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On the spectrum of „1¿1…-dimensional QCD with SU„Nc… currents
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Extending previous work, we calculate the fermionic spectrum of two-dimensional QCD (QCD2) in the
formulation withSU(Nc) currents. Together with the results in the bosonic sector this allows us to address the
as yet unresolved task of finding the single-particle states of this theory as a function of the ratio of the
numbers of flavors and colors,l5Nf /Nc , anew. We construct the Hamiltonian matrix in the DLCQ formu-
lation as an algebraic function of the harmonic resolutionK and the continuous parameterl in the Veneziano
limit. We find that the fermion momentum is a function ofl in the discrete approach. A universality, existing
only in two dimensions, dictates that the well-known ’t Hooft and largeNf spectra be reproduced in the limits
l→0 and`, which we confirm. We identify their single-particle content which is surprisingly the same as in
the bosonic sectors. All multiparticle states are classified in terms of their constituents. These findings allow for
an identification of the lowest single particles of the adjoint theory. While we do not succeed in interpreting this
spectrum completely, evidence is presented for the conjecture that adjoint QCD2 has a bosonic and an inde-
pendent fermionic Regge trajectory of single-particle states.

DOI: 10.1103/PhysRevD.66.025001 PACS number~s!: 11.10.Ef, 11.10.St, 11.40.2q
el
la
is
i

y

a
y
gl
h

a
,
he
joi
u

h

b
e
d
t
e
h
as
h

at

.
a
d

by
s
ns
are

s of
ec-
g
ork
ot
p-

e-

ir
To
at-
ns.
rit-

ace
ur-
of
e-
nt
of
of

en-

ted
c-
icle

a
n-
nd

In
l-
ur-
I. INTRODUCTION

Two-dimensional QCD will remain an interesting mod
for strong interaction physics until a first principles calcu
tion of the low-lying spectrum of four-dimensional QCD
available. The theory with one flavor of fundamental ferm
ons coupled to non-Abelian gauge fields was solved b
Hooft in his seminal paper@1# in the limit of a large number
of colors Nc . It is the prime example for the solution of
confining gauge theory and exhibits one Regge trajector
noninteracting mesons, while not possessing dynamical
onic degrees of freedom. The theory can also be solved w
the number of fundamental~flavored! fermionsNf is large.
This is the Abelian limit of the theory, and it comprises
single meson with massg2Nf /p @2#. So far it has, however
proven impossible to solve the theory with fermions in t
adjoint representation. This is unfortunate, because ad
fermions simulate the transverse gluons of realistic fo
dimensional QCD. The latter has, of course,Nf53 fermions
in the fundamental representation ofSU(Nc53), but it has
been established for several theories@1,3,15# that the large
Nc limit is often a good approximation. The difficulties wit
solving adjoint two-dimensional QCD (QCD2) can be traced
to the fact that parton pair production is not suppressed
factors 1/Nc , contrary to the ’t Hooft model. One therefor
expects a rich spectrum of multiple Regge trajectories. A
joint QCD2 has been discussed in the literature for almos
decade@5–18#. Many interesting facets of this theory hav
been revealed, e.g. a confining/screening transition wit
linearly decreasing string tension at vanishing fermion m
@10,19#, an exponential rise of the density of states with t
bound state mass which is reminiscent of string theory@6#,
and the fact that the theory becomes supersymmetric
special value of the fermion mass@7#. Still, frustratingly little
about the~single-particle! solutions of this theory is known

Using the framework of discretized light-cone quantiz
tion ~DLCQ! @20#, the numerical eigenvalue spectrum of a
joint QCD has been obtained by Dalley and Klebanov@5#.
0556-2821/2002/66~2!/025001~12!/$20.00 66 0250
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The results have been improved in Refs.@6,13#. The
asymptotic spectrum of the theory has been calculated
Kutasov in the continuum@7#. There are mainly two reason
which prohibit the extraction of the single-particle solutio
from these results. First, especially the numerical results
obscured by the fact that the standard formulation in term
fermionic operators contains many multiparticle states. S
ondly, in largeNc calculations one is used to identifyin
single-particle states with single-trace states since the w
of ’t Hooft @1#. It was recently established that this is n
necessarily correct if one deals with fields in the adjoint re
resentation@13,15,16#. This might have consequences for r
sults derived with this assumption@6,9,4,11#. It seems there-
fore that not so much the lack of results but the
interpretation is the main obstacle for solving the theory.
improve the situation in both respects we will adopt a str
egy which is special to massless theories in two dimensio
In the massless case, the light-cone Hamiltonian can be w
ten as a pure current-current interaction, and its Hilbert sp
splits up into sectors of different representations of the c
rent algebra. The formulation of the theory in terms
SU(Nc) currents which form a Kac-Moody algebra is ther
fore a preferred choice which we will use in the prese
work. In this formulation, to be described in Sec. II, many
the multiparticle states will be absent, because only two
the current blocks give rise to single-particle states@9#. The
bosonic states lie in the so-called current block of the id
tity which was considered in Ref.@16#. The adjoint block
gives rise to the fermionic bound states, to be calcula
here, which we need for the interpretation of the full spe
trum, because the bosonic spectrum contains multipart
states with fermionic constituents@13#. We will use the
framework of DLCQ to realize the dynamical operators on
finite-dimensional Fock basis. It turns out that the mome
tum operator plays a special role in the fermionic sector, a
we will describe this and other peculiarities in Sec. III.
Sec. IV we will construct the fermionic light-cone Hami
tonian in terms of the discrete momentum modes of the c
©2002 The American Physical Society01-1
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rents. The Hamiltonian is an algebraic function of the cut
in current number and, most importantly, of the ratiol
5Nf /Nc .

