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Moduli space of BPS domain walls
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N52 supersymmetric QED with several flavors admits multiple, static BPS domain wall solutions. We
determine the explicit two-kink metric and examine the dynamics of colliding domain walls. The multikink
metric has a toric Ka¨hler structure and we reduce the Ka¨hler potential to quadrature. In the second part of this
paper, we consider semilocal vortices onR3S1. We argue that, in the presence of a suitable Wilson line, the
vortices separate into domain wall constituents. These play the role of fractional instantons in two-dimensional
gauge theories and sigma models.

DOI: 10.1103/PhysRevD.66.025013 PACS number~s!: 11.27.1d
im
d
le
o

tu
th
o
ta
g

an
ha
, i
d

ics
tio
r

ry
es

t
of

e
r-
a

n
rg
on

gs
er a

we
he
ion
r
the

er-

re
rack

gy
e
o-
cts

en-

dau
he

ld
of

me
di-

tum
duli

ri-
, as
n-
hat
soli-

su

ater
I. INTRODUCTION

The concept of the moduli space is one of the most
portant tools in the study of solitons. Originally introduce
by Manton to describe the classical scattering of monopo
@1#, it is now appreciated that the topology and geometry
soliton moduli spaces also encodes many of the quan
properties of supersymmetric theories. Examples include
spectrum of solitonic bound states, and nonperturbative c
tributions to correlation functions. This has played a pivo
role in untangling the web of dualities in field and strin
theories.

While the moduli spaces of instantons, monopoles,
vortices have all been studied in detail, less attention
been paid to the moduli space of domain walls. Indeed
most theories there is a force between widely separated
main walls@2,3#,1 and any attempt to describe the dynam
using a moduli space approximation requires the introduc
of a potential@5#. Nevertheless, there do exist models whe
the force between domain walls vanishes, resulting in
moduli space of static multikink solutions with arbitra
separation. These include a class of generalized W
Zumino models @6,7#, N51! theories @8#, and massive
sigma models@4#.

In this paper we shall consider domain walls inN52
supersymmetric QED with a Fayet-Iliopoulos~FI! parameter
and N flavors of electrons.2 If each electron has a differen
mass there areN isolated vacua, implying the existence
Bogomol’nyi-Prasad-Sommerfield~BPS! domain walls. As
will be reviewed below, a generic domain wall decompos
into several ‘‘fundamental’’ domain walls, each of which ca
ries an independent position and phase collective coordin
The moduli space of solitons is thus a toric Ka¨hler manifold
@4#.

In fact, this theory has a much richer spectrum of solito
than one might guess through a naive homotopy group a
ment. As well as domain walls, there also exist superc

*Email address: dtong@mit.edu
1This remains true even when the domain walls are mutually

persymmetric@4#.
2This is a slight generalization of the model considered in@4#,

reducing to it in the strong coupling limit@9#.
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ducting BPS strings, which carry a global current@10#.
Moreover, at least in the strong coupling limit, these strin
can end on the domain wall where they are charged und
localized U~1! gauge field@11#. ~The gauge field is dual to
the phase collective coordinate.! In other words, this field
theory provides a simple model of D-brane physics.

The paper is organized as follows. In the next section
introduce the Abelian-Higgs model of interest. We review t
first order domain wall equations, as well as the connect
to the sigma-model kinks of@4#. We then proceed to conside
the metric on the moduli space of solutions and derive
Kähler potential in integral form@Eq. ~15!#. In the case of
two kinks with identical masses, this integral can be p
formed@the resulting explicit metric is given in Eq.~17!# and
some of the properties and implications of this metric a
analyzed. In the second part of this paper, we change t
and discuss semilocal vortices onR3S1 with a Wilson line
for the flavor symmetry group. Motivated by the analo
with instantons and monopoles@12#, we demonstrate that th
vortices decompose into multiple kink solutions. This pr
vides a mechanism for calculating fractional instanton effe
in strongly coupled two-dimensional sigma models.

A note on the quantum theory: In this paper we conc
trate on domain walls in ad5311 dimensional Abelian
gauge theory. However, due to the existence of a Lan
pole, the theory is not well defined at the quantum level. T
same is true of the theory lifted tod5411 dimensions,
which may be of interest in the context of brane-wor
scenarios.3 Since we restrict ourselves to classical aspects
domain walls, no harm is done. However, to find the sa
domain walls as quantum objects, we must consider the
mensional reduction of the theory tod5211 or d5111.
Alternatively they appear as instantons in gauge quan
mechanics. In each of these cases, the metric on the mo
space remains the same.

