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Analytical treatment of neutrino asymmetry equilibration from flavor oscillations
in the early universe
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A recent numerical study by A. D. Dolgov, S. H. Hansen, S. Pastor, S. T. Petcov, G. G. Raffelt, and D. V.
Semikoz(DHPPRS [Nucl. Phys.B632 363 (2002] found that complete or partial equilibrium between all
active neutrino flavors can be achieved before the big bang nucleosynthesis epoch via flavor oscillations, if the
oscillation parameters are those inferred from the atmospheric and solar neutrino data, and, in some cases, if
0,5 is also sizable. As such, cosmological constraints on the electron neutrino-antineutrino asymmetry are now
applicable in all three neutrino sectors. In the present work, we provide an analytical treatment of the scenarios
considered in DHPPRS, and demonstrate that their results are stable even for very large initial asymmetries.
The equilibration mechanism can be understood in terms of a Mikheyev-Smirnov-Wolfenstein-like effect for a
maximally mixed and effectively monochromatic system. We also comment on the DHPPRS'’s choices of
mixing parameters, and their handling of collisional effects, both of which could impinge on the extent of
flavor equilibrium.
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[. INTRODUCTION nonlinear neutrino self-interaction potential in the evolution
equation for the ensemble. Previously, this term was found to
One of the open questions in cosmology is the possibilitygive rise to synchronized vacuum oscillations characterized
of admitting a large relic neutrino-antineutrino asymmetry.strongly by the initial condition§5]. This raises some ques-
For an ensemble of neutrinos and antineutrinos of flavor ~ tions: How sensitive are the DHPPRS results to the initial
thermal and chemical equilibrium, this asymmetry may beasymmetries? For instance, can the presence of a large asym-
alternatively expressed in terms of the chemical potegtjgl metry in thev,, or v, sector delay its equilibration with itg,

of the species. As of now, there are no direct observations dfounterpart? Why do the final asymmetries exhibit oscilla-
the cosmic neutrino background. Thus the existence or otHOry behavior in some but not all cases? Asymmetries that
erwise of any sizablg can only be established indirectly osc[ll_at(_e out of phase with each other are certainly not in
from requiring consistency with big bang nucleosynthesisequilibrium. o _
(BBN), and from the study of the cosmic microwave back- 10 find the answers, we begin with an analysis of two-
ground radiatiolCMBR) spectrum. Presently, BBN limits flavor oscillations involvingr, in the solar neutrino param-
the chemical potential in the, sector to be at most of order €ter space. The knowledge gained therefrom will be applied
1, while bounds or¢, andé¢, are considerably less strin- (O the three-flavor case, and, in particular, to investigating the
gent[1]. Arecent com%ined ar'TlaIysis of BBN and CMBR has role of 6,3. Whenever nL_JmerlcaI quantities are called for,
generated the constraints0.01< ¢, <0.22, |¢ 1<2.6 e.g., the mass squared dlffergnces, we shall adopt the vglues
) ) G TSVt " used in DHPPRS. These will be noted at the appropriate

assuming no neutrino oscillatiofg]. points. With the exception of the small mixing ang&MA)

Th_e S|tuat_|on_changes if one consn_iers also the effects afg|ytion. the solar mixing angle is always taken to be maxi-
neutrino oscillations. In a new numerical study by DolgoV, mal in DHPPRS. This provides a motivation for us to exam-

Hansen, Pastor, Petcov, Raffelt, and Semi@dPPRS [3],  ine also the more realistic case of large but not maximal
it was shown that, for the oscillation parameters inferredyying.

from the atmospheric neutrino data and the large mixing

angle (LMA) solution of the solar neutrino problem, com-

plete equilibrium between all active flavors is established Il. TWO FLAVORS
prior to the onset of BBN at temperatufe=1 MeV.! For A. Preliminary considerations
other solar neutrino solutions, DHPPRS found that a partial

equilibrium is possible if the mixing anglé, is close to its
present experimental limit of taf;3<0.065. Clearly, if fla-
vor equilibrium holds, constraints oﬁve will apply to all

three flavors.
Central to the DHPPRS study is the inclusion of a highly

Consider a two-state system consisting 1gf and v,
where v, may bev,, v,, or a linear combination thereof.
We parametrize the transformation between the weak and
mass eigenstates in vacuum with a mixing angjle

