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Comparing initial-data sets for binary black holes
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We compare the results of constructing binary black hole initial data with three different decompositions of
the constraint equations of general relativity. For each decomposition we compute the initial data using a
superposition of two Kerr-Schild black holes to fix the freely specifiable data. We find that these initial-data
sets differ significantly, with the ADM energy varying by as much as 5% of the total mass. We find that alll
initial-data sets currently used for evolutions might contain unphysical gravitational radiation of the order of
several percent of the total mass. This is comparable to the amount of gravitational-wave energy observed
during the evolved collision. More astrophysically realistic initial data will require more careful choices of the
freely specifiable data and boundary conditions for both the metric and extrinsic curvature. However, we find
that the choice of extrinsic curvature affects the resulting data sets more strongly than the choice of conformal
metric.
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[. INTRODUCTION sandwich decompositidr8]. These decompositions split the
variables on the initial-data surface into various pieces in
Numerical evolutions of black holes have been improvedsuch a way that the constraint equations determine some of
slowly but steadily over the last few years and now firstthe pieces while not restricting the others. After these freely
attempts are being made to extract physical information fronspecifiable pieces are chosen, the constraint equations are
these evolutions. Most notably one wants to predict thesolved and the results are combined with the freely specifi-
gravitational radiation emitted during black hole coalescenceable pieces to yield a valid initial-data set.

[1-3]. Any reasonable choice for the freely specifiable pieces
The quality of the initial data will be crucial to the successwill lead to a valid initial-data set. Furthermore, any one of
of the predictions of the gravitational wave forms. Unphysi-these decompositions can generate any desired initial-data

cal gravitational radiation present in the initial data will con- set, given theorrectchoices of the freely specifiable pieces.
tribute to the gravitational waves computed in an evolutionHowever, it is not cleawhat choices of freely specifiable
and might overwhelm the true gravitational wave signaturepieces lead to initial-data sets with the desired properties.
of the physical process under consideration. Therefore an The decompositions we consider here lead to four coupled
important question is how to control the gravitational wavenonlinear elliptic partial differential equations. Since such
content of initial-data sets, and how to specigtrophysi- equations are difficult to solve, the early approach to con-
cally relevant initial data with the appropriate gravitational structing initial data was pragmatic: One used the conformal
wave content, e.g., for two black holes orbiting each otherTT decomposition with additional restrictions on the freely
Unfortunately, assessing and controlling the gravitationakpecifiable pieces, most notably conformal flatness and
wave content of initial-data sets is not well understood at allmaximal slicing. These assumptions decouple the constraints
The mereconstructionof an initial-data set alone is fairly and allow for analytical solutions to the momentum con-
involved, since every initial-data set must satisfy a rathesstraints, the so-calledBowen-York extrinsic curvature
complicated set of four partial differential equations, the so{9-11]. All that remains is to solve a single elliptic equation,
called constraint equations of general relativity. The questionhe Hamiltonian constraint. This approach has been used in
of how to solve these equations, and how to specify initialseveral variation§12—14.
data representing binary black holes in particular, has re- However, these numerical simplifications come at a cost.
ceived considerable attention. The freely specifiable pieces have been restricted to a small
We consider in this paper three different approaches thagubset of all possible choices. One therefore can generate
transform the constraint equations into elliptic equations: thenly a subset of all possible initial-data sets, one that might
conformal transverse-tracele$3T) decompositior{4], the  not contain the desired astrophysically relevant initial-data
physical TT decompositiof5—7] and the conformal thin  sets.
Over the last few years there have been additional devel-
opments: post-Newtonian results have indicated that binary
*Permanent address: Department of Physics, Cornell Universityplack hole metrics are not conformally fldt5,16]. With cer-
Ithaca, New York 14853. tain restrictions on the slicing, it has also been shown that a
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single stationary spinning black hole cannot be represented Nd2= — N2dt2+ yij(dx‘+N‘dt)(dxj+det), )
with a conformally flat spatial metril7,18. In [19] it was

shown that conformally flat initial data sets for spinning bi- where y;; represents the induced 3-metric on the hypersur-
nary black holes contain an unphysical contamination. Morefaces, andN andN' represent the lapse function and the shift

over, computations in spherical symmef0] indicated that  vector, respectively. We define the extrinsic curvatgreon
initial-data sets depend strongly on the choice of the extrinsighe slice by

curvature and that the use of the Bowen-York extrinsic cur-
vature might be problematic. @)

Therefore it is necessary to move beyond conformally flat K=- Elﬁn g (2
initial data and to explore different choices for the extrinsic
CUrV.ature. Matzneet al. [21] pI’O_p_OSGd a non'ﬂat Conf_Ol’mal where (4)9 is the Space_time metriu the unit normal to the
metric based on the superposition of two Kerr-Schild metnypersurface, and denotes the projection operator into the
rics; a solution based on this proposal was obtainel®®.  {~ const slice. Einstein's equations divide into constraint
This work demonstrated the existence of solutions to the 3[?equations, which constrain the dam](,Kij) on each hyper-

3§aci)lf I?Z((q—:-l;:rttla%rlse,&b; '{Zg]l?)br][gitnz)c(iasrgllﬂﬁt;l?se tga;asi?ﬁit;rlgeetmgurface’ and into evolution equations, which deterrnine how
. y - 1
of equations during the computation of quasi-circular orbitsTthheed;:ﬁs()t’;la ’irft ()aqeuvaali\c/)(re]sfrg?; one hypersurface to the next.

of binary black holes. However, these works assumed con-
formal flatness. 2 ij—
; . +Ke—K; K=

In this paper we present a code capable of solving the REKZ-K;jKT=16mGp ©

three above-mentioned decompositions of the constraint

equations for arbitrary choices of the freely specifiable

pieces. This code is based on spectral methods which hayg, \a4ion (3) is called theHamiltonian constraintand Eq.
been used successfully for several astrophysical proble

M3) is referred to as thenomentum constraink =y, K/l is
— I 1 i il i ]
(see, e.g.[24-3(). Our code is described in detail in a the trace of the extrinsic curvaturé,andR denote the three-

separate papégBl]. . : . e o )
We compute solutions of the different decompositions forldlmensmngtljlcovgrlant derlv;l.tilve op;zrator and thg Ricci sca
the non-flat conformal metric proposed in RE21]. Each & compatible withy;; . p andj" are the energy and momen-

decomposition has certain choices for the freely specifiabl@m density, respectively. Both vanish for the vacuum
pieces and boundary conditions that seem “natural” andSPacetimes considered here.

which we use in our solutions. We compare the computed The evolution equation fog;; is

initial-data sets with each other and with the “standard” con-

formally flat solution using the Bowen-York extrinsic curva- dryij =~ 2NKjj + ViNj+ ViN; ®)

ture. Our major results confirm thét) the different decom- which follows from Eq.(2). There is a similar albeit longer

positions generate different physical initial-data sets for . B . A
seemingly similar choices for the freely specifiable piecesgﬂgité(;ngﬁ\:ﬂ;ﬁg mh:rz V;I?b},tvrlgrmtor;iega:z ?E'S ﬁggelré-ruhsee
and(2) the choice of extrinsic curvature is critical. The first Y. P P

result is certainly not unexpected, but each of these factorf,ny lapse and shift in the evolution off the initial-data sur-

can cause relative differences of several percent in gaug ace, although some choices of lapse and shift are better

invariant quantities like the Arnowitt-Deser-MisnéiDM ) Suited to_num-encal |mpleme_ntat|on than others.
energy Later in this paper we will often refer to the trace-free

We also find that the conformal TT/physical TT decom- piece of Ech(Sf) We_dgnote the trace-free p|e((j:ehof?tenzor by
positions generate initial-data sets with ADM energies 2— TF(.),_anI efine y=dety;; . From Eq.(5} and the fact that
percent higher than data sets of the conformal thin sandwicA " y=7"8yq, it follows that
decomposition. We demonstrate that this higher ADM energy Ny 13 ~13,, \— _ - -
is related to the choice of the freely specifiable part of the TROur) =y oy )= = 2NA+(LN)y . (8)
extrinsic curvature. In addition, we find that the solutions HereAij = K” —%'yij K denotes the trace-free extrinsic curva-
depend significantly on the boundary conditions used. ture, and

The paper is organized as follows. In Sec. Il we describe
the three decompositions. Section Il explains how we i - . ‘
choose the freely specifiable data within each decomposition. (LN)"=V'N/+VIN _§7]VkN ' @)

In Sec. IV we describe and test our elliptic solver. Section V
presents our results, which we discuss in Sec. VI. L. always acts on a vector, so the “N”in{\)!) denotes the
shift vectorN' and not the lapsél.

