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We compute the finite temperature induced fermion number for fermions coupled to a static nonlinear sigma
model background in 2 1 dimensions, in the derivative expansion limit. While the zero temperature induced
fermion number is well known to be topologicét is the winding number of the backgroundat finite
temperature there is a temperature dependent correction that is nontopological—thi3 fiwiteection is
sensitive to the detailed shape of the background. At low temperature we resum the derivative expansion to all
orders, and we consider explicit forms of the background &® &instanton or as a baby Skyrmion.
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[. INTRODUCTION [29,30,33,3% that mimics many properties of the
(3+1)-dimensional Skyrme model for baryop$6]. One

The phenomenon of induced fermion number arises dugnotivation for this paper is to compute the induced fermion
to the interaction of fermions with nontrivial topological NUmber at nozero temperature and to understand in detail the
backgrounds(e.g., solitons, vortices, monopoles, Skyrmi- ©rigin of the nontopologicall' dependent contributions, as
ons, and has many applications ranging from polymer phys-s'm'lar effects will occur in the (3 1)-dimensional Skyrme
ics to particle physic§1—8|. At zero temperature, the in- ©2S€: . . .
duced fermion number is a topological quantityodulo In Sec. Il we define what is meant by finite temperature

spectral flow effects and is related to the spectral as mme-induced fermion number, and indicate how it can be com-
trp of the relevant Dirac operator. which c% nts theyd'ffer— puted. In Sec. Il we use the derivative expansion to compute
y v : P » WhI u ' the finite temperature induced fermion number for a nonlin-

i the fermi h ical | hgé(ar o-model background in 21 dimensions. At low tem-
states in the fermion spectrum. Mathematical results, such gy atre we resum the derivative expansion to all orders, and

index theorems and Levinson's theorem, imply that the fracy,e consider explicit forms of the background ag7? in-
tional part of the zero temperature induced fermion numbegianton or as a baby Skyrmion. We conclude in Sec. IV with
is topological in the sense that it is determined by thesome comments concerning the relation of our results to the
asymptotic properties of the background fief@s-14]. This  well knownT=0 results, and concerning the possible exten-
topological character of the induced fermion number is a keysion to (3+ 1)-dimensional Skyrme models.

feature of its application in certain model field theorfi&5—
18]. At finite temperature, the situation is very different—the Il. FINITE TEMPERATURE INDUCED FERMION
induced fermion number is generically nontopological, and NUMBER

is not a sharp observah]&9—21]. Several explicit examples

of kinks[22-24 and sigma modelg19,20 in 1+1 dimen- the second quantized fermion operafor%[dx[ ¥’ ¥].

sions, and monppole{ag,26—2_8 in 3+1 dimensions, havg. For a given static classical background field configuration,
been analyzed in detail. In this paper we compute the finitgne fermion field operatoW can be expanded in a complete
temperature induced fermion number for fermions coupled tQe¢ of gigenstates of the Dirac Hamiltonitih Expectation

a static nonlinear sigma model background i 2 dimen- 565 ofN can then be computed. At zero temperature, the

sions. _ , fermion number is a vacuum expectation valghl),
_At zero temperature,_the mduced ferm|on number for fer'z<O|N|O), and is related to the spectral asymmetry of the
mions coupled to a static nonlinear sigma model backgroung, . - Hamiltonian[6]

in 2+ 1 dimensions has been studied extensij@9-37.

The T=0 induced fermion number is equal to the winding 1

number of the sigma model background field, and this result (N)o=— 5 (spectral asymmetyy

may be interpreted in terms of a topological current density.