41
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¢
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lEquilibration of the neutrino flavors for the atmospheric andWhere the states,, have massesn, ,, respectively. The

LMA oscillation parameters was first suggested in Ré&f. same parametrization applies to th@—JX system.
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For each momentum, we write down the one-body re- antilepton number densities. This difference is expected to be

duced density matrices (p for antineutrinos and express Of the order of the baryon asymmetry, and is negligible in

them in terms of the functioR, (50) and a “polarization” comp_arison with the_C_P sym_metric backgrOL_md._ The last
vectorP (P): term in Eq.(5) comprising the integrated polarization vectors

1
Pee Pex 1 JI—fPf 0 2d,
p:(p p ):E[P0+P'”]' 2q2) ledOP7dp
xe XX
. @ ) ©
— [ Pee P 1 - — J=—| P 2
Pex Pxx

arises from neutrino self-interactigi@], and is by definition
also time dependent.

We have chosen to ignore the effects of collisions for
now, since, for the bulk of the momentum distribution, the
neutrino mean free path '~ (G2p T*) ! is larger than an

where P=P,x+Pyy+P,z, and o= o,x+ oyy+ o,z are the
Pauli matrices. In this notation, the, and v, distribution
functions atp are, respectively,

1
f,,= 5[Po+ P.lfed 0), effective oscillation length-2(V2+V2) "2 where
(3) Am?
1 V,=-—5—sin 26,
f, = 5[Po=P.lfed0), 2p
x 2
, (7)
for which we have chosen the reference distribution function Vo= — Am cos 20— 8‘/§GFp E
fe{0) to be of Fermi-Dirac form, ‘ 2p 3m\2N eer

given the mass squared differences and mixing angles of the
(4) various solar neutrino solutior[8]. The evolution of this
two-state system is therefore primarily oscillation-driven. We
also do not consider repopulation from the background for

f6{{§)E

1+ePT-¢

with chemical potentiak set to zero for all temperaturds et
The distributionsf;e and f;x may be similarly established consistency with thd’=0 assumption, and hend&,= P,

from Eq. (3) by replacingP, and P, with their antineutrino = 0- o o _

counterparts. The number density of a particle spegiés- Note that the collisionless approximation strictly does not
lows from taking the integral of , over all momentan,, apply to v, « v, oscillations in the atmospheric parameter
=(1/27%) [ ,p?dp. Note that the functions Rp,P) and  SPace. These oscillations become operational at higher tem-

(Pg,P) carry both momentum and time dependence unles eratures, Wherg frequen_t.“non_-fo_r\{vard” scaltering on the
otf?e'rwise stated ackground medium modifies significantly the system’s dy-

) — namics(i.e., the system is “collision-driven). One should
_ The evolution ofP and P is governed by the quantum 5155 he cautious when dealing with oscillation-driven sys-
kinetic equationgQKES) [6] tems(such asy« v,)—residual effects from collisions may
still be sizable, especially if there is a substantial period of
<P large mixing. This issue will be revisited later in Sec. Il D,
but let us emphasise at this point that a full treatment of
. collisional effects on active-active neutrino oscillations is
+ \/EGF(J—J)X P, considerably more complicated than is implied in DHPPRS.
(5)  The fact that both neutrino flavors can now participate in
_ momentum-changing scattering processes gives rise to new
xXP terms in the evolution equation in addition to the simple
damping ofP, andP, encountered in the active-sterile case.
See, for example, Ref9] for details.

Ideally, we would like to compare the distribution func-
tions of the two neutrino species concerned. When thermal
Fermi constantm,, is the mass of theW boson, E., qnd chemical eqqilibria pre\_/ail, theseiare completelyﬁspeci-
=(7/60)7°T* is the electron-positron energy density, and wef'ec_j by the chemical potennal@; - g_ve' a”?' &0, = " Eue .
are assuming, at this stage, that the background medium dowdich are related to_ the neutrino-antineutrino asymmetries
not distinguish betweem, and v,. Observe that refractive L., =(n, —m, )/n, via
matter effects for this system are entirehlCP
symmetric—we have dropped ti@P asymmetric term pro- 1

portional to the difference between the charged lepton and L”a 12{£(3)