V(K= yK)=87Gj'. (4

I. DECOMPOSITIONS OF EINSTEIN'S EQUATIONS

AND THE CONSTRAINT EQUATIONS B. Decomposition of the constraint equations

A. 3+1 decomposition Equations(3) and (4) constrain four degrees of freedom

In this paper we use the standaréd- 8 decomposition of ~of the 12 quantities %;; ,K"). However, it is not immedi-
Einstein's equations. We foliate the spacetime withconst ~ ately clear which pieces of;; andK" are constrained and
hypersurfaces and write the four-dimensional metric as ~ which pieces can be chosen at will. Several decompositions
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have been developed to divide the 12 degrees of freedom 2 o ,
into freely specifiable and constrained pieces. We will now A= §¢6V'K+VjM" =8mGy'Y', (13
review some properties of the three decompositions we con-
sider in this paper.

All three decompositions follow the York-Lichnerowicz
approach and use a conformal transformation on the physical
3-metric y; ,

whereAl and the operatod; are defined by

All=(Tv)1+ M1 (14)

Yii= l/flq’ij : (8) and
~ AV =V(Tv)i

¥ is called theconformal factoy ;; the background metric ALV=V(LV)T. (15

or conformal metric We will denote all conformal quantities After solving these equations fag and V', one obtains

with a tilde. In partic~ular,"V‘ ii the cclvariant derivative op- the physical metricy;; from Eq.(8) and the extrinsic curva-
erator associated witly; , andR;; andR are the Ricci tensor  ture from

and Ricci scalar ofy;; . .
The extrinsic curvature is split into its trace and trace-free Kil= g 10K —1//’4;/” K. (16)
part, 3
i L] We will refer to Egs.(12) and (13) together with Eqs(14),
KP=A"+ 37 K. ©) (16) and (8) as theconformal TT equationdn these equa-
tions we are free to specify the background meﬁiip, the
The three decompositions of the constraint equations we digrace of the extrinsic curvatui¢, and a symmetric traceless
cuss in this paper differ in how' is decomposed. For each tensorM'. The solutionV' will contain a contribution that
decomposition, we discuss next the relevant equations andmoves the longitudinal piece froM' and the piece that

describe how we choose the quantities one has to speci%lveS the momentum constraint Wl were transverse

before solving the equations. We use the conventiof82jf
traceless.

This decomposition has been the most important in the
past, since if one chooses a constdrand if one considers
In this decomposition one first conformally transforms thevacuum spacetimes then the momentum constfaiBi de-

1. Conformal TT decomposition

traceless extrinsic curvature, couples from the Hamiltonian constrai(it2). Moreover, if
- o one assumes conformal flatness &mdl=0, it is possible to
Al =y~ 1A, (100 write down analytic solutions to Eq(13), the so-called

. N _ Bowen-York extrinsic curvature. In that case one has to deal
and then applies a TT decomposition with respect to thevith only one elliptic equation fogs. The Bowen-York ex-

background metric?yij : trinsic curvature can represent multiple black holes with ar-
bitrary momenta and spins. One can fix boundary conditions
All :”A¥T+ (TX)1. (12) for ¢ by requiring that the initial-data slice be inversion sym-

metric at both throatg33,34. In that case one has to modify

~ i . the extrinsic curvature using a method of images. We will

The gpleratoL IS d.efm.ed by Eq(7.) but uilng tNhI? gonformal include initial-data sets obtained with this approach below,

metric y;; and derivatives associated W"@ﬁ‘j;_ATT IS trans-  where we will refer to them agwersion symmetrignitial

verse with respect to the conformal met%A{;=0, and is  data.

traceless. Reasonable choices for the freely specifiable pieces
Substituting Eqs(10) and (11) into the momentum con- 7, |K,M will lead to an initial-data set; ,K") that sat-

straint(4), one finds that it reduces to an elliptic equation forisfies the constraint equations. How should we choose all

X', whereasAY; is unconstrained. these functions in order to obtain a desired physical configu-

In order to specify the transverse-traceless teAdgrone ~ ration, say a binary black hole with given linear momenta
usually has toconstructit from a general symmetric trace- and spins for the individual holes? We can gain insight into

~ . . . this question by considering how the conformal TT decom-
1] _
free tensoM" by subtracting the longitudinal piece. As_ de positions can recover a known solution.

scribe:j”irT[32] one can incorporate the con;tructionAd{T Suppose we have a known solutiopy; LK) of the con-
from M into the momentum constraint, arriving at the fol- straint equations. Denote the trace and trace-free parts of this
lowing equations: extrinsic curvature by, andAj , respectively. If we set
~ 1 - 1 1 ~ PYRE = M = All
Vzl,/f_glffR_1—21/15K2+g(,[f?AijA”:_z’TTGl//sp, Yij = Yoij » K=Kg, M Ao (17)
(12 then
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y=1, V=0

trivially solve Egs.(12) and (13). Note that we have to set
Ml equal to the trace-free part of the extrinsic curvature.

_ Now suppose we have a guess for a metric_ and an extringhen we have solved Eq&4) and (25) for ¢ and V', the
sic curvature, which—most Ilkely~—W|II not satisfy the con- pnysical metric is given by Eq8), and the extrinsic curva-
straint equationg3) and (4). Set y;; to the guess for the tureis

metric, and seK andM'/ to the trace and trace-free piece of
the guess of the extrinsic curvature. By solving the confor-
mal TT equations we can compute;{,K") that satisfy the

constraint equations. If our initial guess is “close” to a true

solution, we will havey~1 andV'~0, so thaty;; andK" We are free to specify the background mefyig, the

will be close to our initial guess. Thus one can guess a metrigace of the extrinsic curvatui€, and a symmetric traceless
and extrinsic curvature as well as possible and then solve tr{j

(18  whereAll is defined by

All=(Tv)li + M, (26)

y ~ 1.
K=y 4 Al + §y”K). (27)

. : o ensorM i, As with the conformal TT equations, the solution
conformal TT equations to obtain corrected quantities thaf; . . I o
will contain a contribution that removes the longitudinal

satisfy the constraint equations. ) U _
An artifact of the conformal TT decomposition is that one Piece fromM" and a piece that solves the momentum con-
has no direct handle on the transverse traceless piece witfiraint if M/ were transverse traceless.
respect to thehysicalmetric. For any vectoK', These equations can be used in the same way as the con-
formal TT equations. Guess a metric and extrinsic curvature,

(LX) =y~ 4Ix)". (19 sety; to the guess for the metric, adandM'! to the trace
. and trace-free pieces of the guess for the extrinsic curvature.
Thus, Eqs(10) and(11) imply Then solve the physical TT equations to obtain a corrected
i 10%] _6 i metric y;; and a corrected extrinsic curvatue that satisfy
A=y TR+ LX) (20 the constraint equations. -
For any symmetric traceless tens® _ The transverse traceless plece@’f (Wlth1 ggs_pect toy;j)
will be the transverse traceless pieceyof-"M''. One can
V,ST=y 1N, (40s1). (21)  also easily rewrite the physical TT equations such that

¢ %M can be freely chosen instead . So, in this
decomposition we can directly control the TT piece of the
physical extrinsic curvature. We have chosen to foll32)]
since it seems somewhat more natural to specify two confor-

mal quantities}ij andM'l than to specify one conformal and
one physical quantity.

