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Compact AdS space, brane geometry, and the AdASFT correspondence
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The AdS/CFT correspondence can be realized in spaces that are globally different but share the same
asymptotic behavior. Two known cases are a compact AdS space and the space generated by a large number of
coincident branes. We discuss the physical consistency, in the sense of the Cauchy problem, of these two
formulations. We show that the role of the boundary in the compact AdS space is equivalent to that of the flat
asymptotic region in the brane space. We also show, by introducing a second coordinate chart for the pure AdS
space, that a point at its spatial infinity corresponds to a horizon in the brane system.
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I. INTRODUCTION complemented by the flat space asymptotic region far from
the branes. We will see that this guarantees a well posed
According to the Maldacena conjectui&] the largeN Cauchy problem. In the work d®] there is no asymptotic
limit of SU(N) superconformal field theories in dimen-  flat region so it is necessary to introduce a compactification
sions can be described by supergravity on anti-de Sitte®f the AdS space for physical consistency, as we will discuss
(AdS) space-time im+ 1 dimensions. This is known as the in Sec. lIl.
AdS/conformal field theory(CFT) correspondence. By su- Recently we have investigated the quantization of scalar
pergravity one means the tree level approximation of strindields in the AdS bulk in terms of Poincareoordinates
or M theory defined on AdS ; XMy, where M, is some [14,15. The compactification in this coordinate system re-
d-dimensional compactification space. In this corresponquires the introduction of a point at infinity which can only
dence(see also Ref§2—-5]) the AdS space shows up both as be properly accommodated in a second coordinate chart. The
a near horizon geometry of a set of coincident D3-branes ofwo coordinate charts must match at some finite value of the
as a solution of ten dimensional supergravity Dirichlet ~ axial coordinates implying a discretization of the field spec-
p-brane or p-brane is ap+1 dimensional hyperplane trum. Then it is possible to find a one to one mapping be-
where strings are allowed to efié,7]). tween bulk and boundary quantum states, at least for scalar
Precise prescriptions for the realization of the AdS/CFTfields[16]. One can then ask: Does this extra point at infinity
correspondence were presentedidrd] by considering Poin- have any physical role or is it just a mathematical tool for a
carepatches of AdS space. The Poincamordinate system consistent quantization? We answer this question in Sec. Il
allows a simple definition for the flat boundary where theby constructing explicitly a second coordinate chart comple-
conformal field theory is defined. However there are somednenting the original Poincarene. We will see that the point
differences in the spaces considered in these references ttadtinfinity represents, in the pure AdS space, the horizon that
we will discuss in this article. Gubser, Klebanov and Polya-is found in the D3-brane metric. Curiously the complete
kov [8] started with a space generated by a large nurhber compactification of AdS space in Poinca@ordinates intro-
of coincident D3-branes. This space can be approximated bguces a new horizon not present in the brane system. We also
an AdS near the branes and a flat space far from them. On ti#@d an interpretation for this horizon.
other side, Witter9] has considered an AdS space in Poin-
care coordinates but compactified by the inclusion of the 1. AdS SPACE AND COMPACTIFICATION
boundary. These two formulations lead to equivalent results
in the sense that conformal boundary correlation functions We will start considering a pure AdS spacerot1 di-
are the samésee alsd10,11). mensions. This space can be represented as the hyperboloid
The approximation of the D3-brane metric as an AdS(A =const)
space near the branes is valid as long as the axial AdS coor-
dinate is smaller than a parameter that increases Mitn 2, 2 2
the Maldacena conjecture the lafydimit is considered. So X+ X5, 1~ E Xi=A (1)
one might think that in this case the D3-brane space becomes
a pure AdS(without the boundary However a consistent
guantization is not possible in an AdS space without bound-
ary because of the absence of a well defined Cauchy problem

in a flatn+2 dimensional space with measure

n
[12,13. In the formulation of[8] the AdS space is always d<2= _dxg_dxﬁﬂJrZ dx2. )
*Email address: boschi@if.ufrj.br The so called global coordinates,(); for AdS, ., can
"Email address: braga@if.ufrj.br be defined by2,3]
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Xo=A secp cosr