Finally, throughout the paper we stress the many simila
ties that exist between the domain walls and monopoles
well as between semilocal vortices and Yang-Mills insta
tons. These similarities add to the growing evidence t
there exists a quantitative correspondence relating these
tons @13,14#.
-

3One cannot lift the theory with a mass gap to dimensions gre
than 411 while preserving supersymmetry.
©2002 The American Physical Society13-1
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II. GAUGE THEORY DOMAIN WALLS

Our starting point isd5311, N52 supersymmetric
U~1! gauge theory coupled toN hypermultiplets. The
bosonic part of the Lagrangian is given by

L5
1

4e2
F21

1

2e2
u]fu21(

i 51

N

~ uDqi u21uDq̃i u2!

2(
i 51

N

uf2mi u2~ uqi u21uq̃i u2!

2
e2

2 S (
i 51

N

uqi u22uq̃i u22z D 2

2
e2

2 U(
i 51

N

q̃iqiU2

~1!

Each scalar fieldqi has charge11 under the gauge group
while the q̃i have charge21. Each pair is assigned a com
plex massmi which may always be chosen to satisfy( imi
50. The complex scalar fieldf lives in the vector multiplet
and is neutral under the gauge group. Finally, we require
z, the real FI parameter appearing in the D term, is nonz
This ensures the theory lies in its Higgs phase. Without l
of generality4 we setz.0.

For vanishing masses the theory enjoys an SU(N) flavor
symmetry and a moduli space of vacua given byT!CPN21.
In this paper we will be interested in the case of nonze
distinct masses:miÞmj for iÞ j . This breaks the flavor sym
metry to the maximal torus U(1)N21 and lifts all butN iso-
lated vacua, lying on the zero section ofT!CPN21,

Vacuum i : f5mi , uqj u25zd i j , uq̃ j u250.

For generic massesmi , there exist BPS domain wall solu
tions interpolating between any given pair of vacua. Ho
ever, in order to find a moduli space of domain walls w
need to restrict the mass parameters to be real:5 Im(mi)50.
This immediately leads to the important corollary that the
is a natural ordering to the vacua. We choose the orde
mi 11,mi for all i.

Since certain fields will not appear in the domain w
solutions discussed below, we set them to zero at this st

Im~f!5q̃i5F50. ~2!

Their sole role was to complete the supersymmetry mul
lets, and to cancel a potential gauge anomaly.~In fact the
field strength will be resurrected below when we come
discuss dynamics.! In particular, from now on the fieldf
will always be assumed to be purely real. We choose
domain wall to lie in the (x22x3) plane, so that the only
nonzero space-time field variations are in thex[x1 direc-

4A possible complex FI parameter which would appear in the
term in Eq.~1! has been set to zero using the SU(2)R R symmetry
of the action.

5This is entirely analogous to the situation with monopoles
higher rank gauge groups, in which a moduli space only exists if
vacuum expectation value is real@15#.
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tion. We write ][]1. The BPS equations, first derived i
@16#, can be determined by simply completing the square
the Hamiltonian,

H5
1

2e2
~]f!21(

i 51

N

uDqi u21(
i 51

N

~f2mi !
2uqi u2

1
e2

2 S (
i 51

N

uqi u22z D 2

5
1

2e2 F ]f7e2S (
i 51

N

uqi u22z D G2

1(
i 51

N

uDqi7~f2mi !qi u26T.

For the kink interpolating between thei th vacuum atx→
2` and thej th vacuum atx→1`, the topological chargeT
is given by

T5F(
i 51

N

~f2mi !uqi u22fzG
2`

1`

5z~mi2mj !, ~3!

where we have chosenj . i which requires use of the uppe
signs in the Hamiltonian. The Bogomol’nyi equations a
therefore given by

]f5e2S (
i 51

N

uqi u22z D , ~4!

Dqi5~f2mi !qi . ~5!

It is simple to show that forj ,k, i , these Bogomol’nyi
equations requireqk[0. For this reason, we now restric
attention to the maximal domain wall interpolating betwe
the 1st andNth vacua, which has tensionT5z(m12mN).
Any other domain wall may be embedded maximally in
theory with fewer flavors.

