~10! is exact; our task is to find approximat

solutions forP and P̄. To this end, we first rewrite the evo
lution equation~5! in matrix form:
d

dt S Px

Py

Pz

D 5F S 0 2Vz 0

Vz 0 2Vx

0 Vx 0
D 1A2GFngS 0 2I z I y

I z 0 2I x

2I y I x 0
D G S Px

Py

Pz

D 5~V1S!P, ~11!
tron
tity

gree

or

-
nt
ion
ni-

ys
where Vx and Vz are as defined in Eq.~7!. For the an-
tineutrino system, the matrixV is replaced with2V.

Before proceeding, observe that in the absence of the
interaction termS, the vectorP would simply exhibit the
usual ‘‘matter-suppressed’’ precession around the vectoV
5Vxx1Vzz at a rate

vV5AVx
21Vz

2, ~12!

and gradually give way to vacuum oscillations as t
electron-positron energy density drops off with the expans
of the universe. If, hypothetically, only theS term is present,
P would precess aroundI at a rate

vS5A2GFnguI u, ~13!

provided thatI changes sufficiently slowly with time~to be
justified later!.

In the following, we shall work under the assumption th
the inequality

vV!vS ~14!

is maintained for all momenta at all times. This conditi
translates roughly into requiring that

1@
8p

3mW
2 nguI u

.231029
y

uI u S T

MeVD 2

~15!
lf-

n

t

for T.Tr , and

1@
Dm2

2A2GFp nguI u
.0.12

y21

uI u S uDm2u

eV2 D S T

MeVD 24

~16!

for T,Tr , wherey[p/T, and

Tr.19.8y21/3S uDm2u

eV2 D 1/6

MeV ~17!

is the temperature at which the vacuum and electron-posi
background terms become equal in magnitude. The quan
uI u may be regarded crudely as a measurement of the de
of alignment of the individual polarization vectorsP and P̄,
such that if all neutrinos and antineutrinos are in flav
eigenstates~i.e., Px,y. P̄x,y.0), the magnitude ofI equals
the difference in thene and nx neutrino-antineutrino asym
metries. It turns out that initial fulfilment of the requireme
~14! tends to preserve the alignment until the self-interact
term significantly weakens with the expansion of the u
verse throughng . Hence, assuming allPi and P̄i, where the
superscript ‘‘i’’ denotes initial, to be in thez direction, the
reader may substitute in Eqs.~15! and ~16! the relationuI u
.uI iu.uLne

i 2Lnx

i u, and see that these conditions are alwa

met by the bulk of the momentum distribution for theDm2’s
5-3
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concerned, provided that the disparity between the ini
asymmetries is, say,*1025 in magnitude.2

We solve the three coupled differential equations~11! by
transforming to an instantaneous diagonal basis define
Q5UP, in which the evolution equation takes the form

Q̇5@U~V1S!U 212UU̇21#Q, ~18!

with U(V1S)U 215Diag(k1 ,k2 ,k3), where the eigenvalue
k1 is identically zero, andk2,3 are two imaginary numbers o
equal magnitude but opposite signs. The associating ei
vectors q1,2,3 in terms of the original coordinates$x,y,z%
constitute the columns of the transformation matrix

U 215U †5~q1uq2uq3!, ~19!

whereq1 is real, andq2,3 form a complex conjugate~c.c.!
pair. In the limitvV!vS , the eigenvalues are

k150, k25k3* . ivS1O~vV!, ~20!

and the real eigenvectorq1 is well approximated by

q1.
1

AI x
21I y

21I z
2 S I x

I y

I z

D
1@O~vV /vS!q2

01c.c.#

[ Î1@O~vV /vS!q2
01c.c.#, ~21!

where $q1
0 ,q2

0 ,q3
0% are the set of eigenvectors in the lim

vV50. We shall not reproduce here the exact forms of
remaining two complex conjugate eigenvectors, but sim
point out thatq2 andq3 together sweep out a plane perpe
dicular toq1.

Equation~18! is not yet soluble; the termUU̇21 contains
off-diagonal elements. However, these may be set to zer
facilitate calculations since the condition

x i j [U~UU̇21! i j

ki2kj
U; 1

vS

1

uI u UdI

dtU!1, ~22!

where i , j 51,2,3 and iÞ j , is always satisfied in thevV
!vS limit. This can be seen from Eq.~10!, in which any one
component ofİ is at most of ordervVuI u, such thatx i j
;vV /vS!1 is consistent with earlier assumptions.