Am? _ 82Ggp
2p 3mg,

EeZ

Am?2_ 8\2Ggp
B— ——E
2p 3my,

e

+\2Gg(J-J)XP,

where Am?=m3—m?, B=sin20x—cos¥z, Gg is the

(7%, +E ), ®
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wherea=e,x, n,=2{(3)T3/ = is the photon number den- B. Derivation of a collective evolution equation
sity, and{ is the Riemann zeta function. A non-thermal dis- . .
tribution (e.g., due to oscillationsgenerally has no well- Let us now examine the time development of the “nor-

defined chemical potential. However, if we demand only thaimalized” vectorl E(J—J_)/ny, for which we construct from
equality bgtween_the number densities 1f and v, (and Egs.(5) and(6) an evolution equation

separatelyy, andv,) be established for flavor equilibration,

then it is sufficient to track the evolution of the difference

: 1 Am? )
betweenLVe and L., |=B><—2f ——(P+P)fe0)pdp—z
2mn, 2p
1
LV_LV: f fV_f: - fv_f: 2d 1 8\/§G p —
e X 277_2“7 [( e e) ( X x)]p P X > f 2F Eee(P+ P)feq(O)pde (10
2mn, 3my
1 D 2
- ——[ P-PatofOpp

27N, Equilibration between the two neutrino species will necessar-

ily imply 1,=0. Note, however, that the converse is not gen-

1 _

= —,-3,), (9) erally true.

n, Equation (10) is exact; our task is to find approximate
regardless of whether thermal and/or chemical equilibria argelutions forP andP. To this end, we first rewrite the evo-
in place. lution equation(5) in matrix form:

4 Py 0 -V, 0 o -1, I Py
a Py = VZ 0 _Vx + \/EGFny IZ 0 _IX Py :(V_|_S)P, (11)
P, 0 Vv 0 —ly Iy 0 P,

where V, and V, are as defined in Eq(7). For the an- for T>T,, and
tineutrino system, the matriX is replaced with— ).

Before proceeding, observe that in the absence of the self- Am? “1(1Am?| T \ 4
interaction terms, the vectorP would simply exhibit the 1> —=0.1 1 — (m (16)
usual “matter-suppressed” precession around the vedtor 2\2Gepn, /1| | eV €
=V,x+V,z at a rate

for T<T,, wherey=p/T, and
wy=Vi+V2Z, (12)
. - A jam\ M
and gradually give way to vacuum oscillations as the T,~19.8y 17 ——| Mev (17
electron-positron energy density drops off with the expansion e
of the universe. If, hypothetically, only th&term is present,
P would precess aroundat a rate is the temperature at which the vacuum and electron-positron
background terms become equal in magnitude. The quantity
ws=2Gen, I, (13)  |I| may be regarded crudely as a measurement of the degree
provided thatl changes sufficiently slowly with tim&o be of al|gnmer_1t of the mdmdual polarllzatlon. vectoFSand P,
ustified latey. sych that |f all neutrinos and antlneutr_lnos are in flavor

In the following, we shall work under the assumption thateigenstatesi.e., P, ,=P,,=0), the magnitude of equals

the inequality the difference in theve and v, neutrino-antineutrino asym-
metries. It turns out that initial fulfilment of the requirement
0y<<wg (149 (14) tends to preserve the alignment until the self-interaction

term significantly weakens with the expansion of the uni-

verse througm,,. Hence, assuming al' andP', where the
superscript “i” denotes initial, to be in the direction, the

is maintained for all momenta at all times. This condition
translates roughly into requiring that

g T2 reader may substitute in EqgL5) and (16) the relation|l|
> P =2X 1091(—) 15  =IlI'=IL, —L, |, and see that these conditions are always
2 e X
3myn, |1 1] Mev met by the bulk of the momentum distribution for then®'s
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concerned, provided that the disparity between the initial
asymmetries is, say 10 ° in magnitude?

