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Finite temperature induced fermion number in the nonlinear s model in 2¿1 dimensions
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We compute the finite temperature induced fermion number for fermions coupled to a static nonlinear sigma
model background in 211 dimensions, in the derivative expansion limit. While the zero temperature induced
fermion number is well known to be topological~it is the winding number of the background!, at finite
temperature there is a temperature dependent correction that is nontopological—this finiteT correction is
sensitive to the detailed shape of the background. At low temperature we resum the derivative expansion to all
orders, and we consider explicit forms of the background as aCP 1 instanton or as a baby Skyrmion.
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I. INTRODUCTION

The phenomenon of induced fermion number arises
to the interaction of fermions with nontrivial topologica
backgrounds~e.g., solitons, vortices, monopoles, Skyrm
ons!, and has many applications ranging from polymer ph
ics to particle physics@1–8#. At zero temperature, the in
duced fermion number is a topological quantity~modulo
spectral flow effects!, and is related to the spectral asymm
try of the relevant Dirac operator, which counts the diffe
ence between the number of positive and negative en
states in the fermion spectrum. Mathematical results, suc
index theorems and Levinson’s theorem, imply that the fr
tional part of the zero temperature induced fermion num
is topological in the sense that it is determined by
asymptotic properties of the background fields@9–14#. This
topological character of the induced fermion number is a
feature of its application in certain model field theories@15–
18#. At finite temperature, the situation is very different—t
induced fermion number is generically nontopological, a
is not a sharp observable@19–21#. Several explicit examples
of kinks @22–24# and sigma models@19,20# in 111 dimen-
sions, and monopoles@19,26–28# in 311 dimensions, have
been analyzed in detail. In this paper we compute the fi
temperature induced fermion number for fermions coupled
a static nonlinear sigma model background in 211 dimen-
sions.

At zero temperature, the induced fermion number for f
mions coupled to a static nonlinear sigma model backgro
in 211 dimensions has been studied extensively@29–32#.
The T50 induced fermion number is equal to the windin
number of the sigma model background field, and this re
may be interpreted in terms of a topological current dens
This system has applications both in condensed matter p
ics @31,34#, where the sigma model provides a phenome
logical model for a two dimensional Heisenberg ferroma
net, and in particle and nuclear physics, where the sig
model can be used as a ‘‘baby Skyrmion’’ mod
0556-2821/2002/66~2!/025004~9!/$20.00 66 0250
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@29,30,33,35# that mimics many properties of th
(311)-dimensional Skyrme model for baryons@16#. One
motivation for this paper is to compute the induced fermi
number at nozero temperature and to understand in detai
origin of the nontopologicalT dependent contributions, a
similar effects will occur in the (311)-dimensional Skyrme
case.

In Sec. II we define what is meant by finite temperatu
induced fermion number, and indicate how it can be co
puted. In Sec. III we use the derivative expansion to comp
the finite temperature induced fermion number for a non
ear s-model background in 211 dimensions. At low tem-
perature we resum the derivative expansion to all orders,
we consider explicit forms of the background as aCP 1 in-
stanton or as a baby Skyrmion. We conclude in Sec. IV w
some comments concerning the relation of our results to
well knownT50 results, and concerning the possible exte
sion to (311)-dimensional Skyrme models.

II. FINITE TEMPERATURE INDUCED FERMION
NUMBER

The induced fermion number is an expectation value
the second quantized fermion operatorN5 1

2 *dx@C†,C#.
For a given static classical background field configurati
the fermion field operatorC can be expanded in a comple
set of eigenstates of the Dirac HamiltonianH. Expectation
values ofN can then be computed. At zero temperature,
fermion number is a vacuum expectation value^N&0
[^0uNu0&, and is related to the spectral asymmetry of t
Dirac Hamiltonian@6#

^N&052
1

2
~spectral asymmetry!

52
1

2E2`

`

dE s~E!sgn~E!. ~1!

Heres(E) is the spectral function of the Dirac Hamiltonia
H:
©2002 The American Physical Society04-1
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s~E!5
1

p
Im TrS 1

H2E2 i e D . ~2!

At nonzero temperature,T, the induced fermion number is
thermalexpectation value:

^N&T5
Tr~e2b HN!

Tr~e2bH!