The second Bogomol’nyi equation~5! is easily solved,

qi5Az expFc2mi~x2x0!2 (
a51

N22

a i
ar aG , ~6!

where a is a fixed, rank (N22) real matrix satisfying
( ia i

a5( imia i
a50, and the complex functionc is deter-

mined by

]c5f1 iA,

with A[A1 the gauge potential. By Eq.~2!, the imaginary
part of c is pure gauge. It may be set to zero when cons
ering static solutions, but will play an important role whe
we turn to the dynamics of domain walls. Most important
the solution~6! are the putative collective coordinates. The
are the center of massx0 and the parametersr a , a
51, . . . ,N22 which are related to the separation of neig
boring domain walls. Each is complex, with real and ima
nary parts,

F

e

3-2
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MODULI SPACE OF BPS DOMAIN WALLS PHYSICAL REVIEW D66, 025013 ~2002!
x05X01 iu0 , r a5Ra1 iua , ~7!

and will provideN21 complex coordinates on the doma
wall moduli space. Whenmi anda i

a are rational, the corre
spondingu is periodic. In contrast, whenmi and a i

a are
irrational, uPR. Note that there exists some ambiguity
fixing the matrix aa

i which is related to the possiblity o
performing coordinate redefinitions on the moduli spa
This ambiguity may be naturally removed by insisting th
asymptotically, the parametersR coincide with the relative
separations of far-separated domain walls. We shall do
explicitly for the two-kink metric but in general it remains a
open problem.

However, we must not be too hasty in concluding th
multidomain wall solutions exist, since we have still to s
isfy the first Bogomol’nyi equation~4! which now reads

1

ze2
]2 Re~c!5(

i 51

N

exp@2 Re~c!22mi~x2X!22a i
aRa#21.

~8!

Note that we have left the sum overa51, . . . ,N22 implicit
in this equation, and shall continue to do so for the remain
of the paper. This nonlinear, somewhat unpleasant, diffe
tial equation, which defines Re(c) as a function of the rea
variables (x2X) and Ra , is further complicated by the
boundary conditions,

Re~c!→H m1~x2X!1a1
aRa , x→2`,

mN~x2X!1aN
a Ra , x→1`.

I do not know if solutions exist for all values of the dime
sionful parameterze2. However, it is possible to write down
a formal solution as a perturbative series in the dimens
less parametere22. The strong coupling expansion takes t
form

Re~c!5 (
p50

`
1

e2p
cp . ~9!

Then, in the strict strong coupling limite2→`, the solution
is

exp~2c0!5S (
i 51

N

exp@22mi~x2X!22a i
aRa# D 21

,

~10!

which indeed has the correct boundary conditions. This m
be understood as the long-wavelength approximation to
true solution to Eq.~8!. The remainingcp for p.1 are de-
termined in an iterative fashion by the equation

]2(
p50

`
1

e2(p11)
cp5z (

n51

`
1

n! S (
p51

`
2

e2p
cpD n

,

which ensures thatcp→0 asx→6`, so the boundary con
ditions are preserved. Thus, there exist solutions to Eq.~8!
enjoying the full compliment ofN21 complex collective
02501
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coordinates, at least in a neighborhood ofe2250. The size
of this neighborhood is determined by the radius of conv
gence of the sum~9!, given by the limit ucp /cp11u as p
→`. It would be interesting to determine whether the so
tions exhibit a phase transition as the coupling constan
varied, or whether the radius of convergence is infinity
~more disappointing! zero.

The strong coupling limite2→`, which played an impor-
tant role in determining the existence of the solution, is
miliar from linear sigma models@9#. From the expression fo
the scalar potential~1!, it is clear that this limit restricts us to
the Higgs branchV5T!CPN21. The presence of mass term
for the hypermultiplets induces a potential on the Hig
branch which, by supersymmetry requirements, is prop
tional to the length of a triholomorphic Killing vector onV
@17#. This Killing vector is determined by the global flavo
symmetry preserved by the massesmi . Domain walls in
such massive sigma models have been extensively studie
the literature and, in particular, the existence of multiki
solutions was demonstrated in@4# using both Morse theory
as well as more direct techniques. It was further shown in@4#
that the coordinatesRa do indeed parametrize the separatio
between ‘‘fundamental kinks,’’ each of which interpolate
from the i vacuum to the (i 11) vacuum. The maximal kink
considered here is comprised of (N21) fundamental kinks.
A similar decomposition of kinks has also been found
SU(N)3Z2 gauge models@18#.

Moreover, the massive sigma models also admit a w
range of BPS solutions including intersecting domain wa
@19#, string lumps@20#, strings ending on domain walls@11#,
and dyonic domain walls@21#. It seems likely that each o
these has a generalization to the finite coupling gauge the
considered here. This is certainly true of strings, as show
@10#, and it is a simple exercise to generalize the BPS eq
tions of all these solitons to the gauge theory context.