We solve the three coupled differential equatigh¥) by
transforming to an instantaneous diagonal basis defined as qil.pi
Q=UP, in which the evolution equation takes the form

P~/ tdiag( 16/t e Hiwsot ) /1P

Lt ;- .
=(qulgplas)| €yt -P | (24)

Q=[UV+SU *—uu 1]Q, (18 e_iﬁi“’sdt/qg*-Pi
with U(V+S)U ~1=Diag(k;,k,,k3), where the eigenvalue

ky is identically zero, andk, ; are two imaginary numbers of \yhere the superscript or subscript “i” denotes initial. Ob-
equal magmtgde but opposite signs. The a;souatmg €igeRerve that the terma’/“sdt ande /5% lead to rapid oscil-
vectorsq; 3 in terms of the original coqrdlnateg,yvz} lations which average to zero over the characteristic time
constitute the columns of the transformation matrix scale ofq; , 5 We retain only the time-averaged component
and adopt the identity21), whereuporP becomes

Ut =U"= (1] a2l a), (19
whereq; is real, andg, s form a complex conjugatéc.c) P=(P. 1)+ O(wy/ 0yl +[O(wylwg)q+c.c], (25)
pair. In the limitw,<wgs, the eigenvalues are
k=0, ko=k:=iws+O(wy) (20) which, to the lowest order imwy/wg, is a product of two
quantitiesPVIAi andi carrying, respectively, the momentum
and the real eigenvectay; is well approximated by and the time dependences of the original function. Equation
(25) pertains also td, save for the replacement &f with
1 I P', andwy, with — w,,. Substituting into Eq(10), we obtain

—— for the collective vectot a simplified evolution equation,
A NIZH12+12 ly

z

Am?
+[O(@ylwgad+e.c) 8 [ Sp-(P+P)-Teg0)pdp

|=—
I 2772n7
=i+ 9+c.c
[+[O(wy/ws)g,+c.cl, (21) 8\2G.p o )
o | o —2[ 2P (PP T 0 pidp X1,
where {q;,q5,03} are the set of eigenvectors in the limit 3mg,

w,=0. We shall not reproduce here the exact forms of the

remaining two complex conjugate eigenvectors, but simply

point out thatq, andq; together sweep out a plane perpen-

dicular toq;. to the lowest order iy /wg.
Equation(18) is not yet soluble; the ter/ ! contains The non-dissipative character B evolvement is imme-

off-diagonal elements. However, these may be set to zero t§iatély manifest in Eq(26). Furthermore, the dynamics of
facilitate calculations since the condition the neutrino-antineutrino ensemble can be completely and

simply determined from the initial conditions and from

(26)

1 known external factors, independently of the evolution of the
(U= 1 1|dl . o : .
Xi=|——~— 7|3 <1, (22) ensemblger se Synchronized vacuum oscillations in multi-
Ki—k; ws (1] |dt momentum systems subject to intense self-interactions was

herei i=123 andii is al isfied in th discovered numerically in Reff5], and recently reinterpreted
w er?.".J " h ' anb 1], 'Sf always sa}t|s 'ﬁ. hm theny iy Ref. [10]. Equation(26) is essentially a generalization of
<oglimit. T IS c.an e seen from E(L0), in which any one o physical picture developed in R¢10] for pure vacuum
component ofl is at most of orderw,|l|, such thaty;;  oscillations. We opted to conduct a more systematic, first-
~wylwg<1 is consistent with earlier assumptions. principles derivation here for pedagogy.
~ The formal solution to the now decoupled evolution equa-  We take as the initial condition that all neutrinos and an-
tion (18) is tineutrinos are in flavor eigenstates such tRaand P' are

. . N arallel tol', and

Q= Diag( 1elliosdt g-ifiwsdt ) Q, (23) P

or equivalently in the originafx,y,z} basis, o fl —f fi;—fi;
PI' ||2 e X Tt e X

o0 T

(27)
2The case of equal initial asymmetries kmpriori no bearing for

the purpose of the present work, although it could lead to some veryp to @ common sign. Two additional assumptions of thermal
interesting phenomena. as well as chemical equilibria, that is,
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fi ~f i f'_zf _g TZ
W= led ) B =Ted =61, [ teger+teq-epdp—5 (w2436,