Therefore the first term on the right-hand side of E2{) is
transverse-traceless with respect to the physical metric,

Vi At =0. (22
However, the second term on the right-hand side of(2@)

is conformally weighted. Therefore, E0) does not repre-

- 3. Conformal thin sandwich decomposition
sent the usual TT decomposition. P

The conformal and physical TT decompositions rely on a
tensor splitting to decompose the trace-free part of the ex-
ginsic curvature. In contrast, the conformal thin sandwich

2. Physical TT decomposition

In this case one decomposes the physical traceless extri
sic curvature directly:

ecomposition simply define&! by Eg. (10) and the de-
composition

Al = AL+ (LX), (23

~ 1
As above in the conformal TT decomposition, the momen- Al=—[(Lg)"—u"], (28)
tum constraint becomes an elliptic equation ¥r We can 2a
again incorporate the construction of the symmetric trans- ~ . ) ) .
verse traceless tensadl; from a general symmetric tensor Whereu' is symmetric and tracefree. Equati(28) is moti-
Ml into the momentum constraint. Then one obtains the’2€d BY Eq(6): If one evolves an initial-data set with!! of

physical TT equations Ghe form (28) using as lapse and shift

- 1. 1 1 N=y%a,
2. = _ 5k24 g 5A. Al — 5
\% 81,0R 121& K*+ 8¢ AijA 27GyYrp, o
(24) N'=g', (29
X v/ SEVIULy, 22 —6% i — 45 then
R V'+6(TV) 1§ = SV IK+ g~ G MY = 8aGyf',
(25 TR(dyi) = ¢'u;; . (30)
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Therefore, the decompositiaf28) is closely related to the

kinematical quantities in an evolution. Althoughand 8’ are
introduced in the context of initial data, one usually refers to

them as the “conformal lapse” and “shift.” While the form ;s decomposition of the for(@8) with U’/ =0. There-
of Eq.(28) is similar in form to the conformal and p~h_y5|cal fore, if we choose the freely specifiable data for the confor-
TT decompositions, there are differences. In particuldris  mal thin sandwich equations as
not divergenceless.

Within the conformal thin sandwich decompositjothe
constraint equations take the form

N 1 .
__ 1]
A= 5y (LNo)". (34)

;’iJ:?’ou, a=Np, (35

— ] —
o 1. 1 1 K=Ko, u7=0,
V2y— —yR— K2+ — o TA A = —27Gy°p _ _ o
8 12 8 ' and if we use appropriate boundary conditions, then the so-
(31 |ution of the conformal thin sandwich equations will lje
=1 andp = N . As part of the solution, we obtain the shift
T S I N vector needed for an evolution to produce #f;) =0. Not
A= (LB)"Vjina— §a¢6V'K—an =~u" needing a guess for the trace-free extrinsic curvature, and
@ having the solution3' automatically provide an initial shift
for evolution, make the conformal thin sandwich equations
=167Gay'Y'. very attractive.
(32 In order to generate initial-data slices that permit an evo-
lution with zero time derivative of the conformal metric — a

Having solved Eqgs(31) and (32) for ¢ and the vectog highly desirable feature for quasi-equilibrium data, or for a
one obtains the physical metric from E8) and the extrinsic situation with boles momentarily at rest — one can proceed
curvature from as follows: Sety;; andK to the guess for the metric and trace

of extrinsic curvature, respectively. Setto the lapse func-
tion that one is going to use in the evolution, and gét
=0. If these guesses are good, the conformal fagtemll be
close to 1, andN= ¢%a as well asN'= ' give us the actual
In this decomposition we are free to specify a conformall@pse function and shift vector to use in the evolution.
metric 7y, j » the trace of the extrinsic curvatukg a symmet-
ric trace-free tensou'’’ and a function. Ill. CHOICES FOR THE FREELY SPECIFIABLE DATA

It seems that the conformal thin sandwich decomposition A. Kerr-Schild coordinates
contains additional degrees of freedom in the form of the . o

o~ - . We base our choice for the freely specifiable data on a

functiona and three additional unconstrained components ofsernosition of two Kerr black holes in Kerr-Schild coordi-
u'). This is not the case. The longitudinal piecewfcorre-  nates. In this section we describe the Kerr-Schild solution
sponds to the gauge choice of the actual shift vector used iand collect necessary equations. We also describe how we
an evolution. Thus!'l really only contributes two degrees of compute the 3-metric, lapse, shift and extrinsic curvature for
freedom, just likeM' in the conformal and physical TT @ boosted black hole with arbitrary spin.
decompositions. Furthermore, we can reach @asonable A Kerr-Schild metric is given by
physical squtioD fij ,K'1) with anyreasonablechoice ofa; 0= 7T 2H1L,, (36)
each choice ofe simply defines a new decomposition. A
forthcoming article by York[35] will elaborate on these wherez,, is the Minkowski metric, and,, is a null-vector
ideas. Note that fom=1/2 we recover the conformal TT With respect to both the full metric and the Minkowski met-

. I
K=y~ 1R+ 2y~ K. (33)

decomposition. ric: g#*1,1,=»*"1,1,=0. The 3-metric, lapse and shift are
Let us now turn to the question of how one should pick
the freely specifiable data in the conformal thin sandwich ¥ij= i +2Hlil;, (37)
approach. We motivate our prescription again by considering
how to recover a known spacetime: Assume we are given a N=(1+2HIUYH "2 (39
full four-dimensional spacetime with-81 quantitiesyy;; ,
K@, Ng andN,. Further assume the spacetime is stationary SHIY
and the slicing is such thak y;; = 9;K;;=0. An example for N'=— — (39
such a situation is a Kerr black hole in Kerr-Schild or Boyer- 1+2HI
Lindquist coordinates. o
Using at)’Oij =0in Eq(e) y|e|dS a relation for the trace- For a black hole %t rest at the origin with maglsand
free extrinsic curvature angular momentunMa, one has
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Mr3 For all three decompositions, we need to choose a confor-
=== (400 mal metric and the trace of the extrinsic curvature. We
r'+(a-x choose
|;fSt:(1vrrest)v (41 Yij= 8j+ 2Hal ail aj+ 2Hgl gil g (46)
. rx—axx+(a-x)alr K=Ka+Kg. (47)
rest— 24 42 ' (42 o
reta The metric is singular at the center of each hole. Therefore

we have to excise spheres around the center of each hole

from the computational domain. We now specify for each
U2 decomposition the remaining freely specifiable pieces and
boundary conditions.

with

2__ 52 V2 22\2
x?—a x?—a -
r’= >—+ ( y ) +(a-x)?| . (43)

1. Conformal TT and physical TT decompositions

For a nonrotating black hole with=0, H has a pole atthe  For the conformal TT and physical TT decompositions we
origin, whereas for rotating black holeshas a ring singu-  wijll be solving for a correction to our guesses. As guess for

larity. We will therefore have to excise from the computa- the trace-free extrinsic curvature, we use a superposition
tional domain a region close to the center of the Kerr-Schild

black hole. . ( ( 1 ~ ik
Under a boost, a Kerr-Schild coordinate system trans- MY = K+ KBk_gé(k(KA_i' Kg) | V" (48
forms into a Kerr-Schild coordinate system. Applying a Lor-

- . P rest . ~
entz transformation with boost velocity to 1., we obtain  {#ii is symmetric and trace-free with respect to the confor-
the null vector, of the boosted Kerr-Schild coordinate sys- ., metric,}ij Mii=0. Solving for a correction only, we

tem. Equations(37)~(39) give then the boosted 3-metric, expect thaty~1 andV'~0, hence we use Dirichlet bound-
lapse, and shift. Since all time dependence is in the uniforn&ry conditions '
motion, evolution with lapséN and shiftN' yields d,y;;=
—v*9;j, and from Eq.(5) one can compute the extrinsic =1, Vi=0. (49)
curvature

2. Conformal thin sandwich

1
K'j:m(vkak'}’ij+ViNj+VjNi)- (44) For the conformal thin sandwich decomposition, we re-
strict the discussion to either two black holes at rest, or in a
If this initial-data set is evolved with the shifti the duasi-circular orbit in corotating coordinates. In these cases,

black hole will move through the coordinate space with ve-ON€ expects small or even vanishing time derivatives,,

locity v'. However, if the evolution uses the shift vectet ~0, and so Eq(30) yields the simple choice
+v', the coordinates will move with the black hole, and the ~i
hole will be at rest in coordinate space. The spacetime is u’=0. (50)

nonetheless different from a Kerr black hole at rest. The

ADM momentum will bePiADM: yMo', whereM is the rest The conformal 3-metric and the trace of the extrinsic cur-

vature are still given by Eqg46) and (47). Orbiting black

_ 2\~ 1/2 _ ; : . )
mass of the hole angt=(1-v°)" "~ holes in a corotating frame will not move in coordinate
space, therefore we do not boost the individual Kerr-Schild
B. Freely specifiable pieces metrics in this decomposition:,,g=0. The lapse functions

We want to generate initial data for a spacetime containNa/s and the shiftsN}, g are also for unboosted Kerr-Schild
- . e black holes.
ing two black holes with masséd , g, velocitiesv 4 g and - .