This explicit l dependence of the Hamiltonian and t
eigenvalue spectrum allows us to exploit a universality
isting only in two dimensions, as part of our strategy to e
cidate the spectrum of adjoint QCD2. The universality estab
lished in Ref. @9# assures that the massive spectrum a
interactions of two-dimensional gauge fields coupled
massless matter are largely independent of the represent
of the matter fields, given they have the same chiral anom
All information on the matter representation beyond its Ka
Moody level is encoded in the massless sector of the the
There is, however, no strict factorization between mass
and massless sectors, although the Hamiltonian is de
mined by the states from the massive sector only. In part
lar, massive states will have well-defined discrete symme
quantum numbers only when accompanied by mass
states@9#. It is clear that the universality can hold in tw
dimensions only. In four dimensions massive and mass
modes are known to be strongly interacting. So far, this u
versality has been understood in light-front quantizat
only. The universality specifically predicts that the mass
spectrum of the Yang-Mills theory coupled to one adjo
SU(Nc) fermion is the same as the spectrum of the the
coupled toNf5Nc flavors of fundamental fermions. If this i
true, we should obtain the ’t Hooft spectrum in the limit
vanishingl and a single meson in the largeNf limit in our
numerical calculations. This exercise is performed in Se
V A and V B with the predicted result. This confirms that th
universality can be applied to the present case and provid
strong test of the numerics. In both limits the multipartic
states decouple and we succeed in describing the spect
terms of their single-particle content, thus classifying
multiparticle states by their constituents. This helps us
understand the adjoint spectrum in Sec. V C. While we
able to identify the low-lying single particle states and
construct some of the multiparticle states, a complete s
tion of the theory remains elusive. Motivated by empiric
findings and an analysis of the spectrum at intermediate
ues ofl in Sec. V D, we are led to theconjecturethat there
are two Regge trajectories in the adjoint theory: a boso
and a fermionic one. We discuss the speculative characte
these results, tests and possible improvements in the
cluding Sec. VI. In the Appendix we display a calculation
the first corrections inl to the mass to the ’t Hooft meson
The agreement with the results of a recent perturba
analysis@8# provides further support for the usefulness of t
present formulation of massless QCD2 in terms of current
operators.

II. QCD IN TWO DIMENSIONS

The aim of the present work is to compute the mass
spectrum ofSU(Nc) Yang-Mills gauge fields coupled to
massless fermions in some representationr in two dimen-
sions. The Veneziano limit, where bothNf andNc are large,
is understood throughout. A universality, existing only f
massless two-dimensional gauge theories@9#, predicts that
02500
f

-
-

d
o
ion
ly.
-
ry.
e
r-

u-
ry
ss

ss
i-
n
e
t
y

s.

s a

in
l
o
e

u-
l
l-

ic
of
n-

e

e

the massive spectrum of the theory is the same, whether
adjointSU(Nc) Majorana fermion orNf5Nc flavors of fun-
damental Dirac fermions are coupled to the gauge fie
This means that we can formulate the theory in terms
adjoint fields, while interpreting the results in terms of fu
damentals. This gives us a continuous parameter at h
namely l5Nf /Nc , which allows us to couple the Yang
Mills fields to matter in different representations by simp
altering its value, while still keepingNf andNc large. This in
turn gives deeper insight into the theory, since the spectr
the limitsl→0 ~’t Hooft model! andl→` ~largeNf model!
are well understood, whereas the single-particle conten
the adjoint theory remains largely unknown. Consequen
the main focus is on the casel51, while we will try to infer
as much information as possible from the ’t Hooft and lar
Nf models by analyzing them in the formulation with curre
operators.

In order to do so we have to derive the momentum a
energy operators in terms of currents rather than with fer
onic operators. We consider the adjoint theory, but shall d
tinguish Nf and Nc throughout the derivation. As we saw
one can formally interpret the results at differentNf andNc
as distinct theories. The Lagrangian in light-cone coordina
x65(x06x1)/&, wherex1 plays the role of a time, reads

L5TrF2
1

4g2 FmnFmn1 i C̄gmDmCG ~1!

whereC5221/4(x
c), with c and x being Nc3Nf matrices.

The field strength isFmn5]mAn2]nAm1 i @Am ,An#, and the
covariant derivative is defined asDm5]m1 i @Am,•# . We
work in the light-cone gauge,A150, which is consistent if
we omit the fermionic zero modes. The massive spectrum
not affected by this omission@21#. We use the convenien
Dirac basisg05s1 , g152 is2 . The Lagrangian then be
comes

L5TrF 1

2g2 ~]2A2!21 ic†]1c1 ix†]2x2A2JG , ~2!

with the current

Jb
a~x2!52:cc

†a~x2!cb
c~x2!:. ~3!

The use of both upper and lower indices is adopted a
reminder that in general the indices are from different ind
sets. We can integrate out the nondynamical componentA2

of the gauge field and obtain

L5TrF ic†]1c1 ix†]2x2
g2

2
J

1

]2
2 JG . ~4!

It is obvious that the left-moving fieldsx decouple, because
their equations of motion do not involve a time derivativ
i.e., are constraint equations. Noting the simple expressio
the interaction in terms of the currents, it is natural to form
late the theory withSU(Nc) currents as basic degrees
freedom. For reasons of clarity, we will not use the termin
ogy of bosonization or conformal field theory. We sha
1-2
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rather stick to the definition of the currents as a biline
product of fermions, Eq.~3!, and derive everything based o
this definition, which is perfectly possible.

The key issue is to obtain the mass eigenvaluesMn by
solving the eigenvalue problem

M2uw&[2P1P2uw&5Mn
2uw&, ~5!

where we act with the light-cone momentum and energy
erators, P1 and P2, on a stateuw&. The operatorsP6

[T16 can be found by constructing the energy-stress ten
Tmn in the canonical way, and one obtains

P15T115
p

Nc1Nf
E

2`

`

dx2:Tr@J~x2!J~x2!#: ~6!

P25T1252
g2

2 E
2`

`

dx2:TrFJ~x2!
1

]2
2 J~x2!G :. ~7!

The Sugawara form of the momentum operatorP1, Eq. ~6!,
might seem somewhat unfamiliar, but an explicit analysis
this construction in terms of the fermionic mode operat
yields indeed the above result.1 To solve the eigenvalue prob
lem, Eq.~5!, we have to diagonalize the mass squared op
tor, which is equivalent to diagonalizing the Hamiltonia
P2, sinceP1 is already diagonal. The latter is not as obv
ous as usual, and we elaborate on this in Sec. III.

We use the standard mode expansion of the fermio
fields

ck
j ~x2!5

1

2Ap
E

2`

`

dpe2 ipx2
bk

j ~p!, ~8!

and the mode expansion of currents becomes

Jk
j ~p!5

1

A2p
E

2`

`

dx2e1 ipx2
Jk

j ~x2!

5
1

A2p
E

2`

`

dq:bl
j~q!bk

l ~p2q!:. ~9!

