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Goldstone excitations from spinodal instability
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The squared mass of a complex scalar field is turned dynamically negative®{2ijsinvariant coupling to
a real field slowly rolling down in a quadratic potential. The emergence of gapless excitations is studied in real
time simulations after spinodal instability occurs. Careful tests demonstrate that the Goldstone modes appear
almost instantly after the symmetry breaking is over, much before thermal equilibrium is established.
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I. INTRODUCTION Very recently, a detailed study concentrating on the statis-
tics of defect formation was publishé¢fl], where the change

This investigation is the first stage of a complex studyof sign in the mass of the Higgs field is induced by the free
with the aim to explore in detail the mechanism of the energymotion of a homogenous real scalar field. The present work
transfer to the Higgs field at the end of the inflationary periodrepresents a complementary approach since we study the el-
of the Universe as it is anticipated in scenarios of hybridementary excitations of the system rather than extended ob-
inflation [1,2]. jects.

The O(2)-symmetric model used in studies of hybrid in-  Our aim is to investigate systematically the way in which
flation has the following Lagrangian density for the real scathe different components of the complex Higgs field are ex-
lar (“inflaton” ) field ¢ and the complex“Higgs” ) field ®  cited. Special attention is paid to the real time appearance of
=d+id,: the Goldstone mode after the period of spinodal instabilities.
An analogous question was analyzed recently by Boy-
anovskyet al. [6] and by Baacke and Heitmari] in the
infinite componentlargeN) limit of the quantum dynamics.

)N 4 12 et The_y solved the coupled set of renormalized equations of

—ﬂ|‘l’| —320%¢%|@[%, (1) motion of the order parameter and of the to-be-Goldstone
modes following a squared mass quench. The effective-mass

square governing the mode equations of the Goldstone fluc-

wherem3, has the wrong sign. tuations was analyzed, which depends nonlinearly on the ac-

At the beginning, the energy density is carried partly bytual value of the order parameter and reflects also the global
the inflaton field due to its-O(Mp) initial amplitude and  backreaction of the Goldstone modes. It was found that the
partly by the potential energy of the Higgs field, which startssquared mass of the “pion” modes starts to oscillate around
at the symmetric maximum. It is transformed very efficiently the asymptotic zero value rather early, but the oscillations are
into kinetic and gradient energy densities when the squaredamped only for asymptotically large times &g In a re-
effective mass of the Higgs field becomes negative and theent papef8], renormalized nonequilibrium gap equations
modes of the complex field with low spatial frequendy  were solved for the effective-mass squares of the longitudi-
<|Mgs| start to increase exponentially due to the spinodahal and transversal modes propagating on a time-dependent
instability [3]. The Higgs field eventually arrives at a background. These masses were introduced in earlier papers
symmetry-breaking ground state, on its top with massive anf9,10] with a self-consistent parametrization of the corre-
massless thermal excitations. sponding propagators. It turned out that the time-dependent

The present study was carried out in Minkowski metricsvariational mass squares do not obey the Goldstone theorem
and with classical fields starting from an initial state corre-away from equilibrium. It will be interesting to compare
sponding to the above situation. Therefore, at this stage théhnese semianalytical approximate investigations with the di-
results have more relevance to nonequilibrium phase transiect mass measurements performed in numerical simulations
tions in relativistic field theoretical models than to cosmol-of O(N) symmetric systems.
ogy. The results will serve as a reference for future simula- The classicalcutoff) field theory provides a useful point
tions to be performed in an expanding Friedmann-Robertsoref reference, since gapless excitations are present in its bro-
Walker (FRW) geometry. Our study was inspired by recentken symmetry phase near equilibrium. Our numerical results
papers of Feldeet al. describing also the evolution of a for N=2 hint at an essentially different picture on the real
complex Higgs field after a sudden change of sign of itstime genesis of the Goldstone modes.
squared masg3,4]. The presentation of our results is organized in the follow-

ing way. Section Il summarizes the set of parameters used in
and the algorithmical details applied to the numerical solu-