_ _ : : (28)
flyxzfeq(flyx)a fljzfec{_glvx)i
4
then allow for a further approximation of E(R6) as f [fed &)+ fed —£)Ip3d p::s;o(7774+ 30m?¢?+15¢%).
=i 2] o)+ fod —£1) 0
T 2, | 0 2p ed S Ted T,
_ _ These, together with the conservation of the collective vector
—fed £, ) —fed —€,)1P%dp l,
812Ggp . _
—2[ e gl )+ e - £, o -
3, 11 =11= | [ 108}, =5 ~(1, 5 1p%p
2772n,/ e e x
—fed £, )~ fod — £, )1p%d p} X1, (29
T o : .
~ 204 4 i 3_ ¢4 3
The integrals are now in a form opportune for the exploita- ~ B7n | (f"e gvx)+(§ye ng I (3D
tion of these very useful identities: 7
T3 . . . . .
. _ 24— 2 3 permit us to recast Eq29) into a more illuminating and
f[feq(g) fed —&)Ip7dp 3 (me+ &%), readily soluble form,
|
3 V(&80 Am?  8\2Ge7
== S LI / — B-— ‘/_ZFpEeez X1, (32
2|72, —8)+(E3-83\ b 3m,
|
where Vi
sin26,=—— , 34
5 1 ' . C /V>2<+V§ p:E ( )
y=3= \/w2+ S(E2+E,.2) (33

represents some “average” momentum. Equati@3® and whereV, andV, are evaluated ffp: P
(33) will form the basis of the discussions to follGw. The characteristic momentum defined in Eq.(33) re-
flects, to some extent, the initial configuration of the en-
semble. In addition to augmenting the neutrino-antineutrino
asymmetry, a large positive chemical potential for a neutrino
Equation(32) has a straightforward interpretation. Con- flavor tends to skew the distribution towards higher mo-
sider the terms inside the parentheses. These are identicaliyenta, while leaving the spectrum of its less abundant an-
the vacuum and electron-positron background terms found itineutrino virtually intact. A large negative chemical potential

C. Discussions

a typical single momentum evolution equatifi. (S) mi-  has the opposite effect. Hence the net resulffds that it
nus self-interactioh and control the ensemble’s “collective” fo|iows more or less the trends of the more abundant species,
matter-affected mixing angle, and thereby grows withé|. For initial chemical potentials

satisfying the constraint

3The method used to derive E(2) from the QKEs is equally
valid had aCP asymmetric background been included. In fact, even £ 2+ ¢ 2<072 (35
if the background strongly differentiates between neutrinos and an- € x
tineutrinos, the resulting evolution equation would still predict iden-
tical behaviors for bothCP partners, contrary to the case when -
self-interaction is absent. Unfortunately, this scenario is of littlethe value ofp==T originates from the mismatch between
interest for the early universe. Perhaps it might find application in ¢he averages(p) and (1/p) ' taken over the function
supernova environment. d?f o €)/d €2 evaluated at=0.
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The quantity exhibiting by far the strongest dependence For the oscillation parameters of the SMA solution

on the initial conditions is the collective matter-affected os-
cillation length, or equivalently, the collective effective mass
squared difference,

AmZ=k2p Vi+Vi|,5, (36)
where
V(E,2-€,2)
|78, — &, )+ (&,3-¢8, 3]

3
=5 37

For instanceAmZ; vanishes fog, =—§&, , and oscillations

(Am?=7x10"% eV?, sin29=0.05),1, remains close to its
initial value even after the “transition” afl,=1.9 MeV,
since both the vacuum oscillation and matter refraction terms
are predominantly in the negatiedirection for Am?>0,
and the usual MSW resonance condition cannot be satisfied.
This has an important implication: in the absence of substan-
tial collisional damping and other effects not considered
here, any equilibration of two neutrino species in a purely
two-flavor scenario is, strictly speaking, an accident of maxi-
mal mixing.

A second deciding factor on the efficacy of flavor equili-
bration is the adiabaticity of the transition from matter-
suppressed to vacuum oscillations. Unlike that encountered

are switched off completely, as pointed out in DHPPRS.in, for instance, solar neutrino analyses, the adiabaticity pa-

(Note again that the present formulation is invalid for iden-
tical initial asymmetries.