The canonical anticommutation relation for the fermionic o
erators

$bk
j ~p!,bm

l ~p8!%5d~p1p8!dm
j dk

l , ~10!

determines the commutator of current with fermionic mod

@Jk
j ~p!,bm

l ~p8!#5dk
l bm

j ~p1p8!2dm
j bk

l ~p1p8!. ~11!

Recall that in the adjoint theorybk
j (2n)5bj

†k(n). Due to the
occurrence of Schwinger terms the current-current com

1The remainder of the product of four fermion operators is
contraction term. Its integral becomes the momentum factor in
usual definitionP15*0

`dppTr@b(2p)b(p)#.
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tator is harder to derive. It is, however, well known that t
modes of the currents are subject to the Kac-Moody alge2

@Jk
j ~p!,Jm

l ~p8!#5pNfdm
j dk

l d~p1p8!1dk
l Jm

j ~p1p8!

2dm
j Jk

l ~k1k8!. ~12!

The vacuum is defined by

Jk
j ~p!u0&50 and bk

j ~p!u0&50, ;p>0. ~13!

Following the usual DLCQ program@20#, we put the system
in a box of length 2L and impose antiperiodic boundar
conditions on the fermionic fieldsc(x22L)52c(x2

1L). The currents are by construction subject to perio
boundary conditions. The momentum modes are now
crete, and, as always in light-cone quantization, the long
dinal momenta are non-negative. The smallest momen
kmin5P1/2K is determined by the harmonic resolutionK
[P1L/p, which controls the coarseness of the momentu
space discretization. The continuum limit is obtained
sendingK to infinity. In practice one solves the eigenvalu
problem, Eq.~5!, for growing values ofK and extrapolates
the spectrum to the continuum by e.g. fitting the eigenval
to a polynomial in 1/K. The expansion of the fermion fields
Eq. ~8!, becomes

ck
j ~x2!5

1

2AL
(

n561/2,63/2,...
Bk

j ~n!e2 ipnx2/L, ~14!

with the discrete field operatorsBk
j (n)[(p/L)1/2bk

j (np/L).
The current mode operatorsJ(n) are defined by the discret
version of Eq.~9!. The momentum operators read

P15S p

L D 1

Nc1Nf
TrF1

2
J~0!J~0!1 (

n51

`

J~2n!J~n!G ,

~15!

P25
g̃2

2p (
n51

`
1

n2 Tr@J~2n!J~n!#, ~16!

and become finite-dimensional matrices on the Hilbert sp
constructed by acting with the current operators of mom
tum K or smaller on the vacuum defined by Eq.~13!. For
convenience we introduced the scaled couplingg̃2

[g2L/p. We emphasize the appearance of the zero m
contribution in the discrete formulation, as should
clear from P15 lime→0@1/(Nc1Nf)#Tr@(e/2)J(0)J(0)
1*e

`dpJ(2p)J(p)#. In the Veneziano limit the operator
are realized on a Hilbert space of discreteSU(Nc) singlet
Fock states. The fermionic states look like

e
e

2We use the opportunity to correct Ref.@16#, where the
T-symmetric@cf. Eq. ~25!# version of the algebra was used, with n
consequences for the results in the bosonic sector.
1-3
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Ub1
1

2
;n1 ,...,nbL 5~NcNf !

2b/221/4

3TrFJ~2n1!J~2n2!¯J~2nb!

3BS 2
1

2D G u0&, ~17!

whereas in the bosonic sectors we find the singlets

ub;n1 ,...,nb&5~NcNf !
2b/2

3Tr@J~2n1!J~2n2!¯J~2nb!#u0&. ~18!

The additional fermion operatorBk
j (21/2) in the fermionic

states is the source of some rather odd differences betw
the two sectors, as we shall see in the next section.

III. SPECIALTIES OF THE FERMIONIC SECTOR

The numerical solution to the eigenvalue problem, E
~5!, in the bosonic sector was presented in Ref.@16#. The
calculations in the fermionic sector are not quite as straig
forward, and we shall point out the major differences. T
first peculiarity in the fermionic sector resides in the acti
of the momentum operatorP1 on a fermionic state. It turns
out that the eigenvalue ofP1 on a fermionic state depend
on the ratiol5Nf /Nc . To convince ourselves that this
true, we consider the simplest case in discrete formulatio

P1TrFJ~2n!BS 2
1

2D G u0&

5@P1,Jj
i ~2n!#Bi

j S 2
1

2D u0&1Jj
i ~2n!

3FP1,Bi
j S 2

1

2D G u0&1F @P1,Jj
i ~2n!#,Bj

i S 2
1

2D G u0&

5
p

L S n1
1

11l DTrFJ~2n!BS 2
1

2D G u0&. ~19!

In other words, only in the adjoint theory the fermion has t
familiar momentum. In the ’t Hooft limit, a fermion with
half-integer momentum contributes the same momentum
current, whereas in the largeNf limit it has a vanishing con-
tribution. This is a consequence of the discrete formulati
In particular, it is M2Bj

i (21/2)u0&52P1P2Bj
i (21/2)u0&

50, althoughP1Bj
i (21/2)u0&5(11l)21Bj

i (21/2)u0&.
Another issue to be addressed here is the size of the F

space. In the bosonic sector, the singlet states are of the
of Eq. ~18!, i.e., they are single-trace states of a certain nu
ber of currents. This form allows for cyclic permutations
the currents under the trace. The cyclic permutations are
lated nontrivially due to the Kac-Moody structure of the cu
rents, yet all cyclic permutations of a given state have to
eliminated from the Fock basis. The key difference in t
fermionic sector is the absence of these cyclic permutatio
the fermion defines the ordering of the state. This is qu
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natural, since it basically acts like an adjoint vacuum, as
shall see. This renders the Fock basis much larger than in
bosonic case. The number of states grows like 2K23/2, see
Table I, with the harmonic resolutionK being a half-integer
in the fermionic sector due to the momentum of the ad
tional fermion. The different sizes of the Fock bases will he
us in interpreting the resulting fermionic spectra, because
spectra in the ’t Hooft and largeNf limits of the theory have
the same single-particle content as in the bosonic sector

We briefly comment on the fact that we can calculate t
eigenvalues of the mass squared operatorM252P1P2 ana-
lytically. Remarkably, we obtain the same functional for
M1,2

2 (K) as in the bosonic sector. This is somewhat surp
ing, since in the fermionic sector we lose the uniqueness
the two states with the largest number of currents. At h
monic resolutionK5b11/2 the states

Ub1
1

2L 5TrF $J~21!%bBS 2
1

2D G u0& ~20!