III. THE MODULI SPACE OF DOMAIN WALLS

We turn now to the dynamics of domain walls. We wo
in the moduli space approximation; in other words, we co
sider solutions to the static BPS equations. The complex
lective coordinates are then promoted to fields on the dom
wall world volume,x0(j) and r a(j). For small fluctuations,
the low-energy dynamics of the soliton are described b
d5211 dimensional sigma model with target space toplo
cally of the form@4#

MN215R3
R3M̃N21

G ,

where the first twoR factors parametrize the center of ma
and overall phase of the soliton, respectively. Newton’s th
law ensures each is endowed with a flat metric. As w
monopoles, motion along the secondR factor recovers the
dyonic domain walls discussed in@21#. All interesting dy-
namics are encoded in the metric onM̃N21, the relative kink
moduli space, which has complex dimension (N22). This
inherits both a complex structure from Eq.~7! as well as
(N22) holomorphic U~1! isometries from the Abelian flavo
3-3
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DAVID TONG PHYSICAL REVIEW D 66, 025013 ~2002!
symmetries, and is thus a toric Ka¨hler manifold. The quotient
by the discrete groupG acts only on the toric fibers. Fo
generic domain wall masses,G5Z. For certain, rational
choices of masses the secondR factor collapses toS1, andG
is a finite group. This is identical to monopoles in high
rank gauge groups. Unlike monoples however, the sym
tries of the problem allow the metric to contain consta
cross terms between the center of mass and relative mo
factors—more on these later.

To find the metric, we first study fluctuations around t
domain wall background. We concentrate on variations w
respect to time, but the final answer may be trivially e
tended to haved5211 Lorentz symmetry on the domai
wall world volume. The linearized Bogomol’nyi equation
are

]ḟ5e2(
i 51

N

~ q̇iqi
†1qiq̇i

†!, ~11!

Dq̇i2 iȦqi5~f2mi !q̇i1ḟqi , ~12!

which are augmented by Gauss’ law, determining the elec
field E5F01,

]E5 ie2(
i 51

N

~qiD 0qi
†2qi

†D0qi !. ~13!

This equation requiresEÞ0. However, it may be shown tha
neither Im(f) nor q̃i have zero modes, and so we continue
ignore them as per ansatz~2!.6 We choose to work inA0
50 gauge, in which case the three equations above com
to give

]2S q̇i

qi
D 5]~ḟ1 iȦ !52e2(

j 51

N

q̇jqj
† ,

which is valid for all i such thatqiÞ0. The metric on the
moduli space is, as usual, inherited from the kinetic terms
the action. After employing the above time-evolution equ
tions, this can be brought into the form,

L5E dx
1

2e2
uḟ1 iȦu21(

i 51

N

q̇i q̇i
†

5E dx (
j 51

N

q̇j q̇ j
†2

q̇i

qi
q̇ j

†qj ; i ~qiÞ0!

5E dx(
j

uqj u2~ ċ1mjẋo2a j
aṙ a!

3~mjẋ0
†2a i

aṙ a
†!,

6This is not true of the corresponding fermions and the superp

ners ofq̃i do yield fermionic zero modes.
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where, in the last equality, we have used the explicit expr
sion for qj given in Eq.~6!. To make further progress, w
must find an expression forċ in terms of the collective co-
ordinatesx0 and r a . This involves solving Eq.~8! which is
currently beyond our reach apart from in the strong coupl
e2→` limit. From now on, we therefore restrict ourselves
this regime of parameter space so that, using Eq.~10!, Gauss’
law becomes

ċ05

(
i 51

N

~miẋ01a i
aṙ a!exp@22mi~x2X!22a i

aRa#

(
j 51

N

exp@22mj~x2X!22a j
aRa#

.

Inserting this into the Lagrangian, and performing some
the more simple integrals, we find the metric on theG-fold
cover ofMN21 is given by

L5 1
2 Tuẋ0u21z~aN

a 2a1
a!ẋoṙ a

†1H.c.1
]2K

]Ra]Rb
ṙ aṙ b

† .

~14!

The cross term between the center of massx0 and the rela-
tive separationsr a reflect the fact that the generic doma
wall solution breaks parity, so that the metric is not invaria
under x0→2x0.7 In relativistic terminology, the metric is
‘‘stationary,’’ as opposed to ‘‘static,’’ in thex0 coordinate.
The interesting dynamics are contained within the Ka¨hler
potentialK(Ra) which is given by the integral

K5
z

4E dx logF(
i 51

N

exp~22mix22a i
aRa!G . ~15!