L=3[0,%(x)1?— smiy?+ 3|0, ®(x)|>— 3 m3 | D

*Email address: mazsx@cleopatra.elte.hu tion. Our detailed discussion is divided into two parts. In
"Email address: patkos@Iudens.elte.hu Sec. lll, the methods for finding the independently moving
*Email address: denes@achilles.elte.hu degrees of freedom are presented. There we give direct evi-
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dence for the early presence of massless excitations. In Sec. We have followed the temporal evolution of the inflaton
IV, the process of thermalization is described, pointing outas well as of theO(2) field on a spatial lattice with the
the slow damping of angula®(2) oscillations, supporting equations written for dimensionless field quantities,

the presence of Goldstone modes. Section V contains our

conclusions. 2

- my, 2002
zlf(X)—Al/f(XHWt//(X)Jrg d%y=0,
Il. LAGRANGIAN PARAMETERS, INITIAL CONDITIONS, d

AND DISCRETIZATION 5

The parameters we choose for the present investigation éI'Ji(x)—A@i(x)er—?CDi(x)
imitate a situation which would be characteristic for a grand- Mgy
unified-theory- (GUT-)like transition. In lattice units the N
Higgs particle has a unit-squared mass paramgtih the + —|D(x)|?D;(x) + g2y?D;=0, 2
wrong sign; the inflaton mass square is TOtimes smaller. 6
The initial amplitude of the inflaton is largei,= 15. Varia-
tion of its value does not influence the qualitative features ofvith the scaled quantities
the time evolution of the system until its contribution to the

potential energy is negligible relative to the initial energy m2 m?2
content of the Higgs field. —2=—1, —=0.001,
A very weak nonlinearitj. = 24x 10~ 4 was fixed in order My My
to facilitate the comparison of our results with]. In this
way the dominant part of the initial energy was stored in the " o
Higgs potential. When we varied, in a range, without m—d: U, Hd=<b, tgmg=t, 3)
d d

changing the dominant component of the potential energy, no

change was experienced in the thermalization scenario after

the spinodal instability. The use of a stronger Higgs self- agmg=a=1

coupling does not seem to have any qualitative consequence

on the features of the appearance of Goldstone modes. . . . .
The initial space average of the Higgs field was fixed to(the symbols with indexi refer to dimensionful quantitigs

zero. To the two real components of the complex field at 1N€ charactegstu: tlmehscr?les rerl]atedhto t?e elementary
every site, awhite noise amplitude evenly distributed on  €Xcitations turned out much shorter than the relaxation times,

the[—1,1]x 10 * interval was assigned. The amplitude of e_specially for the Iong—wavglength Gol_dstone m.odes. This
ircumstance made the choice of the time step in the stan-

this random noise can be used to control which phase th . AL
ard leapfrog algorithm used by us a sensitive issue. The

tem finally rel to. With th t choice the fi
System Ty reiaxes 1o. © prasen’ choice e Inastability of the algorithm was ensured by choosing the time

value of |®| is very close to the classical minimum of the . ;
Higgs potential, the system is very cold. One needs five orStep In the mtgrval 0.1%_at/a520.0625. The long term
tability of the time evolution was controlled by monitoring

ders of magnitude stronger noise to drive the system into th :
symmetric phase. the conservation of the energy and 1©é2) charge of the

Runs starting with different initial noise seeds were usecYStem. Due to the initial conditions, the latter was fixed at
to assess the statistical errors of the mass values extracte§'0- 1he charge density for the above time step was fluctu-

The restricted number of rur§—14 depending on the size ating ar_ound zero With_ an amplitude_0.04, but in selected
of the system might cause some underestimation of the er-funs using a hundred tlmes shorter time steps_we could reach
FOIS. an amplitude®(10~#) with unchanged qualitative features.