This system has applications both in condensed matter phys- 1 (=

ics [31,34], where the sigma model provides a phenomeno- == Eﬁdea(E)sgr(E). @
logical model for a two dimensional Heisenberg ferromag-

net, and in particle and nuclear physics, where the sigméiere o (E) is the spectral function of the Dirac Hamiltonian
model can be used as a “baby Skyrmion” model H:

The induced fermion number is an expectation value of
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1 1 supersymmetry relating the positive and negative parts of the
o(E)=—_Im Tr(m)- (2)  spectrum[20,21]. Several explicit examplegn 1+1 and 3
+1 dimensiong of this distinction between topological and
At nonzero temperaturé'” the induced fermion number is a nOﬂtOpOlOgical contributions have been studied in detail al-

thermalexpectation value: ready[19-21. An example in 2-1 dimensions where the
finite T correction is topological is the case of a background
Tr(e BHN) flux string [25-27. In this paper we study a
(N)7= T (2+1)-dimensional example in which the finifecorrection
Tr(e™ ") is nontopological.
1(= BE
—_ EJ dEa’(E)tanI‘(T) (3) IIl. THE NONLINEAR SIGMA MODEL IN 2 +1
- DIMENSIONS

where 8= 1/T. Notice that this finite temperature expression Consider fermions coupled to a static-model back-
(3) reduces smoothly to the zero temperature expregdion ground in 2+1 dimensions:
as B— . In fact, the nonzero temperature provides a physi- _ .
cally meaningful and mathematically elegant regularization L=y(iy*d,—mn- 7). (6)
of the spectral asymmetry. . . . :

The spectrum of the fermions is independent of the tem N€ fermions are in the defining representation of3Uand

perature in our approximation of a static classical back{N€ statica-model background is represented by a 3-vector

ground field. All information about the fermion spectrum, in (in internal spacen(x), which is constrained to take values

the presence of the background, is encoded in the spectrah s%

function o(E) defined in Eq(2). Thus, knowledge about the -

spectral functiors(E) is the key to evaluating Eq1) or Eq. ne(x)=1. (7)

(3). Actually, to compute the induced fermion numigeither ) a ) ) )

atT=0, orT>0) one only needs theddpart of the spectral " the Lagrangiar(6), the * are Pauli matrices, anoh is a

function, as is clear from Eq€1) and (3). Thus, the calcu- Mass parameter that sets an important energy scale of the

lational problem is to find the odd part of(E). single-particle fermion spectrum. Later in the paper we will
A more physical interpretation of the finit& fermion  consider specific profiles far(x). At T=0 the quantization

number(N)t is provided by notind20,21] that(N); in Eq.  of fermions in this background is well known, and leads to

(3) separates naturally into B=0 piece and a finitd cor-  an induced fermion numb¢9—31

rection

1 Al Al A
. (N>0=gf d?x €2%'In?3,n"g;n°. (8)
Nyr=(N)o+ | dEaEsonEn(ED, @
This induced fermion numbefN),, is just the integer wind-
where ing number of the mam::R%— S?. With the boundary con-

dition thatﬁ(ﬁ) has an angle independent limit at spatial
infinity, we can compactify the spati@k? to S?, in which

case(N), gives the integer winding number for mapsS?
—S2. Thus,{N), is topological.
is the Fermi-Dirac distribution function, and we have used Invoking Lorentz invariance, one interprets the reggjt
the simple fact that tanBE/2)=1—2n(E). as the spatial integraf,d?xJ°, of the zeroth componeid?f of

The first term{N),, in Eq. (4) is known to be topological a “topological” current density
in the sense that it is invariant under small local deforma-
tions of the background which do not change the asymptotic i 1 uvh_abcraq ~bo nc
boundary values of the background. Physically, this topologi- W=gg e eTna,ntan". ©)
cal term corresponds to the vacuum polarization response of
the system to the presence of the background. The secordis current is manifestly conserved (J#=0) without use
term in Eq. (4), which is the finiteT correction term, is of the equations of motion, and hence is called “topologi-
generically nontopological in the sense that it is sensitive tacal.” In fact, J* may (and generally dogshave higher de-
local deformations in the background. Physically, this termrivative corrections beyond the term shown in E#). How-
corresponds to the plasma response of the system to the preser, these are all total derivatives and hence do not
ence of the background. It incorporates effects beyond theontribute to an integrated quantity such as the zero tempera-
vacuum response, and so is more sensitive to the entireire fermion numbef{N), in Eq. (8) [10].
single-particle fermion spectrum. The caveat “generically” At nonzero T, several aspects of this familiar story
has been included here because for certain very special backhange. First, as we show explicitly below for this
grounds the finitd correction is itself topological. This hap- (2+1)-dimensionalo-model case, there are higher deriva-
pens when the Dirac Hamiltonian has a quantum mechanicaive corrections tal® that are not total derivatives, and these

