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Comparing initial-data sets for binary black holes
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We compare the results of constructing binary black hole initial data with three different decompositions of
the constraint equations of general relativity. For each decomposition we compute the initial data using a
superposition of two Kerr-Schild black holes to fix the freely specifiable data. We find that these initial-data
sets differ significantly, with the ADM energy varying by as much as 5% of the total mass. We find that all
initial-data sets currently used for evolutions might contain unphysical gravitational radiation of the order of
several percent of the total mass. This is comparable to the amount of gravitational-wave energy observed
during the evolved collision. More astrophysically realistic initial data will require more careful choices of the
freely specifiable data and boundary conditions for both the metric and extrinsic curvature. However, we find
that the choice of extrinsic curvature affects the resulting data sets more strongly than the choice of conformal
metric.
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I. INTRODUCTION

Numerical evolutions of black holes have been improv
slowly but steadily over the last few years and now fi
attempts are being made to extract physical information fr
these evolutions. Most notably one wants to predict
gravitational radiation emitted during black hole coalesce
@1–3#.

The quality of the initial data will be crucial to the succe
of the predictions of the gravitational wave forms. Unphy
cal gravitational radiation present in the initial data will co
tribute to the gravitational waves computed in an evolut
and might overwhelm the true gravitational wave signat
of the physical process under consideration. Therefore
important question is how to control the gravitational wa
content of initial-data sets, and how to specifyastrophysi-
cally relevant initial data with the appropriate gravitation
wave content, e.g., for two black holes orbiting each oth
Unfortunately, assessing and controlling the gravitatio
wave content of initial-data sets is not well understood at

The mereconstructionof an initial-data set alone is fairly
involved, since every initial-data set must satisfy a rat
complicated set of four partial differential equations, the
called constraint equations of general relativity. The ques
of how to solve these equations, and how to specify ini
data representing binary black holes in particular, has
ceived considerable attention.

We consider in this paper three different approaches
transform the constraint equations into elliptic equations:
conformal transverse-traceless~TT! decomposition@4#, the
physical TT decomposition@5–7# and theconformal thin

*Permanent address: Department of Physics, Cornell Univer
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sandwich decomposition@8#. These decompositions split th
variables on the initial-data surface into various pieces
such a way that the constraint equations determine som
the pieces while not restricting the others. After these fre
specifiable pieces are chosen, the constraint equations
solved and the results are combined with the freely spe
able pieces to yield a valid initial-data set.

Any reasonable choice for the freely specifiable piec
will lead to a valid initial-data set. Furthermore, any one
these decompositions can generate any desired initial-
set, given thecorrectchoices of the freely specifiable piece
However, it is not clearwhat choices of freely specifiable
pieces lead to initial-data sets with the desired properties

The decompositions we consider here lead to four coup
nonlinear elliptic partial differential equations. Since su
equations are difficult to solve, the early approach to c
structing initial data was pragmatic: One used the conform
TT decomposition with additional restrictions on the free
specifiable pieces, most notably conformal flatness
maximal slicing. These assumptions decouple the constra
and allow for analytical solutions to the momentum co
straints, the so-calledBowen-York extrinsic curvature
@9–11#. All that remains is to solve a single elliptic equatio
the Hamiltonian constraint. This approach has been use
several variations@12–14#.

However, these numerical simplifications come at a co
The freely specifiable pieces have been restricted to a s
subset of all possible choices. One therefore can gene
only a subset of all possible initial-data sets, one that mi
not contain the desired astrophysically relevant initial-d
sets.

Over the last few years there have been additional de
opments: post-Newtonian results have indicated that bin
black hole metrics are not conformally flat@15,16#. With cer-
tain restrictions on the slicing, it has also been shown tha

ty,
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single stationary spinning black hole cannot be represe
with a conformally flat spatial metric@17,18#. In @19# it was
shown that conformally flat initial data sets for spinning b
nary black holes contain an unphysical contamination. Mo
over, computations in spherical symmetry@20# indicated that
initial-data sets depend strongly on the choice of the extrin
curvature and that the use of the Bowen-York extrinsic c
vature might be problematic.