Xi=A tanp Q, (Zl Q?zl); 3

Xnr1=A secpsinT,

with ranges B p<w/2 and O< 7<27. The line element has
the form

A2

ds’=———[—d7?+dp?+sirt(p)dQ?].

c0g(p) @

In order to identify 7 as a usual time coordinate it is
necessary to unwrap it. This can be done by taking copies

the original AdS space that together represent the AdS co

ering spac¢12]. For simplicity we will continue to call this
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It is convenient to introduce first an auxiliary variable that
will connect the two charts. Let us define the auxiliary vari-
able u as the argument of a monotonic functibfu) such
that

1

f(u)

This way the poinz—« is mapped at the zero dfu). The
simplest choice for this function is a linear one as

Z:

()

f(u)=c,+cqu (8)
with ¢y,cq constants. The relatiofv) is not defined foru

= —Cq/cq that corresponds to the point at infinity. Also the
\fariablesz and u are not related at the poit=0. As the

0 LS

\£Ero value ofz would be reached for infinite we can take
relation (7) to be valid in the intervald<z<« for some

small positives. This implies a finite range fou. For con-

covering space AdS as is usual in the literature. .
g=p Jenience we choosey=1/6,c;=—1 so that Gsu<1/§

A consistent quantum field theory in AdS space require
the addition of a boundary at spatial infinity= /2 in glo-
bal coordinates. This compactification of the space makes it
possible to impose appropriate conditions and find a well
defined Cauchy problem(Otherwise massless particles
could go to or come from spatial infinity in finite time¢g.his
result was established 12,13

On the other hand, AdS space can be represented by Poin-
carecoordinates, X, t that are more useful for the study of
the ADAS/CFT correspondence. These coordinates are defined

by

1

£= 1/6—u’

(€)
Then we can define the second coordinate clirk(t) with
(10

Now the pointz—o is represented in the second chart at
z' = 6. The coordinateg andz’ of the two charts are related

1 -
xozz(z2+A2+x2—t2) by
_ 1 1 1 an
AX ey -
i=— (=1...n-1); 2 0z

with ranged<z' <w,

1 The metric of the second coordinate system involves a
Xp=— Z(ZZ—A2+>?2—'[2) Poincarelike factor
A2 5 (2 =8)2%
At ds?=—| ———dz 2+ g[(dx)z—dtz] .
Xn+1= - ) 72’2\ (2 6)° 52

(12

wherex hasn—1 components and9z<c. In this case the

: ¢ X Now the compact AdS space is described by the coordi-
AdS, . ; measure with Lorentzian signature reads

nate charts corresponding to E¢8) and(12). For example,
for an AdS; we can calculate the Ricci scalar curvature for

2 the two charts finding

dsZ=A—2[d22+(d>?)2—dt2]. (6)
(2)

1
It is important to see how the compactification discussed R=-20 A2 (13
in global coordinates can be realized in this system. The AdS
boundary p= /2 in global coordinatescorresponds to the for both, as expected since they describe parts of the same
regionz=0 described by usual Minkowski coordinatest ~ AdS space.
plus a “point” at infinity (z—). The point at infinity can- Further, with this second chart we find a horiz@nfinite
not be accommodated in the original Poincahart[14,15  singularity in the spatial part afs?) atz’ = 6. This was not
so we have to introduce a second coordinate system to reppparent in the original Poincaohart. We are going to see

resent it properly. in the next section that this horizon corresponds to the one
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found in the D3-brane system. Some other aspects of PoirFhen it would spend an infinite time to reach spatial infinity.
carecoordinate description of AdS space have been studie8o, the Cauchy problem is well posed for the D3-branes

in [17]. space and it is geodesically complete. This is the physical
setting of Gubser, Klebanov and Polyakd@|.
IIl. BRANES AND AdS SPACE Further it is interesting to consider the limk—o~ as

) ] ) suggested by the Maldacena conjecture. The larger we take
The brane system is one of the physical settings for they {he larger is the range offor which the AdS approxima-

AdS/CFT correspondence. Let us now study the ten dimengon (17) for the brane metri¢14) holds. So one could na-
sional geometry generated bycoincident D3-branes and its jyely disregard the asymptotic flat space region in this limit.
relguon to the compactified AdS space. The metric can b&nen one would find an AdS space without the boundary,
written as[6,8] where particles could enter or leave the space in finite times.
4\ —1/2 This would lead to the absence of a well defined Cauchy
1+ —| (—dt?+dx?) problem.
r If one chooses to disregard the flat space region, boundary
112 conditions should be imposed at-« in order to recover
(dr?+r2dQ?) (140  physical consistency. That means, in the limit>~ we
should not represent the branes space by just a pure AdS
space but rather by a compactified AdS including the hyper-
surface az=0 besides the poirztat infinity. This is Witten’s
[9] physical setting for the AdS/CFT correspondence.