Ub2
1

2L 5TrF $J~21!%b22J~22!BS 2
1

2D G u0&, ~21!

haveb andb21 currents, respectively, plus a fermion wi
momentum 1/2. However, Eq.~21! represents a class ofb
21 states, rather than a unique state as in the bosonic se
Explicit calculations show that the image of one of the
states under the mass squared operator has no overlap
any of the other states, and its eigenvalue can be trivi
extracted in the fashion of Ref.@16#. Hence, two eigenvalue
can be evaluateda priori. The eigenvalues of the mas
squared operator associated with the states, Eqs.~20! and
~21!, are

M1
2S K5b1

1

2D5
g2Nc

p
~11l!S b1

1

11l D 2

, ~22!

M2
2S K5b1

1

2D5
g2Nc

p
~11l!S b1

1

11l D
3S b2

3

2
1

1

11l D . ~23!

We note that in the ’t Hooft limit, all states of the form Eq
~21! have the same eigenvalue.

IV. THE HAMILTONIAN

We construct the light-cone Hamiltonian in the framewo
of DLCQ. Once the commutation relations, Eqs.~10!–~12!,
are specified, and the Fock basis is chosen, this is a stra
forward generalization of previous work@16#, and we can be
brief here. In the fermionic sector we get additional cont
butions to the light-cone Hamiltonian by commuting throu
zero modes of the currents and acting with them on the e
fermion. Note that annihilation operators may be created
commuting current operators. To streamline the calculati
it is useful to distinguish the creation, annihilation and ze
mode part of a commutator
1-4
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@A,B#[ dA,Be1 bA,Bc1 bA,Bc0 ,

much in the fashion of Ref.@16#. The resulting Hamiltonian is slightly simpler than in the bosonic case. The number
terms of leading power inNc grows exactly quadratic with the numberb of currents in a state. In the largeNc limit the action
of P2 on a state withb currents, Eq.~17!, is then

P2Ub1
1

2
;n1 ,...,nbL 5

g̃2Nc

2p (
i 51

b S (
m51

ni21
1

~m2ni !
22 (

m51

ni 1

m2D Ub111
1

2
;n1 ,n2 ,...,ni2m,m,...,nb ,

1

2L
1

g̃2Nc

2p (
i 51

b S l

ni
1 (

m51

ni21
1

m2D Ub1
1

2
;n1 ,n2 ,...,nb ,

1

2L
1

g̃2Nc

2p (
i 51

b21 S (
m50

ni21
1

~m1ni !
22 (

m51

ni21
1

m2D Ub1
1

2
;n1 ,n2 ,...,ni1m,ni 112m,...nb ,

1

2L
1l

g̃2Nc

2p (
j 51

b21

(
i 51

b2 j F 1

~(q5 i
j 1 i nq!22

1

~(q5 i 11
j 1 i nq!2Gni 1 j

3Ub2 j1
1

2
;n1 ,n2 ,...,ni 21 ,(

q5 i

j 1 i

nq ,nj 1 i 11 ,...,nb ,
1

2L
1

g̃2Nc

2p (
j 51

b22

(
i 51

b2 j 21

(
m50

ni 1 j 1121 S 1

~m1(q5 i
i 1 j nq!22

1

~m1(q5 i 11
i 1 j nq!2D

3Ub2 j1
1

2
;n1 ,n2 ,...,(

q5 i

i 1 j

nq1m,ni 1 j 112m,ni 1 j 12 ,...,nb ,
1

2L
1

g̃2Nc

2p (
i 51

b21 F 1

~(q5b2 i
b nq!22

1

~(q5b2 i 11
b nq!2GUb2 i1

1

2
;n1 ,n2 ,...,nb2 i 21 , (

q5b2 i

b

nq ,
1

2L
1

g̃2Nc

2p S 1

n1
2 1

1

nb
2D Ub1

1

2
;n1 ,n2 ,...,nb ,

1

2L . ~24!

TABLE I. Number of basis states as a function of the numberb of currents in a state. The relation ofb to
the harmonic resolutionK is K5b in the bosonic, andK5b1

1
2 in the fermionic sector.

b 1 2 3 4 5 6 7 8 9 10 11 12 13 14

fermions 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
bosons 1 2 4 6 12 18 34 58 106 186 350 630 1180
s

e

th
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ys
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e

As in the bosonic case@16#, the terms in the Hamiltonian
have a differentNc andNf behavior. Only the terms in line
two and four of Eq.~24! containNf . These terms will be
absent in the ’t Hooft limit and will be dominant in the larg
Nf limit.

V. NUMERICAL RESULTS

We solve the eigenvalue problem, Eq.~5!, numerically to
obtain the mass spectrum of the theory as a function of
harmonic resolutionK and the ratio of the number of color
and flavors,l. Remember that the Veneziano limit is alwa
understood. In the sequel, we will use both parameter
extract information from the spectra. We recover the largeNf
02500
e

to

limit when l→`, the ’t Hooft model in the limitl→0, and
the adjoint model, of chief interest, atl51. It turns out that
the complexity of the spectra grows in this order, and we w
start their interpretation with the rather simple largeNf limit.
Since we are using a discrete formulation, we may aim
understandall states in the spectra.

Some words on the numerical algorithm seem in ord
The number of states grows exponentially with the harmo
resolution, cf. Table I, and much faster than in the boso
sector. However, the situation is still better than in the f
mulation of the theory with fermionic operators@13#; we
have atK525/2 a roughly four times smaller basis. To fu
ther reduce the computational effort, we could use theZ2
symmetry of the Hamiltonian which is invariant under th
1-5
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FIG. 1. Fermionic spectrum in
the large Nf limit. Left: ~a! Z2

even sector. Right:~b! Z2 odd sec-
tor. Solid ~dash-dotted! lines con-
nect associated single~multi!-
particle eigenvalues at differentK.
Dotted lines connect analytically
calculable eigenvalues. Dashe
lines are extrapolations to the con
tinuum limit. Note that masses ar
in units g2Nf /p.
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transformation

T Ji j ~n!52Ji j ~n!. ~25!