1
n(E)= e 5
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i

This can be systematically expanded in terms of derivatives
of the background field as follows. First, write the square of
qthe Hamiltonian(13) as

contribute to the finitel correction to thelT =0 induced fer-
mion number(8). Second, at finitel one can no longer in-
voke Lorentz invariancéhe thermal bath determines a pre-
ferred frame¢, and so one cannot directly infer a topological
current density as was done in HE).

A convenient approach to this calculation is to express E
(3) as a contour integralusing theie prescription in the

=Tr

even

1
H— 2). (14)

spectral functiohin terms of the Dirac resolvent H2= —V2+m2+imyl ﬁjA 7
1 _ 2
R(z) ETF( m) . (10 =Hg+V (15
whereH2= —V2+m? is the square of the free Hamiltonian,
Thus we have and the “interaction” isV=imy/9;n- 7. Next, sinceV in-
10 d volves a factor ofn and a derivative ofi, by Eq.(12) it is
(N)7=—= _Z_Tr _— tan)‘( &) (11  small relative to the natural scale?, of H3. Therefore, the
2)c2m \H=2z 2 even part of the resolvent in E@¢L4) can be systematically

expanded in terms of:
whereC is the contour o +ie,+o+ie) and (+o—ie,

—w—je€) in the complex energy plane. For a Hermitian 1 B B

HamiltonianH, the poles and branch cuts of the resolvent lie Tr( H —z) even_ THAVAVAD = TI(AVAVAVAK)

on the real axis, so one has two choices for evaluating the

contour integral in Eq(11). First, one can deform the con- +Tr(AVAVAVAVAL)—- - - (16)
tour C around the poles and cuts of the resolvR(r). This ) o - =
approach leads to an integral representatior( o, . Alter- ~ Where we have defined the kinetic parttbfasK=—ia-V,

natively, one could deform the conto@iimround the Matsub- the interaction part oH asl= mn- ;yo, and the free propa-
ara poles,z,=(2n+1)i#T, of the tanhBz2) function, gator as
which lie on the imaginary axis. This leads to a summation

representation fofN);. These two representations are, of . 1
; . N ) A= —r—F—. (17
course, equivalent. The integral representation is just the fa V24 m2— 22
miliar Sommerfeld-Watson transform of the summation rep-
resentation. In obtaining Eq.(16) we have used the simple facts that

Thus, in order to evaluate the finite temperature inducedr(73)=0 and Tr(/'t...y'2n+14%)=0. The trace in Eq.
fermion number{N), one needs the odd part of the spectral(16) involves a matrix trace over the Dirac matriceg*
function o(E); or, equivalently, the even part of the resol- — (43 —jg), and the isospin matrices, as well as a func-
ventR(z). No exact expression is known f8,e{z) forthe  tjonal trace over the propagatats These traces can be done
interaction described by Ed6). Therefore, one needs an jn momentum space or in position space. In position space,
approximate technique. Here we use the derivative exparys we go to higher derivative orders we make use of the
sion[36], in which one assumes that the natural length scalgollowing operator identity:

\ associated with the background fieft{x), is large com-

pared to the Compton wavelengthnilbf the fermion field: 1 - -
—— V() =V(x)

Am>1. That is, we assume that —V24a _V24a2
IVR(x)|<m. (12) L
+2(VV(X))-V—ar———
. o (—V?+a?)?
By symmetry, this means that we assume that all derivatives
of n are small compared to the fermion mass scalSince N
the background is static, these derivatives are all spatial de- +(V V(X))m
rivatives. The derivative expansion of the resolvéahd
hence of the induced fermion numpean then be formal-
ized as follows. The Dirac Hamiltonian corresponding to the +4((9iajv(§))aiaj >
Lagrangian(6) is (=Vot+ad)
H=—ia-V+mn-7°. (13 +AVVV))] YV ——————
VEVOOIY g7 23
Here (@=y°y) and for definiteness we choose gamma ma- . 18
trices as follows:y°= a3, y=—ig. The even partin z) of
the resolvent10) is where the parentheses around the derivatives on the right-
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hand sidg RHS) of Eg. (18) indicate that the gradient opera- pansion gives the resul20), which is topological because it

tor acts onV(x) only. At any given order of the derivative IS simply theT=0 result multiplied by a smooth function of
expansion we collect together the required number of derivalémperature. . o

tives ofﬁ(i), as given by repeated application of the above To see the nontopqlog|cal contnpuuon(tN)T we ”ee‘?' to

