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N=2 supersymmetric QED with several flavors admits multiple, static BPS domain wall solutions. We
determine the explicit two-kink metric and examine the dynamics of colliding domain walls. The multikink
metric has a toric Klaler structure and we reduce théer potential to quadrature. In the second part of this
paper, we consider semilocal vortices Rix St. We argue that, in the presence of a suitable Wilson line, the
vortices separate into domain wall constituents. These play the role of fractional instantons in two-dimensional
gauge theories and sigma models.
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[. INTRODUCTION ducting BPS strings, which carry a global currgrt0].
Moreover, at least in the strong coupling limit, these strings

The concept of the moduli space is one of the most im<an end on the domain wall where they are charged under a
portant tools in the study of solitons. Originally introduced localized U1) gauge field[11]. (The gauge field is dual to
by Manton to describe the classical scattering of monopolel’® Phase collective coordinatén other words, this field
[1], it is now appreciated that the topology and geometry of "'€0"Y Provides a simple model of D-brane physics.
soliton moduli spaces also encodes many of the quantum The paper is organlz_ed as foIIows.. In the next section we

. . ) ) troduce the Abelian-Higgs model of interest. We review the
properties of su.per.symmetnc theories. Examples lnc[ude thfT‘rst order domain wall equations, as well as the connection
spectrum of solltonlq bound states, a_nd nonperturbatlv_e €Oy the sigma-model kinks d#]. We then proceed to consider
tributions to correlation functions. This has played a pivotalhe metric on the moduli space of solutions and derive the
role in untangling the web of dualities in field and string kahler potential in integral forniEq. (15)]. In the case of
theories. two kinks with identical masses, this integral can be per-

While the moduli spaces of instantons, monopoles, angormed[the resulting explicit metric is given in E(L7)] and
vortices have all been studied in detail, less attention hasome of the properties and implications of this metric are
been paid to the moduli space of domain walls. Indeed, iranalyzed. In the second part of this paper, we change track
most theories there is a force between widely separated dand discuss semilocal vortices & St with a Wilson line
main walls[2,3],* and any attempt to describe the dynamicsfor the flavor symmetry group. Motivated by the analogy
using a moduli space approximation requires the introductionvith instantons and monopolg$2], we demonstrate that the
of a potential5]. Nevertheless, there do exist models wherevortices decompose into multiple kink solutions. This pro-
the force between domain walls vanishes, resulting in &ides a mechanism for calculating fractional instanton effects
moduli space of static multikink solutions with arbitrary in strongly coupled two-dimensional sigma models.
separation. These include a class of generalized Wess- A note on the quantum theory: In this paper we concen-
Zumino models[6,7], N=1* theories[8], and massive trate on domain walls in al=3+1 dimensional Abelian
sigma model$4]. gauge theory. However, due to the existence of a Landau

In this paper we shall consider domain walls A=2 pole, the theory is not well defined at the quantum level. The
supersymmetric QED with a Fayet-lliopoul@Bl) parameter same is true of the theory lifted td=4+1 dimensions,
and N flavors of electrond.If each electron has a different which may be of interest in the context of brane-world
mass there ar®l isolated vacua, implying the existence of scenarios.Since we restrict ourselves to classical aspects of
Bogomol'nyi-Prasad-Sommerfiel(BPS domain walls. As domain walls, no harm is done. However, to find the same
will be reviewed below, a generic domain wall decomposeslomain walls as quantum objects, we must consider the di-
into several “fundamental” domain walls, each of which car- mensional reduction of the theory tb=2+1 ord=1+1.
ries an independent position and phase collective coordinatélternatively they appear as instantons in gauge quantum
The moduli space of solitons is thus a toricHer manifold  mechanics. In each of these cases, the metric on the moduli
[4]. space remains the same.

