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Goldstone excitations from spinodal instability

Sz. Borsa´nyi,* A. Patkós,† and D. Sexty‡

Department of Atomic Physics, Eo¨tvös University, H-1117 Budapest, Hungary
~Received 14 March 2002; published 18 July 2002!

The squared mass of a complex scalar field is turned dynamically negative by itsO(2)-invariant coupling to
a real field slowly rolling down in a quadratic potential. The emergence of gapless excitations is studied in real
time simulations after spinodal instability occurs. Careful tests demonstrate that the Goldstone modes appear
almost instantly after the symmetry breaking is over, much before thermal equilibrium is established.
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I. INTRODUCTION

This investigation is the first stage of a complex stu
with the aim to explore in detail the mechanism of the ene
transfer to the Higgs field at the end of the inflationary per
of the Universe as it is anticipated in scenarios of hyb
inflation @1,2#.

The O(2)-symmetric model used in studies of hybrid i
flation has the following Lagrangian density for the real s
lar ~‘‘inflaton’’ ! field c and the complex~‘‘Higgs’’ ! field F
5F11 iF2:

L5 1
2 @]nc~x!#22 1

2 mc
2c21 1

2 u]nF~x!u22 1
2 mF

2 uFu2

2
l

24
uFu42 1

2 g2c2uFu2, ~1!

wheremF
2 has the wrong sign.

At the beginning, the energy density is carried partly
the inflaton field due to its;O(M P) initial amplitude and
partly by the potential energy of the Higgs field, which sta
at the symmetric maximum. It is transformed very efficien
into kinetic and gradient energy densities when the squa
effective mass of the Higgs field becomes negative and
modes of the complex field with low spatial frequencyuku
,uMeffu start to increase exponentially due to the spino
instability @3#. The Higgs field eventually arrives at
symmetry-breaking ground state, on its top with massive
massless thermal excitations.

The present study was carried out in Minkowski metr
and with classical fields starting from an initial state cor
sponding to the above situation. Therefore, at this stage
results have more relevance to nonequilibrium phase tra
tions in relativistic field theoretical models than to cosm
ogy. The results will serve as a reference for future simu
tions to be performed in an expanding Friedmann-Roberts
Walker ~FRW! geometry. Our study was inspired by rece
papers of Felderet al. describing also the evolution of
complex Higgs field after a sudden change of sign of
squared mass@3,4#.
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Very recently, a detailed study concentrating on the sta
tics of defect formation was published@5#, where the change
of sign in the mass of the Higgs field is induced by the fr
motion of a homogenous real scalar field. The present w
represents a complementary approach since we study th
ementary excitations of the system rather than extended
jects.

Our aim is to investigate systematically the way in whi
the different components of the complex Higgs field are
cited. Special attention is paid to the real time appearanc
the Goldstone mode after the period of spinodal instabiliti
An analogous question was analyzed recently by B
anovskyet al. @6# and by Baacke and Heitmann@7# in the
infinite component~large-N) limit of the quantum dynamics
They solved the coupled set of renormalized equations
motion of the order parameter and of the to-be-Goldsto
modes following a squared mass quench. The effective-m
square governing the mode equations of the Goldstone fl
tuations was analyzed, which depends nonlinearly on the
tual value of the order parameter and reflects also the glo
backreaction of the Goldstone modes. It was found that
squared mass of the ‘‘pion’’ modes starts to oscillate arou
the asymptotic zero value rather early, but the oscillations
damped only for asymptotically large times ast21. In a re-
cent paper@8#, renormalized nonequilibrium gap equation
were solved for the effective-mass squares of the longitu
nal and transversal modes propagating on a time-depen
background. These masses were introduced in earlier pa
@9,10# with a self-consistent parametrization of the corr
sponding propagators. It turned out that the time-depend
variational mass squares do not obey the Goldstone theo
away from equilibrium. It will be interesting to compar
these semianalytical approximate investigations with the
rect mass measurements performed in numerical simulat
of O(N) symmetric systems.

The classical~cutoff! field theory provides a useful poin
of reference, since gapless excitations are present in its
ken symmetry phase near equilibrium. Our numerical res
for N52 hint at an essentially different picture on the re
time genesis of the Goldstone modes.