9 . ; AB AB We use Dirichlet boundary conditions:
spinsM pa, andMgag . We follow the proposal of Matzner

et al.[21,22 and base our choices for the freely specifiable =1 all boundaries (519
choices on two Kerr-Schild coordinate systems describing
two individuall black holes. The first t_)lack hole with _Iabel A_ IBi: NiA sphere inside hole A (51b)
has an associated Kerr-Schild coordinate system with metric
[N P
Yaij= 8+ 2Hal ail o) (45) B'=Ng sphere inside hole B (510
and with an extrinsic curvaturé, ;;, a lapseN, and a shift B'=Q0xr outer boundary. (510

N, . The trace of the extrinsic curvature k&, . All these _ ) _
quantities can be computed as described in the previous sec- Equation(51d ensures that we are in a corotating refer-
tion (Sec. Il A). The second black hole has a similar set ofénce frame; the cross-product is performed in flat space, and
associated quantities which are labeled with the letter B. (=0 corresponds to two black holes at rest. Close to the
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cover the full computational domain when the excised
spheres are close together. Thus additional subdomains are
needed in any case. Choosing the 43 cubes as depicted al-
lows for relatively small inner shells and for a relatively
large inner radius of the outer shell. Thus each shell covers a
region of the computational domain in which the angular
variations of the solution are fairly low, allowing for com-
paratively few angular basis functions.

The code can handle a general conformal metric. In prin-

ciple, the user needs to specify on"ﬁ(j. Then the code

computesy'l, and—using numerical derivatives—the Christ-
offel symbols, Ricci tensor and Riemann scalar. For the spe-
cial case of the Kerr-Schild metric of a single black hole and

FIG. 1. Structure of domains. Spherical shells around each exthe superposition of two Kerr-Schild metrics, E¢6), we
cised sphere are surrounded by 43 rectangular blocks and anotheempute first derivatives analytically and use numerical de-
spherical shell. The rectangular blocks touch each other and overlapvatives only to compute the Riemann tensor.
with all three spherical shells. The solver implements Eq§l2) and(13) for the confor-

mal TT decomposition, Eq24) and (25) for the physical

holes we force the shift to be the shift of a single black holeTT decomposition, and Eqé31) and(32) for the conformal
in the hope that this choice will produce a hole that is at resthin sandwich decomposition.

in coordinate space. After solving for (¢,V') [conformal TT and physical T[T
For the conformal lapse we use or (,B") [thin sandwich we compute the physical metric

_ vi; and the physical extrinsic curvatuk! of the solution.

a=Np+Ng—1 (520 Utilizing these physical quantitiesy(; ,K"), we implement

several analysis tools. We evaluate the constraints in the

or form of Egs.(3) and (4), we compute ADM quantities and
~ we search for apparent horizons. Note that these analysis
a=NaNg. 53 tools are completely independent of the particular decompo-
. ) _ ) ) sition; they rely only ony;; andK".
The first choice ofx follows the philosophy of adding quan-  Next we present tests ensuring that the various systems of

tities of each individual hole. However, of Eq. (52) be-  equations are solved correctly. We also include tests of the
comes negative sufficiently close to the center of each holanalysis tools showing that we can indeed compute con-
and is therefore a bad choice if the excised spheres are smadtraints, ADM quantities and apparent horizons with good
The choice(53) does not change sign and has at large disaccuracy.

tances the same behavi@ame 17 term) as Eq.(52).

A. Testing the conformal TT and physical TT decompositions

IV. NUMERICAL IMPLEMENTATION . .
We can test the solver by conformally distorting a known

We implemented an elliptic solver that can solve all threesolution of the constraint equations. Given a solution to the
decompositions we described above in complete generalitgonstraint equationsyg;j ,Kg) we pick functions
The solver uses domain decomposition and can handle non- )
trivial topologies. It is based on pseudospectral collocation, v>0, W (59
that is, it expresses the solution in each subdomain as an
expansion in basis functions. This elliptic solver is describecnd set
in detail in a separate papgsl].

From the computational domain we excise two spheres 3/”-:\1"47/0” , (55
containing the singularities of the Kerr-Schild metric close to
the center of each hole. Around each of the excised spheres K=K, (56)

we place a spherical shell. These shells are patched together
with 5X 3 X 3=45 rectangular blocks, with the two blocks at
the location of the spheres removed. Around these 43 blocks,
another spherical shell is placed that extends far out, typi- 1
cally to an outer radius of I8. In the rectangular blocks, M :\Ifm( K- =74 KO) — W4 (LoW)" (57)
we expand in Chebyshev polynomials, while in the spheres 3
we use Chebyshev polynomials radially and spherical har-
monics for the angular variables. This setup is depicted irfor conformal TT or
Fig. 1.
The domain decomposition in Fig. 1 is fairly complicated. ~ii 10 i E i i
Even if the shells were made as large as possible, they do not Mi=w ( Ko 3 79Ko~ (LoW) ]) (58)
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FIG. 3. Testing the solver for the conformal TT decomposition.
Equations(12), (13) with freely specifiable data given by Egs.
(55—(57), are solved in a single spherical shell with W.5r
<10M. Nis the cube root of the total number of unknowns. Plotted
are the L2 norms ofy—¥,V*—~WX, and the residuals of Hamil-

. . - . tonian and momentum constraints, E¢3. and (4).
for physical TT. With these freely specifiable pieces and ap- ® @

propriate boundary conditions, a solution of the conformal
TT equations(12), (13) or the physical TT equation&4),

FIG. 2. Plot of the function® andW' from Egs.(61) and(62).
The solid line depictsl along the positivex axis; the short dashed
line depicts¥ along the negative axis. The long dashed line is a
plot of WY along the positivex axis.

=<10M. This shell is surrounded by 26 rectangular blocks
that overlap with the shell and extend outdy,z= *=25M.

(25) will be Finally another spherical shell covers the regionvi28r
Y=V (59) sl(_f’M. As can be seen in Fig. 4, the solution converges
again exponentially.
Vi=W. (60) For realistic cases we do not know the analytic solution

and therefore need a measure of the error. Our major tool
From Eq.(8) we recover our initial metricyy; , and from

Eq. (16) [conformal TT] or Eq. (27) [physical TT we re- 10, T T L L T

cover the extrinsic curvaturgy . 10-2 bo 3

In our tests we used the particular choices L0 g A E

EX E

14 8(r—2) (61) 10+ % %

36+x°+0.9°+1.3z—1)? 105 & -

-6 | —

 50(r—2) 10 e A3

'= 7(_)/1)(11)' (62) 107 E E

(6%+r% 105 k- . 3

These functions are plotted in Fig. ®. varies between = O duf ) E

0.8 and 1.5W' varies between+0.5, and both take their 107° i gw‘v)_(?’w)l .

maximum values around distanee7 from the center of the 1070 o™ -

hole. We used forN(/Oij ,K{) a single, boosted, spinning 101 & A J: .