Therefore it is necessary to move beyond conformally
initial data and to explore different choices for the extrin
curvature. Matzneret al. @21# proposed a non-flat conforma
metric based on the superposition of two Kerr-Schild m
rics; a solution based on this proposal was obtained in@22#.
This work demonstrated the existence of solutions to the
set of equations, but did not examine the data sets in
detail. References@23,24# obtained solutions to a similar se
of equations during the computation of quasi-circular orb
of binary black holes. However, these works assumed c
formal flatness.

In this paper we present a code capable of solving
three above-mentioned decompositions of the constr
equations for arbitrary choices of the freely specifia
pieces. This code is based on spectral methods which h
been used successfully for several astrophysical probl
~see, e.g.,@24–30#!. Our code is described in detail in
separate paper@31#.

We compute solutions of the different decompositions
the non-flat conformal metric proposed in Ref.@21#. Each
decomposition has certain choices for the freely specifia
pieces and boundary conditions that seem ‘‘natural’’ a
which we use in our solutions. We compare the compu
initial-data sets with each other and with the ‘‘standard’’ co
formally flat solution using the Bowen-York extrinsic curv
ture. Our major results confirm that~1! the different decom-
positions generate different physical initial-data sets
seemingly similar choices for the freely specifiable piec
and ~2! the choice of extrinsic curvature is critical. The fir
result is certainly not unexpected, but each of these fac
can cause relative differences of several percent in ga
invariant quantities like the Arnowitt-Deser-Misner~ADM !
energy.

We also find that the conformal TT/physical TT decom
positions generate initial-data sets with ADM energies 2
percent higher than data sets of the conformal thin sandw
decomposition. We demonstrate that this higher ADM ene
is related to the choice of the freely specifiable part of
extrinsic curvature. In addition, we find that the solutio
depend significantly on the boundary conditions used.

The paper is organized as follows. In Sec. II we descr
the three decompositions. Section III explains how
choose the freely specifiable data within each decomposit
In Sec. IV we describe and test our elliptic solver. Section
presents our results, which we discuss in Sec. VI.

II. DECOMPOSITIONS OF EINSTEIN’S EQUATIONS
AND THE CONSTRAINT EQUATIONS

A. 3¿1 decomposition

In this paper we use the standard 311 decomposition of
Einstein’s equations. We foliate the spacetime witht5const
hypersurfaces and write the four-dimensional metric as
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(4)ds252N2dt21g i j ~dxi1Nidt!~dxj1Njdt!, ~1!

whereg i j represents the induced 3-metric on the hypers
faces, andN andNi represent the lapse function and the sh
vector, respectively. We define the extrinsic curvatureKi j on
the slice by

K52
1

2
'L n

(4)g ~2!

where (4)g is the space-time metric,n the unit normal to the
hypersurface, and' denotes the projection operator into th
t5const slice. Einstein’s equations divide into constra
equations, which constrain the data (g i j ,Ki j ) on each hyper-
surface, and into evolution equations, which determine h
the data (g i j ,Ki j ) evolve from one hypersurface to the nex
The constraint equations are

R1K22Ki j K
i j 516pGr ~3!

¹j~Ki j 2g i j K !58pG ji . ~4!

Equation~3! is called theHamiltonian constraint, and Eq.
~4! is referred to as themomentum constraint. K5g i j K

i j is
the trace of the extrinsic curvature,¹ andR denote the three-
dimensional covariant derivative operator and the Ricci s
lar compatible withg i j . r and j i are the energy and momen
tum density, respectively. Both vanish for the vacuu
spacetimes considered here.

The evolution equation forg i j is

] tg i j 522NKi j 1¹iNj1¹jNi , ~5!

which follows from Eq.~2!. There is a similar albeit longe
equation for] tKi j which we will not need in this paper. Th
choices ofN and Ni are arbitrary. One can in principle us
any lapse and shift in the evolution off the initial-data su
face, although some choices of lapse and shift are be
suited to numerical implementation than others.

Later in this paper we will often refer to the trace-fre
piece of Eq.~5!. We denote the trace-free piece of a tensor
TF(.), anddefineg[detg i j . From Eq.~5! and the fact that
d ln g5gkldgkl , it follows that

TF~] tg i j !5g1/3] t~g21/3g i j !522NAi j 1~LN! i j . ~6!