The presentation of our results is organized in the follo
ing way. Section II summarizes the set of parameters use
and the algorithmical details applied to the numerical so
tion. Our detailed discussion is divided into two parts.
Sec. III, the methods for finding the independently movi
degrees of freedom are presented. There we give direct
©2002 The American Physical Society14-1
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dence for the early presence of massless excitations. In
IV, the process of thermalization is described, pointing
the slow damping of angularO(2) oscillations, supporting
the presence of Goldstone modes. Section V contains
conclusions.

II. LAGRANGIAN PARAMETERS, INITIAL CONDITIONS,
AND DISCRETIZATION

The parameters we choose for the present investiga
imitate a situation which would be characteristic for a gran
unified-theory- ~GUT-!like transition. In lattice units the
Higgs particle has a unit-squared mass parameter~with the
wrong sign!; the inflaton mass square is 1023 times smaller.
The initial amplitude of the inflaton is large:c0515. Varia-
tion of its value does not influence the qualitative features
the time evolution of the system until its contribution to t
potential energy is negligible relative to the initial ener
content of the Higgs field.

A very weak nonlinearityl52431024 was fixed in order
to facilitate the comparison of our results with@4#. In this
way the dominant part of the initial energy was stored in
Higgs potential. When we variedc0 in a range, without
changing the dominant component of the potential energy
change was experienced in the thermalization scenario
the spinodal instability. The use of a stronger Higgs se
coupling does not seem to have any qualitative consequ
on the features of the appearance of Goldstone modes.

The initial space average of the Higgs field was fixed
zero. To the two real components of the complex field
every site, a~white noise! amplitude evenly distributed on
the @21,1#31024 interval was assigned. The amplitude
this random noise can be used to control which phase
system finally relaxes to. With the present choice the fi
value of uFu is very close to the classical minimum of th
Higgs potential, the system is very cold. One needs five
ders of magnitude stronger noise to drive the system into
symmetric phase.

Runs starting with different initial noise seeds were us
to assess the statistical errors of the mass values extra
The restricted number of runs~6–14 depending on the siz
of the system! might cause some underestimation of the
rors.

The value of the inflaton-Higgs coupling used in t
present investigation isg251022. It turned out in our nu-
merical studies that with stronger coupling~for g2>8
31022), the time necessary for the full development of t
spinodal instability takes several oscillation periods of
inflaton, and the growth of unstable modes can happen o
during the passage of the inflaton field through zero. T
behavior can be understood with help of the theory of bro
parametric resonance developed in@11# when it is applied to
a system where also spinodal instability can occur. The m
reason for this phenomenon is the fact that with the incre
of g2 the time interval of the nonadiabatic inflaton evolutio
becomes shorter. Its discussion is beyond the scope o
present paper. It has been checked that the spectral ch
terization of the different modes as they appear after
spinodal instability is independent ofg2.
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We have followed the temporal evolution of the inflato
as well as of theO(2) field on a spatial lattice with the
equations written for dimensionless field quantities,

c̈~x!2Dc~x!1
mc

2

md
2 c~x!1g2F2c50,

F̈ i~x!2DF i~x!1
mF

2

md
2 F i~x!

1
l

6
uF~x!u2F i~x!1g2c2F i50, ~2!

with the scaled quantities

mF
2

md
2 521,

mc
2

md
2 50.001,

cd

md
5c,

Fd

md
5F, tdmd5t, ~3!

admd5a[1

~the symbols with indexd refer to dimensionful quantities!.
The characteristic time scales related to the elemen

excitations turned out much shorter than the relaxation tim
especially for the long-wavelength Goldstone modes. T
circumstance made the choice of the time step in the s
dard leapfrog algorithm used by us a sensitive issue.
stability of the algorithm was ensured by choosing the ti
step in the interval 0.125>at /as>0.0625. The long term
stability of the time evolution was controlled by monitorin
the conservation of the energy and theO(2) charge of the
system. Due to the initial conditions, the latter was fixed
zero. The charge density for the above time step was flu
ating around zero with an amplitude;0.04, but in selected
runs using a hundred times shorter time steps we could re
an amplitudeO(1024) with unchanged qualitative features

III. FINDING THE INDEPENDENT EXCITATIONS

The spinodal instability driving the Higgs field from th
symmetric phase to the broken symmetry state was inve
gated on lattices with increasingL35323,643,1283 volumes
and with periodic spatial boundary conditions. Due to o
initial ‘‘white noise’’ amplitude distribution, the system
chooses a well-defined~though random! direction in the
O(2) internal space, contrary to the case studied by@4#,
where the space average of the Higgs field stayed at
origin.