An approximate solution to Eq32) can be established in
the adiabatic limit by mapping onto an instantaneous diag-
onal basigin this case, isomorphic to an instantaneous mas
basig and setting the time derivative of the transformation
matrix to zero. The resulting expression for the varidbles

tAm?
_ _ My _
IZ:(CZHCCZG'CJrszaCsZH'C cosf = dt’) 15, (38

ti p

where c26=cos %, s26=sin 26, subject to the validity of
the adiabatic condition

Vzvx_ vaz
PVARVAEE

<1, (39
p=p

at all times. For maximal mixing and the matter density pro-

file at hand,y is a maximum aff =T, [Eq. (17) with y=§/],
at which it takes on a particularly simple form:

|Am2|) —-1/2

Y] g-45=1.5x10 5k 1 2 (40)

e

where we have used the relatidﬁ'/dtz—5.44'l'3/mp|, and
my=1.22< 10°7* MeV is the Planck mass.

Equation(38) predicts for maximal mixing a Mikheyev-
Smirnov-Wolfenstein-(MSW-)like effect, transformingl,
from I}, to O (plus some small amplitude oscillationshen
vacuum oscillations overcome refractive matter effécts,
whenc26.=c26). The temperature at which this transition
takes place is given roughly B in Eq. (17) with y=Yy. For
initial chemical potentials satisfying the constrai@b), this
turns out to be=2.6 MeV for Am?=4.5x10"° e\?
(LMA). Extremely large initial £|'s can lowerT, somewhat,

rametery of Eq. (39) is strongly dependent on the initial
conditions. Take for concreteness the caseg',gf=0. The

reader may verify that for the LMA solution, the condition
£40) is always true if g',,x| =0.01, but can be badly violated at

the transition point for the LOWAmM? unless| g‘vx|20.1.

In the case of maximal mixing, violation of adiabaticity at
the transition point generally results in large amplitude
“post-transition” oscillations about the equilibrium point at

an angular frequency roughly equal Aam2/2p. Naturally,

this is quite a separate phenomenon from true equilibration.
On the other hand, an adiabaticity parameter that evaluates to
infinity at all times (because, for examplec—0) signifies

that there is no transition at all. From the perspective of
equilibrating two vastly different asymmetries, the require-
ment of| &, |=0.01 (assumingg, =0) in the LMA case for

a smooth transition is, by definition, not a major concern. We
therefore dwell no further on this topic, but simply point out
to the interested reader that there is an existing body of
works devoted to non-adiabatic transitions in the solar inte-
rior [11]. The almost exponential density profile of the Sun is
of course very different from the matter density profile con-
sidered here. This will alter the post-transition oscillation
frequency and amplitude somewhat, but not the essential
physics of non-adiabatic effects.

D. Large but not maximal mixing

Previously, we saw that equilibration ef and v, in the
absence of collisional effects is peculiar to maximal mixing.
In particular, ifAm? corresponds to that of the LMA solution
to the solar neutrino problem, equilibrium is complete before
BBN. However, the real LMA solution encompasses a range
of mixing parameters that are merely large, but not maximal
[8]. If we had used instead siM20.88, Eq.(38) would pre-
dict for this scenario only a-50% reduction inl}, i.e., a

partial equilibrium.

but the connection is weak. As an illustration, the setting of The question now is this: can collisions save the scene? A

§'Ve=0 and g'yleo gives, for the sameAm?, T,
=19 MeV. In the cases of the LOW Am?=1
X107 eV?) and the VacuumAm?=8x10 1! eV?) solu-
tions, the temperatures a*€0.9 MeV and=0.3 MeV, re-
spectively, for reasonablgg'|’s. Evidently, only the LMA
transition can take place well ahead of BBN.

full treatment of active-active collisions may be complicated.
But for the purpose of exploring the possibilities, we may
want to try including in the evolution equatidb) a simple
active-sterile style damping term—D(P,+Py) [and
—D(Py+Py) for the antineutrinof where D
=(1/2))\G,2:pT4, and\ is a positive nhumber reflecting the
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relative amplitudes of the available inelastic scattering andypstituted withp=p= =T for small|£|'s. Here, the quan-
elastic scattering processes that distinguish between the tvgy, E,..=4m,(m,T/27)*2exp(-m,/T) is the muon-
fla\llotrs.d i f this “tov” d ing t h imol antimuon energy density, witm, as the muon mas:;r,ﬁlzy3
congégugﬁcl:gnfo? theliolIggtivea(;?/gllzgoneren(;ua?gﬁa} tﬁlerz?g € are the squared masses of the three mass eigenstates, and the
. ’ transformation between the weak and mass bases is param-
's now an extra term of the form etrized with three Euler angles,