In fact, this theory has a much richer spectrum of solitons Finally, throughout the paper we stress the many similari-
than one might guess through a naive homotopy group arguies that exist between the domain walls and monopoles, as
ment. As well as domain walls, there also exist superconwell as between semilocal vortices and Yang-Mills instan-

tons. These similarities add to the growing evidence that
there exists a quantitative correspondence relating these soli-

*Email address: dtong@mit.edu tons[13,14.

This remains true even when the domain walls are mutually su-
persymmetrid 4].

2This is a slight generalization of the model considered4h 30ne cannot lift the theory with a mass gap to dimensions greater
reducing to it in the strong coupling limfe]. than 4+ 1 while preserving supersymmetry.
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Il. GAUGE THEORY DOMAIN WALLS tion. We write 9=4,. The BPS equations, first derived in
[16], can be determined by simply completing the square in

Our starting point isd=3+1, N=2 supersymmetric the Hamiltonian.

U(1) gauge theory coupled tdN hypermultiplets. The

bosonic part of the Lagrangian is given by 1 N N
. N H=5(09)+ 2, |Daf*+ 2, (¢=m)?gi?
=~ pF24 24 124 1Dg. |2
L= PP o l0dl%+ 2 (IDail*+]Dal?) 2 ,
T > |Qi|2_§)
i=1

N
_;1 | p—mi|?(|ai|>+ [ai]?)

2

adﬁez(ﬁl Iqilz—z)r

T 2e?
N
+i21 |Dg; ¥ (p—my) | >£T.

N
E diq;
i=1

N| ®,

e2 N 5 2
—5(; |qi|2—|qi|2—z) - &

Each scalar field); has charget 1 under the gauge group,

while the'q; have charge-1. Each pair is assigned a com-
plex massm; which may always be chosen to satisfym,
=0. The complex scalar fielg lives in the vector multiplet .
and is neutral under the gauge group. Finally, we require thdf 91ven by
¢, the real FI parameter appearing in the D term, is nonzero.
This ensures the theory lies in its Higgs phase. Without loss T=
of generality we set{>0.

For vanishing masses the theory enjoys an I$)Uflavor
symmetry and a moduli space of vacua givenT®PN~1.  where we have chosgr>i which requires use of the upper
In this paper we will be interested in the case of nonzerogsigns in the Hamiltonian. The Bogomol'nyi equations are
distinct massesn; #m; for i # j. This breaks the flavor sym- therefore given by
metry to the maximal torus U(y * and lifts SlllbutN iso- N
lated vacua, lying on the zero section fCP" ™ -, r7¢=ez( |21 Igi|2— g), 4)

For the kink interpolating between théh vacuum atx—
—oo and thejth vacuum ak— + oo, the topological charg&

N + o0
iZ:l(d"rni)|qi|2_<f>4 ={(m—-my), Q)

Vacuumi: ¢=m;, |qj|*=¢8;, |ﬁ,~|2=0-

, ) _ D= (¢p—m;)Qq; . (5

For generic masses;, there exist BPS domain wall solu-
tions interpolating between any given pair of vacua. How-It is simple to show that fo <k<i, these Bogomol'nyi
ever, in order to find a moduli space of domain walls weequations require),=0. For this reason, we now restrict
need to restrict the mass parameters to be&alm;)=0. attention to the maximal domain wall interpolating between
This immediately leads to the important corollary that therethe 1st andNth vacua, which has tensioh=¢(m;—my).
is a natural ordering to the vacua. We choose the orderingny other domain wall may be embedded maximally in a
m; . <m; for all i. theory with fewer flavors.