The coincidence of the change of sign of the instant
fective squared massMeff

2 with the start of the spinodal in
stability is investigated in Fig. 1. Various alternative defin
tions of the effective Higgs mass are used:
4-2
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GOLDSTONE EXCITATIONS FROM SPINODAL INSTABILITY PHYSICAL REVIEW D66, 025014 ~2002!
Meff,1
2 5mF

2 1g2^c&2~ t !,

Meff,2
2 5Meff,1

2 1g2
Š~c2^c&!2

‹, ~4!

Meff,3
2 5Meff,2

2 1
l

2
^uFu2&.

The angular brackets denote spatial averaging. The first d
nition, where one assumes that the fluctuations of thec field
are negligible, is used in most discussions of hybrid inflati
It predicts a change of sign when the inflaton reaches
critical valuecc5umFu/g, and was ensured to be valid in@5#
by settingmc

250. In the present case, the inflaton rolls in
harmonic potential and one can test if the fluctuations of
c and F fields have any effect at the start of the spinod
instability. In the figure, onlyMeff,1

2 andMeff,3
2 are displayed,

sinceMeff,2
2 is indistinguishable from the first one. The d

viation of the two versions of the mass appears near the
of the instability, whenMeff,1

2 stabilizes at the value21,
while Meff,3

2 approaches a positive stationary value after w
oscillations. The increase of the order parameterr
[*d3xuFu/V becomes noticeable with a slight time del
after the sign change of the effective Higgs mass. This is
to the gradual increase of2Meff,1

2 . The spinodal increase o
the order parameter is exponential, with a slowly varyi
slope. Near the saturation of the order parameter the slop
very close to the unit value expected with our choice
2mF

2 .
Next, we turn to the separation of the independen

oscillating degrees of freedom. At every lattice point t
complex field can be represented asF(x,t)
5r(x,t)exp„iw(x,t)…. The main question of this investiga
tion was, at what time did the radial and angular Higgs va
ables become dynamically independent? This can be m
tored by calculating the temporal variation of the elements
the ‘‘velocity’’-correlation matrix Wi j (t), which was con-
structed in the following way.

FIG. 1. Time evolution ofr(t) @the space average ofuF(x,t)u2#
and of the various definitions ofMeff

2 @see Eq.~4!#.
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Let us define the three-component quantityv i(x,t)
5$ṙ(x,t),r(x,t)ẇ(x,t),ċ(x,t)% and form the spatial fluctua
tion matrix

Wi j 5
W̃i j

W̃ii
1/2W̃j j

1/2
,

W̃i j ~ t !5
1

VE d3x v i~x,t !v j~x,t !

2
1

VE d3x v i~x,t !
1

VE d3x v j~x,t !. ~5!

In Fig. 2, we show the early time variation of theW12(t)
element on three different size lattices. One observes tha
level of Higgs-Goldstone cross correlation decreases
about two orders of magnitude from lattice sizeL532 to L
5128. All nondiagonal correlation coefficients sho
maxima during the spinodal instability. In the case ofW13(t)
it was found that the maximum of the inflaton-Higgs cros
correlation coefficient is independent of the size and isO(1).
In the case ofW12 andW23 also the maximum decreases wi
the size of the system. It is unclear what the thermodyna
cal limit of this maximum is during the spinodal instability

After the saturation of the unstable modes, the aver
level of all off-diagonal elements of the normalized corre
tion matrix stabilizes forL5128 atO(1027). This level of
decoupling is reached the slowest forW12. Therefore, the
radial and angular motion of theO(2) field in the internal
space can be considered with very good accuracy as i
pendent, starting from aboutt;200. The analysis gives ver
similar results when applied directly to the polar coordinat
xi5$r,w,c%.