The value of the inflaton-Higgs coupling used in the
present investigation ig?=10"2. It turned out in our nu- Ill. FINDING THE INDEPENDENT EXCITATIONS
merical studies that with stronger couplindor g?=8 '
X 1072), the time necessary for the full development of the The spinodal instability driving the Higgs field from the
spinodal instability takes several oscillation periods of thesymmetric phase to the broken symmetry state was investi-
inflaton, and the growth of unstable modes can happen onlgated on lattices with increasing’=32%,64° 128 volumes
during the passage of the inflaton field through zero. Thisand with periodic spatial boundary conditions. Due to our
behavior can be understood with help of the theory of broadnitial “white noise” amplitude distribution, the system
parametric resonance developedi] when it is applied to  chooses a well-definedthough random direction in the
a system where also spinodal instability can occur. The mai®(2) internal space, contrary to the case studied[4ly
reason for this phenomenon is the fact that with the increasehere the space average of the Higgs field stayed at the
of g2 the time interval of the nonadiabatic inflaton evolution origin.
becomes shorter. Its discussion is beyond the scope of the The coincidence of the change of sign of the instant ef-
present paper. It has been checked that the spectral chardeetive squared mags| ﬁﬁ with the start of the spinodal in-
terization of the different modes as they appear after thatability is investigated in Fig. 1. Various alternative defini-
spinodal instability is independent gf. tions of the effective Higgs mass are used:
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FIG. 1. Time evolution op(t) [the space average pb(x,t)|?] FIG. 2. Time evolution of the square of the normalized cross-
and of the various definitions dfl%; [see Eq(4)]. correlation coefficientV;,(t) on a sequence of different size lat-
tices.
2 _ 2 2/ \2
Meita= Mo+ 9% (1), Let us define the three-component quantiby(x,t)
={p(x,1),p(x,t) (x,1),(x,t)} and form the spatial fluctua-
2 2 ' i
M 2ho= M 2t g2<( - < ¢>)2>, (4) tion matrix
woe Wi
1] \7‘Vi]i./2\7vjl.j/2’

A
Méﬁ,3:Mgﬁ,2+§<|q’|2>-

W (t)= %f d*xv;(X,t)vj(x,1)
The angular brackets denote spatial averaging. The first defi-
nition, where one assumes that the fluctuations ofythield 1 1
are negligible, is used in most discussions of hybrid inflation. _VJ d3XUi(X,t) VJ d3x vj(xt). (5)
It predicts a change of sign when the inflaton reaches the
critical valuey.=|mgy|/g, and was ensured to be valid[if]
by settingmf,,=0. In the present case, the inflaton rolls in a
harmonic potential and one can test if the fluctuations of th
i‘ﬁ s?gt()jiﬁyflﬁ:iiehﬁgsr:ngn?ﬁg t a;rfgiﬂitar;g ;?:p;p;ggdalz 128. All nondiagc_)nal c_orrela_ti_on coefficients show

) 5 s eff,1 eff,3 ' maxima during the spinodal instability. In the case/df(t)
since Mg, is indistinguishable from the first one. The de- i \yas found that the maximum of the inflaton-Higgs cross-
viation of the two versions of the mass appears near the end,e|ation coefficient is independent of the size an@).
of the instability, whenMg, stabilizes at the value-1, | the case 0fV,;, andWas also the maximum decreases with
while M2, ; approaches a positive stationary value after wildthe size of the system. It is unclear what the thermodynami-
oscillations. The increase of the order paramefer cal limit of this maximum is during the spinodal instability.
=[d3|®|/V becomes noticeable with a slight time delay  After the saturation of the unstable modes, the average
after the sign change of the effective Higgs mass. This is dugevel of all off-diagonal elements of the normalized correla-
to the gradual increase ef MZ%; . The spinodal increase of tion matrix stabilizes fol. =128 atO(10™ 7). This level of
the order parameter is exponential, with a slowly varyingdecoupling is reached the slowest ff,,. Therefore, the
slope. Near the saturation of the order parameter the slope tadial and angular motion of th@(2) field in the internal
very close to the unit value expected with our choice ofspace can be considered with very good accuracy as inde-
- m?l,. pendent, starting from aboti#t-200. The analysis gives very

Next, we turn to the separation of the independentlysimilar results when applied directly to the polar coordinates:

oscillating degrees of freedom. At every lattice point thex;={p,¢,y}.

complex field can be represented asb(x,t) This analysis provides the basis for a separate application
=p(x,t)expli ¢(x,t)). The main question of this investiga- of various methods of mass determination to each of the
tion was, at what time did the radial and angular Higgs vari-three independent coordinates. If the cross correlations were
ables become dynamically independent? This can be mon®(1) beyond the instability, one could not avoid the appli-
tored by calculating the temporal variation of the elements otation of a complicated diagonalization process before ap-
the “velocity”-correlation matrix W;;(t), which was con-  plying the methods of dispersive mass determination to be
structed in the following way. described next.