It is straightforward to convince oneself that the action
this operator on a state withb currents is

T Ub1
1

2
;n1 ,n2 ,...,nbL

5 (
i 50

2b21

~2 !pi11Upi11/2;t i~nb ,nb21 ,...,n1!,
1

2L , ~26!

where thet i consist ofpi partial sums of theb momenta, in
the sense thati runs over all possibilities to place 0,1,...,b
21 commas between the momenta while summing th
momenta which are not separated by a comma, e.g.

T U7/2;n1 ,n2 ,n3 ,
1

2L
5U7/2;n3 ,n2 ,n1 ,

1

2L 2U5/2;n3 ,n21n1 ,
1

2L
2U5/2;n31n2 ,n1 ,

1

2L 1U3/2;n31n21n1 ,
1

2L . ~27!
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Since we do not work in an orthogonal basis, it is not ve
helpful to block diagonalize the Hamiltonian with respect
this symmetry. We will rather determine theZ2 parity of an
eigenstatea posteriori by calculating the expectation valu
of the operatorT in this state. The main benefit of thea
priori symmetrization, namely the reduction of the numeric
effort to diagonalize a smaller matrix, is of course lost th
way. However, the separation of theZ2 odd and even eigen
functions is very useful when interpreting the results, b
cause it reduces the density of eigenvalues to roughly
half.

A. The large Nf limit

In the largeNf limit we find the expected meson@2# in the
fermionic Z2 even sector at mass

M M
2 ~K ![

g2Nf

p
, ~28!

cf. Fig. 1. All other states are multiparticle states built fro
this state, and are in this sense trivial. It is, neverthele
important that we understandall states in the spectrum to se
what we can learn in order to decode the adjoint spectr
Let us first focus on the fermionic sectors. It is easy to wr
down a formula for the mass of a multiparticle state cons
ing of noninteracting partons in DLCQ. If we take into a
count the finding of Sec. III that the momentum of a fermi
depends onl, it reads
it
. 1.
M p1 ,p2 ,...,pb

2 ~n1 ,n2 ,...,nb21 ;K !5S K2
1

2
1

1

11l D

3S M pb

2 XK2( i 51
b21ni1~b21!F1

2
2~12l!21G C

K2( i 51
b21ni1~b22!F1

2
2~12l!21G 1 (

i 51

b21 M pi

2 ~ni !

ni2
1

2
1~11l!21

D . ~29!

The masses of the multiparticle states grow like the momentum cutoffK, i.e., diverge in the continuum limit. We found
therefore, contrary to previous work@13,16#, appropriate to connect the multiparticle states reflecting this fact in Fig
Incidentally, this makes the labeling of states easier. A multiparticle state withb constituents is characterized byb21 momenta
1-6
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FIG. 2. Fermionic spectra of
the ’t Hooft limit in the Z2 even
~a! and odd ~b! sectors. Solid
~dash-dotted! lines connect associ
ated single~multi!-particle eigen-
values at differentK. Dotted lines
connect analytically calculable ei
genvalues. Dashed lines are e
trapolations to the continuum
limit. Masses are in units
g2Nc /p.
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ni and b numberspi specifying its single-particle constitu
ents. Equation~29! is slightly more general than needed he
and holds also in the ’t Hooft limit. In the largeNf limit there
is only one single-particle state and it has a constant m
Eq. ~28!. If we denote it by the operatorAM

† (n), the Fock
basis in the fermionic sector looks like

u1&F5AM
† S K2

1

2DB†S 1

2D u0& ~30!

u2;n&F5AM
† ~n!AM

† S K2
1

2
2nDB†S 1

2D u0& ~31!

u3;n,m&F5AM
† ~n!AM

† ~m!AM
† S K2

1

2
2n2mD

3B†S 1

2D u0&, etc. ~32!

Fock basis states withb mesons will thus be constructed b
assigning meson momenta as all partitions ofK21/2 into b
integers, i.e. exactly like the states, Eq.~17!, except that now
we are operating with meson rather than current operat
The role of the fermion in the states will be discussed in S
V C. Here it serves as a convenient tool for book-keepi
The assignment of quantum numberspT of the Z2 symme-
try, Eq. ~25!, is clear: the single particle state Eq.~30! is a
two-parton state and therefore according to Eq.~26! Z2 even,
pT 511. It comprises a boson and a fermion with uniq
momentum partition and we find it indeed only in the spe
trum of the fermionicZ2 even sector. The states with tw
mesons, Eq.~31!, are actually three parton states in the f
mionic sector. Therefore the states where the mesons
the same momentum transform to minus themselves u
the Z2 symmetry, and are present only in theZ2 odd sector.
All other momentum partitions should be present in bothZ2
sectors. This is exactly what we see in the spectra. The
eralization to theb parton states is obvious, and reproduc
exactly the spectra in Fig. 1.

An analogous construction can be used in the boso
sectors. The spectra are depicted in Fig. 5~a! of Ref. @16#.
Again we build up the Fock basis from solutions of the d
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namical eigenvalue problem, Eq.~5!. But now the meson
operators will act on the vacuum itself, rather than on
fermion and the vacuum

u1;n&B5AM
† ~n!AM

† ~K2n!u0& ~33!

u2;n,m&B5AM
† ~n!AM

† ~m!AM
† ~K2n2m!u0&, etc. ~34!

Consequently, we have to discard all states with momen
partitions equivalent under cyclic permutations. This is,
course, nothing other than constructing the current basi
the bosonic sectors, as we did in Ref.@16#. A two-meson
state is a two-parton state in the bosonic sector. Hence,
Z2 quantum numbers are opposite as in the fermionic sec
In particular, since there are no cyclic permutations of m
menta of the currents, the two-meson states are absent
gether in the bosonicZ2 odd sector, as observed. The gen
alization to b partons is again obvious, and we thu
completely constructed the spectrum of the largeNf limit of
the theory.