This analysis provides the basis for a separate applica
of various methods of mass determination to each of
three independent coordinates. If the cross correlations w
O(1) beyond the instability, one could not avoid the app
cation of a complicated diagonalization process before
plying the methods of dispersive mass determination to
described next.

FIG. 2. Time evolution of the square of the normalized cro
correlation coefficientW12(t) on a sequence of different size la
tices.
4-3
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The method developed and tested by us in the examp
the one-component scalar field@12# has been further im-
proved for the nontrivial task of the investigation of Gol
stone modes. Its present algorithm is summarized in the
lowing.

One keeps track of the time evolution of the lower-k spa-
tial Fourier transform of all threev-type lattice fields. No
binning is applied. Next, one computes the frequency spe
of the time evolution of the power of the singlek modes.
They show several peaks and the strongest one was iden
with the eigenfrequency of the investigatedk mode~the oth-
ers correspond to various forced oscillation modes!. This cor-
respondence yields the dispersion relationv(k).

In equilibrium systems, we verified the correctness of t
method by taking long time intervals. In Fig. 3, such spec
are displayed for the lowest twok modes for both the Higgs
and the Goldstone variable on the largestL5128 lattice. We
observed essentially no volume dependence. The straigh
extrapolation of the dispersion relation from finitek modes
towards zero wave number is of very good quality and sho
the absence of any gap in the case of the angular mode.
Higgs mode follows a massive relativistic dispersion re
tion.

It was checked that the analysis of shorter time interv
down to T532umFu21 results in masses which are in goo
agreement with spectra obtained with much finerv resolu-
tion.

Far from equilibrium fields vary fairly fast. Any analysi
averaged over a long time interval misses the changes w
occur on short time scales. With the present choice of par
eters, a fast Fourier analysis~FFT! usingT/umFu532 allows
an accurate enough determination of the Fourier coefficie
in the interval vP(2p/T,12p/T). Fourteen independen
runs were analyzed on anL5128 lattice. The masses wer
obtained by subtracting the latticeuku2 from the correspond-
ing v2 for nine modes, and fitting the remaining numbers
a constant. The average standard deviation of the fits
formed in different moments is shown as an error estimat
the mass determination. Figure 4 displays the time evolu

FIG. 3. Temporal Fourier spectra of thekx54p/L,8p/L,ky

5kz50 modes derived from long~near equilibrium! time evolu-
tion.
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of the independent inflaton, Higgs, and Goldstone masse
In an earlier version of this method@12#, we have as-

sumed that allk modes oscillate with a single eigenfre
quency. Then from the ratiouẋi(k)u2/uxi(k)u2 formed with
the help ofx-type variables, one can deduce the domin
frequency. In order to minimize fluctuations, the numera
and the denominator were averaged separately over
modes lying in narrowuku bins. The squared frequency wa
linearly extrapolated touku50 and the limiting value identi-
fied with the squared mass.

In Fig. 5, one can see that the masses determined with
method provide for both components’ slightly higher valu
than the improved method. Their temporal fluctuatio
quickly diminish with increasing lattice size. The mass es
mates shown in these figures represent averages of 40
pendent runs forL532 ~nine runs were analyzed forL564
and six forL5128 with no sizable finite-size dependence!.
The error bars displayed on the right-hand side of both
ures represent the standard deviation of the squared ma
Within these limitations on the accuracy, the results of
two mass determinations are compatible.

For the Goldstone mode, the best fit was reached by a
lyzing the phase factoruẊku2/uXku2, X5exp(iw). This choice
was suggested by the idea of nonlinears models. We note
that only modes withuku>0.5 were included in the analysis
As we will discuss in the next section, for lower wave num
bers the Goldstone modes are highly excited during and a
the instability. They relax very slowly, and their motion do
not seem to follow a single eigenfrequency. From the rig
hand picture of Fig. 5 one recognizes an apparent~rather
small! negative squared mass fit for a short time inter
directly after the spinodal instability. For later times, the fit
compatible with vanishing mass.

We conclude this section with the statement that Go
stone modes are present in the excitation spectra of
model very early. The important question to be discussed
the next section is the degree of excitation of this mode re
tive to the others, that is, the part of energy carried by
light modes.