Since certain fields will not appear in the domain wall The second Bogomol'nyi equatidb) is easily solved,

solutions discussed below, we set them to zero at this stage, N-2

Im(¢)=0q;=F=0. 2) qi:@exi{ lﬂ—mi(X—Xo)—gl airal, (6)

Their sole role was to complete the supersymmetry multipwhere « is a fixed, rank N—2) real matrix satisfying
lets, and to cancel a potential gauge anomdly.fact the Sa?=3;ma?=0, and the complex functiony is deter-
field strength will be resurrected below when we come tomined by

discuss dynamick.In particular, from now on the fieldp

will always be assumed to be purely real. We choose the dp=p+iA,

domain wall to lie in the x>—x°) plane, so that the only

nonzero space-time field variations are in ttrex! direc-  With A=A, the gauge potential. By Eq2), the imaginary
part of ¢ is pure gauge. It may be set to zero when consid-

ering static solutions, but will play an important role when
4A possible complex FI parameter which would appear in the FV& turn to the dynamics of domain walls. Most important in
term in Eq.(1) has been set to zero using the SU{R symmetry  the solution(6) are the putative collective coordinates. These
of the action. are the center of masg, and the parameters,, a
SThis is entirely analogous to the situation with monopoles in=1, ... N—2 which are related to the separation of neigh-
higher rank gauge groups, in which a moduli space only exists if théoring domain walls. Each is complex, with real and imagi-
vacuum expectation value is redl5]. nary parts,
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Xo=Xo+i6y, Tra=Ra+if,, (7) coordinates, at least in a neighborhoodeof=0. The size
of this neighborhood is determined by the radius of conver-
and will provideN—1 complex coordinates on the domain gence of the sunt9), given by the limit|¢,/¢,.4| asp
wall moduli space. Whem; and & are rational, the corre- —co. It would be interesting to determine whether the solu-
sponding ¢ is periodic. In contrast, whem; and of are tions exhibit a phase transition as the coupling constant is
irrational, # R. Note that there exists some ambiguity in varied, or whether the radius of convergence is infinity or
fixing the matrix o, which is related to the possiblity of (more disappointingzero.
performing coordinate redefinitions on the moduli space. The strong coupling limie?— s, which played an impor-
This ambigu|ty may be natura"y removed by insisting that,tant role in determining the existence of the solution, is fa-
asymptotically, the parameteR coincide with the relative ~Mmiliar from linear sigma modelgd]. From the expression for
separations of far-separated domain walls. We shall do thithe scalar potentidll), it is clear that this limit restricts us to
explicitly for the two-kink metric but in general it remains an the Higgs branch’=T*CP"~*. The presence of mass terms
open problem. for the hypermultiplets induces a potential on the Higgs
However, we must not be too hasty in concluding thatoranch which, by supersymmetry requirements, is propor-
multidomain wall solutions exist, since we have still to sat-tional to the length of a triholomorphic Killing vector ov

isfy the first Bogomol'nyi equatiort4) which now reads [17]. This Killing vector is determined by the global flavor
symmetry preserved by the masses. Domain walls in

1 N such massive sigma models have been extensively studied in
— P Re(y) =2, exf2 Rey) —2mi(x—X)—2afR,]—1.  the literature and, in particular, the existence of multikink
¢e =1 solutions was demonstrated [id] using both Morse theory

(8) as well as more direct techniques. It was further showdjn
Note that we have left the sum over=1, ... N—2 implicit  that the coordinateR, do indeed parametrize the separations

in this equation, and shall continue to do so for the remaindepetween “fundamental kinks,” each of which interpolates
of the paper. This nonlinear, somewhat unpleasant, differedfom thei vacuum to thei(+1) vacuum. The maximal kink
tial equation, which defines Reéj as a function of the real considered here is comprised df{-1) fundamental kinks.
variables k—X) and R, is further complicated by the A similar decomposition of kinks has also been found in

boundary conditions, SU(N) X Z, gauge model§18]. S
Moreover, the massive sigma models also admit a wide
my(x—X)+afR,, X——o, range of BPS solutions including intersecting domain walls
Re(¢)— [19], string lumpg 20], strings ending on domain wal[41],

a
MN(X=X)+ayRa, X— . and dyonic domain wall§21]. It seems likely that each of

| do not know if solutions exist for all values of the dimen- thesg has a generaliz§t|on to Fhe finite coupllng gauge theqry
considered here. This is certainly true of strings, as shown in

sionful parametete®. However, it is possible to write down o : ; .
a formal solution as a perturbative series in the dimensionLlo]’ and it is a simple exercise to generalize the BPS equa-

less parametes 2. The strong coupling expansion takes thet|ons of all these solitons to the gauge theory context.