In Fig. 2, we show the early time variation of thé,,(t)
element on three different size lattices. One observes that the
éevel of Higgs-Goldstone cross correlation decreases by
about two orders of magnitude from lattice size=32 toL
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FIG. 3. Temporal Fourier spectra of the=4/L,8/L .k, _ FIG. 4. T_he yarlatlon _ofthe masses of Fhe nggs, qudstone,_and
inflaton excitations derived from the direct dispersion relation

=k,=0 modes derived from longnear equilibrium time evolu-

tion. method.

The method developed and tested by us in the example &f the independent inflaton, H'iggs, and Goldstone masses.
the one-component scalar fiefd2] has been further jm- [N @n earlier version of this method 2], we have as-
proved for the nontrivial task of the investigation of Gold- SUmed that allk modes oscillate with a single eigenfre-
stone modes. Its present algorithm is summarized in the folguency. Then from the ratigx;(k)|*/|x;(k)|* formed with
lowing. the help ofx-type variables, one can deduce the dominant

One keeps track of the time evolution of the lovkespa-  frequency. In order to minimize fluctuations, the numerator
tial Fourier transform of all three-type lattice fields. No and the denominator were averaged separately over the
binning is applied. Next, one computes the frequency spectrénodes lying in narrowk| bins. The squared frequency was
of the time evolution of the power of the singlkemodes. linearly extrapolated t¢k|=0 and the limiting value identi-
They show several peaks and the strongest one was identifidi¢d with the squared mass.

with the eigenfrequency of the investigatednode(the oth- InFig. 5, one can see that the masses determined with this
ers correspond to various forced oscillation mod&his cor- ~ method provide for both components’ slightly higher values
respondence yields the dispersion relatiofk). than the improved method. Their temporal fluctuations

In equilibrium systems, we verified the correctness of thisquickly diminish with increasing lattice size. The mass esti-
method by taking long time intervals. In Fig. 3, such spectranates shown in these figures represent averages of 40 inde-
are displayed for the lowest twomodes for both the Higgs pendent runs fok. =32 (nine runs were analyzed far= 64
and the Goldstone variable on the larglest 128 lattice. We —and six forL=128 with no sizable finite-size dependehce
observed essentially no volume dependence. The straight linEhe error bars displayed on the right-hand side of both fig-
extrapolation of the dispersion relation from finkemodes  ures represent the standard deviation of the squared masses.
towards zero wave number is of very good quality and showdVithin these limitations on the accuracy, the results of the
the absence of any gap in the case of the angular mode. TH&0 mass determinations are compatible.

Higgs mode follows a massive relativistic dispersion rela- For the Goldstone mode, the best fit was reached by ana-
tion. lyzing the phase factdiX,|%/|X,|?, X=exp(¢). This choice

It was checked that the analysis of shorter time intervalsvas suggested by the idea of nonlineamodels. We note
down to T=32mg| ! results in masses which are in good that only modes withk|=0.5 were included in the analysis.
agreement with spectra obtained with much fineresolu-  As we will discuss in the next section, for lower wave num-
tion. bers the Goldstone modes are highly excited during and after

Far from equilibrium fields vary fairly fast. Any analysis the instability. They relax very slowly, and their motion does
averaged over a long time interval misses the changes whiatiot seem to follow a single eigenfrequency. From the right-
occur on short time scales. With the present choice of paranmhand picture of Fig. 5 one recognizes an appaleather
eters, a fast Fourier analygiBFT) usingT/|mg| =32 allows  smal) negative squared mass fit for a short time interval
an accurate enough determination of the Fourier coefficientdirectly after the spinodal instability. For later times, the fit is
in the interval w e (27/T,127/T). Fourteen independent compatible with vanishing mass.
runs were analyzed on dn=128 lattice. The masses were  We conclude this section with the statement that Gold-
obtained by subtracting the latti¢k|? from the correspond- stone modes are present in the excitation spectra of the
ing w? for nine modes, and fitting the remaining numbers tomodel very early. The important question to be discussed in
a constant. The average standard deviation of the fits pethe next section is the degree of excitation of this mode rela-
formed in different moments is shown as an error estimate ofive to the others, that is, the part of energy carried by the
the mass determination. Figure 4 displays the time evolutiofight modes.
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FIG. 5. Time evolution of the masses of the Higgoldstone excitations derived from the ratio of the kinetic to the amplitude power
spectra of the corresponding field combinations.