Note that although this integral is divergent, all such ter
are at most linear inRa , and so do not contribute to th
metric. The toric Ka¨hler structure of the metric, which is
required by the global and supersymmetries of the theory
manifest in these coordinates. In particular, the Ka¨hler struc-
ture ensures that the bosonic Lagrangian~14! enjoys a super-
symmetric extension. Since the domain walls are half B
their three-dimensional world volume dynamics preserveN
52 supersymmetry~or four-supercharges!. The relevant
sigma model was found long ago@22# and includes a four-
Fermi term coupling Grassmannian zero modes to the R
mann tensor associated with the metric~15!.

As mentioned in the introduction, the functionK contains
information about the classical scattering of domain walls,
well as quantum effects in lower dimensional theories. F
example, we may dimensionally reduce the theory~1! to d
5111, with N5(4,4) supersymmetry. The spectrum
solitons is then determined by normalizable, harmonic for
on Mk . The holomorphic subset of these forms survive
states in theN5(2,2) theory~in which theq̃i and their su-

rt-

7Such terms are absent for higher codimension solitons~vortices,
monopoles, instantons! by rotational symmetry. I thank Adam Ritz
for a discussion on this issue.
3-4
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MODULI SPACE OF BPS DOMAIN WALLS PHYSICAL REVIEW D66, 025013 ~2002!
perpartners are removed!. Alternatively, if we reduce further
to d5011 quantum mechanics, the integral of the Eu
form overMk yields thek-instanton contribution to the four
Fermi correlation function.

Let us now restrict attention to the simplest case: t
kinks with equal tensionT5 1

2 Mz. This occurs for theN
53 model with the parameters

mi5~ 1
2 M ,0,2 1

2 M !, a i5
1
6 ~ 1

2 M ,2M , 1
2 M !. ~16!

With this choice, the system is symmetric underx0→2x0,
ensuring that thedx0dr† cross terms in the metric vanish
The moduli space takes the form

M25R3
S13M̃2

Z2
.

The periodicities of the two angular variables can be fou
by careful examination of the solutions~6!. TheS1 factor is
parametrized byu0P@0,4p/M ). The relative moduli space i
parametrized by the collective coordinatesRPR and u
P@0,8p/M ). The Z2 symmetry acts only on these period
variables,

Z2 : u0→u012p/M , u→u14p/M .

Most importantly, with the choice of parameters~16! the
Kähler potential given in Eq.~15! simplifies tremendously
in fact, to the point where Mathematica is happy to perfo
the integral with minimal complaint. We find the relativ
moduli space metric to be

ds25 1
16 Mz F~R!~dR21du2!, ~17!

where all interactions are encoded in the functionF,

F~R!5eMR/2E dy
e2y1ey

~e2y1ey1eMR/2!2

5
2eMR/2

~eMR24!3/2FeMR/2~eMR24!1/2

14 logS 21eMR/22~eMR24!1/2

21eMR/21~eMR24!1/2D G .

Note that, despite appearances to the contrary, the functiF
is real and positive definite. The apparent singularity
eMR54 is quite illusory:F is smooth at that point with value
4/3. As mentioned in the introduction, this function conta
information about the spectrum of domain walls ind51
11 dimensional gauge theories, as well as instanton eff
in gauge quantum mechanics. Here we merely extract s
simple physics concerning the classical dynamics. First,
us consider the limit of far-separated domain walls. AsR
→`, the metric becomes

ds2→ 1
8 Mz@12~2MR24!e2MR1O~e22MR!#

3~dR21du2!.
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The constant term, with the factor ofM /8 shows that we
have correctly identifiedR as the large-distance separatio
between the kinks@this can be traced back to the choice
normalization ofa in Eq. ~16!#. The leading order correction
to free motion is exponentially suppressed as expected
any soliton in a theory with a mass gap. The long-ran
velocity dependent force is

R̈52e2MR~M2R23M !~Ṙ22 u̇2!.

For suitably largeu̇, the two kinks repel. If, instead, th
kinks have constant relative phase, the overall minus s
implies that the velocity dependent force is attractive at la
separation. In fact, numerical studies show that this attrac
force persists for all values ofR. Thus kinks moving initially
apart will continue on such a trajectory, slowing but not ha
ing. In contrast, kinks moving towards each other will i
crease their speed. Assuming the velocities remain sma
that the moduli space approximation is valid, we can de
mine their fate by examining the metric as they approach
the limit R→2`, the function F→ 1

2 p exp(MR/2). After
changing to coordinates

L5S pz

2M D 1/2

exp~MR/4!PR1,

then, asL→0, the metric becomes

ds2→dL21 1
16 M2L2du2,

which, for the specific rangeuP@0,8p/M ), is nonsingular.
Thus the two-kink moduli space is smooth, the collision
elastic, and the domain walls rebound with their phases
changed,u→u14p/M .