52
1

2E2`

`

dE s~E!tanhS b E

2 D ~3!

whereb[1/T. Notice that this finite temperature expressi
~3! reduces smoothly to the zero temperature expression~1!
asb→`. In fact, the nonzero temperature provides a phy
cally meaningful and mathematically elegant regularizat
of the spectral asymmetry.

The spectrum of the fermions is independent of the te
perature in our approximation of a static classical ba
ground field. All information about the fermion spectrum,
the presence of the background, is encoded in the spe
functions(E) defined in Eq.~2!. Thus, knowledge about th
spectral functions(E) is the key to evaluating Eq.~1! or Eq.
~3!. Actually, to compute the induced fermion number~either
at T50, orT.0) one only needs theoddpart of the spectra
function, as is clear from Eqs.~1! and ~3!. Thus, the calcu-
lational problem is to find the odd part ofs(E).

A more physical interpretation of the finiteT fermion
number^N&T is provided by noting@20,21# that ^N&T in Eq.
~3! separates naturally into aT50 piece and a finiteT cor-
rection

^N&T5^N&01E
2`

`

dE s~E!sgn~E!n~ uEu!, ~4!

where

n~E!5
1

ebE11
~5!

is the Fermi-Dirac distribution function, and we have us
the simple fact that tanh(b E/2)5122n(E).

The first term,̂ N&0, in Eq. ~4! is known to be topologica
in the sense that it is invariant under small local deform
tions of the background which do not change the asympt
boundary values of the background. Physically, this topolo
cal term corresponds to the vacuum polarization respons
the system to the presence of the background. The se
term in Eq. ~4!, which is the finiteT correction term, is
generically nontopological in the sense that it is sensitive
local deformations in the background. Physically, this te
corresponds to the plasma response of the system to the
ence of the background. It incorporates effects beyond
vacuum response, and so is more sensitive to the e
single-particle fermion spectrum. The caveat ‘‘generical
has been included here because for certain very special b
grounds the finiteT correction is itself topological. This hap
pens when the Dirac Hamiltonian has a quantum mechan
02500
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supersymmetry relating the positive and negative parts of
spectrum@20,21#. Several explicit examples~in 111 and 3
11 dimensions! of this distinction between topological an
nontopological contributions have been studied in detail
ready @19–21#. An example in 211 dimensions where the
finite T correction is topological is the case of a backgrou
flux string @25–27#. In this paper we study a
(211)-dimensional example in which the finiteT correction
is nontopological.

III. THE NONLINEAR SIGMA MODEL IN 2 ¿1
DIMENSIONS

Consider fermions coupled to a statics-model back-
ground in 211 dimensions:

L5c̄~ igm]m2mn̂•tW !c. ~6!

The fermions are in the defining representation of SU~2!, and
the statics-model background is represented by a 3-vec
~in internal space! n̂(xW ), which is constrained to take value
on S2:

n̂2~xW !51. ~7!

In the Lagrangian~6!, the ta are Pauli matrices, andm is a
mass parameter that sets an important energy scale o
single-particle fermion spectrum. Later in the paper we w
consider specific profiles forn̂(xW ). At T50 the quantization
of fermions in this background is well known, and leads
an induced fermion number@29–31#

^N&05
1

8pE d2x eabce i j n̂a] i n̂
b] j n̂

c. ~8!

This induced fermion number,^N&0, is just the integer wind-
ing number of the mapn̂:R2→S2. With the boundary con-
dition that n̂(xW ) has an angle independent limit at spat
infinity, we can compactify the spatialR2 to S2, in which
case^N&0 gives the integer winding number for mapsn̂:S2

→S2. Thus,^N&0 is topological.
Invoking Lorentz invariance, one interprets the result~8!

as the spatial integral,*d2xJ0, of the zeroth componentJ0 of
a ‘‘topological’’ current density

Jm5
1

8p
emnleabcn̂a]nn̂b]ln̂c. ~9!

This current is manifestly conserved (]mJm50) without use
of the equations of motion, and hence is called ‘‘topolo
cal.’’ In fact, Jm may ~and generally does! have higher de-
rivative corrections beyond the term shown in Eq.~9!. How-
ever, these are all total derivatives and hence do
contribute to an integrated quantity such as the zero temp
ture fermion number̂N&0 in Eq. ~8! @10#.