B. The ’t Hooft limit

In the ’t Hooft limit we find exactly the same eigenvalue
as in previous work@16#, Eq. ~29!, namely

M255.88,13.44,23.04,32.27,41.68,51.24,60.93,

70.76,80.97,90.90, ~35!

cf. Fig. 2, which is in very good agreement with ’t Hooft
original solution@1#. These continuum results are obtain
by fitting the eigenvalue trajectoriesMi

2(K) of the single-
particle states to polynomials of second order in 1/K and
subsequently extrapolating toK→`. If we compare the
spectrum, Fig. 2, to the bosonic sector, Fig. 2 of Ref.@16#,
we find much more multiparticle states and, of course, a s
of half a unit in momentum. As in the largeNf limit, the
multiparticle states decouple, but now we have seve
single-particle states. Namely, the spectrum at resolutioK
containsK21/2 ’t Hooft mesons. Thei th meson makes its
first appearance at resolutionK5 i 11/2 and haspT5
(21)i 11. Note that the single-particle masses are functio
of K. If we would set up an orthonormal current basis for th
1-7
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FIG. 3. Fermionic spectra of
the theory with adjoint fermions
in theZ2 even~a! and odd~b! sec-
tors. Solid~dash-dotted! lines con-
nect conjectured single~multi!-
particle eigenvalues at differentK.
Dotted lines connect analytically
calculable eigenvalues. Dashe
lines are extrapolations to the con
tinuum limit. Masses are in units
g2Nc /p.
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problem to factorize the Hamiltonian into its single- a
multiparticle blocks, the task would be to diagonalize aK
21/2)3(K21/2) matrix to find the masses of these m
sons. Instead we are diagonalizing a 2K23/2 dimensional ma-
trix. The first procedure is, however, due to the tedio
evaluation of the scalar product of Kac-Moody states m
expensive than actually diagonalizing the much larger ma
@16#.

We already wrote down the formula for the masses of
multiparticle states, Eq.~29!. Also the designation ofZ2
quantum numbers from the partitions of the parton mome
stays the same as in the largeNf limit. It should be noted,
however, that due to the difference in effective momenta
the fermion in the states, the first multiparticle ’t Hooft sta
appears atK57/2, as opposed toK55/2 in the largeNf
limit. As in the largeNf limit, we reproduce the distribution
of the Z2 even and odd states, and understand the spe
completely in terms of their single-particle content. In p
ticular, there is no need for recurring to properties of t
massless sector of the theory, because we can constru
quantum numbers from the information of the massive sp
trum. This will change substantially in the adjoint case wh
we consider next.

C. Adjoint fermions

Solving the eigenvalue problem, Eq.~5! in the adjoint
model, l51, we obtain precisely the same eigenvalues
previous works with fermions as basic degrees of freed
e.g. Ref.@13#, with antiperiodicboundary conditions for the
fermions. This is not surprising because the formulation
the theory withSU(Nc) currents rather than with fermions
in essence a change of basis.

If we look at the eigenvalue trajectories~mass squared a
a function ofK! in Fig. 3, the structure of the spectrum loo
similar to the ’t Hooft case. We see immediately four sing
particle candidates which qualify by their quasilinear traje
tories. In the continuum limit they have the eigenvalues

MF1

2 55.75, MF2

2 517.29,

MF3

2 535.25, MF3

2 540.24, ~36!
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in units g2Nc /p; see also Table II. It is, however, questio
able if these states are indeed single-particle states. Ther
a couple of problems which prevent a straightforward int
pretation of the adjoint spectrum, which will become cle
when we compare the adjoint to the ’t Hooft spectrum. In t
adjoint spectrum we find kinks in the single-particle traje
tories, and also the multiparticle trajectories are distort
This is clear evidence for an interaction between these sta
Since the multiparticle states do not decouple, a mass
mula analogous to Eq.~29! cannot be exact. Furthermore, th
masses of the single-particle states of the fermionic
bosonic sectors are not degenerate as in the ’t Hooft case
differ significantly. This in turn means that we cannot have
fermionic and bosonic Regge trajectory of single-parti
states, if all of them give rise to multiparticle states: the
would be simply too many states to account for in a discr
Fock basis.

As a way out of this dilemma, we make the followin

TABLE II. Eigenvalues of the lowest four~suspectedly! single-
particle states in the adjoint case. The masses are given in
g2Nc /p. The masses in the ’t Hooft case atK5b1

1
2 are exactly

the same as in the bosonic sector atK5b11. The mass of the only
single-particle state in the largeNf limit is independent of the cut-
off: MNf

2 (K)[1.0000(g2Nf /p).

2K MF1

2 MF2

2 MF3

2 MF4

2

3 4.5000
5 5.0000 12.5000
7 5.2227 14.0000 24.5000
9 5.3456 14.7645 27.0000 29.2451
11 5.4222 15.2575 28.5484 32.0373
13 5.4741 15.5908 29.6419 33.7443
15 5.5111 15.8311 30.5931 34.7280
17 5.5388 16.0113 30.3593 35.6396
19 5.5602 16.1509 31.1301 36.3496
21 5.5771 16.2618 31.6091 36.5054
23 5.5908 16.3518 32.0304 37.0575
25 5.6021 16.4261 32.6060 37.4225
27 5.6115 16.4884 32.0123 37.7243
` 5.75 17.29 35.25 40.24
1-8
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ON THE SPECTRUM OF (111)-DIMENSIONAL QCD WITH . . . PHYSICAL REVIEW D 66, 025001 ~2002!
conjecture which we will try to support by empirical fact
Namely, we view the sole fermion in the states of small
discrete momentumkmin5P1/2K acting on the vacuum a
the finiteK expression for an ‘‘adjoint vacuum,’’ as it appea
in the bosonized version of this theory@4#. It is clear that the
correct expression should involve a fermionic zero mo
which is absent in the present discrete approach. It is rec
ered in the continuum limitK→`. This conjecture makes
the following interpretation of the spectrum plausible. T
approximate vacuum will introduce couplings between sta
that are decoupled in the continuum limit. Most of the
states will be multiparticle states, which are necessary
describe the theory correctly at finite harmonic resolutionK.
Since the approximation occurs only in the fermionic sec
it seems natural that the artifacts associated with this finitK
effect also originate in this sector. In other words, we exp
only the fermionic single-particle states to give rise to m
tiparticle states. We can check this conjecture by looking
the spectra at smalll. There we expect that the multipartic
states are still very well described by the DLCQ formula
the spectrum of free particles, Eq.~29!. On the other hand
the masses of the lowest single-particle boson and ferm
are already noticeably different. By constructing two sets
multiparticle states out of two bosons and two fermions,
spectively, we convinced ourselves that the eigenvalues
well described by a pair of free fermions, but not of boso
On the other hand, we expect the coupling between
single- and multiparticle states to vanish as the harmo
resolutionK grows. In particular, the deviations from a mu
tiparticle mass formula analogous to Eq.~29! should de-
crease with a power ofK. We checked that the discrepanci
vanish indeed like 1/K2, providing additional support for the
approximate-vacuum conjecture.