—D(l,+1y), (41) 1 0 0/ cy 0 s
with D=[27£(3)/27?I]\GET® for |&|<1. For AmZ/2p U=| Cx3 sSp3 O 0 1 0
=D, the corresponding solution is similar to E®8), but —S,3 Cyg O —sS;3 0 Cp3
with a twist:
o o Co S;2 O
I,=e 't cos 29cos 261, + damped oscillations, x| =81, ¢, O (44)
42 0 0 1 |

where Q= sir? 26,0 may be interpreted as an “instanta-

neous equilibration ratef12]. Clearly, Q scales with the Wherec;;=cos#;, ands;;=sing; for ij =12,23,13. Under
amount of mixing, causes the exponential in E4p) to de-  this scheme, we identify the atmospheric and solar neutrino
crease with time, and thus contributes to equilibrating theoscillation parameters as

two flavors concerned. This equilibrating power is especially

useful if a partial equilibrium has already been reached via Amgtmz m%—mé, Oatm= 023,
an MSW-like effect. However, the extent of the equilibrium (45)
is now dependent on the nature of the scattering processes. Ami,=m3—mi,  Og=01,,

As a crude estimate, the setting 01 will give exd---]

=0.16 for sin #=0.88 atT=1 MeV. Thus, together with and the third angle,5 is subject to the constraint 3 5

the MSW-like transition] , may still be able to reach a value =0.065 from a combined analysis of the solar, atmospheric
of =0.08}, prior to BBN. and CHOOZ dat48].

Before closing this section, let us stress again that it is not The Hamiltonian(43) is simple to decipher, thanks to the
clear at this stage if a proper treatment of active-active colinherent mass hierarchjgmZ,>AmZ,, (Where Am2,,~3
lisions will indeed lead to an outcome similar to that affordedx 1072 eV?, andAm?2, =10 eV?), and the fact that each
to us by the simple active-sterile picture. The latter can onlyfjayor receives from the background medium a different con-
serve as a rough guide. tribution to their effective masses. The evolution of the three-
flavor system follows essentially the dynamics of three sepa-
rate and effectively two-flavor subsystems, and the present

We shall not derive from first princip|es a three-flavor parametrization of the transformation mattikturns out to
analogue of Eq(32). Such an exercise is perhaps not worth-be very convenient for their descriptidii3]. If all three
while since the collisionless limit is strictly not applicable at Mixing angles are nonzero, we have exactly three potentially
higher temperatures. Furthermore, a complete set of QKEgquilibrating transitions. _
for three active flavors incorporating all necessary collision (i) The first occurs atT=12 MeV, when Amgtn/Zp
terms has yet to be written down in a user-friendly form, and~ (g V2G¢p/3m2)E,,,,, andv, < v, oscillations cease to be
until we know how to handle its better esta_bhshed t_WO'ﬂaV()rmatter-suppressed. In a collisionless environment, the sub-
counterpart, we shall not dwell on the fine details of thesystem would undergo an MSW-like transformation which

three-flavor case. _ _ turns », and v, into the states, and v, ,
However, granted that the role of the self-interaction term

Ill. THREE FLAVORS

is to cause the ensemble to behave in an effectively mono-

1
chromatic manner, a qualitative, or even semi-quantitative, v, == —=(v,—v,),
picture is still available if we suppose that, like the two- V2
flavor case, the matter-affected mixing structure of the three- (46)

flavor system is determined by the single mode Hamiltonian

(in flavor spacg Vi hy= E( vutva),
m: 0 O : . :
1 ! assumingf,,,=45°. Collisions play the role of breaking
P 0 m 0 |ut these states into an incoherent 1:1 mixturevpfand v, .
2 (ii) The second transition involves the states
0 0 mj
832G EeetE,, O O Ve—C13Ve— S13Vy, Vy—S13Vet Ciavy, (47)
——ZFp 0 E.. O], (43 and can only be realized for a nonzefig;. This happens
3Mmiy 0 0 o when @Am2, +c2Am2,)/2p= (812G p/3m2) (Eee
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+E,./2), atT=5.2 MeV. (The factor 1/2 accompanying ve and v,), wherev, may bev,, v,, or a linear combina-