form
I1l. THE MODULI SPACE OF DOMAIN WALLS

)

Re( ) = E i¢ _ 9) _ We turn now to the dynamics_ of <_jomain walls. We work
§=0 20 P in the moduli space approximation; in other words, we con-
sider solutions to the static BPS equations. The complex col-
Then, in the strict strong coupling lim&®— o, the solution  lective coordinates are then promoted to fields on the domain
is wall world volume,xy(£) andr 4(£). For small fluctuations,
the low-energy dynamics of the soliton are described by a

N -1
d=2+1 dimensional sigma model with target space toplogi-
eXp(z%):(Zfl exp[—Zmi(x—X)—ZaiaRa]) ' cally of the form[4] ’ P Pos
(10) -
RX M-y
which indeed has the correct boundary conditions. This may My-1= RX—g '

be understood as the long-wavelength approximation to the
true solution to Eq(8). The remaining/, for p>1 are de-  where the first twaR factors parametrize the center of mass

termined in an iterative fashion by the equation and overall phase of the soliton, respectively. Newton’s third
. . . N law ensures each is endowed with a flat metric. As with

23 1 bootS 1 D 2 monopoles, motion along the secoRdfactor recovers the

=0 2+ 1) TP S | i g2p TP dyonic domain walls discussed [21]. All interesting dy-

namics are encoded in the metric &ty _ ;, the relative kink
which ensures thal,—0 asx— *«, so the boundary con- moduli space, which has complex dimensid#<2). This
ditions are preserved. Thus, there exist solutions to(Bg. inherits both a complex structure from E) as well as
enjoying the full compliment oN—1 complex collective (N—2) holomorphic W1) isometries from the Abelian flavor
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symmetries, and is thus a toric Klar manifold. The quotient where, in the last equality, we have used the explicit expres-
by the discrete groug acts only on the toric fibers. For sion forq; given in Eq.(6). To make further progress, we
generic domain wall massegj=Z. For certain, rational must find an expression faf in terms of the collective co-
choices of masses the secdRdactor collapses t&', andG  ordinatesx, andr,. This involves solving Eq(8) which is

is a finite group. This is identical to monopoles in higher cyrrently beyond our reach apart from in the strong coupling
rank gauge groups. Unlike monoples however, the symmeg2_, o |imit. From now on, we therefore restrict ourselves to

tries of the problem allow the metric to contain constantthis regime of parameter space so that, using(Eg), Gauss’
cross terms between the center of mass and relative motigaw becomes

factors—more on these later.

To find the metric, we first study fluctuations around the N ) :
domain wall background. We concentrate on variations with >, (mixo+afr )exi —2m;(x—X) —2a{R,]
respect to time, but the final answer may be trivially ex- %:'_1
tended to havel=2+1 Lorentz symmetry on the domain
wall world volume. The linearized Bogomol'nyi equations
are

N
>, exd —2m;(x—X) —2aRy]
i=1

Inserting this into the Lagrangian, and performing some of

) ) N N _T the more simple integrals, we find the metric on théold
dp=e izl (aig; +ai9;), (1D cover of My_4 is given by
o o s 2 Aot U
Dg;—iAQi=(¢—m)q;+ ¢q;, (12 E—§T|XO| +{(any— al)Xol g+ H.c.+ mrarb.