It is interesting to note that if we consider the whole space
to be of the AdS form[Eq. (17)] there is a horizon with
infinite area atz=0. This is not present in the D3-branes
model and it is a consequence of closing the AdS space as
required for physical consistency once the asymptotic flat
space region has been removed. This emphasizes the differ-
ences between the spaces considered in equivalent formula-

(d?)gar= — dt2+dx2+dr2+r2dQ2 . (15)  tions of AdS/CFT correspondence. _
Note also that the boundary of the space defined by the
Now looking at the near horizon regian< A we can ap- metric (17), apart from the point at—, corresponds ta
proximate the metri¢14) as =0 which naively has 8 1 dimensions. But asapproaches
.2 A2 zero the term\ 2dQ)Z becomes irrelevant with respect to the
o At2 492y L Ar24 A24 (02 AdS part. So we can think of the=0 hypersurface as just
(dsz)”ear_Az( dt+ax)+ r? dri+A%dQs . (16 3+1 dimensional. Then naturally tH@F T lives in 4 dimen-
sions, although the brane model is defined in 10 dimensions.

ds’=

4

+ 1+r—4

where we are using the same symbolfor a constant that
now satisfiesA*=N/272T; where T; is the tension of a
single D3-brane. The metrid4) has a horizon at=0 with
zero perpendicular ardapart from theS; term).

It is interesting to look at the space corresponding to Eq
(14) in two limiting cases where it assumes simpler
asymptotic forms: large and smaltompared to\. Consid-
ering first the regiom> A (far from the horizopthe space is
asymptotically a ten dimensional Minkowski space:

Changing the axial coordinate accordingze A?/r, as in
Refs.[1,8], the metric that will describe the brane system as

long asr/A<1 takes the form IV. CONCLUSIONS
A2 The AJS/CFT correspondence can be realized in different
d32=—2[d22+(d>?)2—dt2]+A2dQ§ (17) spaces. One of them is the space generateN bgincident
z D3-branes and another is a compact AdS space. We have

discussed the physical consistency of these two formulations
corresponding to AdsXSs. This corresponds to the Poin- from the point of view of the Cauchy problem. The brane
carechart(6) apart from theS; factor. Note however that the space is consistent thanks to the existence of a flat
horizon r=0 which corresponds to the limi¢—oo is not  asymptotic region far from the branes and of a horizon on
included in this chart as a consequence of the lack of a relaheir location.
tion betweenz andr atr=0. It is interesting to note that For the compact AdS space, consistency comes from the
from the point of view of a pure AdS space, one has toinclusion of its boundary: a hypersurfacezat 0 plus a point
include this point as a requirement for a consistent quantizaat z— . As this point at infinity is not properly represented
tion. Considering the brane space this point is alreadyn the Poincarepatch we introduced a second coordinate
present, corresponding to the brane location. The inclusion adhart. In this chart that point is found at= & which corre-
this point in the AdS space is possible by introducing onesponds to a horizon. This horizon was not apparent in the
more coordinate chart as discussed in the previous sectioRoincarepatch although it is present in the brane system.
Explicitly, the pointr=0 corresponds t@’ = 6. So, indeed This provides a nice physical interpretation for the inclusion
the horizon found in the second charzat § corresponds to  of the point at infinity in the AdS case. We have also found a

the brane horizon. horizon atz=0 that is not present in the brane system. The
Let us now examine the largeregion of the D3-branes two horizons together are responsible for the physical con-
space. A massless particle moving in the « direction will  sistency of the pure AdS case. In fact one can think that the

arrive at an asymptotically Minkowski space as in Etp). AdS boundary corresponds just to a single horizon which
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