The formal solution to the now decoupled evolution equ
tion ~18! is

Q.Diag~ 1,ei * t i

t vSdt8,e2 i * t i

t vSdt8!Qi, ~23!

or equivalently in the original$x,y,z% basis,

2The case of equal initial asymmetries hasa priori no bearing for
the purpose of the present work, although it could lead to some
interesting phenomena.
02501
l
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P.U 21diag~ 1,ei * t i

t vSdt8,e2 i * t i

t vSdt8!U iPi

5~q1uq2uq3!S q1
i
•Pi

ei * t i

t vSdt8q2
i * •Pi

e2 i * t i

t vSdt8q3
i * •Pi

D , ~24!

where the superscript or subscript ‘‘i’’ denotes initial. O
serve that the termsei *vSdt ande2 i *vSdt lead to rapid oscil-
lations which average to zero over the characteristic ti
scale ofq1,2,3. We retain only the time-averaged compone
and adopt the identity~21!, whereuponP becomes

P.~Pi
• Î i! Î1O~vV /vS! Î1@O~vV /vS!q2

01c.c.#, ~25!

which, to the lowest order invV /vS , is a product of two
quantitiesPi

• Î i and Î carrying, respectively, the momentum
and the time dependences of the original function. Equa
~25! pertains also toP̄, save for the replacement ofPi with
P̄i, andvV with 2vV . Substituting into Eq.~10!, we obtain
for the collective vectorI a simplified evolution equation,

İ.
1

uI u
1

2p2ng
FBE Dm2

2p
~Pi1P̄i!• Î i f eq~0!p2dp

2zE 8A2GFp

3mW
2

Eee~Pi1P̄i!• Î i f eq~0!p2dpG3I ,

~26!

to the lowest order invV /vS .
The non-dissipative character ofI ’s evolvement is imme-

diately manifest in Eq.~26!. Furthermore, the dynamics o
the neutrino-antineutrino ensemble can be completely
simply determined from the initial conditions and fro
known external factors, independently of the evolution of t
ensembleper se. Synchronized vacuum oscillations in mult
momentum systems subject to intense self-interactions
discovered numerically in Ref.@5#, and recently reinterpreted
in Ref. @10#. Equation~26! is essentially a generalization o
the physical picture developed in Ref.@10# for pure vacuum
oscillations. We opted to conduct a more systematic, fi
principles derivation here for pedagogy.

We take as the initial condition that all neutrinos and a
tineutrinos are in flavor eigenstates such thatPi and P̄i are
parallel to Î i, and

Pi
• Î i.

f ne

i 2 f nx

i

f eq~0!
, P̄i

• Î i.
f n̄e

i
2 f n̄x

i

f eq~0!
, ~27!

up to a common sign. Two additional assumptions of therm
as well as chemical equilibria, that is,

ry
5-4
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f ne

i . f eq~jne

i !, f n̄e

i . f eq~2jne

i !,

~28!
f nx

i . f eq~jnx

i !, f n̄x

i . f eq~2jnx

i !,

then allow for a further approximation of Eq.~26! as

İ.
1

uI u
1

2p2ng
H BE Dm2

2p
@ f eq~jne

i !1 f eq~2jne

i !

2 f eq~jnx

i !2 f eq~2jnx

i !#p2dp

2zE 8A2GFp

3mW
2

Eee@ f eq~jne

i !1 f eq~2jne

i !

2 f eq~jnx

i !2 f eq~2jnx

i !#p2dpJ 3I . ~29!

The integrals are now in a form opportune for the exploi
tion of these very useful identities:

E @ f eq~j!2 f eq~2j!#p2dp5
T3

3
~p2j1j3!,
n-
ca
d

’’

e
a
n
n

ttle
in

02501
-

E @ f eq~j!1 f eq~2j!#pdp5
T2

6
~p213j2!,

E @ f eq~j!1 f eq~2j!#p3dp5
T4

60
~7p4130p2j2115j4!.

~30!