black hole in Kerr-Schild coordinates. T U TR B
Figure 3 shows results of testing the conformal TT de- 40 60 80

composition on a single spherical shell. The numerical solu- N

tion (sz') cqnverges to the analyt[c SOIU“.O”W(WI) ex- FIG. 4. Physical TT decomposition with domain decomposition.
ponentially with the number of basis functions as expectecliiquations(m)’ (25) with freely specifiable data given by Eqs5),
for a properly constructed spectral method. Moreover, thgsg) (5g) are solved in multiple domair®ne inner spherical shell,
recqnstructed metric and extrinsic curvature satisfy the conpg rectangular blocks, one outer spherical $hallis the cube root
straints. of the total number of grid pointsliff denotes the L2 norm of the
Now we test the solver for the physical TT decomposi-giference of the solution and the solution at the next lower resolu-
tion, and demonstrate that we can correctly deal with multion. Triangles denote the L2 norm of the difference to the analytic
tiple domains. In this example the computational domain issolution. The remaining symbols denote the errors of numerically
covered by an inner spherical shell extending forM.s5r extracted ADM quantities.
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will be the change in results between different resolution. Irwith uniform velocityv'. Denote the metric, extrinsic curva-
particular we consider thee, norm of the point-wise differ-  tyre, lapse and shift of this boosted spacetimeygy , KU
ences of the solution at some resolution and at the next lower all 1 1,1l ' N, and N}, respectively. Since we boosted
rgsolution. This_ diagnostic is labeled k_Jy circles in_Fig. 4.the static solution, we wilhot find d,y;; =0 if we evolve it
Smge the ;olutlon converges exponentially, these qrcles €With the shift Ny. However, all time dependence of this
sentially give the error of theower of the two resolutions. spacetime is due to the uniform motion, so in the comoving

domain decomposition and the integration routines for thieference frame specified by the sfiith+o', we will find

ADM quantities. The ADM quantities are computed by the dyyij=0. In this case, Eq6) yields

standard integrals at infinity in Cartesian coordinates, 1 B

Agzm[L(No-Fv)]”. (69
0

1
EADM:EJ (yij,i— i) d%S, (63 B o
- If we choosexr=Nj andu" =0, the thin sandwich equations

1 (31) and(32) will thus be solved byy=1 andg'=Npy+uv'.
Jo= 8_f (KT —9IK)&d%S;. (64)  Similar to the conformal TT and physical TT decomposition

mJ e above, we can also conformally distort the metyjg; . Fur-
. A thermore, we can consider nonvanishing We arrive at the
For thex compon?nt of trle Imgar ADM momenturgi=e, in following method to test the solver forgthe conformal thin
Eq.(64). The choicet=xe,—ye yields thez component of  sandwich equations: given a boosted version of a stationary
the ADM-like angular momentum as defined by YAK.  gojution with shiftNi, lapseN,, 3-metric Yoij, trace of

Since the space is asymptotically flat there is no distinction, i «ic curvaturél,, and boost-velocity'. Pick any func-
between upper and lower indices in E¢83) and(64). Note

- tions
that Eq.(63) reduces to the familiar monopole term
1 >0 (70)
— = 4, ¢dA 65 _
only for quasi-isotropic coordinates. Our outer domain isgnd set
large, but since it does not extend to infinity, we extrapolate
r— oo, i Yii =V Yyoij (72
For a Kerr black hole with mask! and spina, that is
boosted to velocity, the ADM quantities will be K=Ko (73
Eaom= "M, (66) a=¥"5N, (74)
Paom=YMu, (67) Tl =wA4(Low)1. (75)
R R (55)5 Then a solution to the thin sandwich equatid¢d$), (32) will
Jaom=| va—(y—1)—=,— M, 68  pe
v
where y=(1—v?)~ "2 denotes the Lorentz factor. Equation y=v (76)
(68) reflects the fact that under a boost, the component of the gi= Ni0+ oW 77

angular momentum perpendicular to the boost direction is

multiplied by y. o - - assuming boundary conditions respecting this solution.

The example in Fig. 4 uses=(0.2,0.3,0.4), anda= Figure 5 shows results of this test for a single spherical
(—1/4,1/4,1/6M. The evaluation of the angular momentum hell and a Kerr black hole With;=(0 2-0.3,0.1) a
J, seems to be less accurate since our current procedure E’(O 4,0.3,0.1M. The solution convergeé to the éxfoected
extrapolgtg to infinity magn'f'es roundoff. We plan to im- analytical result exponentially. In addition, apparent horizon
prove Fh'.s in a future version of the,gOde' Until then we S€€MLearches were performed. For the numerically found appar-
to be limited to an accuracy o 10, ent horizons, the apparent horizon arg, as well as the

. . . . apparent horizon mass
B. Testing conformal thin sandwich equations

The previous decompositions could be tested with a con- M e /Aﬂ 78
formally distorted known solution. In order to test the con- AT N 167 (78)
formal thin sandwich decomposition we need to find an ana-

lytic decomposition of the form28). To do this, we start were computed. The figure comparek, to the expected
with a stationary solution of Einstein’s equations and boost itvalue
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FIG. 5. Testing thin sandwich decomposition with apparent ho- FIG. 6. Binary black hole with conformal TT decomposition.
rizon searches. Equatioi31) and(32) with freely specifiable data The residuals of several quantities are plotted as a function of the
given by Eqs(72)—(75) are solved in a single spherical shélland  cube root of the total number of grid pointiiff is as in Fig. 4Ham
diff are as in Fig. 4. Apparent horizon searches with different surand Mom are the residuals of Hamiltonian and momentum con-
face expansion orddr were performed, and the errors of the ap- straints.E,py denotes the difference between ADM energy at reso-

parent horizon mashl 5, are plotted. lution N and ADM energy at highest resolution.
1 1 a2 vz arises to obtain solutions with higher accuracy, one can eas-
M 5 + > 1- M2 (79 ily change to a fall-off boundary condition, or just move the

outer boundary further out.

As described if19,36], the apparent horizon finder expands

the apparent horizon surface in spherical harmonics up to a V. RESULTS

fixed orderL. For fixedL, the error in the apparent horizon  The purpose of this paper is to compare the initial-data
mass is dominated by a discretization error of the ellipticsets generated by different decompositions using simple
solver at low resolutiom. As N is increased, the discretiza- chojces for the freely specifiable pieces in each decomposi-
tion error of the elliptic solver falls below the error due to tjon, We solve the following:

finite L. Then the error iVl 5, becomes independent bl ConfTT Conformal TT equationg12) and (13) with

Since the expansion in spherical harmonicspectral the  freely specifiable pieces and boundary conditions given by
achievable resolution increases exponentially withNote  gqs.(46), (47), (48) and (49).

that for exponential convergence it is necessary to position ppysTT Physical TT equation$24) and (25 with the
the rays in the apparent horizon finder at the abscissas of thgyme freely specifiable pieces and boundary conditions as

Gauss-Legendre integration. ConfTT.
CTS Conformal thin sandwich equatiorf81) and (32
C. Convergence of binary black hole solutions with freely specifiable pieces and boundary conditions given

Figure 6 presents the convergence of the solver in th®y Egs.(46), (47), (50) and (51). The lapsea is given by
binary black hole case. In this particular example, the congither Eq.(52) or by Eq.(53).
formal TT equations were solved for two black holes at rest We will apply the terms “ConfTT,” “PhysTT” and
with coordinate separation of M. The computational do- “CTS” only to these particular choices of decomposition,
main is structured as in Fig. 1. The excised spheres havieely specifiable pieces and boundary conditions. When re-
radiusr.,.=2M, the inner spherical shells extend to radiusferring to different freely specifiable pieces, or a decomposi-

4M. The rectangular blocks cover space up Xg,z= tion in general, we will not use these shortcuts. If we need to
+25M, and the outer spherical shell extending from innerdistinguish between the two choices @fin CTS, we will
radius 20 to an outer radius oR=10"M. use “CTS-add” for the additive lapse E@52) and “CTS-

We do not use fall-off boundary conditions at the outermult"for the multiplicative lapse Eq(53). Below in Sec.
boundary; we simply sa=1 there. This limits the compu- V C we will also introduce as a forth term “mConfTT.”
tations presented in this paper to an accuracy of order 1/
~10 7. Figure 6 shows that even for the next to highest
resolution (N=80) the solution will be limited by the outer
boundary condition. All results presented in the following  We first examine the simplest possible configuration: Two
section are obtained at resolutions aroite 80. If the need  black holes at rest with equal mass, zero spin, and with some

A. Binary black hole at rest
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to 1; however, between the holes ConfTT and CTS fafce
in oppositedirections. For CTSg>1 between the holes,
whereas for ConfTTyy<1. The contour plots in Fig. 8 also
show this striking difference between the decompositions.

The result of PhysTT was found to be almost identical
with ConfTT. This is reasonable, since these two decompo-
sitions differ only in that in one case the TT decomposition is
with respect to the conformal metric, and in the other case
the TT decomposition is with respect to the physical metric.
Since ¢y~ 1, the conformal metric is almost identical to the
physical metric, and only minor differences arise. In the fol-
lowing we will often use ConfTT/PhysTT when referring to
both data sets.