At nonzero T, several aspects of this familiar stor
change. First, as we show explicitly below for th
(211)-dimensionals-model case, there are higher deriv
tive corrections toJ0 that are not total derivatives, and the
4-2
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contribute to the finiteT correction to theT50 induced fer-
mion number~8!. Second, at finiteT one can no longer in-
voke Lorentz invariance~the thermal bath determines a pr
ferred frame!, and so one cannot directly infer a topologic
current density as was done in Eq.~9!.

A convenient approach to this calculation is to express
~3! as a contour integral~using the i e prescription in the
spectral function! in terms of the Dirac resolvent

R~z![TrS 1

H2zD . ~10!

Thus we have

^N&T52
1

2EC

dz

2p i
TrS 1

H2zD tanhS b z

2 D ~11!

whereC is the contour (2`1 i e,1`1 i e) and (1`2 i e,
2`2 i e) in the complex energy plane. For a Hermitia
HamiltonianH, the poles and branch cuts of the resolvent
on the real axis, so one has two choices for evaluating
contour integral in Eq.~11!. First, one can deform the con
tour C around the poles and cuts of the resolventR(z). This
approach leads to an integral representation for^N&T . Alter-
natively, one could deform the contourC around the Matsub-
ara poles,zn5(2n11)ipT, of the tanh(b z/2) function,
which lie on the imaginary axis. This leads to a summat
representation for̂N&T . These two representations are,
course, equivalent. The integral representation is just the
miliar Sommerfeld-Watson transform of the summation re
resentation.

Thus, in order to evaluate the finite temperature indu
fermion number,̂N&T , one needs the odd part of the spect
function s(E); or, equivalently, the even part of the reso
ventR(z). No exact expression is known forReven(z) for the
interaction described by Eq.~6!. Therefore, one needs a
approximate technique. Here we use the derivative exp
sion @36#, in which one assumes that the natural length sc
l associated with the background field,n̂(xW ), is large com-
pared to the Compton wavelength 1/m of the fermion field:
lm@1. That is, we assume that

u¹W n̂~xW !u!m. ~12!

By symmetry, this means that we assume that all derivat
of n̂ are small compared to the fermion mass scalem. Since
the background is static, these derivatives are all spatial
rivatives. The derivative expansion of the resolvent~and
hence of the induced fermion number! can then be formal-
ized as follows. The Dirac Hamiltonian corresponding to t
Lagrangian~6! is

H52 iaW •¹W 1m n̂•tW g0. ~13!

Here (aW 5g0gW ) and for definiteness we choose gamma m
trices as follows:g05s3, gW 52 isW . The even part~in z) of
the resolvent~10! is
02500
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FTrS 1

H2zD G
even

5TrS H
1

H22z2D . ~14!

This can be systematically expanded in terms of derivati
of the background field as follows. First, write the square
the Hamiltonian~13! as

H252¹W 21m21 img j] j n̂•tW

[H0
21V ~15!

whereH0
252¹W 21m2 is the square of the free Hamiltonian

and the ‘‘interaction’’ isV5 img j] j n̂•tW . Next, sinceV in-
volves a factor ofm and a derivative ofn̂, by Eq. ~12! it is
small relative to the natural scale,m2, of H0

2. Therefore, the
even part of the resolvent in Eq.~14! can be systematically
expanded in terms ofV:

FTrS 1

H2zD G
even

5Tr~DVDVDI !2Tr~DVDVDVDK !

1Tr~DVDVDVDVDI !2••• ~16!

where we have defined the kinetic part ofH asK52 iaW •¹W ,
the interaction part ofH as I 5mn̂•tWg0, and the free propa-
gator as

D[
1

2¹W 21m22z2
. ~17!

In obtaining Eq.~16! we have used the simple facts th
Tr(ta)50 and Tr(g i 1 . . . g i 2n11g0)50. The trace in Eq.
~16! involves a matrix trace over the Dirac matrices,gm

5(s3, 2 isW ), and the isospin matrices,tW , as well as a func-
tional trace over the propagatorsn. These traces can be don
in momentum space or in position space. In position spa
as we go to higher derivative orders we make use of
following operator identity:

1

2¹W 21a2
V~xW !5V~xW !