HereAi j 5Ki j 2
1
3 g i j K denotes the trace-free extrinsic curv

ture, and

~LN! i j [¹ iNj1¹ jNi2
2

3
g i j ¹kN

k. ~7!

L always acts on a vector, so the ‘‘N’’ in (LN) i j denotes the
shift vectorNi and not the lapseN.

B. Decomposition of the constraint equations

Equations~3! and ~4! constrain four degrees of freedom
of the 12 quantities (g i j ,Ki j ). However, it is not immedi-
ately clear which pieces ofg i j and Ki j are constrained and
which pieces can be chosen at will. Several decompositi
7-2
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COMPARING INITIAL-DATA SETS FOR BINARY . . . PHYSICAL REVIEW D66, 024047 ~2002!
have been developed to divide the 12 degrees of free
into freely specifiable and constrained pieces. We will n
review some properties of the three decompositions we c
sider in this paper.

All three decompositions follow the York-Lichnerowic
approach and use a conformal transformation on the phys
3-metricg i j ,

g i j 5c4g̃ i j . ~8!

c is called theconformal factor, g̃ i j the background metric
or conformal metric. We will denote all conformal quantitie
with a tilde. In particular,¹̃ is the covariant derivative op
erator associated withg̃i j , andR̃i j andR̃ are the Ricci tensor
and Ricci scalar ofg̃ i j .

The extrinsic curvature is split into its trace and trace-f
part,

Ki j 5Ai j 1
1

3
g i j K. ~9!

The three decompositions of the constraint equations we
cuss in this paper differ in howAi j is decomposed. For eac
decomposition, we discuss next the relevant equations
describe how we choose the quantities one has to spe
before solving the equations. We use the conventions of@32#.

1. Conformal TT decomposition

In this decomposition one first conformally transforms t
traceless extrinsic curvature,

Ai j 5c210Ãi j , ~10!

and then applies a TT decomposition with respect to
background metricg̃ i j :

Ãi j 5ÃTT
i j 1~ L̃X! i j . ~11!

The operatorL̃ is defined by Eq.~7! but using the conforma
metric g̃ i j and derivatives associated withg̃ i j . ÃTT

i j is trans-

verse with respect to the conformal metric,¹̃j ÃTT
i j 50, and is

traceless.
Substituting Eqs.~10! and ~11! into the momentum con

straint~4!, one finds that it reduces to an elliptic equation f
Xi , whereasÃTT

i j is unconstrained.

In order to specify the transverse-traceless tensorÃTT
i j one

usually has toconstructit from a general symmetric trace
free tensorM̃ i j by subtracting the longitudinal piece. As d
scribed in@32# one can incorporate the construction ofÃTT

i j

from M̃ i j into the momentum constraint, arriving at the fo
lowing equations:

¹̃2c2
1

8
cR̃2

1

12
c5K21

1

8
c27Ãi j Ã

i j 522pGc5r,

~12!
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D̃LVi2
2

3
c6¹̃ iK1¹̃j M̃

i j 58pGc10j i , ~13!

whereÃi j and the operatorD̃L are defined by

Ãi j 5~ L̃V! i j 1M̃ i j ~14!

and

D̃LVi[¹̃j~ L̃V! i j . ~15!

After solving these equations forc and Vi , one obtains
the physical metricg i j from Eq. ~8! and the extrinsic curva-
ture from

Ki j 5c210Ãi j 1
1

3
c24g̃ i j K. ~16!

We will refer to Eqs.~12! and ~13! together with Eqs.~14!,
~16! and ~8! as theconformal TT equations. In these equa-
tions we are free to specify the background metricg̃ i j , the
trace of the extrinsic curvatureK, and a symmetric traceles
tensorM̃ i j . The solutionVi will contain a contribution that
removes the longitudinal piece fromM̃ i j and the piece tha
solves the momentum constraint ifM̃ i j were transverse
traceless.

