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Extending previous work, we calculate the fermionic spectrum of two-dimensional QCD {Qi@DRhe
formulation withSU(N,) currents. Together with the results in the bosonic sector this allows us to address the
as yet unresolved task of finding the single-particle states of this theory as a function of the ratio of the
numbers of flavors and colors=N;/N., anew. We construct the Hamiltonian matrix in the DLCQ formu-
lation as an algebraic function of the harmonic resoluoand the continuous parameteiin the Veneziano
limit. We find that the fermion momentum is a functionloin the discrete approach. A universality, existing
only in two dimensions, dictates that the well-known 't Hooft and laxgespectra be reproduced in the limits
N—0 ande, which we confirm. We identify their single-particle content which is surprisingly the same as in
the bosonic sectors. All multiparticle states are classified in terms of their constituents. These findings allow for
an identification of the lowest single particles of the adjoint theory. While we do not succeed in interpreting this
spectrum completely, evidence is presented for the conjecture that adjoint Q€80 bosonic and an inde-
pendent fermionic Regge trajectory of single-particle states.
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I. INTRODUCTION The results have been improved in Ref&,13]. The
asymptotic spectrum of the theory has been calculated by

Two-dimensional QCD will remain an interesting model Kutasov in the continuurfi7]. There are mainly two reasons
for strong interaction physics until a first principles calcula-which prohibit the extraction of the single-particle solutions
tion of the low-lying spectrum of four-dimensional QCD is from these results. First, especially the numerical results are
available. The theory with one flavor of fundamental fermi- obscured by the fact that the standard formulation in terms of
ons coupled to non-Abelian gauge fields was solved by 'fermionic operators contains many multiparticle states. Sec-
Hooft in his seminal papdr] in the limit of a large number ondly, in largeN, calculations one is used to identifying
of colorsN,. It is the prime example for the solution of a single-particle states with single-trace states since the work
confining gauge theory and exhibits one Regge trajectory off 't Hooft [1]. It was recently established that this is not
noninteracting mesons, while not possessing dynamical glihecessarily correct if one deals with fields in the adjoint rep-
onic degrees of freedom. The theory can also be solved whetsentatioi13,15,1§. This might have consequences for re-
the number of fundamentaflavored fermionsNs is large.  sults derived with this assumpti¢6,9,4,11. It seems there-
This is the Abelian limit of the theory, and it comprises afore that not so much the lack of results but their
single meson with masg?N; /7 [2]. So far it has, however, interpretation is the main obstacle for solving the theory. To
proven impossible to solve the theory with fermions in theimprove the situation in both respects we will adopt a strat-
adjoint representation. This is unfortunate, because adjoirdgy which is special to massless theories in two dimensions.
fermions simulate the transverse gluons of realistic fourdn the massless case, the light-cone Hamiltonian can be writ-
dimensional QCD. The latter has, of courbg=3 fermions  ten as a pure current-current interaction, and its Hilbert space
in the fundamental representation ®J(N.=3), but it has  splits up into sectors of different representations of the cur-
been established for several theorjés3,15 that the large rent algebra. The formulation of the theory in terms of
N, limit is often a good approximation. The difficulties with  SU(N,) currents which form a Kac-Moody algebra is there-
solving adjoint two-dimensional QCD (QGPcan be traced fore a preferred choice which we will use in the present
to the fact that parton pair production is not suppressed byork. In this formulation, to be described in Sec. I, many of
factors 1N;, contrary to the 't Hooft model. One therefore the multiparticle states will be absent, because only two of
expects a rich spectrum of multiple Regge trajectories. Adthe current blocks give rise to single-particle stdi@s The
joint QCD, has been discussed in the literature for almost dosonic states lie in the so-called current block of the iden-
decadeg[5-18. Many interesting facets of this theory have tity which was considered in Refl16]. The adjoint block
been revealed, e.g. a confining/screening transition with gives rise to the fermionic bound states, to be calculated
linearly decreasing string tension at vanishing fermion masfere, which we need for the interpretation of the full spec-
[10,19, an exponential rise of the density of states with thetrum, because the bosonic spectrum contains multiparticle
bound state mass which is reminiscent of string thdély  states with fermionic constituenfsl3]. We will use the
and the fact that the theory becomes supersymmetric at faamework of DLCQ to realize the dynamical operators on a
special value of the fermion magg|. Still, frustratingly little  finite-dimensional Fock basis. It turns out that the momen-
about the(single-particle solutions of this theory is known. tum operator plays a special role in the fermionic sector, and