FIG. 4. The variation of the masses of the Higgs, Goldstone,
inflaton excitations derived from the direct dispersion relati
method.
4-4
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FIG. 5. Time evolution of the masses of the Higgs~Goldstone! excitations derived from the ratio of the kinetic to the amplitude pow
spectra of the corresponding field combinations.
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IV. THERMALIZATION AND GOLDSTONE DAMPING

The temporal evolution of the kinetic power spectra
flects very well the approach to classical thermal equi
rium, characterized by the equipartition of the energy. In F
6, the flattening of the kinetic Goldstone power spectra in
regionk>1 is clearly observed. The lowk peak has an al-
most time-independent height in the intervalt5(100,1500);
its decrease is well recognizable only fort;105.

This observation is probably the most appealing resul
the present investigation. Below, we attempt its semiqua
tative interpretation with the help of a combination of pertu
bative and nonperturbative arguments.

In a recent publication~@13#, Appendixes B and C! we
have presented the perturbative evaluation of the Golds
and Higgs damping rates in the broken phase of a class
O(N) symmetric field theory. The analysis was perform
for a constant value of the order parameter. The Goldst
and Higgs modes were characterized by constant mass v
and by uncorrelated spectral functions

Da~p!52pe~p0!d~p22Ma
2! f a~p0!, a5H,G. ~6!

FIG. 6. The evolution of the Goldstone kinetic power spectr
in time reveals the fast approach of high-k modes towards equipar
tition and the slow relaxation in the low-k part of the spectrum.
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The induced source densities for these equations w
found iteratively, assuming weak nonlinearities in the s
tem. The ‘‘self-energy’’ terms of the two types of excitation
were established by taking into account the solution with j
one iteration. The following explicit expressions were foun

PH~p!5~lF!2FRHH~p!1
N21

9
RGG~p!G ,

PG~p!5S lF

3 D 2

2RGH~p!,

~7!

Rab5E d4q

~2p!4 @Db~q2p/2!

2Da~q1p/2!#
1

2qp2Mb
21Ma

2 .

In equilibrium systems the classical ‘‘number’’ distribution
given by f a(q0)5T/q0. The damping rates are determine
by the imaginary parts of the self-energies.

The initial conditions generated by the spinodal instabil
for the later evolution are hard to specify explicitly. In prin
ciple, one can attempt the numerical determination of
spectral function of each of the independent degrees of f
dom @14,15#. Here we followed a less systematic path bas
on the phenomenological description of the actual sys
presented in the preceding section, which confirms the p
ence of separate Higgs and Goldstone degrees of free
with well-defined masses in ourO(2) invariant system
shortly after the spinodal instability is over. Therefore, w
accept for the spectral densities the form of a free gas
each of them. Then the only remaining task is to find t
nonequilibrium generalization of the distribution function
f a .

A classical analogue of the average occupation num
was extensively used for the dynamical coordinateXa in @4#:

Fa~vk!5
1

vk
@ uẊa~k!u21va~k!2uXa~k!u2#,

~8!
va~k!25k21Ma

2 .
4-5
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FIG. 7. The evolution ofv3Fa(v) of the Higgs~left! and Goldstone~right! modes shortly after the spinodal instability is saturated.
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It was computed here~see Fig. 7! for the absolute value an
the phase factor of the complex field. We see that the ‘‘nu
ber density’’ of the Higgs degree of freedom which initial
decreases exponentially at later times approaches unifo
the 1/vk regime. Also the virial equilibrium of the corre
sponding kinetic and potential contributions is fulfilled ve
early ~for t;500). In the case of the Goldstone degree
freedom, the convergence to the classical ‘‘number’’ dens
is not uniform, the excitation of the low-k modes remains
strong, and the approach to the classical regime in the h
k region is slower.

