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Vanishing magnetic mass in three-dimensional QED with a Chern-Simons term
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We show that at one loop the magnetic mass vanishes at finite temperature in QED in any dimension. In
three-dimensional QED, even the zero temperature part can be regularized to zero. We calculate the two-loop
contributions to the magnetic mass in three-dimensional QED with a Chern-Simons term and show that it
vanishes. We give a simple proof which shows that the magnetic mass vanishes to all orders at finite tempera-
ture in this theory. This proof also holds for QED in any dimension.
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I. INTRODUCTION

In an earlier Letter@1#, we studied the question of th
screening mass in the (211)-dimensional Abelian Higgs
model with a Chern-Simons term as well as in thre
dimensional QED (QED3) with a Chern-Simons term. We
showed there that, at one loop, the magnetic mass in Q3
vanishes. This is quite surprising considering the fact that
Chern-Simons term has associated with it various magn
phenomena@2,3# and yet the magnetic mass vanishes. In t
Letter @1#, we formally argued, based on the Ward identity
well as the assumption of analyticity of the amplitudes, t
this result holds to all orders. However, as is well know
amplitudes cease to be analytic and infrared divergence
general, become severe at finite temperature@4#, both of
which can invalidate a formal argument. Therefore, in t
paper we study this question systematically in QED3 with a
Chern-Simons term at finite temperature and give an a
nate proof that the magnetic mass indeed vanishes to al
ders. It has already been noted@5# that, at two loops, the
parity-violating part of the gauge self-energy~correction to
the Chern-Simons term! develops an infrared divergence
finite temperature in the absence of a tree level Che
Simons term. It is for this reason that we study QED3 with a
Chern-Simons term. However, as the one-loop result sh
@1#, even with a tree level Chern-Simons term, the pho
propagator develops a massless pole and, therefore, the
tion of infrared divergence has to be analyzed carefully.
note that the vanishing of the magnetic mass at finite te
perature has already been studied in four-dimensional Q
(QED4) @6#. However, infrared divergences become mo
severe as we go to lower dimensions. The two-dimensio
theory ~Schwinger model! is known to be well behaved@7#
and, therefore, the (211) dimensional theory is the mos
interesting theory to study from this point of view.

Our results are organized as follows. In Sec. II we sh
that, at one loop, the magnetic mass vanishes in QED in
dimension at finite temperature. The additional feature of
(211) dimensional theory is that even the zero tempera
contribution to the magnetic mass can be regularized to z
We also explicitly show that, at two loops, QED3 with a
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Chern-Simons term has a vanishing contribution to the m
netic mass and that there is no infrared divergence prese
this amplitude at this order even in the absence of a tree l
Chern-Simons term. In Sec. III we prove that the vanish
of the magnetic mass holds to all orders. In Sec. IV
present a brief summary of our results.

II. EXPLICIT CALCULATIONS

Let us consider QED3 with a Chern-Simons term de
scribed by the Lagrangian density

L52
1

4
FmnFmn1

k

2
emnlAm]nAl1c̄~ iD” 2m!c ~1!

wherek is known as the Chern-Simons coefficient and t
covariant derivative is defined to be

Dmc5~]m2 ieAm!c. ~2!

In 211 dimensions, the Chern-Simons term as well as
mass term for the fermion break discrete symmetries suc
parity and time reversal@2,3# and, therefore, are intimatel
connected. Namely, even if there is no Chern-Simons te
present at the tree level, it is generated through radia
corrections in a massive fermion theory@8#. Let us note,
however, that both these terms are invariant under cha
conjugation under which

CAmC2152Am , CcC2152g2c̄T. ~3!

As a result, the Lagrangian density in Eq.~1! is invariant
under charge conjugation and it is the charge conjuga
invariance which, for example, makes the amplitudes with
odd number of photons to vanish~Furry’s theorem! in this
theory. We would like to study the question of the magne
mass in this theory at finite temperature.