Using the framework of discretized light-cone quantiza-we will describe this and other peculiarities in Sec. Ill. In
tion (DLCQ) [20], the numerical eigenvalue spectrum of ad-Sec. IV we will construct the fermionic light-cone Hamil-
joint QCD has been obtained by Dalley and Klebafby;  tonian in terms of the discrete momentum modes of the cur-
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rents. The Hamiltonian is an algebraic function of the cutoffthe massive spectrum of the theory is the same, whether one
in current number and, most importantly, of the rao adjointSU(N;) Majorana fermion oN;= N, flavors of fun-
=N;/N,. damental Dirac fermions are coupled to the gauge fields.
This explicit A dependence of the Hamiltonian and the This means that we can formulate the theory in terms of
eigenvalue spectrum allows us to exploit a universality ex-adjoint fields, while interpreting the results in terms of fun-
isting only in two dimensions, as part of our strategy to elu-damentals. This gives us a continuous parameter at hand,
cidate the spectrum of adjoint QGDThe universality estab- namely \=N¢/N., which allows us to couple the Yang-
lished in Ref.[9] assures that the massive spectrum andMills fields to matter in different representations by simply
interactions of two-dimensional gauge fields coupled toaltering its value, while still keepiny; andN, large. This in
massless matter are largely independent of the representatiturn gives deeper insight into the theory, since the spectra in
of the matter fields, given they have the same chiral anomalythe limitsA — 0 ('t Hooft model) and\ — o« (largeN; mode)
All information on the matter representation beyond its Kac-are well understood, whereas the single-particle content of
Moody level is encoded in the massless sector of the theoryhe adjoint theory remains largely unknown. Consequently,
There is, however, no strict factorization between massivéhe main focus is on the caae= 1, while we will try to infer
and massless sectors, although the Hamiltonian is deteas much information as possible from the 't Hooft and large
mined by the states from the massive sector only. In particuN; models by analyzing them in the formulation with current
lar, massive states will have well-defined discrete symmetryperators.
guantum numbers only when accompanied by massless In order to do so we have to derive the momentum and
states[9]. It is clear that the universality can hold in two energy operators in terms of currents rather than with fermi-
dimensions only. In four dimensions massive and masslessnic operators. We consider the adjoint theory, but shall dis-
modes are known to be strongly interacting. So far, this unitinguish N; and N, throughout the derivation. As we saw,
versality has been understood in light-front quantizationone can formally interpret the results at differéit and N,
only. The universality specifically predicts that the massiveas distinct theories. The Lagrangian in light-cone coordinates
spectrum of the Yang-Mills theory coupled to one adjointx* = (x°+x')/v2, wherex" plays the role of a time, reads
SU(N.) fermion is the same as the spectrum of the theory
coupled toN;= N, flavors of fundamental fermions. If this is
true, we should obtain the 't Hooft spectrum in the limit of
vanishing\ and a single meson in the largg limit in our
numerical calculations. This exercise is performed in Secswhere¥=2" 1"‘(‘ﬁ) with ¢ and y being N. X N; matrices.
V A and V B with the predicted result. This confirms that the The field strength i&,,=d,A,—d,A,+i[A,,A,], and the
universality can be applied to the present case and providesgayvariant derivative |s defmed ag =9 +|[A 7.
strong test of the numerics. In both limits the multiparticle work in the light-cone gauged™ =0, WhICh is con5|stent if
states decouple and we succeed in describing the spectrawe omit the fermionic zero modes. The massive spectrum is
terms of their single-particle content, thus classifying allnot affected by this omissiof21]. We use the convenient

multiparticle states by their constituents. This helps us tMirac basisy®=o,, y'=—io,. The Lagrangian then be-
understand the adjoint spectrum in Sec. V C. While we argomes

able to identify the low-lying single particle states and to
construct some of the multiparticle states, a complete solu- 1 N2t .y B

tion of the theory remains elusive. Motivated by empirical L=Tr z_gz(f?fA )i YtixTa_x—=A"Jd], (2
findings and an analysis of the spectrum at intermediate val-

ues of\ in Sec. VD, we are led to theonjecturethat there  ith the current

are two Regge trajectories in the adjoint theory: a bosonic

and a fermionic one. We discuss the speculative character of (X)) =2:4 (X ) (X ) (3)
these results, tests and possible improvements in the con-

cluding Sec. VI. In the Appendix we display a calculation of The use of both upper and lower indices is adopted as a
the first corrections in to the mass to the 't Hooft mesons. reminder that in general the indices are from different index
The agreement with the results of a recent perturbativgets. We can integrate out the nondynamical compoAent
analysig 8] provides further support for the usefulness of theof the gauge field and obtain

present formulation of massless QL terms of current
operators.

1 o
L=Tr = g2 FuFH 4 ¥y, DA &)

_ _ g> 1
L=Tr |¢Ta+¢+|xTﬂ_x—?J32—J . (4)
!l QCD IN TWO DIMENSIONS It is obvious that the left-moving fieldg decouple, because
The aim of the present work is to compute the massiveheir equations of motion do not involve a time derivative,
spectrum of SU(N.) Yang-Mills gauge fields coupled to i.e., are constraint equations. Noting the simple expression of
massless fermions in some representatidn two dimen-  the interaction in terms of the currents, it is natural to formu-
sions. The Veneziano limit, where both andN, are large, late the theory withSU(N.) currents as basic degrees of
is understood throughout. A universality, existing only for freedom. For reasons of clarity, we will not use the terminol-
massless two-dimensional gauge theofig@k predicts that ogy of bosonization or conformal field theory. We shall
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rather stick to the definition of the currents as a bilineartator is harder to derive. It is, however, well known that the
product of fermions, Eq(3), and derive everything based on modes of the currents are subject to the Kac-Moody aldebra
this definition, which is perfectly possible.
The key issue is to obtain the mass eigenvalvkgsby [Jll((p),\]'m(p')]:pr(slmng(er p')+5LJg~n(p+ p’)

solving the eigenvalue problem )

— 8 I (k+k"). (12)

M?|@)=2P"P~|p)=Ml¢), (5)
The vacuum is defined by
where we act with the light-cone momentum and energy op-
+ - * ; )

(iratfis, P™ and P7, on a state_|<p>. The operatorsP J(p)[0y=0 and bi(p)|0y=0, Vp=0. (13
=T"~ can be found by constructing the energy-stress tensor

v : .
T#"in the canonical way, and one obtains Following the usual DLCQ prografi20], we put the system

in a box of length 2 and impose antiperiodic boundary

Pr=T""= f dx T I(x)I(x)]: (6)  conditions on the fermionic fieldsy(x™ —L)=— (X"
Net+Np J o +L). The currents are by construction subject to periodic
boundary conditions. The momentum modes are now dis-
Pt —_ 9_2 * dxTrl 30x iJ . 7 crete, and, as always in light-cone quantization, the longitu-
- T2 ). X1 J(X ),92_ (x7) |- () dinal momenta are non-negative. The smallest momentum

Kmin=P"/2K is determined by the harmonic resolutiéh

The Sugawara form of the momentum opera()"r, Eq (6), = P+L/7T, which controls the coarseness of the momentum-
might seem somewhat unfamiliar, but an explicit analysis ofsPace discretization. The continuum limit is obtained by
this construction in terms of the fermionic mode operatorssendingK to infinity. In practice one solves the eigenvalue
yields indeed the above restifo solve the eigenvalue prob- Problem, Eq.(5), for growing values oK and extrapolates
lem, Eq.(5), we have to diagonalize the mass squared operdhe spectrum to the continuum by e.g. fitting the eigenvalues
tor, which is equivalent to diagonalizing the Hamiltonian to & polynomial in IK. The expansion of the fermion fields,
P~, sinceP™ is already diagonal. The latter is not as obvi- EQ. (8), becomes

ous as usual, and we elaborate on this in Sec. IIl.