Furthermore, analyzing the spectrum as a function of
continuous parameterl, it seems plausible that the numb
of single-particle states stays the same as in the ’t Hooft c
see also the discussion in the next section. This hypoth
can in principle be tested atl51 by using an approximate
multiparticle mass formula to eliminate the multipartic
states. The fact that most single-particle states asymptotic
become multiparticle states at largel cannot affect us here
At finite l the problem is to show that most states are m
tiparticle states, although they are not exactly following
mass formula in the fashion of Eq.~29!.

Summing up the above findings, the conclusion is
following. Finding that the adjoint bosonic single-partic
states do not form multiparticle states and conjecturing
the number of fermionic single-particle states grows linea
with K, we get the same situation concerning the ratio
single- to multiparticle states as in the ’t Hooft case. We th
conclude that the number of single-particle states is the s
as in the ’t Hooft model, even in the bosonic sector. Since
masses of the fermionic and bosonic single particles are
degenerate as opposed to the ’t Hooft case, we find
adjoint Regge trajectories, a bosonic and a fermionic o
The determination of the functional dependence of
single-particle states on the excitation number requires
ther investigations which are beyond the scope of the pre
work.
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D. Intermediate cases and eigenfunctions

It is instructive to study the spectrum of eigenvalues a
function of the continuous parameterl5Nf /Nc . In Fig. 4
we plotted the spectrum of two-dimensional Yang-Mi
theories coupled to massless matter in representations c
acterized byl, in the Veneziano limit. We show all sectors o
the theory, i.e. the bosonic and fermionicZ2 even and odd
spectra, as a function ofl. A crucial observation is that the ’
Hooft mesons develop differently in the fermionic an
bosonic sectors asl grows, and the degeneracy of the
masses is lifted. In particular, the mass of the lightest me
in the fermionic sector decreases asl grows with a slope of
ê1

( f )(1)521.39; see the Appendix. It reaches the minimu
of its parabolic trajectoryMF1

2 (l) at l51/3. Asymptotically
it rises linearly withl. On the other hand, the mass of th
lightest boson increases monotonously. This scenario
small l is expected, since the mass of the lightest state
theory has to decrease in second order perturbation theo
is evidence for the conjecture that the theory is incomplet
only its bosonic sector is considered@7#, because the lowes
boson cannot be the lightest state of the full theory. In g
eral, we obtain the first corrections inl to the ’t Hooft meson
masses in the bosonic sector in complete agreement with
perturbative calculations by Engelhardt@18#, as we will show
in more detail in the Appendix.

Concerning the globall dependence of the spectrum, Fi
4, we emphasize that the eigenvalues are smooth function
l, and we seem to find no indication that the adjoint theory
special. We see a lot of level crossings, some of which
obscured by eigenvalue repulsion due to finite harmo
resolution. Some of the reduced eigenvaluesM̂2[M2/(1
1l) are almost stationary as a function of the parametel,
amongst them chiefly the suspected single-particle sta
Note, however, the somewhat artificial definition of the r
duced masses, which was used in order to fit the spectrum
all values ofl into one plot.

It would be very interesting if one could find a criterio
for a state to be a single-particle state, or if one could f
mulate a good observable, e.g., a structure function,
would allow one to distinguish single- from multiparticl
states. We display four adjoint eigenfunctions in Fig. 5. Ap
from the striking repetitive pattern in the different parto
sectors, we see that the multiparticle state in this plot is d
tinct from the single-particle states. In the extreme casesl
50 and l→`, we obtain the following behavior of the
wave functions. The ’t Hooft eigenfunctions are very simil
to the ones in the adjoint case. They can in principle
calculated from the standard formulation of the theory w
fermion fields, which is equivalent to a change of basis.
large Nf the wave functions are converging very slowl
They look very much like those in the ’t Hooft limit forK
,10. At that point, most of the amplitudes become su
pressed while keeping their shape, and the amplitudes
states with a large number of currents become hea
peaked.

VI. SUMMARY AND DISCUSSION

In this article we presented the spectrum of two dime
sional Yang-Mills theories coupled to massless matter i
1-9
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FIG. 4. The spectrum of two-
dimensional QCD in all sectors o
the theory as a function ofl. Plot-
ted are the lowest 100 eigenvalue
in the fermionic sectors~top row!
and the bosonic sectors~bottom
row!. Left column: Z2 even sec-

tors, reduced eigenvaluesM̂2

[M2/(11l) vs lg l. Right col-
umn:Z2 odd sectors, actual eigen
values vsl.
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FIG. 5. The wave functions of four adjoint states atK525/2: ~a!
M255.6021, ~b! M2516.4261, ~c! M2521.8688, and~d! M2

532.6060~from bottom to top!. Plotted are the amplitudescn vs
n̄5n/2K23/2. The third state is the only multiparticle state in th
plot and its eigenfunction clearly has a different shape. The num
of currents in a basis state changes at the dashed lines.
02500
representation characterized by the ratio of the number
flavor and colorl in the Veneziano limit. We derived the
Hamiltonian in the fermionic sector in the framework
DLCQ as an algebraic function of the harmonic resolutionK
and the ratiol. Surprisingly, we found the momentum of a
adjoint fermion depending onl in this discrete approach
This is explained by the fact that we have zero modes of
current operators in the theory, while fermionic zero mod
are recovered in the continuum limit only. The well-know
spectra in the ’t Hooft and the largeNf limits were repro-
duced. Although this is not surprising taking into account t
universality established in Ref.@9# which is a specialty of
two dimensions, it is nevertheless a strong check on the
merics. We found the bosonic and fermionic spectra to
degenerate in the ’t Hooft limit, and the only meson of t
largeNf limit in the fermionic sector. The multiparticle state
decouple completely in these limits and a construction of
spectra in terms of their single-particle content was achiev
This allowed for a complete classification of all states inclu
ing their statistics and symmetry properties in both cases
trying to apply this knowledge to the adjoint case, we we
only partly successful. We presented evidence for theconjec-
ture that the vacuum is only approximately realized in t
DLCQ formulation of the fermionic sector of the theory. Th
conjecture allowed us to understand the empirical find
that the multiparticle states have only fermionic sing

er
1-10
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FIG. 6. The coefficientse1(n)
of the first correction inl to the ’t
Hooft meson massesMn