E,. comes from the fact that the statg is only “half- tion thereof, for synchronizedy« v, and?e<—>7x oscilla-

sensitive” to the muon-antimuon backgroundn the ab-  tjons, The transition temperature is determined, as usual, by
sence of collisions, Eq(38) suggests this transition to be Am2

L . ; . 2,,and by a characteristic momentupa= 7T for small
quite impotent, even whedhs is at its upper limit. However, initial asymmetrieqc.f. (p)=3.15 T for a Fermi-Dirac dis-

notin_g _aII the caveats re_g_arding acti_ve-active collisions, Fribution with zero chemical potentjalThus from the sizes
heuristic approach to collisional damping in the style of Sec 2

Il D can yield for tarff,5~0.065 atT=1 MeV anl, that is of the various possipleﬁms_uns alone, transition prior 0
less than 1% of its original value by E¢42). Thus, near BBN can only be achieved in the case of the LMA solution.

equilibrium betweer., andL, prior to BBN is very prob- It turns out that the characteristic momentlﬁrdoes in
able ¢ Y fact grow with the initial chemical potentials of the en-
. i S
(iii) The third transition, semble, and extremely largé'|’s can in principle delay the
equilibrating transition. However, the dependence is weak.

CiaVe— S1a¥y— C1 CraVe— Siavy) — Sioby, For | & not exceeding~4, the shift in the transition tem-
(48) perature is virtually unobservable.
Vy—S12(C13¥e— S13¥y) + C1o¥x, A second concern for the LMA solution is the extent of

the L,,e/L vy equilibrium. We showed in the present work that,

was described in detail in Sec. Il féh3=0. In the case of & \ypen the mixing parameter is chosen to be maxitaalwas
sizabledys, equilibrium betweert., andL, should already qone in DHPPRS complete equilibration of these asymme-
be partially accomplished by this time. A second equilibrat-tries can always be achieved irrespective of collisional ef-
ing transition betweem, and v, at this point will bringL, ,  fects, and for most initial conditiongThe latter can in prin-
L, andL, even more in line. ciple alter the adiabaticity of the transitigior large but not

‘Note that we have been very specific with the labelling of@ximal mixing, however, the extent of the equilibrium will
depend on how one handles collisions on active-active neu-

vy and vy. This actually has an interesting consequence; . S i ) - ,
Consider the case of a maximal,,and a vanishing, ;. We trino oscillations, and rigorous work on this front is still
may attempt to use a simple “cuonunting” method to establishanting. Nonetheless, heuristic considerations of collisional
crudely the final asymmetries given a set of initial condi-qkanlm'ng suggest that full equilibrium before BBN is most
tions. For example, fot,, =L! =0, andL!, =0.1, the first ey . ,

. o e v o Pu For other solutions of the solar neutrino problem, we
transition distributes the asymmetry in), equally amongst  gemonstrated in a semi-quantitative three-flavor analysis that
v, andv,such thal_VHz LVTZO.OS. The second transition is 5 partial equilibration of. Ve andL,,y, wherev, is some other

not present. At the third transition, the asymmetry carried bYinear combination ofv. and »-. due to a sizabledys is
. . . y22 T
ve=(v,—v,)/\2 is shared evenly with, leading toL,,  possible in principle. Again, the extent of this equilibrium

zLVXzO.OZS. However, the decoupled statg,=(v, hinges on the treatment of scattering processes with the

+v,)/\/2 still has an asymmetry of 0.05. Thus the real background, and is therefore subject to the usual caveats re-

andL, should be=0.0375. This simple counting exercise garding active-active collisions. Investigations on this topic
vy : : are currently underway.

serves to illustrate an interesting point: without a firitg, (Note: See also Ref14] for a similar explanation of the
equilibrium betweerLVe and the asymmetries of, andv,  pHppPRS results.

cannot be quite exact.
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