We use the standard mode expansion of the fermionic _ 1

' j X)) = Bj n efirrnxflL, 14
fields Yi(x7) 2L n=+12=30,.. ) 19

. 1 ® N . .
Pl(x )= —\/_f dpe "X bl(p), (8)  with the discrete field operatoBl(n)= (/L) 20} (nm/L).
2\ J - The current mode operatod$én) are defined by the discrete

) version of Eq.(9). The momentum operators read
and the mode expansion of currents becomes

- 1 (- o 1] pra(T) Ll i0a0+ S J—mam)
J{((p)=\/—_f dx e*'PX Ji(x7) L/Ng+N; |2 = '
rl | dal@bip-a) © 2 &
=7 g-01(q)b(p—Qq)-. [s 1
2m = P =3 ST, (16)
21 n=1 N
The canonical anticommutation relation for the fermionic op-
erators and become finite-dimensional matrices on the Hilbert space
, ' constructed by acting with the current operators of momen-
{bl(p),bl.(p")}=8(p+p’) &5, (10 tum K or smaller on the vacuum defined by Ed.3). For

convenience we introduced the scaled couplifig
determines the commutator of current with fermionic modes=g?L/7. We emphasize the appearance of the zero mode
_ _ _ contribution in the discrete formulation, as should be
[3L(p),bl(p")]= bl (p+p )= 8bi(p+p’). (1) clear from P*=lim__ [ 1/(N+N¢)]Tr[(€/2)J(0)I(0)
_ +[2dpI(—p)J(p)]. In the Veneziano limit the operators
Recall that in the adjoint theoiyl(—n)=b*(n). Due tothe  are realized on a Hilbert space of discr&e(N,) singlet
occurrence of Schwinger terms the current-current commuFock states. The fermionic states look like

The remainder of the product of four fermion operators is the 2We use the opportunity to correct Refl6], where the
contraction term. Its integral becomes the momentum factor in th&-symmetric[cf. Eq. (25)] version of the algebra was used, with no
usual definitionP™ = [5dppTr[b(—p)b(p)]. consequences for the results in the bosonic sector.
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X Tr

XB

1 natural, since it basically acts like an adjoint vacuum, as we
b+ E;n11---,nb> =(NGNy) D214 shall see. This renders the Fock basis much larger than in the
bosonic case. The number of states grows like % see
Table 1, with the harmonic resolutiok being a half-integer
J(=np)I(=ny)---I(—np) in the fermionic sector due to the momentum of the addi-
tional fermion. The different sizes of the Fock bases will help
1 us in interpreting the resulting fermionic spectra, because the
B 5) 0), 17 spectra in the 't Hooft and largd; limits of the theory have
the same single-particle content as in the bosonic sectors.
whereas in the bosonic sectors we find the singlets We briefly comment on the fact that we can calculate two
eigenvalues of the mass squared operattf=2P* P~ ana-
b;ny,....np)=(NcNp) ~°"2 Iytizcally. Remarkably, we obtain the same functional form
_ N1 M1 4(K) as in the bosonic sector. This is somewhat surpris-
XTI(=n)I(=nz)--I(=np)]|0).  (18) inélZ(since in the fermionic sector we lose the uniqueness of
The additional fermion operatcBL(—l/Z) in the fermionic  the t_W0 state_s with the largest number of currents. At har-
states is the source of some rather odd differences betwe&CNiC resolutiork =b+1/2 the states
the two sectors, as we shall see in the next section.

1 1
’b+§>=Tr {J(—l)}bB(—E) |0) (20)
lll. SPECIALTIES OF THE FERMIONIC SECTOR
The numerical solution to the eigenvalue problem, Eq. 1\ b—2 1
(5), in the bosonic sector was presented in R&B]. The b— 2 =T (=D (-2)B| - 2 10, (22)

calculations in the fermionic sector are not quite as straight-

forward, and we shall point out the major differences. Thehaveb andb—1 currents, respectively, plus a fermion with

first peculiarity in the fermionic sector resides in the actionmomentum 1/2. However, Eq21) represents a class &f

of the momentum operatd®* on a fermionic state. It turns —1 states, rather than a unique state as in the bosonic sector.

out that the eigenvalue d®* on a fermionic state depends Explicit calculations show that the image of one of these

on the ration=N;/N;. To convince ourselves that this is states under the mass squared operator has no overlap with

true, we consider the simplest case in discrete formulation any of the other states, and its eigenvalue can be trivially
extracted in the fashion of Rdfl6]. Hence, two eigenvalues

P*Tr J(—n)B _1 0) can be evaluatec prior.i. The _eigenvalues of the mass
2 squared operator associated with the states, EfB.and
1 (21), are
=[P+.J}<—n>]B§(—§ |0)+3j(—n) , 1 g°N, 1 )2
MI|K=b+ z|=—=(1+N\)| b+ +—] , (22
1 1 2 T 1+\
R -] — + i — ) —
x|P ,B.( 2) |0)+| [P, 3¢ n)],B,( 2HIO> LN (1
a1 1 | K=btg )= (b X
=L n+m Tr|J(—n)B ) |O> (29 ) 3 1 s
“\PT T 3