which are augmented by Gauss’ law, determining the electric a9
field E=Fqq, The cross term between the center of mgssnd the rela-
tive separations , reflect the fact that the generic domain
wall solution breaks parity, so that the metric is not invariant
JE=ie22, (q;Dod! — 0/ Dogy). (13)  underxy,— —xo.” In relativistic terminology, the metric is
=t “stationary,” as opposed to “static,” in the, coordinate.
The interesting dynamics are contained within théhléa
potential IC(R,) which is given by the integral

N

This equation requireE+# 0. However, it may be shown that
neither Im®) norgq; have zero modes, and so we continue to

ignore them as per ansat2).® We choose to work im\, ¢ N
=0 gauge, in which case the three equations above combine K= ZJ dxlog 21 exp—2mix—2afRy)|. (15
to give =

Note that although this integral is divergent, all such terms
are at most linear irR,, and so do not contribute to the
metric. The toric Kaler structure of the metric, which is
required by the global and supersymmetries of the theory, is
which is valid for alli such thatg,#0. The metric on the manifest in these coordinates. In particular, thékastruc-
moduli space is, as usual, inherited from the kinetic terms iriure ensures that the bosonic Lagrandii) enjoys a super-
the action. After employing the above time-evolution equa-symmetric extension. Since the domain walls are half BPS,
tions, this can be brought into the form, their three-dimensional world volume dynamics presekie
=2 supersymmetry(or four-superchargés The relevant
1 . . N sigma model was found long ag@2] and includes a four-
£=f dx—2|¢+iA|2+2 qiqiT Fermi term coupling Grassmannian zero modes to the Rie-
2e =1 mann tensor associated with the metis).
As mentioned in the introduction, the functiéhcontains
N ¢ Giey ) information about the classical scattering of domain walls, as
ZJ dx '21 a;d; — EQ;Q; Vi (g;#0) well as quantum effects in lower dimensional theories. For
= ' example, we may dimensionally reduce the the@dyto d
=1+1, with N=(4,4) supersymmetry. The spectrum of

. N
az(%)=ﬁ(éz>+iA)=2e22 a;a;
_ &

:j dx > |qil2(+mix,— a?r?) solitons is then determined by normalizable, harmonic forms
i . SR on M,. The holomorphic subset of these forms survive as
at states in the\'=(2,2) theory(in which theq; and their su-

o
X(MjXg— aTy),

o ) ) ’Such terms are absent for higher codimension soliteogices,
®This is not true of the corresponding fermions and the superpartmonopoles, instantopdy rotational symmetry. | thank Adam Ritz
ners ofq; do yield fermionic zero modes. for a discussion on this issue.
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perpartners are removedilternatively, if we reduce further The constant term, with the factor &f/8 shows that we

to d=0+1 quantum mechanics, the integral of the Eulerhave correctly identifiedR as the large-distance separation

form over M, yields thek-instanton contribution to the four- between the kink$this can be traced back to the choice of

Fermi correlation function. normalization ofe in Eq. (16)]. The leading order correction
Let us now restrict attention to the simplest case: twoto free motion is exponentially suppressed as expected for

kinks with equal tensiorT=3M¢. This occurs for theN any soliton in a theory with a mass gap. The long-range

=3 model with the parameters velocity dependent force is

m=(3M,0-3M), a;=5(3M,—M,3M). (16 R=—e MR(M2R—3M)(R%— 6?).

With this choice, the s%/stem Is symmetric undgF>—Xo,  For suitably larged, the two kinks repel. If, instead, the
ensuring that thelx,dr’ cross terms in the metric vanish. \inks have constant relative phase, the overall minus sign