. . : - . o go to the next order in the derivative expansion, which in-
identity, noting thatV(x) itself involves one derivative of

~ o . . volves four derivatives of n(x). Recalling that V
n(x). This, however, becomes rather clumsy for higher order . "~ - - . (x) o g
=imy!9;n(x) - 7 already includes one derivative nx), we

terms in the derivative expansion and in practice it is easier A )
to do the computation in momentum space. The leading ter ee that at fourth order we can get contributions from the first
' three terms in Eq(16):

in the derivative expansion involves two derivatives, which
come directly from the two factors d&f in the first term of

Eqg. (16): 1 \1®
[Tr( —) =Tr(AVAVAI)*)
H-z
1 \]@ @ even
Tr(ﬂ) _ - THAVAVAD —Tr(AVAVAVAK)®
, +Tr(AVAVAVAVAL)#®—.... (23
-m
2m(m?—2%)? After a straightforward expansion one finds
><Jd2x €l €2Nn33,n°g;n°. (19 1 \1@® m® m2+522
. . ) . i H-z __E(m2_22)4

To compute the induced fermion number to tliisading even
order of the derivative expansion, we evaluate Zlietegral o i abcran b A ng
in Eqg.(11) as a sum over Matsubara modes. This leads to the XJ’ d*x(€e"’ €**n?9;n°g;n°)(dn°g,n°)

following contribution to the induced fermion number:

m3

12m(m?—2z%)3

)

m3T

n="w 2a[m?+((2n+1)7T)?]?

(N)P=

S X f d2x[2V?( €l €2PN3g;n°g;n°)
X | d*x €l e*ngnPg;n°
+30;(€ €29V 2n?)9;n°n°)]. (24)

4m°T
N)g. i i
(n=x [m2+((2n+1)wT)2]2)< )o There are several important comments to be made about this

(20 fourth order contribution. First, the second term contains to-
tal spatial derivatives, which vanish after doing thente-
The prefactor in Eq(20) is temperature dependent, but in the gral. Second, the first term is nontopological and cannot be
T—0 limit it reduces smoothly to one: expressed as a total derivative. This term gives a nonzero
contribution to the spatial integral, and furthermore this con-
Am3T om tribution [unlike the winding number integral in Eq19)]
=1- (—) e Ty, ., depends explicitly on the length scale of the background field
n==e [m?+((2n+1)7T)?]?

T ~ 5
21) n(x). Third, to see how this is compatible with the fact that
the zeroT fermion number is topological, we observe that

Here we have used the general low temperature expansiorﬁfter doing thez integral in Eq.(11), we obtain

o0

© ]

1
Tn;—m [(2n+1)7T)?+m?]P
:
P72 @mmtr
2= T(p) mI'(p)

S m2—5((2n+ 1) 7T)?
127 0= [m2+ ((2n+ 1) wT)?]*

()=

oo T X J d?x( €' €2Pn2g;n°;n°) (gnan?). (25)

e ™. (22

The prefactor isT dependent, as was the prefactor in the
Thus, in theT—0 limit, the leading derivative expansion 2-derivative contribution in Eq(20). However, using Eq.
term (20) produces the entire zero temperature ans{i¢ry. (22), asT—0, the prefactor of the fourth order ter(@s)
And at nonzero temperature, this order of the derivative exbehaves as
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m3T m?—5((2n+1)7T)?
127 n S [m?+((2n+1) 7 T)?)*
15 1

- T amIT
(16m5 8m2T3e " )

55 |

16m°  8m3T?
T
em”(1—5—~r~.
m

m3

T 12x

m
967 T3

(26)

so that it vanishegexponentially as T—0. Thus, atT=0
the nontopological contribution to the fermion number van-
ishes, at this order in the derivative expansion. Note that i
Eq. (21) the leading constant term 1 survives the>0 limit,
while in Eq.(26) the leading constant terms cancel, leaving
function that vanishes a6—0.