2(l50)
vs 1/K.
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particle constituents. This fact was deduced from an anal
of the spectra at intermediate values ofl. The approximate
vacuum induces couplings between single-and multipart
states which were found to decrease with the harmonic r
lution like 1/K2, i.e. consistent with the above conjectur
We motivated thehypothesisthat the number of fermionic
single-particle states is the same in the ’t Hooft and adjo
cases by pointing out the smooth transition of the spe
into each other by the continuous parameterl. We then con-
cluded that there has to be a second Regge trajector
bosonic single-particle states, because at eachK the size of
the Fock basis and the number of multiparticle states de
mined by the kinematics of their fermionic constituents
lows for exactlyK21 additional states. Although we were a
of yet unable to give the complete solution of the adjo
theory in terms of its single-particle states, it seems thus
their number grows linearly with the harmonic resolutio
Their masses tend to grow more rapid with the excitat
numbern, maybe likeM2}n2, rather than linear as in the
Hooft model.

The two Regge trajectory conjecture is not in contrad
tion with the expectation of a multi-Regge structure at no
vanishing fermion massm @7#, or with the related appearanc
of a Hagedorn spectrum signaling the confinement/scree
transition asm vanishes@12#. When a fermion mass is turne
on, the description of the theory in terms of Kac-Moo
currents breaks down and the theory turns from screen
into a confining phase. It has been pointed out by Kuta
how in the massless theory the two seemingly contradic
facts of having a vanishing string tension together with
absence of a Hagedorn transition can be reconciled@12#. In
short, the exponentially rising density of states characteri
of a Hagedorn transition can be explained by a large deg
eracy in the massless sector of the theory which is lifted
fermion mass is turned on. This sector is, of course, co
pletely inaccessible in the present approach.

In summary, we hope to have added some new piece
information to the adjoint QCD2 puzzle. The major practica
goal remains to identify all single-particle states of the the
unambiguously. While we were unable to present a comp
solution, we described a practical algorithm to extract
single-particle spectrum. Using the spectral information p
sented here, one could identify all multiparticle states by
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characteristicK dependence of their masses dictated by
approximate multiparticle mass formula. While this seems
principle possible, it is nevertheless beyond the scope of
present work. This exercise can also serve as a quantita
test of the hypothesis that the number of single particle
the same in the ’t Hooft and adjoint models. Furthermore,
approximate-vacuum conjecture can be ruled out, if o
could show that the deviations from the discrete multiparti
mass formula do not fall off everywhere with the resoluti
K. Improvements of the results might be possible by atta
ing the theory from a very different point. The adjoint theo
is supersymmetric at a specific value of the fermion m
m5gANc @12#. In the light of recent progress in the evalu
tion of supersymmetric theories@17#, this might be an inter-
esting alternative.
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APPENDIX: RECOVERING THE CORRECTIONS
TO THE ’t HOOFT MASSES

In a recent paper, Engelhardt@18# calculated the first cor-
rections inl5Nf /Nc to the masses of the lowest four
Hooft mesons, namely the slopese1(n), n51,2,3,4 in the
expansion

Mn
2~l!5Mn

2~0!1e1~n!l1¯ ,

where the masses are in unitsg2Nc /p. Surprisingly, some of
these corrections are negative and large. This seems to
tradict the results of Ref.@16#, Fig. 5~b!, and we shall reana
lyze them here. The slope of the curvesMn

2(l) is strongly
dependent on the harmonic resolutionK for small l. If we
plot the slopes as a function of 1/K we see a consisten
picture arising. We fitted the slopes for the lowest four
Hooft mesons, Fig. 6, to a polynomial of third order in 1/K,
and obtain in the continuum limit

ê1~n!55.19,12.27227.7,9.69, ~A1!
1-11
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to be compared to Engelhardt’s values

e1~n!55.1,12.0,230.5,9.1. ~A2!

Note that Engelhardt’s values are lower bounds~although
one expects very small corrections!, whereas extrapolation
towards the continuum in DLCQ tend to be upper bounds
this sense, the agreement is fairly good.

We emphasize that for smallK one is totally misled as to
what the continuum limit might be for the slopese1(3) and
e1(4); cf. Fig. 6. For instance, the slope of the third sta
e1(3)uK→`5227.7, is still positive at the fairly large reso
lution K510. This shows the importance of Fock states w
a large number of currents, and renders two-current appr
mations questionable. Note that the mass of this state
creases linearly for large enoughl, although it starts with a
large negative slope; cf. Fig. 5~b! of Ref. @16#. The first cor-
rection to the ’t Hooft mass is a good approximation only
to l.0.01.

It is important to note that the corresponding~and degen-
erate! ’t Hooft single-particle states in the fermionic sect
have different corrections inl. Following the developmen
of the three lowest ’t Hooft mesons in the fermionic sec
we obtain the following slopes:

ê1
~ f !~n!521.36,1.94,215.38. ~A3!
n

ys
.

a,

02500
n

,

i-
n-

r

The lowest state, which develops into the lightest adjo
state asl grows to unity, has a negative correction, as e
pected from second order perturbation theory for the low
state of a theory. It is thus clear that the single-particle sta
in the fermionic and bosonic sectors are distinct entities,
though their masses are degenerate in the ’t Hooft limit. T
fourth lightest state has a rather irregular trajectoryê1(4,K)
which prevents us from extrapolating to the continuum. T
is easily understood when one compares the spectra in
bosonic and the fermionic ’t Hooft sectors. In the boson
sector, all four lowest single-particle states are lighter th
the lowest multiparticle states in their sector. In the fermio
sector the fourth single-particle state lies in the two-parti
continuum formed by the lightest massive ’t Hooft meso3

In perturbation theory, such a situation has to be taken c
of by constructing states which contain admixtures of deg
erate states with higher parton numbers@18#. We see that in
the present discrete approach we run into the same diffi
ties.

3The lightest ’t Hooft meson proper withM2(n50)50 is absent
from the spectrum, since we work formally in the adjoint theory
. D
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