The moduli space takes the form implies that the velocity dependent force is attractive at large
1 =~ separation. In fact, numerical studies show that this attractive
M,= R><S ><le force persists for all values &. Thus kinks moving initially
Z, apart will continue on such a trajectory, slowing but not halt-

o ) ing. In contrast, kinks moving towards each other will in-
The periodicities of the two angular variables can be found:rease their speed. Assuming the velocities remain small so
by careful examination of the solutior§). The S factor is  that the moduli space approximation is valid, we can deter-
parametrized by, [0,4w/M). The relative moduli space is  mine their fate by examining the metric as they approach. In
parametrized by the collective coordinate&=R and 6  the limit R— —c, the functionF— %7 expMR/2). After
€[0,87/M). The Z, symmetry acts only on these periodic changing to coordinates
variables,
7T§ 1/2
Zy: 0g— 0o+ 27IM, 60— 0+4mIM. L=<m) expMR/4)eR™,
Most importantly, with the choice of paramete(s6) the ]
Kahler potential given in Eq(15) simplifies tremendously; then, as.—0, the metric becomes
in fact, to the point where Mathematica is happy to perform o 12 2o
the integral with minimal complaint. We find the relative ds’—dL?+ sM?L2d 62,

moduli space metric to be ] . ) )
which, for the specific rang@<[0,87/M), is nonsingular.

ds’=iM¢F(R)(dR?+d6?), (170 Thus the two-kink moduli space is smooth, the collision is
elastic, and the domain walls rebound with their phases ex-
where all interactions are encoded in the functign changed§— 6+ 4/ M.
e Y+e¥
F(R):eMRIZJ' dy IV. FRACTIONAL VORTICES
(e V+e¥+eMR2)2

In this section, we discuss the relationship between the
gauge theory domain walls considered above, and BPS
eMRI2(gMR _ 4172 semilocal vortice$23,24] (for a review, se¢25]). The latter

solitons are vortices in an Abelian gauge theory with a mul-
ticomponent Higgs field. This is precisely the model of Eq.
2+eMR’2—(eMR—4)1’2H (1) if we set the mass term®, to zero. The vortices have

2+ eMR24 (gMR_4)12 ;= ¢=0, but a nonzero magnetic field, s&=F,; for a
vortex string extended in the, direction. The BPS equations

Note that, despite appearances to the contrary, the funEtion are

is real and positive definite. The apparent singularity at

eMR=4 is quite illusory:F is smooth at that point with value ) N )

4/3. As mentioned in the introduction, this function contains B=e 241 lail*=¢],

information about the spectrum of domain walls dr= 1

+1 dimensional gauge theories, as well as instanton effects

in gauge quantum mechanics. Here we merely extract some

simple physics concerning the classical dynamics. First, |

us consider the limit of far-separated domain walls. Rs

—oo, the metric becomes

ZeM R/2

(eM R_ 4)3/2

+4 log

D1q;=Ds0; -

eéuppose we dimensionally reduce on falirection, so that
d;=0 on all dynamical fields, and we further renarhg
=Re(¢). Then the vortex equations are precisely the domain

d?— IM{[1- (2MR—4)e MR+ O(e~2VR)] wall equationg4) and (5) if, upon dimension reduction, we
s impose a Wilson line for the SW) flavor symmetry, intro-
X (dR2+d#?). ducing the masses .
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a) NS5 b)

D3
\[ D5
FIG. 1. Semilocal vortices

from IIB branes.(a) hasq;=0,
and finite mass BPS states exist.
In (b), g;#0 and BPS states do
not exist. The middle D-string has
345 opposite orientation to the others,

D1 and breaks supersymmetry.
6

7

This situation is reminiscent of the relationship betweenvolume imply that the semilocal vortex may be thought of as
monopoles and instantons. In this case, dimensional redue DO-brane absorbed within the D2-brane. Unfortunately,
tion of the self-dual Yang-Mills equations, with a Wilson line moduli counting is difficult to see from this perspective, as
for the SUN) gauge symmetry, results in the BPS monopolethe DO-brane does not preserve supersymmetry when it is
equation. In fact, in the monopole case, there is a deepeemoved from the D2-D6-bound state. Nevertheless, we shall
relationship between instantons and monopoles, discoverdthve use for this construction later.
by Lee and Yi[12]. These authors consider SN instan- The second construction of semilocal vortices uses the 11B
tons compactified oR3x St with a Wilson line around the Hanany-Witten setup
S', breaking the gauge group to the maximal torus. Such

configurations are known as calorons. The dimension of the 2XNS5: 012345,
moduli space of calorons is the same as that of instantons in

flat space; for Pontyagrin numbeky there are &N moduli. NxD5: 012789,
Lee and Yi show that these collective coordinates may be

understood as the position and internal phaseNomagnetic D3: 0126,
monopoles ofN different types. Recall that on fl&3, an