In other words, only in the adjoint theory the fermion has the
familiar momentum. In the 't Hooft limit, a fermion with
half-integer momentum contributes the same momentum as
current, whereas in the largé limit it has a vanishing con-
tribution. This is a consequence of the discrete formulation.
In particular, it is M?Bj(—1/2)0y=2P" P~ Bj(—1/2)[0)
=0, althoughP " Bj(—1/2)[0)=(1+\) *B} (—1/2)|0). We construct the light-cone Hamiltonian in the framework
Another issue to be addressed here is the size of the Foak DLCQ. Once the commutation relations, E¢$0)—(12),
space. In the bosonic sector, the singlet states are of the forare specified, and the Fock basis is chosen, this is a straight-
of Eq.(18), i.e., they are single-trace states of a certain numforward generalization of previous wofk6], and we can be
ber of currents. This form allows for cyclic permutations of brief here. In the fermionic sector we get additional contri-
the currents under the trace. The cyclic permutations are rdsutions to the light-cone Hamiltonian by commuting through
lated nontrivially due to the Kac-Moody structure of the cur- zero modes of the currents and acting with them on the extra
rents, yet all cyclic permutations of a given state have to béermion. Note that annihilation operators may be created by
eliminated from the Fock basis. The key difference in thecommuting current operators. To streamline the calculations
fermionic sector is the absence of these cyclic permutationst is useful to distinguish the creation, annihilation and zero-
the fermion defines the ordering of the state. This is quitenode part of a commutator

We note that in the 't Hooft limit, all states of the form Eqg.
@1) have the same eigenvalue.

IV. THE HAMILTONIAN
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TABLE I. Number of basis states as a function of the nunibef currents in a state. The relation loto
the harmonic resolutio is K=b in the bosonic, an&k =b+ 3 in the fermionic sector.

b 1 2 3 4 5 6 7 8 9 10 11 12 13 14

fermions 1 2 4 8 16 32 64 128 256 5121024 2048 4096 8192
bosons 1 2 4 6 12 18 34 58 106 186 350 630 1180

[A,B]=[A,B]+|A,B]+|A,B]o,

much in the fashion of Ref16]. The resulting Hamiltonian is slightly simpler than in the bosonic case. The number of its
terms of leading power ihl, grows exactly quadratic with the numbeof currents in a state. In the lardg, limit the action
of P~ on a state withh currents, Eq(17), is then

’QZNC b (nil 1 n;

- 1. p—
P ‘b+§,n1,...,nb>—?21 2 E

1 1
b+1+=;n4,ny,...,nj—m,m,....n,, =

= (m—n)? Em? 2 2
| 1 1
+ b+ Ny,No, N, =
7_2( T N

b-1

Z

n—1
' 1
>

(m=0 m+n;) m=1W

1 1
b+ z;nl,nz,...,ni+m,ni+1—m,...nb,§>

1 1
(EJH q)z (E]ﬂwlnq)

2| Mi+j

L

J+I

1 1
X b_J+§;nlln21"'!ni—1uEl nq,nj+i+l,...,nb,§
q=i

R

m=0

1 1
(M+3,0ng2  (m+2(2 ng)?

1 i+]j 1
b—j+3; nl,nz,...,qE:i Mgt M1~ MMy

b

~2
0°N¢ 1 1 1 1
+ — b—i+=:ny,ny,...Nh_i_1, Ny, =
2w i=1 [(Eg—b_inq)z (Egzb—i+lnq)2 2 e b-i—1 q=2bfi q 2
+§2NC 2 Do+ Einng. g s (24)
27 \n2 nZ) [Ptz Mg )

As in the bosonic casgl6], the terms in the Hamiltonian limit when A — o, the 't Hooft model in the limit\ — 0, and
have a differentN. andN; behavior. Only the terms in lines the adjoint model, of chief interest, at=1. It turns out that
two and four of Eq.(24) containN;. These terms will be the complexity of the spectra grows in this order, and we will
absent in the 't Hooft limit and will be dominant in the large start their interpretation with the rather simple laigelimit.
Ns limit. Since we are using a discrete formulation, we may aim to
understandill states in the spectra.
V. NUMERICAL RESULTS Some words on the numerical algprithm' seem in orde'r.
The number of states grows exponentially with the harmonic
We solve the eigenvalue problem, E§), numerically to  resolution, cf. Table I, and much faster than in the bosonic
obtain the mass spectrum of the theory as a function of theector. However, the situation is still better than in the for-
harmonic resolutiork and the ratio of the number of colors mulation of the theory with fermionic operatof43]; we
and flavors\. Remember that the Veneziano limit is always have atk =25/2 a roughly four times smaller basis. To fur-
understood. In the sequel, we will use both parameters t¢her reduce the computational effort, we could use Zhe
extract information from the spectra. We recover the ldige symmetry of the Hamiltonian which is invariant under the
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2 i cA=103 =+
M 20 Fermlons A '1'(),' lel 11. .

2 F i : A=103, Z,=-1
Mg Fermions: AZ10% oot

FIG. 1. Fermionic spectrum in
the large N; limit. Left: (@ Z,
even sector. Rightb) Z, odd sec-
tor. Solid (dash-dottegllines con-
nect associated singhaulti)-
particle eigenvalues at differeKt
Dotted lines connect analytically
calculable eigenvalues. Dashed
lines are extrapolations to the con-
tinuum limit. Note that masses are
in units g?Ny /.
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10 —
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0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
1/K 1/K
transformation Since we do not work in an orthogonal basis, it is not very
helpful to block diagonalize the Hamiltonian with respect to
T3;(n)=—J3;(n). (25) this symmetry. We will rather determine tl® parity of an

eigenstatea posterioriby calculating the expectation value
It is straightforward to convince oneself that the action of0f the operator7 in this state. The main benefit of tre
this operator on a state with currents is priori symmetrization, namely the reduction of the numerical

effort to diagonalize a smaller matrix, is of course lost this

way. However, the separation of tlg odd and even eigen-

TIb+ E;nl.nz, _ ,nb> functions is very useful when interpreting the results, be-
2 cause it reduces the density of eigenvalues to roughly one
_ half.
ob—1