Already at this next-to-leading order of the derivative ex-
pansion, we have established in E&5) that the induced

fermion number acquires a nontopological temperature de-

pendent contribution at finite T. We now consider higher or-
ders in the derivative expansion. The next term beyond E

n

i_ate A

PHYSICAL REVIEW D 66, 025004 (2002

We now consider th& dependence of the prefactors of these
types of contributions. First, fod=4 the constant terms in
the low T (T<m) expansion must all cancel at any given
orderd of the derivative expansion, since the final answer
must be just the 2-derivative topological te®) at T=0.
This is a very stringent test of the derivative expansion at
finite temperature. We have explicitly checked that this is
indeed satisfied fod=4 andd=6. The leading corrections

all have the same exponential factor, with a prefactor coeffi-
cient that depends on the power of the propagator. From Eq.
(22) we see that the dominant prefactor at low temperature
occurs wherp (the power to which the propagator is raised

is as large as possible. This means that for the terms in Egs.
(27) and (28) we must takev=d. This means that each de-
rivative just comes from one of the insertions\afThis fact
dramatically simplifies the derivative expansifn this low

T limit), because the propagator factors can simply be moved
out of the trace without generating further derivatiysimce
these would be subleadind/NVe also learn that the terms of

%he form (27) dominate over those of the fori28). These

simplifications permit us to go to any order of the derivative
expansion.

To compute the actual form of the derivtive expansion
ontribution in this low temperature limit, we have to calcu-

4" n(x)] in Eq. (27), which involves doing théma-

C

(24) has 6 derivatives and receives contributions from eachiX) traces over the Dirac and isospin matrices:

of the first five terms in the expansidth6). While it is sys-
tematic to write down all these 6-derivative terms, it be-

tr[IVI] =t m o3® (N(X) - 7)

comes a lengthy expression due to the many ways of con-

tracting the spacetime and 8) indices. This proliferation

X (m?4, ﬁa&j nPo' ol © 727°)92) (29

of terms rapidly becomes worse as we go to higher and

higher orders in the derivative expansion. To proceed, we - - . . . .
g b P where ©3,—io) and r are the Pauli matrices in the Dirac

consider instead the low temperature limit. In this case wi
find that we can evaluate the leading contribution to all or-

ders of the derivative expansion, and resum this leading loW
above trace becomes

temperature correction to the zero temperature ang@)er
This follows the procedure used in19] for a

(1+1)-dimensional sigma model, and is based on simple

dimensional analysis. From the general expangi®) we
see that terms either involv@ an even number o¥’s and
one interaction ternh, or (b) an odd number o¥/’s and one
kinetic termK. Consider a term of fornfa) with v vertex

insertions ofV. SinceV has already a derivative of(x), the
total number of derivatives], of ﬁ()?) in this term satisfies

2<vy=d. This term also hag+ 1 propagators\. Thus, by
dimensional reasoning, this term must behave as

v+1

Tr((AV) VA|)(d)~mAg+l[ﬁ()Z)]

(27)

whereA ;"1 n(x)] is some functional oh(x) with d deriva-

tives and ¢+ 1) factors ofn(x). On the other hand, a term
of the form(b) behaves as

4

m A >
mz—zz)(V+d—1)/zAd[n(X)]. (28)

Tr((AV)”A K)(d)~(

and isospin spaces respectively. Using the fact theaatd j
an only take values 1 or 2, and the’' = 6" +i €0, the

md* 1t o3® (N(X) - 7)(J;n%0;,n?
— €'l e3P, ﬁa&j nPo3® 7%)92]. (30

Using the binomial expansion for expanding the above

power and noting that) Tr(¢®)™*1=2 whenm s odd and
zero otherwise, andi) (7-a)(7-b)=a-b+i(axb)- 7, the
expression30) becomes