IV. FRACTIONAL VORTICES

In this section, we discuss the relationship between
gauge theory domain walls considered above, and B
semilocal vortices@23,24# ~for a review, see@25#!. The latter
solitons are vortices in an Abelian gauge theory with a m
ticomponent Higgs field. This is precisely the model of E
~1! if we set the mass termsmi to zero. The vortices have
q̃i5f50, but a nonzero magnetic field, sayB5F13 for a
vortex string extended in thex2 direction. The BPS equation
are

B5e2S (
i 51

N

uqi u22z D ,

D1qi5D3qi .

Suppose we dimensionally reduce on thex3 direction, so that
]3[0 on all dynamical fields, and we further renameA3
[Re(f). Then the vortex equations are precisely the dom
wall equations~4! and ~5! if, upon dimension reduction, we
impose a Wilson line for the SU(N) flavor symmetry, intro-
ducing the massesmi .
3-5
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FIG. 1. Semilocal vortices

from IIB branes. ~a! has q̃i50,
and finite mass BPS states exis

In ~b!, q̃iÞ0 and BPS states do
not exist. The middle D-string has
opposite orientation to the others
and breaks supersymmetry.
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This situation is reminiscent of the relationship betwe
monopoles and instantons. In this case, dimensional re
tion of the self-dual Yang-Mills equations, with a Wilson lin
for the SU(N) gauge symmetry, results in the BPS monop
equation. In fact, in the monopole case, there is a dee
relationship between instantons and monopoles, discov
by Lee and Yi@12#. These authors consider SU(N) instan-
tons compactified onR33S1 with a Wilson line around the
S1, breaking the gauge group to the maximal torus. S
configurations are known as calorons. The dimension of
moduli space of calorons is the same as that of instanton
flat space; for Pontyagrin numberk, there are 4kN moduli.
Lee and Yi show that these collective coordinates may
understood as the position and internal phase ofkN magnetic
monopoles ofN different types. Recall that on flatR3, an
SU(N) gauge theory plays host to only (N21) different
types of monopoles, one for each simple root of the
algebra. For the caloron, the extra monopole is associate
the affine root of the Lie algebra, and arises because of
periodic nature of the Higgs field. The simplest way to s
this result is using the string setup of D0-D4-branes comp
tified on a circle.

In the remainder of this paper, we would like to show th
a similar phenomenon happens for semilocal vortices.
lated observations were also made in@21#. As in the case of
instantons and monopoles, the simplest way to see this re
is through a brane construction. In fact, we choose to mo
the d5211 theory which is simply the dimensional redu
tion of the model considered up to now,8 which we subse-
quently compactify onR1,13S1. There are~at least! two
ways to construct semilocal vortices in string theory, a
each has its advantages. The first method uses IIA st
theory with a background of D2- and D6-branes, toget
with an NS-NSB2 field,

D2: 012,

N3D6: 0123456,

with antiself dualBmn for m,n53,4,5,6. The theory on the
D2-brane is the U~1! gauge theory of interest, withz;uBu.
In this setup, the Chern-Simons terms on the D2-brane w

8The d5311 dimensional theory has a Landau pole. This do
not affect the classical discussion of this paper but, due to the
niscience of string theory, makes a brane discussion more sub
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volume imply that the semilocal vortex may be thought of
a D0-brane absorbed within the D2-brane. Unfortunate
moduli counting is difficult to see from this perspective,
the D0-brane does not preserve supersymmetry when
removed from the D2-D6-bound state. Nevertheless, we s
have use for this construction later.

The second construction of semilocal vortices uses the
Hanany-Witten setup

23NS5: 012345,

N3D5: 012789,

D3: 0126,

k3D1: 07.

The full configuration is drawn in Fig. 1. The low-energ
theory on the D3-brane is thed5211, N54 U(1) gauge
theory with N flavors described in Eq.~1!. Although this
setup employs more branes, it has the advantage that al
rameters have geometric origins. For example, the rea
parameter is given by the relative positions of the NS
branes,

x8uNS55x9uNS550, Dx7uNS55z,

while the complex masses are related to the relative posit
of the D5-branes in thex4 and x5 directions. For the pur-
poses of discussing vortices, we set the masses to zero.
vevs of qi and q̃i are determined by the positions of th
D3-brane segments suspended between the D5-branes
denote the (N11) segments asD3a . For BPS vortices to
exist, we requireq̃i50. In the brane picture, this translates

x8uD3a
5x9uD3a

50, x7uD3a11
.x7uD3a

.