We performed apparent horizon searches for these cases.
For all data sets, the apparent horizon is outside the sphere
with radius 2V, that is outside the coordinate location for
X the apparent horizon in a single hole spacetime. For ConfTT/
PhysTT, the radius of the apparent horizon surface is
~2.09M, for CTS it is~2.19M. We computed the apparent
horizon area\,, the apparent horizon mass

1.015 [
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1.000 f
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0.999 |

0.998 L
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1.000

———- ConfTT
—— CTS—add
— — CTS-mult
----------- mConfTT
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FIG. 7. The conformal factory along the axis connecting the
holes for several decompositionsmeasures the distance from the
center of mass, so that the excised sphere is located betwern 3

<7. mConfTT is explained below in Sec. V C. The solution of A
PhysTT is not plotted since it is within the line thickness of Man= \ [AH
16

(80)
ConfTT. The inset shows an enlargement for laxge
fixed proper separation between the apparent horizons of tH@f either hole, and the combined mass of both holes,
holes. We construct initial data using the following decom-
positions: ConfTT, PhysTT, CT8with both choices ofx). m=2Man. (81)
In the comparisons, we also include inversion symmetric h . . definiti £ h f individual
conformally flat initial data obtained with the conformal- There Is no rigorous de inition of the mass of an individua
imaging formalism. black hole in a binary black hole spacetime, and EBf)

We excised spheres with rading,.=2M, which is close represents the true mass on an individual black hole only in

C il

to the event horizon for an individual Eddington-FinkeIsteinthe limit of wide separation of the black holes. A hard upper

black hole. This results in the boundary conditions beindiMit on the possible gravitational radiation emitted to infin-
imposed close to, but within the apparent horizons of, thd®y during the coalescence process of a binary will be
black holes. The centers of the excised spheres have a coor-
dinate separation ad=10M. E CEa [2AaH 82)
We now discuss the solutions. The conformal faatois MPRC™ =ADM 167’
very close to 1 for each of the three decompositions. It de-
viates from 1 by less than 0.02, indicating that a conformalwhere 24,4 is the combined apparent horizon area of both
metric based of a superposition of Kerr-Schild metrics doesoles. ThusEy prc represents the maximum possible radia-
not deviate far from the constraint surface. tion content(MPRCQ) of the initial data. This, of course,
Figure 7 presents a plot of the conformal factor along themakes the unlikely assumption that the binary radiates away
axis through the centers of the holes. One seesfthatlose all of its angular momentum.

10 - - 10 -
5 ] 5[ ]
C ] C ] FIG. 8. Black holes at rest:
L ] i ] Contour plots of the conformal
0+ — 0 — factor  for ConfTT (left) and
C ] C ] CTS-add(right). The circles de-
C ] r 1 note the excised spheres of radius
-5 L _ -5 _ 2.
0 N Ll N I N B/ A
-10 -5 0 10 -10 -5 0 5 10
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TABLE I. Solutions of different decompositions for two black holes at rest. Ham and Mom are the rms residuals of the Hamiltonian and
momentum constraint, is the proper separation between the apparent horizn@enfT Trepresents the modified conformal TT decompo-
sition which is explained in Sec. V Gnv. symmrepresents a conformally flat, time symmetric and inversion symmetric solution of the
Hamiltonian constraint.

ConfTT 9x10°7 4x107 206486 57.7369 1.07175 8.062 3.761 0.9633 0.2660 —0.1467
PhysTT X107 3x10°7 2.06490 57.7389 1.07176 8.062 3.761 0.9633 0.2660 —0.1467
CTS-add X10°% 4x107 208121 623116 1.11340 8.039 3.610 0.9346 0.2434 —0.2615
CTS-mult 2x10°% 5x10°7 205851 60.8113 1.09991 8.080 3.672 0.9358 0.2444 —0.2569
mConfTT 3x10°% 1x10°°® 2.0827 62.404 1.1142 0.9346 0.2434  -0.2617
inv. symm. - — 4.36387 284.851 2.38053 17.731 3.724 0.9166 0.2285 —0.3337

We also compute the proper separatidretween the ap- ity, we find again that CTS and ConfTT/PhysTT contain too
parent horizon surfaces along the straight line connecting themuch energy relative to the black hole masses, ConfTT/
centers of the excised spheres. In order to compare differefthysTT having even more than CTS.

data sets we consider the dimensionless quantitiegpy , The proper separation between the apparent horizons
Eapm/m andEyprc/Eapy - We will also useE, /u which  is about 4% smaller for CTS than for ConfTT/PhysTT. By
will be defined shortly. Eq. (84) this should lead to a relative difference in binding

Table | summarizes these quantities for all three decomenergy of the same order of magnitude. Sikgg u differs
positions. It also includes results for inversion symmetricby almost a factor of two between the different decomposi-
initial data, which for black holes at rest reduces to the Mis-tions, the differences itvm play only a minor role.
ner datd33].! The results in Table | are intended to represent
nearly thesamephysical configuration.

From Table | one finds that the black holes have roughly B. Configurations with angular momentum

the same dimensionless proper separation. However, the Now we consider configurations which are approximating
scaled ADM energyEpy/m differs by as much as 4.7% two black holes in orbit around each other. The conformal
between the different data seBSyprc/Eapm, Which does  metric is still a superposition of two Kerr-Schild metrics. The
not depend on any notion of individual black hole masses aplack holes are located along theaxis with a coordinate
all, differs by 16% between the different data sets. separationd. For ConfTT/PhysTT, we boost the individual

The inversion symmetric data has lowéS{py/m and  |jes to some velocity-ve, along they axis. For CTS we

Emprc/Eapm: CTS has somewhat larger values, and . . >
ConfTT/PhysTT lead to the biggest values &xpy,/m and go to a corotating frame with an angular frequenty

Evpre/Eapy . This indicates that, relative to the sizes of the = (€. Thus, for each decomposition we have a two param-
black holes, ConfTT/PhysTT and CTS probably contain€ter family of solutions, the parameters beind,) for

SOMe excess energy. ConfTT and PhysTT, andd((1) for CTS.
A slightly different argument uses the binding energy ~BY Symmetry, these configuration will have an ADM an-
which is defined as gular momentum parallel to theaxis which we denote by.
In order to compare solutions among each other, and against

Ey, Eapm—2Many the conformally flat inversion symmetric data sets, we adjust
2T . (83 the parametersd(v) and d,Q), such that each initial-data
set has angular momentuum=2.976 and a proper sepa-
whereu =M ,,/2 is the reduced mass. Two Newtonian pointration between the apparent horizond foh=4.880. In Ref.

masses at rest satisfy [37], these values were determined to be the angular momen-
tum and proper separation of a binary black hole at the in-
En, 1 nermost stable circular orbit.
w o Um (84) Table Il lists the parameters corresponding to this situa-

tion as well as results for each initial-data $éts with the
From Table | we see that for ConfTT/PhysTlE,/u| configuration with black holes at rest, we find again that
>(I/m)~%, and for CTS|E, /|~ (1/m)~ 1. Since gravityin ~ ConfTT/PhysTT and CTS lead to different ADM energies.
general relativity is typicallystrongerthan Newtonian grav- Now, Expy/m andEyprc/Eapwm differ by 0.02 and 0.013,

Although the Misner solution can be obtained analytically, we “Because of the Lorentz contraction, the apparent horizons for
found it more convenient to solve the Hamiltonian constraint nu-ConfTT/PhysTT intersect the sphere with radius 2. In order to have
merically. The configuration in Table | corresponds to a separatiorthe full apparent horizon inside the computational domain, the ra-
B=12 in terms of{34]. dius of the excised spheres was reduced to 1.9 for these data sets.
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TABLE Il. Initial-data sets generated by different decompositions for binary black holes with the same angular modigimuand
separatiorl/m. The mConfTT dataset is explained in Sec. V C. It should be compared to CTS-add.