SU(N) gauge theory plays host to onl\N( 1) different kXD1:07.

types of monopoles, one for each simple root of the Lie e full configuration is drawn in Fig. 1. The low-energy
algebra. For the caloron, the extra monopole is associated t . " )
g P %&ory on the D3-brane is thd=2+1, N=4 U(1) gauge

the affine root of the Lie algebra, and arises because of th

periodic nature of the Higgs field. The simplest way to se€0"y With N flavors described in Eq(l). Although this

this result is using the string setup of DO-D4-branes compacSetUP employs more branes, it has the advantage that all pa-

tified on a circle. rameters have geometric origins. For example, the real FI

In the remainder of this paper, we would like to show thatP@rameter is given by the relative positions of the NS5-
a similar phenomenon happens for semilocal vortices. RePranes,
!ated observations were also que[m]. As in the case of %=X N =0, AX|nygs={
instantons and monopoles, the simplest way to see this result NS INSS 0 NS S

is through a brane construction. In fact, we choose to mod&j hjje the complex masses are related to the relative positions
thed=2+1 theory which is simply the dimensional reduc- ¢ the D5-branes in the and x° directions. For the pur-

tion of the model considlelredlup to néwyhich we subse- poses of discussing vortices, we set the masses to zero. The
quently compactify onR~*XS*. There are(at least two 4% q ined by th . h
ways to construct semilocal vortices in string theory, and’ <. > ofg; and q; are determined by the positions of the

' D3-brane segments suspended between the D5-branes. We

each has its advantages. The first method uses IIA strin )
theory with a background of D2- and D6-branes, togethe enote the Ri+1) segments aB3,. For BPS vortices to

with an NS-NSB, field, exist, we requiréii=0. In the brane picture, this translates to
D2: 012, x®lps, =x°|p3, =0, X'[ps_ ,>X'|ps,-
NXD6: 0123456, In this casek parallel D-strings, lying in the<’ direction,

may connect the first D3-brane segment with the last, while
with antiself dualB,,, for u,»=3,4,5,6. The theory on the preserving supersymmetry, see Figa)1 This is the semilo-
D2-brane is the (1) gauge theory of interest, withi~|B|. cal vortex with magnetic charge Each of these D-strings
In this setup, the Chern-Simons terms on the D2-brane worldplits into N separate segments as illustrated in the picture.
Since each of these segments is free to roam xe- &?)
plane, the moduli space of semilocal vortices has real dimen-
8The d=3+1 dimensional theory has a Landau pole. This doession N. This counting is indeed correct, as showr 24].
not affect the classical discussion of this paper but, due to the omMoreover, this provides the first piece of numerological evi-
niscience of string theory, makes a brane discussion more subtle.dence that, as for instantons and monopoles, the charge
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semilocal vortex may decompose inkdN parallel domain
walls when placed on a circle.
|

One may wonder why a single segment of D-string does . __—

\
not qualify as a BPS state of the theory. To see this, note tha ~ J

the flux from such a D-string is deposited on the D3-brane
segment, where it spreads out. Since the D3-brane is non || .
compact only in two spatial dimensions, this state has aloga:  *-.. \< </
rithmically divergent mass. Only when the D-strings form a

closed, oriented path from the first D3-brane to the last can FIG. 2. Kinks as fractional vortices: Th=2. k=1 model.

t_h|§ flux escape onto the NS5-branes, |§ad|ng to a state qjhe infinite array of branes is periodic mod 2. The 4 collective
finite energy. Note also that thf brane picture suggests tlf]%l)ordinates of the vortex are seen as the positions and phases of two
finite mass states also exist whey¥ 0, see Fig. (b). How-  kinks.

ever, since the D-strings are not parallel in this case, the state

breaks supersymmetry.