1
Pit U2 7i(Np.Np—1,.-.N1), 2/ (26) A. The large N; limit

:2 (—)Pitt
i=0

_ _ _ In the largeN; limit we find the expected mesg¢@] in the
where ther; consist ofp; partial sums of thé momenta, in  fermionic Z, even sector at mass

the sense thait runs over all possibilities to place 0,1p.., X

—1 commas between the momenta while summing those 2. 9°N¢
momenta which are not separated by a comma, e.g. Miu(K)= T (28)
1 cf. Fig. 1. All other states are multiparticle states built from
T 7/2;n1,n2,n3,—> this state, and are in this sense trivial. It is, nevertheless,
2 important that we understaradl states in the spectrum to see

1 1 what we can learn in order to decode the adjoint spectrum.
= ‘ 7/2;n5,n,,N4, §> —’5/2;n3,n2+ Ny, §> Let us first focus on the fermionic sectors. It is easy to write

down a formula for the mass of a multiparticle state consist-
ing of noninteracting partons in DLCQ. If we take into ac-
3/2;n3+n,+ng, —> . (27 count the finding of Sec. Il that the momentum of a fermion
depends on, it reads

1
—‘5/2;n3+n2,n1,§>+

1 1
Nqy,No,... Ny 1'K): K—E‘Fm

_ 1 _
M;b(K—Eibfnﬁ(b—l){z—(l—)\) 1

-1 M3 (n)
x +2 ' . (29
_ 1 =1
K—Eib_llni+(b—2)[§—(1—)\)‘1 =5+ (1N

The masses of the multiparticle states grow like the momentum ckitafe., diverge in the continuum limit. We found it
therefore, contrary to previous wofl 3,16, appropriate to connect the multiparticle states reflecting this fact in Fig. 1.
Incidentally, this makes the labeling of states easier. A multiparticle statebwibinstituents is characterized by- 1 momenta
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M270 T Flerrrlllovnsl }\Ilvolg ‘Z +1 T M270 T Fermlons |)\=11|O_vg’ IZ2|=I_11 T

60 60

FIG. 2. Fermionic spectra of
the 't Hooft limit in the Z, even
(@ and odd (b) sectors. Solid
(dash-dottepllines connect associ-
ated singlémulti)-particle eigen-
values at differenK. Dotted lines
connect analytically calculable ei-
genvalues. Dashed lines are ex-
trapolations to the continuum
limit. Masses are in units
92N, /.

50 50 <

40 40
30 30
20

10

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
1/K 1/K

n; and b numbersp; specifying its single-particle constitu- namical eigenvalue problem, E¢). But now the meson
ents. Equatiori29) is slightly more general than needed hereoperators will act on the vacuum itself, rather than on the
and holds also in the 't Hooft limit. In the lardé limit there ~ férmion and the vacuum

is only one single-particle state and it has a constant mass,

Eqg. (28). If we denote it by the operatdk{,l(n), the Fock |1in)s= AL (n)A (K=n)|0) (33)
basis in the fermionic sector looks like 12:0,m)a= AL (MAL (M)AL (K —n—m)|0), etc. (34
1
|1)e= AM< K—§> BT( )|0> (30  Consequently, we have to discard all states with momentum

partitions equivalent under cyclic permutations. This is, of
course, nothing other than constructing the current basis in
12:n)p= Al (n)AT (K—l—n)BT( )|0> (31) the b(_)sonic sectors, as we did in R{aI.f_S]. A two-meson

2 state is a two-parton state in the bosonic sector. Hence, the
Z, quantum numbers are opposite as in the fermionic sector.
In particular, since there are no cyclic permutations of mo-
menta of the currents, the two-meson states are absent alto-

1
[3in,m)e= AL (AL (M)A, (K———n m)
gether in the bosoniZ, odd sector, as observed. The gener-

2

«B' )|O) otc. (32) alization to b partons is again obvious, and we thus
completely constructed the spectrum of the lakgdimit of
the theory.

Fock basis states with mesons will thus be constructed by
assigning meson momenta as all partition&Kof 1/2 intob B. The 't Hooft limit

integers, i.e. exactly like the states, Efj7), except that now
we are operating with meson rather than current operators
The role of the fermion in the states will be discussed in Sec:

In the 't Hooft limit we find exactly the same eigenvalues
as in previous work16], Eq. (29), namely

V C. Here it serves as a convenient tool for book-keeping. M2=5.88.13.44.23.04,32.27,41.68.51.24.60.93,
The assignment of quantum numbers of the Z, symme-
try, Eq. (25), is clear: the single particle state E@O) is a 70.76,80.97,90.90, (35