In this case,k parallel D-strings, lying in thex7 direction,
may connect the first D3-brane segment with the last, wh
preserving supersymmetry, see Fig. 1~a!. This is the semilo-
cal vortex with magnetic chargek. Each of these D-strings
splits into N separate segments as illustrated in the pictu
Since each of these segments is free to roam the (x12x2)
plane, the moduli space of semilocal vortices has real dim
sion 2kN. This counting is indeed correct, as shown in@24#.
Moreover, this provides the first piece of numerological e
dence that, as for instantons and monopoles, the chark
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MODULI SPACE OF BPS DOMAIN WALLS PHYSICAL REVIEW D66, 025013 ~2002!
semilocal vortex may decompose intokN parallel domain
walls when placed on a circle.

One may wonder why a single segment of D-string do
not qualify as a BPS state of the theory. To see this, note
the flux from such a D-string is deposited on the D3-bra
segment, where it spreads out. Since the D3-brane is
compact only in two spatial dimensions, this state has a lo
rithmically divergent mass. Only when the D-strings form
closed, oriented path from the first D3-brane to the last
this flux escape onto the NS5-branes, leading to a stat
finite energy. Note also that the brane picture suggests

finite mass states also exist whenq̃iÞ0, see Fig. 1~b!. How-
ever, since the D-strings are not parallel in this case, the s
breaks supersymmetry.

We turn now to the question of vortices onR3S1, where
the circle is taken to have radiusR. To realize this in string
theory, we may work with either of the brane constructio
above, and makex2 periodic. Since the IIA setup is the les
complicated~and easier to draw! we choose to work in the
D2-D6 system. If a Wilson line for the SU(N) flavor sym-
metry is introduced, upon T duality the D6-branes beco
D5-branes separated in thex2 direction. The flat D2-brane
becomes a D-string oriented in thex1 direction. The result is
the familiar D1-D5 system. The presence of theB2 field,
which is not affected by T duality, induces a force betwe
the D-string and the D5-branes. This reproduces theN
vacuum states, in which the D-string lies within a given D
brane. What becomes of the vortex? At the position of
vortex, the D2-brane is wrapping an internal cycle and th
locally, is not extended in thex2 direction. Upon T duality,
we therefore expect a D-string wrapping the dualS1. The
final configuration forN52 is shown in Fig. 2. The D-string
interpolates to one of the vacuum states atx1→6`, lying
within one of the D5-branes. However, at the location of
vortex, it leaves its asymptotic location to windk times
around the circle (k51 is drawn in the picture!. On the way
around, it may make a temporary home in any one of
other (N21) D5-branes it encounters. The existence of su
BPS kinky D-string configurations was predicted in@26#, and
further examined in@16# where it was shown that they in
deed correspond to the gauge theory domain walls discu
in this paper.

Let us discuss theN52 field theory in more detail. This
theory contains only two vacua, located atf56m. ~Since
the massm arose from a flavor Wilson line, it is periodic s
we must havem,p/R.! In flat space, this would imply the
existence of a single kink, in whichf monotonically in-
creases fromf52m to f51m. There is also a corre
sponding antikink in whichf decreases, in the other dire
tion. However, as the brane picture clearly demonstra
when placed onR3S1, there exists a furtherkink ~as op-
posed to antikink! solution which interpolates fromf
51m to f52m. This preserves the same supersymme
as the original kink and is possible becausef arises from a
Wilson line,f5*S1A. Invariance under large gauge transfo
mations means thatf has period 2p/R. This allowsf to
interpolate from1m.0 to 2m,0 with f8.0 at all times.
For the theory on the circle, the mass of the original kink
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2z̃m, wherez̃52pRz. In the limit R→0, we keepz̃ fixed,
to ensure that this kink remains in the spectrum. In contr
the new kink which interpolates from1m to 2m, has mass

z̃(2p/R22m). As R→0, with z̃ fixed, this kink decouples
and we recover the situation described at the beginning
this paper.

A periodicf allows for the possibility of multiple domain
wall solutions for theories with only two, or indeed on
vacuum states. It would be interesting to examine the me
on these moduli spaces in more detail, especially in light
the fact that they give a Ka¨hler deformation of the~semilo-
cal! vortex moduli space.