Parameters MAH EADM J/,U/m |/m EADM/m EMPRC/EADM Eb/ILL
ConfTT d=11.899y =0.26865 1.06368 2.12035 2.9759 4.879 0.9967 0.2906 —0.0132
PhysTT d=11.899y =0.26865 1.06369 2.12037 2.9757 4.879 0.9967 0.2906 —0.0132
CTS-add d=11.860§2=0.0415 1.07542 2.10391 2.9789 4.884 0.9782 0.2771  —0.0873
CTS-mult d=11.7502=0.0421 1.06528 2.08436 2.9776 4.880 0.9783 0.2772  —0.0867
mConfTT d=11.8602=0.0415 1.0758 2.1061 3.011 4.883 0.979 0.278 —0.085
inv. symm? 2.976 4.880 0.9774 0.2766 —0.09030

8Data taken fronf37].

respectively, between CTS and ConfTT/PhysTT. Howevernate it. Although it is not ideal, there is an alternative we can
in contrast to the cases where the black holes are at rest, navensider that does provide some insight into the importance
CTS and the inversion symmetric data set have very similagt the initial choice ofM'i .
values forEpy/m andEyprc/Eapm -

2. Black holes at rest

C. Reconciling conformal TT and thin sandwich Consider the following numerical experiment for two
We now investigate further the difference betweenplack holes at rest: GivelW'! from Eq. (48), make a trans-
ConfTT/PhysTT and CTS. Since the resulting initial-datayerse traceless decomposition by setting
sets for PhysTT and ConfTT are very similar, we restrict our
discussion to ConfTT. 2NMI =M+ (TY)! (87)

1. Motivation where V;Mi;=0 and N=N,+Ng—1. Notice that we are

The construction of binary black hole data for the decomposing RM'/, not M. Taking the divergence of Eq.
ConfTT/PhysTT cases produces an extrinsic curvature thgB7) one finds
almost certainly contains a significant TT component. It _ B
would be interesting to know how significant the presence of A Y'=V(2NM). (89
this component is for the values of the various physical pa-
rameters we are comparing. Ideally, we would like to com-The decomposition chosen in E(7) is motivated by the
pletely eliminate the TT component and see what effect thigonformal thin sandwich decomposition. With this decompo-
has on the resulting data sets. Unfortunately, this is a diffisition we can, in fact, use the shift vectsr to fix boundary

cult, if not impossible, task. conditions onY', just as it was used to fix the boundary
The TT component of a symmetric tenddr! is defined ~ conditions in Eqs(51b)—(51d). For the black holes at rest in
as this case, we hav& =0. After solving Eq.(88) for Y', we
can construct a new conformal extrinsic curvature by
ML =M1 —(LY)T, (85) .
M=o (Y)Y (89)
where the vectoly! is obtained by solving an elliptic equa-
tion of the form which is similar to what would result if we could eliminate
ML from M. Using M in place of M'l, we can again
AY'=v.mi. (86)  solve the conformal TT equations. The result of this modified

conformal TT decomposition “mConfTT” is striking: Fig. 7

The problem resides in the fact that the meaning of the T18hows that mConfTT generates a conformal fagidhat is

component depends on the boundary conditions used in solYery similar tog of CTS. mConfTT is also included in Table

ing Eq. (86). | where it can be seen that the quantitiEgp,,/m and
For the ConfTT/PhysTT cases we are actually solving fofEmprc/Eapwm differ only slightly between mConfTT and

a vectorV' that is a linear combination of two components, CTS. o o

one that solves an equation of the form of E8f) to obtain The fact that modification of the extrinsic curvature

the TT component of1'} and one that solves the momentum changes the ADM energy by such a large amount underlines

constraint. But by imposing inner-boundary conditions oft~h‘_9_ importance of a careful choice for the extrinsic curvature

V=0, we do not specify the boundary conditions on eitherM" in ConfTT/PhysTT. The extremely good agreement be-
part independently. Nor is it clear what these boundary confween CTS and mConfTT is probably caused by our proce-
ditions should be. Since we cannot explicitly construct thedure to determindvl’"’. We force the extrinsic curvature of
TT component of the extrinsic curvature, we cannot elimi-mConfTT into the form Eq(89). This is precisely the form
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of the extrinsic curvature in CTS, E{28), even using the
same functionN and the same boundary conditions on the 1.002
vectorsY' and 3'. 1.000

3. Black holes with angular momentum 0.998

We now apply the modified conformal TT decomposition 0.996

to the orbiting configurations of Sec. V B. In the corotating 0.994
frame, the black holes are at rest, and we start \Tyi}rand

M of two black holesat restwith coordinate separatiod C
=11.860. We now solve Ed88) with 0.01 -
N=Np+Ng—1 (90) - 5
0 —]
and corotating boundary conditions &f [cf. Egs. (51b)— C ]
(51d)]: 001 E E
Y'=N}, sphere inside hole A, (913 I S —

Y'=Ng sphere inside hole B, (91b) *
.. FIG. 9. Plots ofyy andV* along the positivex axis for ConfTT
Y'=QXr outer boundary. (910  for different radii reyc=2M,M,0.5M,0.2M. The excised spheres
. ) S _are centered on thg axis atx==*=5. The position where a line
Nag andN),g are lapse and shift of individual Kerr-Schild terminates gives.,. for that line.
black holes at resM’" is again constructed by E¢B9) and

used in solving the conformal TT equations. For CTS-addwith @=N,+Ng—1), the initial-data sets

Results from this procedure are included in Table Il.geem to diverge as,is decreased. This has to be expected,

Again, mConfTT generates results very close to CTs'since this choice for changes sign if the excised spheres
Eapm/m changes by 1.8% of the total mass between g 9 P

ConfTT and mConfTT, again highlighting the importance of P&come sufficiently small. Changing &=NaNg so that the
the extrinsic curvature. lapse does not change sign reduces this divergent behavior.

Von Neumann boundary conditions ai at the excised

D. Dependence on the size of the excised spheres spheres,

W_

T 0, (92

The framework presented in this paper requires the exci-
sion of the singularities at the centers of each Hdba far
we have usedq,=2M 0or rgyc=1.9M in order to impose ) _ ) )
boundary conditions close to the apparent horizons, but difad to an increase ik, especially for large excised
ferent choices can be made. Indeed, one might expect thapheres. This combination of lapseand boundary condi-
the boundary condition&19) and(51) become “better” far-  tions exhibits the smallest variations Bapy/m; cuts
ther inside the apparent horizon, where the metric and extrinthrough ¢, 8 and through the apparent horizons are shown
sic curvature of that black hole dominate the superposeth Figs. 11 and 12. From the three examined combinations of

metric~yij and superposed extrinsic curvativel . lapse and boundary conditions, the one shown behaves best,

In order to test this assumption, we solve the constrainPut there is still no convincing sign of convergence.
equations for two black holes at rest for different radgij,. Table IV presents ADM energies and apparent horizon
We find that for all three decompositions, the data sets deareas and masses for CTS with differepj. and different
pend strongly on the radius of the excised spheres. choices of lapse and boundary condition. From the unscaled

Figure 9 presents plots of the conformal factieand V* ADM energy Eapy it is apparent thaE=NA+ Ng—1 di-
for ConfTT with differentr.,.. There is no clear sign of verges most strongly. Note that between all choices of lapse,
convergence ofy asr ¢y 0. Forr,.=0.2M, the conformal boundary conditions and,., the unscaled quantities
factor ¢ even oscillates close to the excised sphere. Table IIEapym, M an, andl exhibit a much broader variation than the
displays various quantities for the ConfTT decomposition forscaled quantitie&py/m andl/Expy -
differentrgyc. AS ey Varies between 20 and 0.M, the
ADM energy'varies between 2.065 and 2.106, whereas the V1. DISCUSSION
apparent horizon area changes by nearly 4%. The apparent
horizons move around somewhatrag. changes. Figure 10 Our results clearly show that different decompositions
shows the location of the apparent horizons for differentead to different initial-data sets, even when seemingly simi-
lar choices for the freely specifiable pieces are used. From
Tables | and Il one sees th&af ), /m changes by as much as
0.029 between ConfTT/PhysTT and CTS. The difference be-

3Marronetti and Matznef22] effectively excised the centers, too, tween ConfTT/PhysTT and the inversion symmetric data is
by using “blending functions.” even larger, 0.047. These numbers seem to be small; how-

r.EXC'
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TABLE lll. Solutions of ConfTT for different radii of the excised sphereg,.. The results for PhysTT are nearly identical.