Throughout this paper, we will use the imaginary tim
formalism @4,9,10# to study the finite temperature effects
this theory. Therefore, we will consider the theory in t
Euclidean space. In such a theory, the self-energy of the p
ton is independent of the gauge fixing parameter and, i
covariant gauge, can be parametrized to all orders as@1#

Pmn5PmnPT1QmnPL1emnlplPodd ~4!
©2002 The American Physical Society11-1
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where

Pmn5 d̃mn2
p̃mp̃n

p̃2
, Qmn5

p2

p̃2
ūmūn ~5!

with

d̃mn5dmn2umun , p̃m5pm2~u•p!um ,
~6!

ūm5um2
u•p

p2
pm .

Hereum represents the velocity of the heat bath which, in
rest frame, takes the formum5(1,0,0).

There are several things to note here. First,PT and PL
lead, respectively, to the transverse and the longitud
masses for the photon. While the longitudinal mass is
sponsible for the screening of charges, it is the transve
mass which is related to the magnetic mass of the pho
Second, the presence of the parity odd term, in the s
energy, is a consequence of the fact that parity is violate
this theory. From the form of the tensors in Eq.~5!, it is easy
to see that we can write, in general, the magnetic mass
the photon~which is defined in the static limit! as

PT~0!5
1

D22
d i j P i j ~0!

5
1

D22
d i j P i j

PC~0!, D.2 ~7!

where D represents the number of space-time dimensio
Namely, the magnetic mass is determined completely fr
the parity-conserving part of the self-energy and does
depend on the parity-violating structure.

We note that in the imaginary time formalism, the tr
level fermion propagator has the form

S(0)~p!5
1

p”1m
5

2p”1m

p21m2
. ~8!

where, in the Euclidean space, we work with

g05 is3 , g15 is1 , g25 is2 ~9!

and

p05~2n11!pT5
~2n11!p

b
. ~10!

FIG. 1. One-loop diagram for photon self-energy.
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With these, we note that the photon self-energy in QED
one loop, in an arbitrary dimension, takes the form~see Fig.
1!

Pmn
(1)~p!5e2E dDk

~2p!D
tr gmS(0)~k1p!gnS(0)~k!

5
e2

b (
n
E dD21k

~2p!D21
trgmS(0)~k1p!gn

3S(0)~k!. ~11!

In D-dimensional Euclidean space, the trace over the gam
matrices takes the form

trgmgn522[D/2]dmn52C~D !dmn , ~12!

where @D/2# represents the floor ofD/2. Evaluating the
Dirac trace and performing the sum over the discrete
quencies, we obtain in the static limit

PT
(1)~0!5d i j P i j

(1)~0!52
C~D !e2

2 E dD21k

~2p!D21

3S ~D21!1
kW2

vk

]

]vk
D S tanhS bvk

2 D
vk

D
52

C~D !e2

2D21p (D21)/2GS D21

2 D E0

`

dkkD22

3S ~D21!1
k2

vk

]

]vk
D S tanhS bvk

2 D
vk

D ~13!

where we have definedk5ukW u and vk5Ak21m2. We can
now identify the temperature-dependent part of Eq.~13! to
be

PT
(1)(b)~0!5

C~D !e2

2D22p (D21)/2GS D21

2 D E0

`

dkkD22

3S ~D21!1
k2

vk

]

]vk
D S nF~vk!

vk
D , ~14!

where

nF~vk!5
1

ebvk11
~15!

is the Fermi-Dirac distribution function. The expression
the right-hand side of Eq.~14! is easily seen to vanish
namely,
1-2
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PT
(1)(b)~0!5

C~D !e2

2D22p (D21)/2GS D21

2 D Em

`

dvk

]

]vk

3S ~vk
22m2!(D21)/2

nF~vk!

vk
D50,

D>2. ~16!

This shows that, at finite temperature, the one-loop c
rection to the magnetic mass vanishes in any dimensioD
>2. We note that, at one loop, there is no infrared div
gence since we are considering a massive fermion. In g
eral, the zero temperature part in Eq.~13! has an ultraviolet
divergence. However, in (211) dimensions, there is th
added interesting feature that the zero temperature part
be regularized to zero within the framework of Pauli-Villa
regularization or dimensional regularization or a gauge
variant projection method@2#. We also note that the one-loo
result is completely independent of the presence or abs
of a tree level Chern-Simons term in 211 dimensions and
therefore, holds even for pure QED3. Furthermore, let us
note that while this has been an exact result at one loo
can also be easily checked within the hard thermal loop
proximation@11# where

PT (HTL)
(1)(b) ~0!.2C~D !e2E dD21k

~2p!D21

nF~vk!

vk

3S ~D23!1
kW2pW 2

~kW•pW !2D 50. ~17!