1

2¹W 21a2

12„¹W V~xW !…•¹W
1

~2¹W 21a2!2

1„¹W 2V~xW !…
1

~2¹W 21a2!2

14„] i] jV~xW !…] i] j

1

~2¹W 21a2!3

14@¹W „¹W 2V~xW !…#•¹W
1

~2¹W 21a2!3

1••• ~18!

where the parentheses around the derivatives on the r
4-3
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hand side~RHS! of Eq. ~18! indicate that the gradient opera
tor acts onV(xW ) only. At any given order of the derivative
expansion we collect together the required number of der
tives of n̂(xW ), as given by repeated application of the abo
identity, noting thatV(xW ) itself involves one derivative o
n̂(xW ). This, however, becomes rather clumsy for higher or
terms in the derivative expansion and in practice it is ea
to do the computation in momentum space. The leading t
in the derivative expansion involves two derivatives, whi
come directly from the two factors ofV in the first term of
Eq. ~16!:

FTrS 1

H2zD G
even

(2)

5Tr~DVDVDI !(2)

5
2m3

2p~m22z2!2

3E d2x e i j eabcn̂a] i n̂
b] j n̂

c. ~19!

To compute the induced fermion number to this~leading!
order of the derivative expansion, we evaluate thez integral
in Eq. ~11! as a sum over Matsubara modes. This leads to
following contribution to the induced fermion number:

^N&T
(2)5S (

n52`

`
m3T

2p@m21„~2n11!pT…2#2D
3E d2x e i j eabcn̂a] i n̂

b] j n̂
c

5S (
n52`

`
4m3T

@m21„~2n11!pT…2#2D ^N&0 .

~20!

The prefactor in Eq.~20! is temperature dependent, but in th
T→0 limit it reduces smoothly to one:

(
n52`

`
4m3T

@m21„~2n11!pT…2#2
512S 2m

T De2m/T1•••.

~21!

Here we have used the general low temperature expans

T (
n52`

`
1

@„~2n11!pT…21m2#p

;
m122p

2Ap

GS p2
1

2D
G~p!

2
~2mT!12p

mG~p!
e2m/T1•••. ~22!

Thus, in theT→0 limit, the leading derivative expansio
term ~20! produces the entire zero temperature answer,^N&0.
And at nonzero temperature, this order of the derivative
02500
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pansion gives the result~20!, which is topological because i
is simply theT50 result multiplied by a smooth function o
temperature.

To see the nontopological contribution to^N&T we need to
go to the next order in the derivative expansion, which
volves four derivatives of n̂(xW ). Recalling that V

5 img j] j n̂(xW )•tW already includes one derivative ofn̂(xW ), we
see that at fourth order we can get contributions from the fi
three terms in Eq.~16!:

FTrS 1

H2zD G
even

(4)

5Tr~DVDVDI !(4)

2Tr~DVDVDVDK !(4)

1Tr~DVDVDVDVDI !(4)2•••. ~23!

After a straightforward expansion one finds

FTrS 1

H2zD G
even

(4)

52
m3

12p

m215z2

~m22z2!4

3E d2x~e i j eabcn̂a] i n̂
b] j n̂

c!~]kn̂
d]kn̂

d!

2
m3

12p~m22z2!3

3E d2x@2¹W 2~e i j eabcn̂a] i n̂
b] j n̂

c!

13] i„e
i j eabc~¹W 2n̂a!] j n̂

bn̂c
…#. ~24!

There are several important comments to be made about
fourth order contribution. First, the second term contains
tal spatial derivatives, which vanish after doing thexW inte-
gral. Second, the first term is nontopological and cannot
expressed as a total derivative. This term gives a nonz
contribution to the spatial integral, and furthermore this co
tribution @unlike the winding number integral in Eq.~19!#
depends explicitly on the length scale of the background fi
n̂(xW ). Third, to see how this is compatible with the fact th
the zeroT fermion number is topological, we observe th
after doing thez integral in Eq.~11!, we obtain

^N&T
(4)5Fm3T

12p (
n52`

`
m225„~2n11!pT…2

@m21„~2n11!pT…2#4G
3E d2x~e i j eabcn̂a] i n̂

b] j n̂
c!~]kn̂

d]kn̂
d!. ~25!