two-parton state and therefore according to @) Z, even,
mr=+1. It comprises a boson and a fermion with uniquecf. Fig. 2, which is in very good agreement with 't Hooft's
momentum partition and we find it indeed only in the SpeC_OI’IgIna| solution[1]. These continuum results are obtained
trum of the fermionicZ, even sector. The states with two by fitting the eigenvalue trajectoried ?(K) of the single-
mesons, Eq(31), are actually three parton states in the fer-particle states to polynomials of second order i Hnd
mionic sector. Therefore the states where the mesons hasebsequently extrapolating ti—. If we compare the
the same momentum transform to minus themselves undsipectrum, Fig. 2, to the bosonic sector, Fig. 2 of R&é],
the Z, symmetry, and are present only in tAg odd sector. we find much more multiparticle states and, of course, a shift
All other momentum partitions should be present in bosh  of half a unit in momentum. As in the largd; limit, the
sectors. This is exactly what we see in the spectra. The gemnrultiparticle states decouple, but now we have several
eralization to theb parton states is obvious, and reproducessingle-particle states. Namely, the spectrum at resolution
exactly the spectra in Fig. 1. containsK —1/2 't Hooft mesons. Théth meson makes its
An analogous construction can be used in the bosonifirst appearance at resolutioK=i+1/2 and hasm;=
sectors. The spectra are depicted in Figp) ®f Ref. [16]. (—1)""1. Note that the single-particle masses are functions
Again we build up the Fock basis from solutions of the dy-of K. If we would set up an orthonormal current basis for this
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problem to factorize the Hamiltonian into its single- andin unitsg?N./; see also Table Il. It is, however, question-
multiparticle blocks, the task would be to diagonalizeka ( able if these states are indeed single-particle states. There are
—1/2)X(K—1/2) matrix to find the masses of these me-a couple of problems which prevent a straightforward inter-
sons. Instead we are diagonalizing'a2? dimensional ma- pretation of the adjoint spectrum, which will become clear
trix. The first procedure is, however, due to the tediouswhen we compare the adjoint to the 't Hooft spectrum. In the
evaluation of the scalar product of Kac-Moody states moreadjoint spectrum we find kinks in the single-particle trajec-
expensive than actually diagonalizing the much larger matrixories, and also the multiparticle trajectories are distorted.
[16]. This is clear evidence for an interaction between these states.
We already wrote down the formula for the masses of theSince the multiparticle states do not decouple, a mass for-
multiparticle states, Eq(29). Also the designation oZ,  mula analogous to E¢29) cannot be exact. Furthermore, the
guantum numbers from the partitions of the parton momentanasses of the single-particle states of the fermionic and
stays the same as in the larlye limit. It should be noted, bosonic sectors are not degenerate as in the 't Hooft case, but
however, that due to the difference in effective momenta ofliffer significantly. This in turn means that we cannot have a
the fermion in the states, the first multiparticle 't Hooft statefermionic and bosonic Regge trajectory of single-particle
appears aK=7/2, as opposed t&=5/2 in the largeN; states, if all of them give rise to multiparticle states: there
limit. As in the largeN; limit, we reproduce the distribution would be simply too many states to account for in a discrete
of the Z, even and odd states, and understand the spectfzock basis.
completely in terms of their single-particle content. In par- As a way out of this dilemma, we make the following
ticular, there is no need for recurring to properties of the
massless sector of the theory, because we can construct all TABLE IlI. Eigenvalues of the lowest foususpectedlysingle-
guantum numbers from the information of the massive specparticle states in the adjoint case. The masses are given in units
trum. This will change substantially in the adjoint case whichg?N, /7. The masses in the 't Hooft case kit=b+ 3 are exactly
we consider next. the same as in the bosonic sectoKatb+ 1. The mass of the only
single-particle state in the largé; limit is independent of the cut-

M2 () — 2
C. Adjoint fermions off: My, (K)=1.00006"N /).

Solving the eigenvalue problem, E(p) in the adjoint 2K MEZ, ME, ME, ME,
model, A\=1, we obtain precisely the same eigenvalues as
previous works with fermions as basic degrees of freedom, 3 4.5000
e.g. Ref[13], with antiperiodicboundary conditions for the > 5.0000 12.5000
fermions. This is not surprising because the formulation of 7 5.2227 14.0000 24.5000
the theory withSU(N,) currents rather than with fermionsis ~ ° 5.3456 14.7645 27.0000 29.2451
in essence a change of basis. 11 5.4222 15.2575 28.5484 32.0373
If we look at the eigenvalue trajectoriémass squared as 13 5.4741 15.5908 29.6419 33.7443
a function ofK) in Fig. 3, the structure of the spectrum looks 15 5.5111 15.8311 30.5931 34.7280
similar to the 't Hooft case. We see immediately four single- 17 5.5388 16.0113 30.3593 35.6396
particle candidates which qualify by their quasilinear trajec- 19 5.5602 16.1509 31.1301 36.3496
tories. In the continuum limit they have the eigenvalues 21 5.5771 16.2618 31.6091 36.5054
) ) 23 5.5908 16.3518 32.0304 37.0575
Mg =5.75, Mg =17.29, 25 5.6021 16.4261 32.6060 37.4225
27 5.6115 16.4884 32.0123 37.7243
o 5.75 17.29 35.25 40.24

M,2:3=35.25, |v|§3=4o.24, (36)
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conjecture which we will try to support by empirical facts. D. Intermediate cases and eigenfunctions

Namely, we view the sole fermion in the states of smallest | is instructive to study the spectrum of eigenvalues as a
discrete momenturk,,=P"/2K acting on the vacuum as function of the continuous parameter=N;/N.. In Fig. 4

the finiteK expression for an “adjoint vacuum,” as it appears we plotted the spectrum of two-dimensional Yang-Mills
in the bosonized version of this thedd). It is clear that the theories coupled to massless matter in representations char-
correct expression should involve a fermionic zero modegacterized by, in the Veneziano limit. We show all sectors of
which is absent in the present discrete approach. It is recovhe theory, i.e. the bosonic and fermiorig even and odd
ered in the continuum limi —c. This conjecture makes SPectra, as a function Qf.A(_:ruciaI obs_ervation is that_the 't
the following interpretation of the spectrum plausible. TheHooft mesons develop differently in the fermionic and

approximate vacuum will introduce couplings between state§0SOnic sectors aa grows, and the degeneracy of their
that are decoupled in the continuum limit. Most of theseMaSSes is lifted. In particular, the mass of the lightest meson
in the fermionic sector decreasesagrows with a slope of

states will be multiparticle states, which are necessary tdﬂf) _ > o
describe the theory correctly at finite harmonic resolution €1 (1)=—1.39; see the Azppendlx. It reaches the minimum
Since the approximation occurs only in the fermionic sector®f its parabolic trajectorp g (\) atA =1/3. Asymptotically

it seems natural that the artifacts associated with this fiqite it rises linearly with\. On the other hand, the mass of the
effect also originate in this sector. In other words, we expectightest boson increases monotonously. This scenario for
only the fermionic single-particle states to give rise to mul-Small\ is expected, since the mass of the lightest state in a
tiparticle states. We can check this conjecture by looking ath€ory has to decrease in second order perturbation theory. It
the spectra at smal. There we expect that the multiparticle 1S ew_dence for the conjecture t_hat the theory is incomplete if
states are still very well described by the DLCQ formula for ONlY its bosonic sector is considergd, because the lowest
the spectrum of free particles, E€29). On the other hand, boson cannot be the lightest state of the full theory. In gen-

the masses of the lowest single-particle boson and fermioﬁral' we obtain the first correctionsinto the 't Hooft meson