We will show next that the magnetic mass also vanishe
two loops in QED3 with a Chern-Simons term. The two-loo
photon self-energy diagrams~see Fig. 2! can be obtained
from the one-loop box diagrams by connecting the pho
lines in all possible ways. We note that at tree level,
photon propagator, in a covariant gauge, has the form

Dmn
(0)~p!5

1

p21k2 F S dmn2
pmpn

p2 D 2kemnl

pl

p2G
1j

pmpn

~p2!2
~18!

where j is the gauge fixing parameter andp052pnT
52pn/b. Furthermore, since the four photon amplitude
one loop~the sum of the box diagrams! is gauge invariant, it
vanishes when it is contracted with the momentum ass
ated with a photon line. Therefore, the only two terms fro
the photon propagator in Eq.~18! that can contribute to the
two-loop self-energy are thedmn and theemnl terms. With

FIG. 2. Two-loop diagrams for photon self-energy.
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these simplifications in mind, we obtain from the two-loo
photon self-energy, in the static limit,

PT
(2)~0!54e4E d3q

~2p!3

1

q21k2

3E d3k

~2p!3

]

]ki
F ki

~k21m2!2

2
ki@q214m~k2m!#

~k21m2!2@~k1q!21m2#
G50. ~19!

This result holds for both the zero temperature as well as
finite temperature parts and we note that this is true e
when k50 and, therefore, the vanishing of the magne
mass, at two loops, holds even for pure QED3. This has to be
contrasted with the behavior of the parity-violating part
the self-energy which has an infrared divergence whenk
→0 @5#. Therefore, we see that unlike the parity-violatin
part of the self-energy, the parity-conserving part has a be
infrared divergence behavior. It is worth pointing out he
that this result can also be obtained in a simple manner u
the Ward identities of the theory. Let us also note that
Chern-Simons term does have a nontrivial contribution to
parity conserving part of the self-energy,P i j

PC @1#. However,
surprisingly, it does not contribute to the magnetic mass~7!.

III. VANISHING OF MAGNETIC MASS TO ALL ORDERS

Normally, an all orders proof of a result in a gauge theo
is simplified enormously through the use of Ward identitie
However, at finite temperature, the non-analyticity of the a
plitudes at the origin in the energy-momentum space lead
difficulties @4,12#. For example, let us consider theN-point
photon amplitude which would satisfy a relation of the for

pa,ma
Gm1 ,•••,mN

~p1 , . . . ,pN!50, ma50,1,2. ~20!

In the static limit where all the external energies vanish,
the other hand, we can write the amplitude asG (m,n) with
m1n5N where m represents the number of time indice
while n corresponds to the number of space indices. In t
case, the Ward identity~20! takes the form

pa,i a
G (m,i 1 , . . . ,i n)~ . . . ,p1 , . . . ,pn!50, i a51,2

~21!

and one can formally argue that, for smallpa,i a
, the ampli-

tude behaves like@13,14#

G (m,i 1 , . . . ,i n)~ . . . ,p1 , . . . ,pn!;O~p1 . . . pn!. ~22!

This behavior is, in fact, explicitly seen at one loop in t
two-point and the four-point functions for the photon in th
static limit @15#. In the long-wavelength limit where the spa
tial components of the momenta vanish, on the other ha
we have much more limited information. Furthermore, ev
if we know the behavior of the amplitudes in the static a
the long wave limits independently, this information is n
1-3
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very useful in constructing higher loop amplitudes, where
energy and momenta of the internal photon lines are in
grated over all possible values.

Therefore, we pursue the following strategy in proving,
all orders, that the magnetic mass vanishes at finite temp
ture. First, let us look at the tree level propagator for
fermion in Eq.~8! and note that

]S(0)~p!

]pm
52S(0)~p!gmS(0)~p!. ~23!

Namely, we see that, much like at zero temperature@13#, at
finite temperature, differentiating the tree level fermi
propagator is equivalent to introducing a tree level pho
vertex with zero energy momentum~up to the coupling!.
This can also be rewritten in the more familiar form

]~S(0)!21~p!