IV. THERMALIZATION AND GOLDSTONE DAMPING The induced source densities for these equations were
The temporal evolution of the kinetic power spectra re_found iteratively, assuming weak nonlinearities in t_he_sys-
flects very well the approach to classical thermal equilib—tem' The “s_elf-energy” tgrm.s of the two types of gxcnqtlon S
rium, characterized by the equipartition of the energy. In Fig.Were. estqbllshed by takmg Into account the.soluuon with just
6, the flattening of the kinetic Goldstone power spectra in thene iteration. The following explicit expressions were found:
regionk=1 is clearly observed. The low peak has an al-
most time-independent height in the intervad (100,1500); y(p)=(\P)?
its decrease is well recognizable only for 10°.

This observation is probably the most appealing result of

N—1
Run(p) + TRGG(D) ,

2
the present investigation. Below, we attempt its semiquanti- T ( ):()‘_> 2Rcn(p)
. . . . H . c(p 3 GH(P),
tative interpretation with the help of a combination of pertur-
bative and nonperturbative arguments. . @
In a recent publicatior{13], Appendixes B and Cwe R — d*q Av(g—pl2)
have presented the perturbative evaluation of the Goldstone ab™ (277)4[ b(d=P

and Higgs damping rates in the broken phase of a classical
O(N) symmetric field theory. The analysis was performed
for a constant value of the order parameter. The Goldstone
and Higgs modes were characterized by constant mass values
and by uncorrelated spectral functions In equilibrium systems the classical “number” distribution is
given by f,(qg)=T/go. The damping rates are determined
by the imaginary parts of the self-energies.
A (p)=2me(po)8(p>—M32)fa(po), a=H,G. (6) The initial conditions generated by the spinodal instability
for the later evolution are hard to specify explicitly. In prin-
ciple, one can attempt the numerical determination of the

—A(q+p2) ] /————.
a(q+p )]qu—M§+M§

@ 1x 10° ' ' {70 spectral function of each of the independent degrees of free-
S 15 dom[14,15. Here we followed a less systematic path based
5 N on the phenomenological description of the actual system
¢ 100000 ¢ 500 - 3 presented in the preceding section, which confirms the pres-
g 100000 : ence of separate Higgs and Goldstone degrees of freedom
S with well-defined masses in ouD(2) invariant system
‘s 10000 shortly after the spinodal instability is over. Therefore, we
E accept for the spectral densities the form of a free gas for
*§ ! each of them. Then the only remaining task is to find the
a 1000 | nonequilibrium generalization of the distribution functions
o fa.
2 J VY . A classical analogue of the average occupation number
= 100 : : : was extensively used for the dynamical coordinggen [4]:
0 0.5 1 1.5 2
k2 1 .
Falw) = w_[|xa(k)|2+ wa(k)zlxa(k)|z]1
FIG. 6. The evolution of the Goldstone kinetic power spectrum k
in time reveals the fast approach of highmodes towards equipar- — 2 ()
tition and the slow relaxation in the low-art of the spectrum. wa(K)*=k“+M3.
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FIG. 7. The evolution ofv X F,(w) of the Higgs(left) and Goldstonéright) modes shortly after the spinodal instability is saturated.