" d/2
q(%) Q2
A mehs [ ez mlicol

(31)

where we have defined the following combinations:

J()Z)Eélja|ﬁxa]ﬁ, q()—())EE”€abCﬁat9lﬁb5]ﬁc (32)

Finally, performing the functional trace over the propagators
w

e find

025004-5



GERALD V. DUNNE, JUSTO LOPEZ-SARRION, AND KUMAR RAO PHYSICAL REVIEW 6, 025004 (2002

; md+1 First, suppos@é(x) has the form of a 2-dimensiondP?*
Tr((AV) A~ — A7) instanton, in which case the winding numial), in Eq. (8)
7d(m"—7°) is just the instanton number, as is well known for the zero
q(x) o o temperature systerf87]. The instanton fieldh(x) satisfies
xf d2x| = [(8;n0;n%+ v (x)])¥2 the first order instanton equation
v(X
A~ ~ N ~a_ beab ~
_(ﬁinaﬁina_|U(X)|)d/2]. (33) &ina—ieijea °n &jnc (36)

So, in the lowT limit (T<m), the derivative expansion be- where thex signs refer to the anti-instanton—instanton cases
comes very compact. The leading low temperature contributespectivelyfone can easily check this by substituting Eq.
tion, with d spatial derivatives, to the induced fermion num- (36) in the expressiort8) to find the sign ok N),]. Now, in

ber is then found by summing over the Matsubara poles ofieneral we have thdv (x)|2=2(d;n%3;n%)?—2(an-d;n)>

the prefacto(33), and then using the low temperature expan-gyt for an instanton background satisfying Eq.(36), it
sion in Eqg.(22). This gives the following: follows that (&iﬁ'ajﬁ)zzé(aiﬁ'aiﬁ)z- Therefore, [0 (X)]

mT 1 QR . . =(4;n-a;n), andq(x) = ¥ (d;n- 4;n). Then the lowT expan-
(NY{D~ — — —e*m’Tf d?x———1[ (9;n%9n? sion (35) simplifies somewhat:
7 dl(2T)" lv(x)]
DT GRARTEODEL B (e [ o % _mﬂa) _1]
Note that at any orded of the derivative expansion, the 37)

prefactor term in Eq(33) leads to a temperature dependent
prefactor in the induced fermion number that vanisheS'as 1o pe even more explicit, we chooseo be ak-instanton
—0. Furthermore, the leading loWterms in Eq.(34) have  solution, in which caséN)o=k. The explicitCP* instantons

a simple form that can be resummed to all orders in theyre most easily expressed in terms of the following stereo-
derivative expansion. Combining with the 2-derivative termgraphically projected fields® and w?:

in Eq. (20), we obtain the following all-orders result for the

low temperature correction to the induced fermion number in onl 212
the (24 1)-dimensional nonlinear model: wt= . W= . (39
(1-nd (1-n®)
_ q(x)
/T 2 A >
(N)r~(N)o——e™™ J d X|J(;)| Definingw = w'+iw?, the original sigma model field(x) is
Vaingane+[u(x)| Rew
X| cos >T o 1 Im o
n(x) ) (39
Vain29,nd— v (x)| ﬂ—i—l ol
—cos>{ : I2T ) . (35) 4 4

As is well known, the instanton equatid86) then becomes

This is the main result of this paper. It shows explicitly thata simple Cauchy-Riemann condition fer so that instantons

the topological zero temperature fermion number, given byare characterized by a meromorphic functiorzefx! + ix?
the winding numbet{N), in Eq. (8), acquires & dependent For example '
correction which is nontopological. This temperature depen- '
dent correction cannot be expressed in terms of the winding

number, and is sensitive to the detailed shape of the back- w(z)=

ground fieldn(x), not just its asymptotic values. Also note
that theT—0 limit is well defined in the derivative expan-
sion regime where Eq12) is satisfied. This resummed ex-
pression(35) is analogous to a similar all-orders resummed
result found in19] for the (1+ 1)-dimensional sigma model