These, together with the conservation of the collective vec
I ,

uI u.uI iu.
1

2p2ng

U E @~ f ne

i 2 f n̄e

i
!2~ f nx

i 2 f n̄x

i
!#p2dpU

.
T3

6p2ng

up2~jne

i 2jnx

i !1~jne

i 32jnx

i 3!u, ~31!

permit us to recast Eq.~29! into a more illuminating and
readily soluble form,
İ.
3

2

ỹ~jne

i 22jnx

i 2!

up2~jne

i 2jnx

i !1~jne

i 32jnx

i 3!uS Dm2

2p̃
B2

8A2GFp̃

3mW
2

EeezD 3I , ~32!
n-
ino
ino
o-
an-
ial

ies,

n

where

ỹ5
p̃

T
[Ap21

1

2
~jne

i 21jnx

i 2! ~33!

represents some ‘‘average’’ momentum. Equations~32! and
~33! will form the basis of the discussions to follow.3

C. Discussions

Equation~32! has a straightforward interpretation. Co
sider the terms inside the parentheses. These are identi
the vacuum and electron-positron background terms foun
a typical single momentum evolution equation@Eq. ~5! mi-
nus self-interaction#, and control the ensemble’s ‘‘collective
matter-affected mixing angle,

3The method used to derive Eq.~32! from the QKEs is equally
valid had aCP asymmetric background been included. In fact, ev
if the background strongly differentiates between neutrinos and
tineutrinos, the resulting evolution equation would still predict ide
tical behaviors for bothCP partners, contrary to the case whe
self-interaction is absent. Unfortunately, this scenario is of li
interest for the early universe. Perhaps it might find application
supernova environment.
lly
in

sin 2uc5
Vx

AVx
21Vz

2U
p5 p̃

, ~34!

whereVx andVz are evaluated forp5 p̃.
The characteristic momentump̃ defined in Eq.~33! re-

flects, to some extent, the initial configuration of the e
semble. In addition to augmenting the neutrino-antineutr
asymmetry, a large positive chemical potential for a neutr
flavor tends to skew the distribution towards higher m
menta, while leaving the spectrum of its less abundant
tineutrino virtually intact. A large negative chemical potent
has the opposite effect. Hence the net result forp̃ is that it
follows more or less the trends of the more abundant spec
and thereby grows withuj iu. For initial chemical potentials
satisfying the constraint

jne

i 21jnx

i 2&2p2, ~35!

the value ofp̃.pT originates from the mismatch betwee
the averageŝ p& and ^1/p&21 taken over the function
d2f eq(j)/dj2 evaluated atj50.

n
n-
-

a
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The quantity exhibiting by far the strongest depende
on the initial conditions is the collective matter-affected o
cillation length, or equivalently, the collective effective ma
squared difference,

Dmeff
2 5k2p̃ AVx

21Vz
2up5 p̃ , ~36!

where

k5
3

2

ỹ~jne

i 22jnx

i 2!

up2~jne

i 2jnx

i !1~jne

i 32jnx

i 3!u
. ~37!

For instance,Dmeff
2 vanishes forjne

i 52jnx

i , and oscillations

are switched off completely, as pointed out in DHPPR
~Note again that the present formulation is invalid for ide
tical initial asymmetries.!

An approximate solution to Eq.~32! can be established in
the adiabatic limit by mappingI onto an instantaneous diag
onal basis~in this case, isomorphic to an instantaneous m
basis! and setting the time derivative of the transformati
matrix to zero. The resulting expression for the variableI z is

I z.S c2ucc2uc
i 1s2ucs2uc

i cosE
t i

tDmeff
2

2p̃
dt8D I z

i , ~38!

wherec2u5cos 2u, s2u5sin 2u, subject to the validity of
the adiabatic condition

g[U VzV̇x2VxV̇z

k~Vx
21Vz

2!3/2U
p5 p̃

&1, ~39!

at all times. For maximal mixing and the matter density p
file at hand,g is a maximum atT5Tr @Eq. ~17! with y5 ỹ#,
at which it takes on a particularly simple form:

guu545°.1.531025k21S uDm2u

eV2 D 21/2

, ~40!

where we have used the relationdT/dt.25.44T3/mpl , and
mpl.1.2231022 MeV is the Planck mass.