. . : asses in the bosonic sector in complete agreement with the
are already noticeably different. By constructing two sets Ogerturbative calculations by Engelhafdg], as we will show

multiparticle states out of two bosons and two fermions, "€ more detail in the Appendix.

spectively, we convinced ourselves that the eigenvalues are Concerning the global dependence of the spectrum, Fig

well described by a pair of free fermions, but not of bosonsy ;e emphasize that the eigenvalues are smooth functions of

On the other hand, we expect the coupling between thg ‘554 we seem to find no indication that the adjoint theory is
single- and multiparticle states to vanish as the harmonigpecial. We see a lot of level crossings, some of which are
resolutionK grows. In particular, the deviations from a mul- gpscured by eigenvalue repulsion due to finite harmonic
tiparticle mass formula analogous to E@9) S_hOUId de—_ resolution. Some of the reduced eigenvallﬂ&%Ele(l
crease with a power df. We checked that the discrepancies )y 5re aimost stationary as a function of the paramkter
vanish indeed like w2, providing additional support for the  5mongst them chiefly the suspected single-particle states.
approximate-vacuum cpnjecture. ) Note, however, the somewhat artificial definition of the re-
Furthermore, analyzing the spectrum as a function of they,ced masses, which was used in order to fit the spectrum for
continuous parametex, it seems plausible that the number 5| values of) into one plot.
of single-particle states stays the same as in the 't Hooft case; |1 would be very interesting if one could find a criterion
see also the discussion in the next section. This hypothesigy 5 state to be a single-particle state, or if one could for-
can in principle be tested at=1 by using an approximate myjate a good observable, e.g., a structure function, that
multiparticle mass formula to eliminate the multiparticle \youid allow one to distinguish single- from multiparticle
states. The fact that most single-particle states asymptoticallyates. We display four adjoint eigenfunctions in Fig. 5. Apart
become multiparticle states at laryecannot affect us here. from the striking repetitive pattern in the different parton
At finite A the problem is to show that most states are mul-gectors, we see that the multiparticle state in this plot is dis-
tiparticle states, although they are not exactly following ajnct from the single-particle states. In the extreme cases,
mass formula in the fashion of E9). o =0 and A —o, we obtain the following behavior of the
Summing up the above findings, the conclusion is th&yaye functions. The 't Hooft eigenfunctions are very similar
following. Finding that the adjoint bosonic single-particle {5 the ones in the adjoint case. They can in principle be
states do not form multiparticle states and conjecturing thaga|cylated from the standard formulation of the theory with
the number of fermionic single-particle states grows linearlysermion fields, which is equivalent to a change of basis. At
with K, we get the same situation concerning the ratio Oflarge N; the wave functions are converging very slowly.
single- to multiparticle states as in the 't Hooft case. We then]-hey look very much like those in the ’t Hooft limit fof
conclude that the number of single-particle states is the same 15 At that point, most of the amplitudes become sup-
as in the 't Hooft model, even in the bosonic sector. Since th‘?:)ressed while keeping their shape, and the amplitudes of

masses of the fermionic and bosonic single particles are NQates with a large number of currents become heavily
degenerate as opposed to the 't Hooft case, we find tw@aayed.

adjoint Regge trajectories, a bosonic and a fermionic one.
The determination of the functional dependence of the
single-particle states on the excitation number requires fur-
ther investigations which are beyond the scope of the present In this article we presented the spectrum of two dimen-
work. sional Yang-Mills theories coupled to massless matter in a

VI. SUMMARY AND DISCUSSION
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FIG. 4. The spectrum of two-
dimensional QCD in all sectors of
_ the theory as a function of. Plot-
ted are the lowest 100 eigenvalues

in the fermionic sectorgtop row)
and the bosonic sectordottom
row). Left column: Z, even sec-

tors, reduced eigenvaluei/l2
=M?/(1+)) vs Ig \. Right col-
umn:Z, odd sectors, actual eigen-
values Vsh.
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FIG. 5. The wave functions of four adjoint stateat 25/2: (a)
M?=5.6021, () M?=16.4261, (c) M?=21.8688, and(d) M?
=32.6060(from bottom to top. Plotted are the amplitudeg, vs
n=n/2X"32 The third state is the only multiparticle state in this DLCQ formulation of the fermionic sector of the theory. This

plot and its eigenfunction clearly has a different shape. The numbegonjecture allowed us to understand the empirical finding
of currents in a basis state changes at the dashed lines.

representation characterized by the ratio of the numbers of
flavor and color\ in the Veneziano limit. We derived the
Hamiltonian in the fermionic sector in the framework of
DLCQ as an algebraic function of the harmonic resolution
and the ratio\. Surprisingly, we found the momentum of an
adjoint fermion depending on in this discrete approach.
This is explained by the fact that we have zero modes of the
current operators in the theory, while fermionic zero modes
are recovered in the continuum limit only. The well-known
spectra in the 't Hooft and the lardé; limits were repro-
duced. Although this is not surprising taking into account the
universality established in Ref9] which is a specialty of
two dimensions, it is nevertheless a strong check on the nu-
merics. We found the bosonic and fermionic spectra to be
degenerate in the 't Hooft limit, and the only meson of the
largeNs limit in the fermionic sector. The multiparticle states
decouple completely in these limits and a construction of the
spectra in terms of their single-particle content was achieved.
This allowed for a complete classification of all states includ-
ing their statistics and symmetry properties in both cases. In
trying to apply this knowledge to the adjoint case, we were
only partly successful. We presented evidence forcthrgec-
ture that the vacuum is only approximately realized in the