The smoothness ofFa and the thermalization tendenc
observed in their evolution leads us to the conjecture that
form ~6! of Da(p) remains valid in the present case; only t
functions f a are replaced by a far-from-equilibrium form
With this assumption we can use the method of evalua
described in Appendix C of@13#. @One should be aware o
the fact that beyond the present one-loop estimation, the
of the proposed nonequilibrium form ofDa(p) would lead to
pinch singularities@16#.# In the case of the Goldstone mode
we find the following expression for the on-shell dampi
rate:

GG~k05uku!5S lF

3 D 2 1

32puku2

3E
MH

2 /4uku

`

dp0@FG~p0!2FH~p01k0!#.

~9!

The lower limit is a direct kinematical consequence of t
zero mass nature of the Goldstone mode. It restricts the
tribution to the large frequency tails of both distributions
the damping rate of the low-k modes is to be estimated
Since these modes are filled very late after the spinoda
stability is complete, the damping of these Goldstone mo
is very inefficient.

It is amusing that the far-equilibrium classical evolutio
under specific initial conditions produces a phenomenon
the Goldstone excitation, which occurs at equilibrium in t
quantum version of the model due to the exponentially sm
high-frequency tail of the Bose-Einstein factor@17,13,18#.
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Due to the rather strong initial excitation of the low-k
Goldstone modes, the average kinetic energy stored in
degree of freedom is the biggest directly after spinodal ins
bility. This averaging, however, is somewhat misleading.
subtracting the energy of the modes participating in the lo
k peak, the temperature of the ‘‘equlibrated’’ modes appe
somewhat lower than the corresponding Higgs temperat
In time a metastable ‘‘equilibration’’ between these mod
becomes almost complete, as one can see in Fig. 8.

This means that the equilibration in theO(2) configura-
tion space is much more efficient than the energy transfe
the inflaton. Apparently, the inflaton field is frozen at a mu
lower temperature than theO(2) fields.

The time spent by the inflaton in a frozen state is of t
same order of magnitude as the relaxation time of the Go
stone low-k peak. We have checked that with the increase
g2, the inflaton temperature starts to increase earlier, but
transition becomes smoother and the equilibrium is reac
later. On the other hand, when the complex field is repla
by a real one (g2 and l are kept at the same values!, the
equilibration time is an order of magnitude shorter. It is
interesting question whether the final relaxation of the co
plex field leading to an equilibration with the inflaton wa
started by some sort of instability, or if it can be charact
ized by a smooth~exponential or power-law! relaxation.

FIG. 8. The thermal history of the independent degrees of fr
dom as calculated from their average kinetic energies.
4-6
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GOLDSTONE EXCITATIONS FROM SPINODAL INSTABILITY PHYSICAL REVIEW D66, 025014 ~2002!
V. CONCLUSIONS

In this paper, we have shown that a well-defined Go
stone degree of freedom appears in anO(2)-invariant sys-
tem, almost instantly after the spinodal instability, driven
the evolution of a real field coupled to it, is saturated. T
thermalization takes anomalously long due to the very e
cient spinodal excitation of these modes, which show
somewhat unexpectedly extremely slow relaxation in
low-k region.

This feature was understood with the help of a lead
order iterative estimation of the Goldstone damping rate
lying on the existence of a far-from-equilibrium initial spe
tral function. The fact that a computation making explicit u
of a heavy and of a massless field could explain correctly
phenomenon presents further evidence for the very e
presence of the gapless modes, which is the main resu
this investigation.

The other surprising effect is the long~metastable! freez-
ing of the real scalar fieldc coupled to the Higgs mode
relatively strongly. We provided numerical evidence that t
phenomenon is also related to the presence of the Golds
modes, but further study is needed for a complete un
standing of the underlying mechanism.
.
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It will be important to repeat the complete study in a
expanding space-time geometry. Recent developments a
this line include the computation of scalar particle produ
tion @19# and the dynamics of coupled real scalar fields@20#
in an expanding Universe. The efficiency of the late equ
bration of the inflaton is expected to depend critically on t
Hubble parameter of the evolution.

During the spinodal instability, the low-k modes become
highly excited; the classical description is well justifiable f
them. However, the transfer of the energy towards the sta
high-frequency modes might be more sensitive to quan
effects. Therefore, in a second stage of the investiga
above the upper cutoffK applied to the modes treated cla
sically (K.umFu), quantum modes will be introduced an
treated with the help of renormalized mode equatio
@21,22#.
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