(2—2p) K

N

(40)

representk instantons at the location,, each with a com-
mon length scala.. For such an instanton,

2
background. We find it remarkable that this all-orders resum- 5 58 _ & |2— 75|22 1 .
mation can also be done for the £2)-dimensional sigma B 2k 0 . 2
model, as it is a significantly more complicated model. 1+ m|2_20|
Thus far, the only thing we have assumed atfm(li) is (41)

that it takes values irf?, see Eq.(7), and that it has a

“gentle” spatial profile, see Eq(12). We now consider two  The spatial integrals in Eq37) can now be done, and one
specific explicit forms for the backgroungx). finds
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2n A . siné(r)\4
<N>T~ki4k_n1€7m/-r ! 2K (ﬂinoﬁjn)2=(0’(r))4+(4)
T =0 (2n+2)! | o1k\ T r
n n in which case,
XB{n+1+n+l-p (42

- 2|6’ (r)sind(r)|
where(m,n) =T (m)['(n)/T'(m+n) is the Euler beta func- o(rd)|=——F— (48)
tion. The first termk, in Eq. (42) is the zero temperature
fermion numbexN)o, which is simply the instanton number Thys, the low temperature induced fermion number for the
k, and which is manifestly independent of the instanton scalepapy Skyrmion” background is
\. On the other hand, the finif€ correction in Eq.(42) is
manifestly dependent on the instanton soaleeflecting its o
nontopological nature. It is interesting to note that this cor- (N)T~<N)0—2mTe’m’Tf rdr sgn(é'(r)siné(r))
rection term is a convergent series in T/ for any instanton 0

numberk. For a single instantork 1), it simplifies further |siné(r)|
to LAC
] ) o x| cos 5T
1 A-mT —_
(N1 e ™ 2 o En ) n) L]
16"(N] ==
IAT coshy—1 s ' “
—1— (4m)\)e—m/TJ' —hgdy_ (43 2T
0 y

The background field(r) has to satisfy certain boundary
The second physically interesting form for the sigmaconditions. Requiring that, for a localized soliton solution,

model background field is the “baby Skyrmion” case the chiral field ag — o should equal its vacuum value, i.e.,
ﬁ(r,¢) should be independent of the angle fixes 6(x)
cos¢ siné(r) =k, wherek is an integer. At the origin, finiteness of the
- —| sinesinacr soliton energy require8(0)=nsr, wheren is an integer. As
n(r.4) ¢ )] (44) an example, consider the following ansatz for the radial pro-
coso(r) file function (r):

Here,r and ¢ are the 2-dimensional polar coordinates and r

6(r) is some radial profile function. The “baby Skyrmion”is o(r)=2 arctaré 5) . (50)
the 2 dimensional analog of the 3 dimensional Skyrme

model for baryons, with a “hedgehog” ansatz for the meson

fields[16]. For such an ansatz, the winding number densityThen

is
, 4\ siné(r)
- a2 0= = (51)
q(x)=eab%”naainbajncstmB(r)e’(r) (45) re+4n
so that the zero temperature induced fermion nuni®ers Substituting this in Eq(49) we obtain
1 = de _ INT - coshy—1
- s Nyr~1—4mre m”f dy——— 52
(N)o=5— 47-rf0 drdrsma(r)} (N)7 . ¥ (52)
= Z7cosf(0)— cosd . 46 which is, incidentally, exactly the finite temperature fermion
2[ © ()] (46 number(43) for the CP?! single instanton background.

The most important thing to be learned from the baby
This shows clearly thatN), is topological: it only depends Skyrmion result(49) is that while the zero temperature fer-
on the asymptotic values of the profile functié(r), not on  mion numberN), only depends on the asymptotic values of
its specific spatial profile or scale. The low temperature corthe radial profile functiond(r), the finite T correction is
rection to the fermion number in this case is obtained fromsensitive to the details of the shapedgf). This means, for

Eg. (35 by noting that for the ansat@4), example, that in a variational calculation where the
no(r) 2 asymptotic values of(r) are fixed (to keep the Skyrme
PN sino(r i i i .
9.R35.03= (6" (r))2+ , 47 number fixed, bu_t the shape Qi?(r) is varied, the finite
temperature fermion number will vary.
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IV. CONCLUSIONS the chiral sigma models in-81 dimensions. There, the zero
- temperature calculation is very similar to the
To conclude, we have computed the finite temperatur : . -

?2+ 1)-dimensional case. At finite temperature we learn

induced fermion number for fermions in a static nonlinear . , -
X . . . : from our calculation that there will be a finite temperature

o-model background in 21 dimensions. This calculation . T ) . X
. - . . : correction and that it will be nontopological—that is, while
illustrates the splitting of the induced fermion number into a ; ' .