Equation~38! predicts for maximal mixing a Mikheyev
Smirnov-Wolfenstein-~MSW-!like effect, transformingI z

from I z
i to 0 ~plus some small amplitude oscillations! when

vacuum oscillations overcome refractive matter effects~i.e.,
whenc2uc.c2u). The temperature at which this transitio
takes place is given roughly byTr in Eq. ~17! with y5 ỹ. For
initial chemical potentials satisfying the constraint~35!, this
turns out to be .2.6 MeV for Dm254.531025 eV2

~LMA !. Extremely large initialuju ’s can lowerTr somewhat,
but the connection is weak. As an illustration, the setting
jne

i 50 and jnx

i 510 gives, for the sameDm2, Tr

.1.9 MeV. In the cases of the LOW (Dm251
31027 eV2) and the Vacuum (Dm258310211 eV2) solu-
tions, the temperatures are.0.9 MeV and.0.3 MeV, re-
spectively, for reasonableuj iu ’s. Evidently, only the LMA
transition can take place well ahead of BBN.
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For the oscillation parameters of the SMA solutio
(Dm25731026 eV2, sin 2u50.05), I z remains close to its
initial value even after the ‘‘transition’’ atTr.1.9 MeV,
since both the vacuum oscillation and matter refraction te
are predominantly in the negativez direction for Dm2.0,
and the usual MSW resonance condition cannot be satis
This has an important implication: in the absence of subs
tial collisional damping and other effects not consider
here, any equilibration of two neutrino species in a pur
two-flavor scenario is, strictly speaking, an accident of ma
mal mixing.

A second deciding factor on the efficacy of flavor equi
bration is the adiabaticity of the transition from matte
suppressed to vacuum oscillations. Unlike that encounte
in, for instance, solar neutrino analyses, the adiabaticity
rameterg of Eq. ~39! is strongly dependent on the initia
conditions. Take for concreteness the case ofjne

i 50. The

reader may verify that for the LMA solution, the conditio
~40! is always true ifujnx

i u*0.01, but can be badly violated a

the transition point for the LOWDm2 unlessujnx

i u*0.1.

In the case of maximal mixing, violation of adiabaticity
the transition point generally results in large amplitu
‘‘post-transition’’ oscillations about the equilibrium point a
an angular frequency roughly equal toDmeff

2 /2p̃. Naturally,
this is quite a separate phenomenon from true equilibrat
On the other hand, an adiabaticity parameter that evaluate
infinity at all times ~because, for example,k→0) signifies
that there is no transition at all. From the perspective
equilibrating two vastly different asymmetries, the requir
ment of ujnx

i u*0.01 ~assumingjne

i 50) in the LMA case for

a smooth transition is, by definition, not a major concern.
therefore dwell no further on this topic, but simply point o
to the interested reader that there is an existing body
works devoted to non-adiabatic transitions in the solar in
rior @11#. The almost exponential density profile of the Sun
of course very different from the matter density profile co
sidered here. This will alter the post-transition oscillati
frequency and amplitude somewhat, but not the essen
physics of non-adiabatic effects.

D. Large but not maximal mixing

Previously, we saw that equilibration ofne andnx in the
absence of collisional effects is peculiar to maximal mixin
In particular, ifDm2 corresponds to that of the LMA solutio
to the solar neutrino problem, equilibrium is complete befo
BBN. However, the real LMA solution encompasses a ran
of mixing parameters that are merely large, but not maxim
@8#. If we had used instead sin 2u.0.88, Eq.~38! would pre-
dict for this scenario only a;50% reduction inI z

i , i.e., a
partial equilibrium.

The question now is this: can collisions save the scene
full treatment of active-active collisions may be complicate
But for the purpose of exploring the possibilities, we m
want to try including in the evolution equation~5! a simple
active-sterile style damping term2D(Px1Py) @and
2D( P̄x1 P̄y) for the antineutrinos#, where D
5(1/2)lGF

2pT4, and l is a positive number reflecting th
5-6
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relative amplitudes of the available inelastic scattering a
elastic scattering processes that distinguish between the
flavors.