]pm
5gm ~24!

which says that, at the tree level, differentiating the ferm
two-point function gives rise to a vertex with zero ener
and momentum, up to the coupling constant.

Let us next note that we can write the one-loopN-point
photon amplitude as

Gm1 , . . . ,mN
~q1 , . . . ,qN!

5E d3k

~2p!3
G̃m1 , . . . ,mN

~k;q1 , . . . ,qN!

5
1

b (
n
E d2k

~2p!2
G̃m1 , . . . ,mN

~k;q1 , . . . ,qN!

~25!

where, as mentioned earlier,k05(2n11)p/b. Using the re-
lations in Eqs.~23! and~24!, we see that the amplitude wit
an additional external photon with a space index and ca
ing zero energy and momentum is obtained to be~see Fig. 3!

G i ,m1 , . . . ,mN
~0,q1 , . . . ,qN!

52
e

b (
n
E d2k

~2p!2

]

]ki
G̃m1 , . . . ,mN

3~k;q1 , . . . ,qN!50, N>2. ~26!

FIG. 3. Vanishing of an amplitude with one spacelike phot
index carrying zero energy and momentum.
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This shows that anN11 point amplitude with a photon
line carrying a space index and zero energy momentum v
ishes forN>2, independent of the values of the energy a
momenta of the other photon lines. The restriction,N>2,
comes from the ultraviolet convergence of the integrand a
at one loop, we have no infrared divergence problem si
the fermion is massive. We note that the odd point pho
amplitudes vanish by charge conjugation invariance~Furry’s
theorem! for any value of the external energy and mome
tum, but this result shows that even point photon amplitu
also vanish when one of the external photon lines has a s
index and carries zero energy and momentum. It follo
now, from this as well as charge conjugation invariance, t
any fermion loop with an external photon carrying a spa
index and zero energy momentum gives a vanishing con
bution in a complicated diagram such as Fig. 4, where
external photon is attached to an internal fermion line tha
not a continuation of the external fermion lines.

As a result, using Eqs.~23!, ~24!, it can be shown in a
straightforward diagrammatic manner that, to all orders,
can write the three-point photon-fermion-fermion vert
with the photon carrying a space index and zero ener
momentum as

G i~p,2p,0!5e
]S21~p!

]pi
, ~27!

whereG i andS21(p) represent, respectively, the vertex a
the fermion self-energy to all orders. This is like the ze
temperature Ward identity@13#, but holds for a space index
which is what we will need for our proof.

With these, let us look at the photon self-energy to
orders given by the Schwinger-Dyson equation, Fig.
which leads to

PT~0!5
e

b (
n
E d2k

~2p!2
trg iS~k!G i~k,2k,0!S~k!

52
e2

b (
n
E d2k

~2p!2

]

]ki
@ trg iS~k!#. ~28!

The finite temperature part of this integrand is well behav
and, being a total divergence, vanishes, namely,

FIG. 4. Vanishing of a vertex diagram where the external pho
with a space index and zero energy momentum is attached t
internal fermion line that is not a continuation of the external f
mion lines.
1-4
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PT
(b)~0!50 ~29!

to all orders. Since the loop involves massive fermions, th
is no problem of infrared divergence in this case. The te
perature independent part of this expression has a linea
vergence which, as we mentioned in Sec. II can be regu
ized to zero in 211 dimensions. We note here that th
vanishing of the finite temperature part to all orders appe
naturally, in this description, to hold in any dimension.

FIG. 5. Schwinger-Dyson relation for photon self-energy. T
internal heavy lines represent the full fermion propagator while
blob represents the complete vertex.
o
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IV. SUMMARY

In this paper we have shown that, at finite temperatu
the magnetic mass vanishes at one loop in QED in any
mension. In 211 dimensions, in addition, the zero temper
ture part can be regularized to zero. In 211 dimension, this
result is independent of the presence of a tree level Ch
Simons term. We have calculated and shown explicitly t
this result also holds at two loops. We have given a sim
proof to show that the magnetic mass vanishes to all ord
at finite temperature in this theory. This result also holds
QED in any dimension.
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