As stressed above, the preceding discussion is enti
analogous to that of instantons and monopoles given in@12#.
In that case, the calorons have found an interesting app
tion in supersymmetric quantum field theories. It has lo
been known that certain strongly coupled four-dimensio
field theories receive nonperturbative contributions that h
the characteristics of fractional instantons. The decomp
tion of instantons into monopoles when compactified on
circle gives a physical manifestation of this phenomen
and, when coupled with holomorphy, may be used to co
pute fractional instanton effects in four-dimensional gau
theories in the weakly coupled regime@27,28#. Fractional
instantons also appear in certain two-dimensional ga
theories and sigma models, the most familiar example be
the N5(2,2), CPN21 sigma model. As for the four-
dimensional case, compactification on a circle gives a n
method to compute these effects using controlled, semic
sical techniques.
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FIG. 2. Kinks as fractional vortices: TheN52, k51 model.
The infinite array of branes is periodic mod 2. The 4 collecti
coordinates of the vortex are seen as the positions and phases o
kinks.
3-7



s.
d,

J.

hy

ys.

l.

l.

DAVID TONG PHYSICAL REVIEW D 66, 025013 ~2002!
@1# N. Manton, Phys. Lett.110B, 54 ~1982!.
@2# N. Manton, Nucl. Phys.B150, 397 ~1979!.
@3# A. Ritz, M. Shifman, A. Vainshtein, and M. Voloshin, Phy

Rev. D 63, 065018 ~2001!; R. Portugues and P. Townsen
Phys. Lett. B530, 227 ~2002!.

@4# J. Gauntlett, D. Tong, and P. Townsend, Phys. Rev. D64,
025010~2001!.

@5# N. Manton and H. Merabet, Nonlinearity10, 3 ~1997!.
@6# M. Shifman, Phys. Rev. D57, 1258 ~1998!; M. Shifman and

M. Voloshin, ibid. 57, 2590~1998!.
@7# D. Bazeia, M. dos Santos, and R. Ribeiro, Phys. Lett. A208,

84 ~1995!; A. Alonso Izquierdo, M. Gonzalez Leon, and
Mateos Guilarte, Phys. Rev. D65, 085012~2002!.

@8# C. Bachas, J. Hoppe, and B. Pioline, J. High Energy Phys.07,
041 ~2001!.

@9# E. Witten, Nucl. Phys.B403, 159 ~1993!.
@10# E. Abraham, Nucl. Phys.B399, 197 ~1993!.
@11# J. Gauntlett, R. Portugues, D. Tong, and P. Townsend, P

Rev. D63, 085002~2001!.
@12# K. Lee and P. Yi, Phys. Rev. D56, 3711~1997!.
@13# N. Dorey, J. High Energy Phys.11, 005 ~1998!; N. Dorey, T.

Hollowood, and D. Tong,ibid. 05, 006 ~1999!.
@14# F. Ferrari, Phys. Lett. B496, 212~2000!; J. High Energy Phys.

06, 057 ~2001!.
02501
s.

@15# C. Fraser and T. Hollowood, Phys. Lett. B402, 106 ~1997!.
@16# N. Lambert and D. Tong, Nucl. Phys.B569, 606 ~2000!.
@17# L. Alvarez-Gaume and D. Freedman, Commun. Math. Ph

91, 87 ~1983!.
@18# L. Pogosian and T. Vachaspati, Phys. Rev. D64, 105023

~2001!; L. Pogosian,ibid. 65, 065023~2002!.
@19# J. Gauntlett, D. Tong, and P. Townsend, Phys. Rev. D63,

085001~2001!.
@20# E. Abraham, Phys. Lett. B278, 291 ~1992!.
@21# E. Abraham and P. Townsend, Phys. Lett. B291, 85 ~1992!;

295, 225 ~1992!.
@22# D. Freedman and P. Townsend, Nucl. Phys.B177, 282~1981!;

L. Alvarez-Gaume´ and D. Freedman, Phys. Rev. D22, 846
~1980!.

@23# T. Vachaspati and A. Achucarro, Phys. Rev. D44, 3067~1991!.
@24# G. Gibbons, M. Ortiz, F. Ruiz Ruiz, and T. Samols, Nuc

Phys.B385, 127 ~1992!.
@25# T. Vachaspati and A. Achucarro, Phys. Rep.327, 347 ~2000!.
@26# E. Bergshoeff and P. Townsend, J. High Energy Phys.05, 021

~1999!.
@27# N.M. Davies, T. Hollowood, V. Khoze, and M. Mattis, Nuc

Phys.B559, 123 ~1999!.
@28# N. Dorey, J. High Energy Phys.07, 021 ~1999!.
3-8