lexc Eapwm Ann I Eapm/m I/Eapm

2.0 2.0649 57.737 8.062 0.9633 3.904
1.0 2.0682 57.825 8.101 0.9641 3.917
0.5 2.0808 58.520 8.101 0.9642 3.893
0.2 2.0978 59.514 8.093 0.9640 3.858
0.1 2.1064 60.025 8.089 0.9638 3.840

ever, current evolutions of binary data usually find the totalerror in this choice would diminish as we decrease the radius
energy emitted in gravitational radiatidfi;y/m to be be-  of the excision boundary. However, our results presented in
tween 0.01 and 0.081,2,38, which is the same order of Tables Ill and IV do not support this conjecture. Examining
magnitude as the changesHtipy/m we find. This means the change irEpy /M as we varyr o, shows only a small
that, in principle, most of the energy radiated in these simu€hange, but more importantly, it shows no sign of converging
lations could originate from “spurious” energy in the system as we decrease,,.. The effects of changinge,. are much
and not from the dynamics of the binary system we are inmore significant fot/E,py , changing its value by as much
terested in. as 10% in the case of CTS-mult for the range of values
These findings highlight the fact that current binary blackconsidered. Furthermore, as with the energy, we see no sign
hole initial data sets are inadequate for the task of accuratelyf convergence il/Eapy as reyc decreases. Interestingly,
describing realistic binary systems. We see that the choiceslthough the solutions show no sign of convergence as we
of the conformal 3-geometr§/ij and the freely specifiable shrink the excision radius, we do find that the dimensionless
quantitiesEppy/m andl/Eapy do become independent of

ence the content of the initial data at a significant level. Fur{he choice of the inner-boundary conditionrag, decreases.

thermore, the results suggest that small changes in the fred!lS €an be seen in comparing the result in Table IV for the

data associated with the extrinsic curvature are more signif€aS€S usingy=1 anddy/dr=0 as inner-boundary condi-
. Lo~ A . tions. Additional tests, not reported in this paper, further sup-
cant than small changes in the choiceygf.” This assertion

is supported by the fact th&,py/m is consistently larger port this assertion.

for the ConfTT solutions than for the CTS solutions but the

two approaches can be made to produce quite consistent re- VII. CONCLUSION
sults by using the modified extrinsic curvature of the

mConfTT method. All of these decompositions use the same Using a new elliptic solver gqpable of solving the_initial-
non-flat conformal metric, but differ in the extrinsic curva- Yalue problem of general relativity for any of three different

ture. On the other hand, results for the conformally flatd®cOMpositions and any choice for the freely specifiable

inversion-symmetric data agree rather well with the results

from the CTS method when we consider orbiting black

holes. For black holes at rest, CTS differs from the inversion 2
symmetric data, which seems to contradict our conclusion.
However, this difference is likely due to the time symmetric

nature of the inversion symmetric data, which is especially 15
adapted to the time-symmetry of the particular configuration

of “two black holes at rest.”

Improved binary black hole initial data will require >
choices for the freely specifiable data that are physically mo-
tivated, rather than chosen for computational convenience.

The same is true for the boundary conditions used in solving

the constraints. The boundary conditions used in this paper 0.5
carry the implicit assumptions that the approximate metric >

and extrinsic curvature are correct at the excision boundaries Dt P e e
and that the value of the single-hole Kerr-Schild shift at the oldl v v
excision boundary is correct in a multi-hole situation. This is 3 3.5 4 4.5
clearly not true, but we might hope that the impact of the x

portions of the extrinsic curvature, embeddedMfi, influ-

[9)]

FIG. 10. Apparent horizons for ConfTT with different radii of
excised spheres. Results shown are fgg.=2M (long-dashed
“4Following submission of this paper, a preprint by Dametial. line), M (dotted ling, 0.5M (short-dashed lineand 0.2M (outer
[39] has appeared that lends support to our idea that the extrinsigolid ling). The inner solid line is a circle with radius 2. The inset
curvature plays a key role in constructing quasi-equilibrium binaryshows a parametric plot af(¢) —2, which emphasizes the differ-
black hole initial data. ences between the different apparent horizons.
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for x<5, and are shifted down by 0.5 far>5 to allow for better Although the new Kerr-Schild-based data provide a valu-
plotting. d¢/dr approaches zero at the inner boundary on scales to@ble point of comparison, it is not clear that the data pro-
small to be seen in this figure. duced are significantly superior to previous conformally flat

data. What is clear is that the choice of the freely specifiable
data, we have examined data sets representing binary blackta will be very important in constructing astrophysically
hole spacetimes. We find that the choices for the freely speckealistic binary black hole initial data. Progress will require
fiable data currently in use are inadequate for the task ofhat these datandthe boundary conditions needed to solve
simulating the gravitational radiation produced in astrophysithe constraints, must be chosen based on physical grounds
cally realistic situations. In particular, we studied the resultsrather than computational convenience.
of using a superposition of two Kerr-Schild black holes to fix  How can better initial data be achieved and how can the
the freely specifiable data and compared them to the resultfuality of initial data be measured? We believe that the con-
obtained from conformally flat initial data. formal thin sandwich decomposition will be especially use-

TABLE IV. Solutions of CTS as a function of the radius of excised sphargs. Different choices of the lapse and boundary
conditions fory at the excised spheres are explored.

Mexc Eapm Aan | Eapom/m I/Eapm

a=Np+Ng—1, ¢=1

2.0 2.0812 62.312 8.039 0.9346 3.863
1.0 2.1846 68.279 8.000 0.9372 3.662
0.5 2.3085 76.253 7.925 0.9371 3.433
0.2 2.5463 93.534 7.750 0.9333 3.044
0.1 2.8543 118.834 7.489 0.9282 2.624
a@=NpNg, ¢=1
2.0 2.0585 60.811 8.080 0.9358 3.925
1.0 2.1216 64.080 8.044 0.9395 3.792
0.5 2.1696 66.790 8.017 0.9411 3.695
0.2 2.2120 69.456 7.991 0.9409 3.613
0.1 2.2326 70.809 7.978 0.9405 3.573
a:NANB, &l,///ﬂl’:O
2.0 2.1110 64.229 8.085 0.9337 3.830
1.0 2.1533 66.128 8.030 0.9387 3.729
0.5 2.1794 67.427 8.011 0.9409 3.676
0.2 2.2136 69.559 7.990 0.9409 3.609
0.1 2.2330 70.836 7.978 0.9405 3.573
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ful. Genuine radiative degrees of freedom caringirinciple ~ must compute an initial-data set representing a binary black
be recognized on a single time slice. The conformal thinhole in quasi-circular orbit and evolve it. Then one must
sandwich method uses in effect two nearby surfaces, givingepeat this process with an initial-data set representing the
it a potential advantage over other methods. Also, it avoidsamebinary black hole, say, one orbital period earlier, and
much of the uncertainty related to specifying a conformalevolve that data set, too. If both evolutions lead to the same
extrinsic curvature. Moreover, the conformal thin sandwichgravitational wavegmodulo time offset then one can be
approach is especially well suited for the most interestingconfident that the gravitational radiation is indeed astrophysi-
configurations, a black-hole binary in a quasi-equilibrium or-cally realistic. This approach has recently been used for the
bit. In this case time derivatives of all quantities are smallfirst time in conjunction with conformally flat puncture data,
and the choicai’ =0 is physically motivated. One should Where it proved remarkably successf8l.
exploit the condition of quasi-equilibrium as fully as pos-
sible, i.e. one should use the conformal thin sandwich ap-
proach together with the constaiitequation,s;K=0. The
latter yields another elliptic equation for the lapse which re- e thank Lawrence Kidder, Mark Scheel, and James York
moves the arbitrariness inherent in choosing a conformajor helpful discussions. This work was supported in part by
lapsea. One will also need more physical boundary condi-NSF grants PHY-9800737 and PHY-9900672 to Cornell Uni-
tions. Work in this direction was begun[ig3,24] and refined versity, and by NSF grant PHY-9988581 to Wake Forest Uni-
in [40]. versity. Computations were performed on the IBM SP2 of
Ultimately, the gravitational wave content of an initial- the Department of Physics, Wake Forest University, with
data set can be determined only by long term evolutions. Onsupport from an IBM SUR grant.
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