Introduction of this ‘‘toy’’ damping term has a simpl
consequence for the collective evolution equation~32!: there
is now an extra term of the form

2D̃~ I x1I y!, ~41!

with D̃5@27z(3)/2p2#lGF
2T5 for uj iu&1. For Dmeff

2 /2p̃
*D̃, the corresponding solution is similar to Eq.~38!, but
with a twist:

I z.e2* t i

t Vdt8cos 2uccos 2uc
i I z

i 1damped oscillations,
~42!

where V. sin2 2ucD̃ may be interpreted as an ‘‘instanta
neous equilibration rate’’@12#. Clearly, V scales with the
amount of mixing, causes the exponential in Eq.~42! to de-
crease with time, and thus contributes to equilibrating
two flavors concerned. This equilibrating power is especia
useful if a partial equilibrium has already been reached
an MSW-like effect. However, the extent of the equilibriu
is now dependent on the nature of the scattering proces
As a crude estimate, the setting ofl51 will give exp@•••#
.0.16 for sin 2u.0.88 atT.1 MeV. Thus, together with
the MSW-like transition,I z may still be able to reach a valu
of .0.08I z

i prior to BBN.
Before closing this section, let us stress again that it is

clear at this stage if a proper treatment of active-active c
lisions will indeed lead to an outcome similar to that afford
to us by the simple active-sterile picture. The latter can o
serve as a rough guide.

III. THREE FLAVORS

We shall not derive from first principles a three-flav
analogue of Eq.~32!. Such an exercise is perhaps not wor
while since the collisionless limit is strictly not applicable
higher temperatures. Furthermore, a complete set of Q
for three active flavors incorporating all necessary collis
terms has yet to be written down in a user-friendly form, a
until we know how to handle its better established two-flav
counterpart, we shall not dwell on the fine details of t
three-flavor case.

However, granted that the role of the self-interaction te
is to cause the ensemble to behave in an effectively mo
chromatic manner, a qualitative, or even semi-quantitat
picture is still available if we suppose that, like the tw
flavor case, the matter-affected mixing structure of the thr
flavor system is determined by the single mode Hamilton
~in flavor space!,

1

2p
US m1

2 0 0

0 m2
2 0

0 0 m3
2
D U†

2
8A2GFp

3mW
2 S Eee1Emm 0 0

0 Emm 0

0 0 0
D , ~43!
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substituted withp5 p̃.pT for small uj iu ’s. Here, the quan-
tity Emm54mm(mmT/2p)3/2exp(2mm /T) is the muon-
antimuon energy density, withmm as the muon mass,m1,2,3

2

are the squared masses of the three mass eigenstates, a
transformation between the weak and mass bases is pa
etrized with three Euler angles,

U5S 1 0 0

c23 s23 0

2s23 c23 0
D S c13 0 s13

0 1 0

2s13 0 c13

D
3S c12 s12 0

2s12 c12 0

0 0 1
D , ~44!

where ci j 5cosuij , and si j 5sinuij for i j 512,23,13. Under
this scheme, we identify the atmospheric and solar neut
oscillation parameters as

Dmatm
2 [m3

22m2
2 , uatm[u23,

~45!
Dmsun

2 [m2
22m1

2 , usun[u12,

and the third angleu13 is subject to the constraint tan2u13
&0.065 from a combined analysis of the solar, atmosph
and CHOOZ data@8#.

The Hamiltonian~43! is simple to decipher, thanks to th
inherent mass hierarchyDmatm

2 @Dmsun
2 ~where Dmatm

2 .3
31023 eV2, andDmsun

2 &1024 eV2), and the fact that each
flavor receives from the background medium a different c
tribution to their effective masses. The evolution of the thre
flavor system follows essentially the dynamics of three se
rate and effectively two-flavor subsystems, and the pres
parametrization of the transformation matrixU turns out to
be very convenient for their description@13#. If all three
mixing angles are nonzero, we have exactly three potenti
equilibrating transitions.

~i! The first occurs atT.12 MeV, when Dmatm
2 /2p̃

.(8A2GFp̃/3mW
2 )Emm , andnm↔nt oscillations cease to be

matter-suppressed. In a collisionless environment, the s
system would undergo an MSW-like transformation wh
turnsnm andnt into the statesnx andny ,

nm→nx[
1

A2
~nm2nt!,

~46!

nt→ny[
1

A2
~nm1nt!,

assuminguatm545°. Collisions play the role of breaking
these states into an incoherent 1:1 mixture ofnm andnt .