It was computed herésee Fig. 7 for the absolute value and Due to the rather strong initial excitation of the ldw-
the phase factor of the complex field. We see that the “numGoldstone modes, the average kinetic energy stored in this
ber density” of the Higgs degree of freedom which initially degree of freedom is the biggest directly after spinodal insta-
decreases exponentially at later times approaches uniformbyility. This averaging, however, is somewhat misleading. By
the 1k, regime. Also the virial equilibrium of the corre- subtracting the energy of the modes participating in the low-
sponding kinetic and potential contributions is fulfilled very k peak, the temperature of the “equlibrated” modes appears
early (for t~500). In the case of the Goldstone degree ofsomewhat lower than the corresponding Higgs temperature.
freedom, the convergence to the classical “number” densityin time a metastable “equilibration” between these modes
is not uniform, the excitation of the lok-modes remains becomes almost complete, as one can see in Fig. 8.
strong, and the approach to the classical regime in the high- This means that the equilibration in ti@&2) configura-
k region is slower. tion space is much more efficient than the energy transfer to
The smoothness af, and the thermalization tendency the inflaton. Apparently, the inflaton field is frozen at a much
observed in their evolution leads us to the conjecture that theower temperature than th@(2) fields.
form (6) of A,(p) remains valid in the present case; only the  The time spent by the inflaton in a frozen state is of the
functions f, are replaced by a far-from-equilibrium form. same order of magnitude as the relaxation time of the Gold-
With this assumption we can use the method of evaluatiostone lowk peak. We have checked that with the increase of
described in Appendix C df13]. [One should be aware of g2, the inflaton temperature starts to increase earlier, but the
the fact that beyond the present one-loop estimation, the ugeansition becomes smoother and the equilibrium is reached
of the proposed nonequilibrium form af,(p) would lead to  later. On the other hand, when the complex field is replaced
pinch singularitie$16].] In the case of the Goldstone modes, by a real one ¢ and A are kept at the same valyeshe
we find the following expression for the on-shell dampingequilibration time is an order of magnitude shorter. It is an
rate: interesting question whether the final relaxation of the com-
plex field leading to an equilibration with the inflaton was
started by some sort of instability, or if it can be character-

Tg(ko=k[)= (B)z ! ized by a smootliexponential or power-layrelaxation.
3] 32mk[? 200 | | | |
i Tgold -
g fMa/4|k|d PolF&(Po) = Fr(Po+t ko) ]- 700 r Toee |
(9) 600 | Tgold without low k peak - 1
500 i i‘ Tinflaton T o

The lower limit is a direct kinematical consequence of the 400 ' 1
zero mass nature of the Goldstone mode. It restricts the con “
tribution to the large frequency tails of both distributions if 300 -
the damping rate of the lok-modes is to be estimated. o5gq L
Since these modes are filled very late after the spinodal in- |
stability is complete, the damping of these Goldstone modes100
is very inefficient. o L , L
It is amusing that the far-equilibrium classical evolution 100 1000 10000 100000
under specific initial conditions produces a phenomenon for
the Goldstone excitation, which occurs at equilibrium in the
quantum version of the model due to the exponentially small FIG. 8. The thermal history of the independent degrees of free-
high-frequency tail of the Bose-Einstein fac{dr7,13,18. dom as calculated from their average kinetic energies.

time
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V. CONCLUSIONS It will be important to repeat the complete study in an

In this paper, we have shown that a well-defined Gold_expandmg space-time geometry. Recent developments along

stone degree of freedom appears inG2)-invariant sys- this line include the computation of scalar particle produc-
tem, almost instantly after the spinodal instability, driven bytIon [19] and the dynamics of coupled real scalar fiel26]

; ) T in an expanding Universe. The efficiency of the late equili-
the evo_Iuthn of a real field coupled to i, is saturated. Th(.ebratlon of the inflaton is expected to depend critically on the
thermalization takes anomalously long due to the very effi- .

) . o . ubble parameter of the evolution.
cient spinodal excitation of these modes, which showe

somewhat unexpectedly extremely slow relaxation in th During the spinodal instability, the low-modes become
low-k region P y y enighly excited; the classical description is well justifiable for

This feature was understood with the help of a leadin them. However, the transfer of the energy tquards the stable
order iterative estimation of the Goldstone damping rate rg_mgh-frequency modles might be more sensitive to guantum
: ) o effects. Therefore, in a second stage of the investigation
lying on the existence of a far-from-equilibrium initial spec- above the upper cutoff applied to the modes treated clas-
tral function. The fact that a computation making explicit usesically (K>|mg]), quantum modes will be introduced and

of a heavy and of a massless field could explain correctly thi?reated with the help of renormalized mode equations
phenomenon presents further evidence for the very earlg'Fl 27 P q

presence of the gapless modes, which is the main result

this investigation.
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