The prefactor isT dependent, as was the prefactor in t
2-derivative contribution in Eq.~20!. However, using Eq.
~22!, as T→0, the prefactor of the fourth order term~25!
behaves as
4-4



n
t

g

x

d
or
E
ac

e
o

an
w
w
or
lo

p

se

n
er

at
is

ffi-
Eq.
ure
d
Eqs.
-

ved

f

ve

on
u-

c

ve

ors

FINITE TEMPERATURE INDUCED FERMION NUMBER . . . PHYSICAL REVIEW D 66, 025004 ~2002!
m3T

12p (
n52`

`
m225„~2n11!pT…2

@m21„~2n11!pT…2#4

;
m3

12p F S 15

16m5
2

1

8m2T3
e2m/T1••• D

2S 15

16m5
2

5

8m3T2
e2m/T1••• D G

;2S m

96pT3D e2m/TS 125
T

m
1••• D ~26!

so that it vanishes~exponentially! as T→0. Thus, atT50
the nontopological contribution to the fermion number va
ishes, at this order in the derivative expansion. Note tha
Eq. ~21! the leading constant term 1 survives theT→0 limit,
while in Eq.~26! the leading constant terms cancel, leavin
function that vanishes asT→0.

Already at this next-to-leading order of the derivative e
pansion, we have established in Eq.~25! that the induced
fermion number acquires a nontopological temperature
pendent contribution at finite T. We now consider higher
ders in the derivative expansion. The next term beyond
~24! has 6 derivatives and receives contributions from e
of the first five terms in the expansion~16!. While it is sys-
tematic to write down all these 6-derivative terms, it b
comes a lengthy expression due to the many ways of c
tracting the spacetime and SU~2! indices. This proliferation
of terms rapidly becomes worse as we go to higher
higher orders in the derivative expansion. To proceed,
consider instead the low temperature limit. In this case
find that we can evaluate the leading contribution to all
ders of the derivative expansion, and resum this leading
temperature correction to the zero temperature answer~8!.
This follows the procedure used in@19# for a
(111)-dimensional sigma model, and is based on sim
dimensional analysis. From the general expansion~16! we
see that terms either involve~a! an even number ofV’s and
one interaction termI, or ~b! an odd number ofV’s and one
kinetic termK. Consider a term of form~a! with n vertex
insertions ofV. SinceV has already a derivative ofn̂(xW ), the
total number of derivatives,d, of n̂(xW ) in this term satisfies
2<n<d. This term also hasn11 propagatorsn. Thus, by
dimensional reasoning, this term must behave as

Tr„~DV!nDI …(d);
mn11

~m22z2!(n1d)/2
A d

n11@ n̂~xW !# ~27!

whereA d
n11@ n̂(xW )# is some functional ofn̂(xW ) with d deriva-

tives and (n11) factors ofn̂(xW ). On the other hand, a term
of the form ~b! behaves as

Tr„~DV!nDK…

(d);
mn

~m22z2!(n1d21)/2
A d

n@ n̂~xW !#. ~28!
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We now consider theT dependence of the prefactors of the
types of contributions. First, ford>4 the constant terms in
the low T (T!m) expansion must all cancel at any give
order d of the derivative expansion, since the final answ
must be just the 2-derivative topological term~8! at T50.
This is a very stringent test of the derivative expansion
finite temperature. We have explicitly checked that this
indeed satisfied ford54 andd56. The leading corrections
all have the same exponential factor, with a prefactor coe
cient that depends on the power of the propagator. From
~22! we see that the dominant prefactor at low temperat
occurs whenp ~the power to which the propagator is raise!
is as large as possible. This means that for the terms in
~27! and ~28! we must taken5d. This means that each de
rivative just comes from one of the insertions ofV. This fact
dramatically simplifies the derivative expansion~in this low
T limit !, because the propagator factors can simply be mo
out of the trace without generating further derivatives~since
these would be subleading!. We also learn that the terms o
the form ~27! dominate over those of the form~28!. These
simplifications permit us to go to any order of the derivati
expansion.

To compute the actual form of the derivtive expansi
contribution in this low temperature limit, we have to calc
lateA d

n11@ n̂(xW )# in Eq. ~27!, which involves doing the~ma-
trix! traces over the Dirac and isospin matrices:

tr@ IVd#5tr@m s3
^ „n̂~xW !•tW…

3~m2] i n̂
a] j n̂

bs is j
^ tatb!d/2# ~29!

where (s3,2 isW ) and tW are the Pauli matrices in the Dira
and isospin spaces respectively. Using the fact thati and j
can only take values 1 or 2, and thats is j5d i j 1 i e i jksk, the
above trace becomes

md11tr@s3
^ „n̂~xW !•tW…~] i n̂

a] i n̂
a

2e i j eabc] i n̂
a] j n̂

bs3
^ tc!d/2#. ~30!