~ii ! The second transition involves the states

ne→c13ne2s13ny , ny→s13ne1c13ny , ~47!

and can only be realized for a nonzerou13. This happens
when (Dmatm

2 1c12
2 Dmsun

2 )/2p̃.(8A2GFp̃/3mW
2 )(Eee
5-7
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1Emm/2), at T.5.2 MeV. ~The factor 1/2 accompanyin
Emm comes from the fact that the stateny is only ‘‘half-
sensitive’’ to the muon-antimuon background.! In the ab-
sence of collisions, Eq.~38! suggests this transition to b
quite impotent, even whenu13 is at its upper limit. However,
noting all the caveats regarding active-active collisions
heuristic approach to collisional damping in the style of S
II D can yield for tan2u13.0.065 atT.1 MeV anI z that is
less than 1% of its original value by Eq.~42!. Thus, near
equilibrium betweenLne

andLny
prior to BBN is very prob-

able.
~iii ! The third transition,

c13ne2s13ny→c12~c13ne2s13ny!2s12nx ,
~48!

nx→s12~c13ne2s13ny!1c12nx ,

was described in detail in Sec. II foru1350. In the case of a
sizableu13, equilibrium betweenLne

andLny
should already

be partially accomplished by this time. A second equilibr
ing transition betweenne andnx at this point will bringLne

,

Lnm
andLnt

even more in line.
Note that we have been very specific with the labelling

nx and ny . This actually has an interesting consequen
Consider the case of a maximalusunand a vanishingu13. We
may attempt to use a simple ‘‘counting’’ method to establ
crudely the final asymmetries given a set of initial con
tions. For example, forLne

i 5Lnt

i 50, andLnm

i 50.1, the first

transition distributes the asymmetry innm equally amongst
nm andnt such thatLnm

.Lnt
.0.05. The second transition i

not present. At the third transition, the asymmetry carried
nx5(nm2nt)/A2 is shared evenly withne , leading toLne

.Lnx
.0.025. However, the decoupled stateny5(nm

1nt)/A2 still has an asymmetry of 0.05. Thus the realLnm

and Lnt
should be.0.0375. This simple counting exercis

serves to illustrate an interesting point: without a finiteu13,
equilibrium betweenLne

and the asymmetries ofnm andnt

cannot be quite exact.

IV. CONCLUSION

We have given an analytical treatment to the neutr
asymmetry equilibration scenarios considered in the num
cal studies of DHPPRS@3#. In a two-flavor study of the sola
neutrino oscillation parameters, we demonstrated that
equilibration mechanism is based upon a collective adiab
MSW-like transformation betweenne and nx ~and between
O.

.G
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n̄e and n̄x), wherenx may benm , nt , or a linear combina-
tion thereof, for synchronizedne↔nx and n̄e↔ n̄x oscilla-
tions. The transition temperature is determined, as usual
Dmsun

2 and by a characteristic momentump̃.pT for small
initial asymmetries~c.f. ^p&.3.15 T for a Fermi-Dirac dis-
tribution with zero chemical potential!. Thus from the sizes
of the various possibleDmsun

2 ’s alone, transition prior to
BBN can only be achieved in the case of the LMA solutio

It turns out that the characteristic momentump̃ does in
fact grow with the initial chemical potentials of the en
semble, and extremely largeuj iu ’s can in principle delay the
equilibrating transition. However, the dependence is we
For uj iu not exceeding;4, the shift in the transition tem
perature is virtually unobservable.

A second concern for the LMA solution is the extent
theLne

/Lnx
equilibrium. We showed in the present work tha

when the mixing parameter is chosen to be maximal~as was
done in DHPPRS!, complete equilibration of these asymm
tries can always be achieved irrespective of collisional
fects, and for most initial conditions.~The latter can in prin-
ciple alter the adiabaticity of the transition.! For large but not
maximal mixing, however, the extent of the equilibrium w
depend on how one handles collisions on active-active n
trino oscillations, and rigorous work on this front is st
wanting. Nonetheless, heuristic considerations of collisio
damping suggest that full equilibrium before BBN is mo
likely.

For other solutions of the solar neutrino problem, w
demonstrated in a semi-quantitative three-flavor analysis
a partial equilibration ofLne

andLny
, whereny is some other

linear combination ofnm and nt , due to a sizableu13 is
possible in principle. Again, the extent of this equilibriu
hinges on the treatment of scattering processes with
background, and is therefore subject to the usual caveat
garding active-active collisions. Investigations on this top
are currently underway.

~Note: See also Ref.@14# for a similar explanation of the
DHPPRS results.!
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