. s . . the zero temperature induced fermion number is the Skyrme
zero temperature piece, which is topologita¢re, the wind- . i
: . - number, the temperature dependent correction will be a much
ing number of the sigma model backgroindnd a finite . :
temperature correction which is nontopologidal]. The more complicated functional of the Skyrme background.

P polog ’ This is already clear from the general argument about fihite

calculation was done in the derivative expansion limit Wheref(grmion number if20], together with the numerical results

the spatial derivatives of the background fields are assume Lee, e.9.[38]) for the sensitive dependence of the fermion

to be small compared to the fermion mass scale parameter spectrum on the scale of the Skyrme background. That is,

We found that it is possible to resum the derivative EXPaN5ince the single-particle fermion spectrum is not symmetric
sion to all orders, in the low temperature limit whére&<m. gie-p b y

Such a resummation was done previouflg] in the (1 and is sensitive to the scale of the background, the finite
) . P i temperature correction is also sensitive to this scale, and thus
+1)-dimensionalo-model case, but we find it remarkable

. . ) m non logical. From Iculational standpoint, w
that it can also be done in the more complicated ust be nontopological. From a calculational standpoint, we

24 1)-di onal Th it th lied learn that while at zero temperature the induced fermion
( )- Imensional case. 1 hese resuits were then applie Qumber arises from the leading nontrivial order of the deriva-
two specific background fields in the-model case: a

: . : . : tive expansiorf15,36), at finite temperature it is necessary to
1 «

2-d|me_nsu3nalc79 Instanton, ar_ld_ a 2-dimensional bab_y go beyond this order. In other words, at finite temperature

Skyrmion.” In each case, the finite temperature correctio

. Al : here are contributions that are not total derivatives, and
can be computed in the low temperature I|m|_t. For an INStaNs ese contribute to the integrated charge. It is a much more
ton background the final expression for the mduped .ferm'orbifficult problem to investigate higher orders of the deriva-
number(N)r becomes a simple convergent series iNTL/ tive expansion in the (3 1)-dimensional Skyrme model.
where\ is the length scale of the instanton, thus explicitly

. X . = However, the results of this paper for the
illustrating the nontopological character of the finite tem'(2+1)-dimensional model suggest that it should be possible
perature corrections itN).

Finall K | ol to explore higher order of the derivative expansion, at least
. mafy,h.we ml? 2 s§ver§ commerr:ts_ondposg Ie eXteN, the low temperature limit. It would also be of interest in
sions of this work. As has been emphasized recently at Zeryis context to extend the systematic renormalization ap-

temperature iri31,33, the induced chargéand, more gen- proach developed ifil4,39, which is ideally suited to nu-

grally, mduced curr_eMs .onIy one part of the induced effgc- merical evaluation of induced charges, to finite temperature.
tive action for fermions in ar-model background. There is,

in addition, a Hopf term which is topological, but which does
not contribute to the induced currefdince this is defined
through a functional variation of the effective action with  G.D. and K.R. thank the U.S. Department of Energy for
respect to a gauge figldThis Hopf term has important im- support through grant DE-FG02-92ER40716. J.L. thanks the
plications for the spin and statistics of solitdr®d,32,34. It Spanish Ministerio de Educaeioy Cultura for support and
would be interesting to investigate these issues at finite tenthe UConn Physics Department for hospitality while this
perature, in the language of finife effective actions. An- work was done. G.D. thanks N. Graham, R. L. Jaffe and H.
other result from our calculation is the implication it has for Weigel for helpful discussions about induced charges.
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