Using the binomial expansion for expanding the abo
power and noting that~i! Tr(s3)m1152 whenm is odd and
zero otherwise, and~ii ! (tW•aW )(tW•bW )5aW •bW 1 i (aW 3bW )•tW , the
expression~30! becomes

24md11
q~xW !

uvW ~xW !u
(

m51,3,5,..

d/2 S d/2
m D ~] i n̂

a] i n̂
a!(d/22m)uvW ~xW !um

~31!

where we have defined the following combinations:

vW ~xW ![e i j ] i n̂3] j n̂, q~xW ![e i j eabcn̂a] i n̂
b] j n̂

c. ~32!

Finally, performing the functional trace over the propagat
we find
4-5
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Tr„~nV!nnI …(d);2
md11

2pd~m22z2!d

3E d2x
q~xW !

uvW ~xW !u
@„] i n̂

a] i n̂
a1uvW ~xW !u…d/2

2„] i n̂
a] i n̂

a2uvW ~xW !u…d/2#. ~33!

So, in the lowT limit ( T!m), the derivative expansion be
comes very compact. The leading low temperature contr
tion, with d spatial derivatives, to the induced fermion num
ber is then found by summing over the Matsubara poles
the prefactor~33!, and then using the low temperature expa
sion in Eq.~22!. This gives the following:

^N&T
(d);2

mT

p

1

d! ~2T!d
e2m/TE d2x

q~xW !

uvW ~xW !u
@„] i n̂

a] i n̂
a

1uvW ~xW !u…d/22„] i n̂
a] i n̂

a2uvW ~xW !u…d/2#. ~34!

Note that at any orderd of the derivative expansion, th
prefactor term in Eq.~33! leads to a temperature depende
prefactor in the induced fermion number that vanishes aT
→0. Furthermore, the leading lowT terms in Eq.~34! have
a simple form that can be resummed to all orders in
derivative expansion. Combining with the 2-derivative te
in Eq. ~20!, we obtain the following all-orders result for th
low temperature correction to the induced fermion numbe
the (211)-dimensional nonlinears model:

^N&T;^N&02
mT

p
e2m/TE d2x

q~xW !

uvW ~xW !u

3FcoshSA] i n̂
a] i n̂

a1uvW ~xW !u
2T

D
2coshSA] i n̂

a] i n̂
a2uvW ~xW !u

2T
D G . ~35!

This is the main result of this paper. It shows explicitly th
the topological zero temperature fermion number, given
the winding number̂N&0 in Eq. ~8!, acquires aT dependent
correction which is nontopological. This temperature dep
dent correction cannot be expressed in terms of the wind
number, and is sensitive to the detailed shape of the b
ground fieldn̂(xW ), not just its asymptotic values. Also no
that theT→0 limit is well defined in the derivative expan
sion regime where Eq.~12! is satisfied. This resummed ex
pression~35! is analogous to a similar all-orders resumm
result found in@19# for the (111)-dimensional sigma mode
background. We find it remarkable that this all-orders resu
mation can also be done for the (211)-dimensional sigma
model, as it is a significantly more complicated model.

Thus far, the only thing we have assumed aboutn̂(xW ) is
that it takes values inS2, see Eq.~7!, and that it has a
‘‘gentle’’ spatial profile, see Eq.~12!. We now consider two
specific explicit forms for the backgroundn̂(xW ).
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First, supposen̂(xW ) has the form of a 2-dimensionalCP 1

instanton, in which case the winding number^N&0 in Eq. ~8!
is just the instanton number, as is well known for the ze
temperature system@37#. The instanton fieldn̂(xW ) satisfies
the first order instanton equation

] i n̂
a56e i j e

abcn̂b] j n̂
c ~36!

where the6 signs refer to the anti-instanton–instanton ca
respectively@one can easily check this by substituting E
~36! in the expression~8! to find the sign of̂ N&0#. Now, in
general we have thatuvW (xW )u252(] i n̂

a] i n̂
a)222(] i n̂•] j n̂)2.