that the multiparticle states have only fermionic single-
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particle constituents. This fact was deduced from an analysisharacteristicK dependence of their masses dictated by an
of the spectra at intermediate valuesdfThe approximate approximate multiparticle mass formula. While this seems in
vacuum induces couplings between single-and multiparticl@rinciple possible, it is nevertheless beyond the scope of the
states which were found to decrease with the harmonic resgresent work. This exercise can also serve as a quantitative
lution like 1/K?2, i.e. consistent with the above conjecture. test of the hypothesis that the number of single particles is
We motivated thehypothesisthat the number of fermionic the same in the 't Hooft and adjoint models. Furthermore, the
single-particle states is the same in the 't Hooft and adjoinepproximate-vacuum conjecture can be ruled out, if one
cases by pointing out the smooth transition of the spectraould show that the deviations from the discrete multiparticle
into each other by the continuous paramete¥We then con- mass formula do not fall off everywhere with the resolution
cluded that there has to be a second Regge trajectory ¢f. Improvements of the results might be possible by attack-
bosonic single-particle states, because at éache size of  ing the theory from a very different point. The adjoint theory
the Fock basis and the number of multiparticle states deteis supersymmetric at a specific value of the fermion mass
mined by the kinematics of their fermionic constituents al-m=g+/N. [12]. In the light of recent progress in the evalua-
lows for exactlyK — 1 additional states. Although we were as tion of supersymmetric theorig¢4 7], this might be an inter-

of yet unable to give the complete solution of the adjointesting alternative.

theory in terms of its single-particle states, it seems thus that

their number grows linearly with the harmonic resolution. ACKNOWLEDGMENTS

Their masses tend to grow more rapid with the excitation
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Hooft model. reading of the manuscript. Discussions with M. Engelhardt
The two Regge trajectory conjecture is not in contradic-about his results, Ref18], are acknowledged.
tion with the expectation of a multi-Regge structure at non-
vanishing fermion mass [7], or with the related appearance APPENDIX: RECOVERING THE CORRECTIONS
of a Hagedorn spectrum signaling the confinement/screening TO THE 't HOOFT MASSES
transition agmvanisheg12]. When a fermion mass is turned
on, the description of the theory in terms of Kac-Moody In a recent paper, Engelhaidi8] calculated the first cor-
currents breaks down and the theory turns from screeninggctions inA=N;¢/N; to the masses of the lowest four 't
into a confining phase. It has been pointed out by Kutasoyiooft mesons, namely the slopeg(n), n=1,2,3,4 in the
how in the massless theory the two seemingly contradictorgXpansion
facts of having a vanishing string tension together with the
absence of a Hagedorn transition can be recon¢il€dl In M2(N)=MZ(0)+ey(mA+--,
short, the exponentially rising density of states characteristic
of a Hagedorn transition can be explained by a large degerwhere the masses are in ung&. /. Surprisingly, some of
eracy in the massless sector of the theory which is lifted if &hese corrections are negative and large. This seems to con-
fermion mass is turned on. This sector is, of course, comtradict the results of Ref16], Fig. 5b), and we shall reana-
pletely inaccessible in the present approach. lyze them here. The slope of the cur\Mﬁ()\) is strongly
In summary, we hope to have added some new pieces afependent on the harmonic resolutignfor small A. If we
information to the adjoint QCPpuzzle. The major practical plot the slopes as a function ofKl/we see a consistent
goal remains to identify all single-particle states of the theorypicture arising. We fitted the slopes for the lowest four 't
unambiguously. While we were unable to present a completeélooft mesons, Fig. 6, to a polynomial of third order iK1/
solution, we described a practical algorithm to extract theand obtain in the continuum limit
single-particle spectrum. Using the spectral information pre-
sented here, one could identify all multiparticle states by the €1(n)=5.19,12.27 27.7,9.69, (A1)
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to be compared to Engelhardt's values The lowest state, which develops into the lightest adjoint

state as\ grows to unity, has a negative correction, as ex-

pected from second order perturbation theory for the lowest
Note that Engelhardt's values are lower bourdihough _state of atheqry. Itis thus c;lear that the siqglg-partic]g states
one expects very small correctionsvhereas extrapolations " the fermllonlc and bosonic sectors are distinct en_tltlfas, al-
towards the continuum in DLCQ tend to be upper bounds. Hhough_thelr masses are degener_ate in the 't _Hooft limit. The
this sense, the agreement is fairly good. fourth lightest state has a rather irregular traject®y{4,K)

We emphasize that for sma{l one is totally misled as to Which prevents us from extrapolating to the continuum. This
what the continuum limit might be for the slopeg(3) and is easily understood when one compares the spectra in the
e,(4); cf. Fig. 6. For instance, the slope of the third state,bosonic and the fermionic 't Hooft sectors. In the bosonic
e1(3)|k_-=—27.7, is still positive at the fairly large reso- sector, all four lowest single-particle states are lighter than
lution K=10. This shows the importance of Fock states withthe lowest multiparticle states in their sector. In the fermionic
a large number of currents, and renders two-current approxisector the fourth single-particle state lies in the two-particle
mations questionable. Note that the mass of this state ircontinuum formed by the lightest massive 't Hooft meson.
creases linearly for large enough although it starts with a In perturbation theory, such a situation has to be taken care
large negative slope; cf. Fig(y of Ref.[16]. The first cor-  of by constructing states which contain admixtures of degen-
rection to the 't Hooft mass is a good approximation only uperate states with higher parton numbgt8]. We see that in

to A=0.01. the present discrete approach we run into the same difficul-
It is important to note that the correspondifend degen- tjes.

erate 't Hooft single-particle states in the fermionic sector
have different corrections ik. Following the development
of the three lowest 't Hooft mesons in the fermionic sector
we obtain the following slopes:

e,(n)=5.1,12.0+30.5,9.1. (A2)

3The lightest 't Hooft meson proper withl2(n=0)=0 is absent

Alf _
&{")(n)=—1.36,1.94;- 15.38. (A3)  from the spectrum, since we work formally in the adjoint theory.
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