. . 1 N _ _
We turn now to the question of vortices &X S*, where 2%m, whereZ=27R¢. In the limit R—0, we keep? fixed,

the circle is taken to have radil® To realize this in string Cs S
: . 2 to ensure that this kink remains in the spectrum. In contrast,

theory, we may work with either of the brane constructions : S

PR . the new kink which interpolates fromt m to —m, has mass
above, and makg“ periodic. Since the IlA setup is the less - N o
complicated(and easier to drawve choose to work in the ¢(27/R—=2m). As R—0, with { fixed, this kink decouples,
D2-D6 system. If a Wilson line for the SBY) flavor sym- and we recover the situation described at the beginning of
metry is introduced, upon T duality the D6-branes becoméhis paper.
D5-branes separated in thé direction. The flat D2-brane A periodic ¢ allows for the possibility of multiple domain
becomes a D-string oriented in tiké direction. The resultis wall solutions for theories with only two, or indeed one,
the familiar D1-D5 system. The presence of tBe field, = vacuum states. It would be interesting to examine the metric
which is not affected by T duality, induces a force betweenon these moduli spaces in more detail, especially in light of
the D-string and the D5-branes. This reproduces fhe the fact that they give a Kder deformation of thésemilo-
vacuum states, in which the D-string lies within a given D5-cal) vortex moduli space.
brane. What becomes of the vortex? At the position of the As stressed above, the preceding discussion is entirely
vortex, the D2-brane is wrapping an internal cycle and thusanalogous to that of instantons and monopoles given2h
locally, is not extended in the? direction. Upon T duality, In that case, the calorons have found an interesting applica-
we therefore expect a D-string wrapping the d§&l The  tion in supersymmetric quantum field theories. It has long
final configuration foN=2 is shown in Fig. 2. The D-string peen known that certain strongly coupled four-dimensional
interpolates to one of the vacuum statesxat> +<, lying  field theories receive nonperturbative contributions that have
within one of the D5-branes. However, at the location of thethe characteristics of fractional instantons. The decomposi-
vortex, it leaves its asymptotic location to wirkdtimes  {jon of instantons into monopoles when compactified on a
around the circlek=1 is drawn in the picture On the way  ¢jrcle gives a physical manifestation of this phenomenon
around, it may make a temporary home in any one of the,,q '\yhen coupled with holomorphy, may be used to com-

other (N— 1) D5-branes it encounters. The existence of sucfb . . ; : :
Y . . g ; ute fractional instanton effects in four-dimensional gauge
BPS kinky D-string configurations was predicted 26, and theories in the weakly coupled regimi27,28. Fractional

further examined irj16] where it was ShOWF‘ that they N" instantons also appear in certain two-dimensional gauge
deed correspond to the gauge theory domain walls d|scussef\ eories and sigma models, the most familiar example being

in this paper. - N-1
Let us discuss th&l=2 field theory in more detail. This the N_,(Z‘Z)’ CP sigma ”.‘Ode'- As .for the four-
dimensional case, compactification on a circle gives a new

theory contains only two vacua, located ¢t = m. (Since ) )
the massn arose from a flavor Wilson line, it is periodic so method to compute these effects using controlled, semiclas-

we must haven< #/R.) In flat space, this would imply the Sical techniques.
existence of a single kink, in whicld monotonically in-
creases from¢$=—m to ¢=+m. There is also a corre-

sponding antikink in whichp decreases, in the other direc- ACKNOWLEDGMENTS
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