But for an instanton backgroundn̂ satisfying Eq.~36!, it
follows that (] i n̂•] j n̂)25 1

2 (] i n̂•] i n̂)2. Therefore, uvW (xW )u
5(] i n̂•] i n̂), andq(xW )57(] i n̂•] i n̂). Then the lowT expan-
sion ~35! simplifies somewhat:

^N&T;^N&06
mT

p
e2m/TE d2xFcoshSA2] i n̂•] i n̂

2T
D 21G .

~37!

To be even more explicit, we choosen̂ to be ak-instanton
solution, in which casêN&05k. The explicitCP 1 instantons
are most easily expressed in terms of the following ster
graphically projected fieldsv1 andv2:

v15
2n1

~12n3!
, v25

2n2

~12n3!
. ~38!

Definingv5v11 iv2, the original sigma model fieldn̂(xW ) is

n̂~xW !5
1

uvu2

4
11
S Rev

Im v

uvu2

4
21
D . ~39!

As is well known, the instanton equation~36! then becomes
a simple Cauchy-Riemann condition forv, so that instantons
are characterized by a meromorphic function ofz5x11 ix2.
For example,

v~z!5F ~z2z0!

l Gk

~40!

representsk instantons at the locationz0, each with a com-
mon length scalel. For such an instanton,

] i n̂•] i n̂5S 2k2

l2k D uz2z0u2k22
1

F11
1

4l2k
uz2z0u2kG 2 .

~41!

The spatial integrals in Eq.~37! can now be done, and on
finds
4-6
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^N&T;k6
4km

T
e2m/T(

n50

`
1

~2n12!! S 2k

21/klT
D 2n

3bS n111
n

k
,n112

n

kD ~42!

whereb(m,n)5G(m)G(n)/G(m1n) is the Euler beta func-
tion. The first term,k, in Eq. ~42! is the zero temperatur
fermion number̂ N&0, which is simply the instanton numbe
k, and which is manifestly independent of the instanton sc
l. On the other hand, the finiteT correction in Eq.~42! is
manifestly dependent on the instanton scalel, reflecting its
nontopological nature. It is interesting to note that this c
rection term is a convergent series in 1/lT, for any instanton
numberk. For a single instanton (k51), it simplifies further
to

^N&T;12
4m

T
e2m/T(

n50

`
1

~2n11!~2n12!! S 1

lTD 2n

512~4ml!e2m/TE
0

1/lT coshy21

y2
dy. ~43!

The second physically interesting form for the sigm
model background fieldn̂ is the ‘‘baby Skyrmion’’ case

n̂~r ,f!5S cosf sinu~r !

sinf sinu~r !

cosu~r !
D . ~44!

Here, r and f are the 2-dimensional polar coordinates a
u(r ) is some radial profile function. The ‘‘baby Skyrmion’’ i
the 2 dimensional analog of the 3 dimensional Skyr
model for baryons, with a ‘‘hedgehog’’ ansatz for the mes
fields @16#. For such an ansatz, the winding number dens
is

q~xW !5eabce i j n̂a] i n̂
b] j n̂

c5
2

r
sinu~r !u8~r ! ~45!

so that the zero temperature induced fermion number~8! is

^N&05
1

8p F4pE
0

`

dr
du

dr
sinu~r !G

5
1

2
@cosu~0!2cosu~`!#. ~46!

This shows clearly that̂N&0 is topological: it only depends
on the asymptotic values of the profile functionu(r ), not on
its specific spatial profile or scale. The low temperature c
rection to the fermion number in this case is obtained fr
Eq. ~35! by noting that for the ansatz~44!,

] i n̂
a] i n̂

a5„u8~r !…21S sinu~r !

r D 2

, ~47!
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~] i n̂•] j n̂!25„u8~r !…41S sinu~r !

r D 4

in which case,

uvW ~r ,f!u5
2uu8~r !sinu~r !u

r
. ~48!

Thus, the low temperature induced fermion number for
‘‘baby Skyrmion’’ background is

^N&T;^N&022mTe2m/TE
0

`

r dr sgn„u8~r !sinu~r !…

3F coshS uu8~r !u1
usinu~r !u

r

2T
D

2coshS uu8~r !u2
usinu~r !u

r

2T
D G . ~49!

The background fieldu(r ) has to satisfy certain boundar
conditions. Requiring that, for a localized soliton solutio
the chiral field asr→` should equal its vacuum value, i.e
n̂(r ,f) should be independent of the anglef, fixes u(`)
5kp, wherek is an integer. At the origin, finiteness of th
soliton energy requiresu(0)5np, wheren is an integer. As
an example, consider the following ansatz for the radial p
file function u(r ):

u~r !52 arctanS r

2l D . ~50!

Then

u8~r !5
4l

r 214l2
5

sinu~r !

r
. ~51!

Substituting this in Eq.~49! we obtain

^N&T;124mle2m/TE
0

1/lT

dy
coshy21

y2
~52!

which is, incidentally, exactly the finite temperature fermi
number~43! for the CP 1 single instanton background.

The most important thing to be learned from the ba
Skyrmion result~49! is that while the zero temperature fe
mion number̂ N&0 only depends on the asymptotic values
the radial profile functionu(r ), the finite T correction is
sensitive to the details of the shape ofu(r ). This means, for
example, that in a variational calculation where t
asymptotic values ofu(r ) are fixed ~to keep the Skyrme
number fixed!, but the shape ofu(r ) is varied, the finite
temperature fermion number will vary.
4-7
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IV. CONCLUSIONS

To conclude, we have computed the finite temperat
induced fermion number for fermions in a static nonline
s-model background in 211 dimensions. This calculation
illustrates the splitting of the induced fermion number into
zero temperature piece, which is topological~here, the wind-
ing number of the sigma model background!, and a finite
temperature correction which is nontopological@20#. The
calculation was done in the derivative expansion limit wh
the spatial derivatives of the background fields are assu
to be small compared to the fermion mass scale parametem.
We found that it is possible to resum the derivative exp
sion to all orders, in the low temperature limit whereT!m.
Such a resummation was done previously@19# in the (1
11)-dimensionals-model case, but we find it remarkab
that it can also be done in the more complicat
(211)-dimensional case. These results were then applie
two specific background fields in thes-model case: a
2-dimensionalCP 1 instanton, and a 2-dimensional ‘‘bab
Skyrmion.’’ In each case, the finite temperature correct
can be computed in the low temperature limit. For an inst
ton background the final expression for the induced ferm
number^N&T becomes a simple convergent series in 1/lT
wherel is the length scale of the instanton, thus explici
illustrating the nontopological character of the finite te
perature corrections in̂N&T .

Finally, we make several comments on possible ext
sions of this work. As has been emphasized recently at z
temperature in@31,32#, the induced charge~and, more gen-
erally, induced current! is only one part of the induced effec
tive action for fermions in as-model background. There is
in addition, a Hopf term which is topological, but which do
not contribute to the induced current~since this is defined
through a functional variation of the effective action wi
respect to a gauge field!. This Hopf term has important im
plications for the spin and statistics of solitons@31,32,34#. It
would be interesting to investigate these issues at finite t
perature, in the language of finiteT effective actions. An-
other result from our calculation is the implication it has f
-
t.

re

e

Re
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the chiral sigma models in 311 dimensions. There, the zer
temperature calculation is very similar to th
(211)-dimensional case. At finite temperature we lea
from our calculation that there will be a finite temperatu
correction and that it will be nontopological—that is, whi
the zero temperature induced fermion number is the Sky
number, the temperature dependent correction will be a m
more complicated functional of the Skyrme backgroun
This is already clear from the general argument about finitT
fermion number in@20#, together with the numerical result
~see, e.g.,@38#! for the sensitive dependence of the fermi
spectrum on the scale of the Skyrme background. Tha
since the single-particle fermion spectrum is not symme
and is sensitive to the scale of the background, the fin
temperature correction is also sensitive to this scale, and
must be nontopological. From a calculational standpoint,
learn that while at zero temperature the induced ferm
number arises from the leading nontrivial order of the deri
tive expansion@15,36#, at finite temperature it is necessary
go beyond this order. In other words, at finite temperat
there are contributions that are not total derivatives, a
these contribute to the integrated charge. It is a much m
difficult problem to investigate higher orders of the deriv
tive expansion in the (311)-dimensional Skyrme model
However, the results of this paper for th
(211)-dimensional model suggest that it should be poss
to explore higher order of the derivative expansion, at le
in the low temperature limit. It would also be of interest
this context to extend the systematic renormalization
proach developed in@14,39#, which is ideally suited to nu-
merical evaluation of induced charges, to finite temperatu
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