This decomposition has been the most important in
past, since if one chooses a constantK and if one considers
vacuum spacetimes then the momentum constraint~13! de-
couples from the Hamiltonian constraint~12!. Moreover, if
one assumes conformal flatness andM̃ i j 50, it is possible to
write down analytic solutions to Eq.~13!, the so-called
Bowen-York extrinsic curvature. In that case one has to d
with only one elliptic equation forc. The Bowen-York ex-
trinsic curvature can represent multiple black holes with
bitrary momenta and spins. One can fix boundary conditi
for c by requiring that the initial-data slice be inversion sym
metric at both throats@33,34#. In that case one has to modif
the extrinsic curvature using a method of images. We w
include initial-data sets obtained with this approach belo
where we will refer to them asinversion symmetricinitial
data.

Reasonable choices for the freely specifiable pie
g̃ i j ,K,M̃ i j will lead to an initial-data set (g i j ,Ki j ) that sat-
isfies the constraint equations. How should we choose
these functions in order to obtain a desired physical confi
ration, say a binary black hole with given linear momen
and spins for the individual holes? We can gain insight in
this question by considering how the conformal TT deco
positions can recover a known solution.

Suppose we have a known solution (g0 i j ,K0
i j ) of the con-

straint equations. Denote the trace and trace-free parts of
extrinsic curvature byK0 andA0

i j , respectively. If we set

g̃ i j 5g0i j , K5K0 , M̃ i j 5A0
i j ~17!

then
7-3
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c51, Vi50 ~18!

trivially solve Eqs.~12! and ~13!. Note that we have to se
M̃ i j equal to the trace-free part of the extrinsic curvature

Now suppose we have a guess for a metric and an ex
sic curvature, which—most likely—will not satisfy the con
straint equations~3! and ~4!. Set g̃ i j to the guess for the
metric, and setK andM̃ i j to the trace and trace-free piece
the guess of the extrinsic curvature. By solving the conf
mal TT equations we can compute (g i j ,Ki j ) that satisfy the
constraint equations. If our initial guess is ‘‘close’’ to a tru
solution, we will havec'1 andVi'0, so thatg i j andKi j

will be close to our initial guess. Thus one can guess a me
and extrinsic curvature as well as possible and then solve
conformal TT equations to obtain corrected quantities t
satisfy the constraint equations.

An artifact of the conformal TT decomposition is that o
has no direct handle on the transverse traceless piece
respect to thephysicalmetric. For any vectorXi ,

~LX! i j 5c24~ L̃X! i j . ~19!

Thus, Eqs.~10! and ~11! imply

Ai j 5c210ÃTT
i j 1c26~LX! i j . ~20!

For any symmetric traceless tensorSi j

¹jS
i j 5c210¹̃j~c10Si j !. ~21!

Therefore the first term on the right-hand side of Eq.~20! is
transverse-traceless with respect to the physical metric,

¹j~c210ÃTT
i j !50. ~22!

However, the second term on the right-hand side of Eq.~20!
is conformally weighted. Therefore, Eq.~20! does not repre-
sent the usual TT decomposition.

2. Physical TT decomposition

In this case one decomposes the physical traceless ex
sic curvature directly:

Ai j 5ATT
i j 1~LX! i j . ~23!

As above in the conformal TT decomposition, the mome
tum constraint becomes an elliptic equation forXi . We can
again incorporate the construction of the symmetric tra
verse traceless tensorATT

i j from a general symmetric tenso

M̃ i j into the momentum constraint. Then one obtains
physical TT equations:

¹̃2c2
1

8
cR̃2

1

12
c5K21

1

8
c5Ãi j Ã

i j 522pGc5r,

~24!

D̃LVi16~ L̃V! i j ¹̃j ln c2
2

3
¹̃ iK1c26¹̃j M̃

i j 58pGc4 j i ,

~25!
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whereÃi j is defined by

Ãi j 5~ L̃V! i j 1c26M̃ i j . ~26!

When we have solved Eqs.~24! and ~25! for c andVi , the
physical metric is given by Eq.~8!, and the extrinsic curva-
ture is

Ki j 5c24S Ãi j 1
1

3
g̃ i j K D . ~27!

We are free to specify the background metricg̃ i j , the
trace of the extrinsic curvatureK, and a symmetric traceles
tensorM̃ i j . As with the conformal TT equations, the solutio
Vi will contain a contribution that removes the longitudin
piece fromM̃ i j and a piece that solves the momentum co
straint if M̃ i j were transverse traceless.

These equations can be used in the same way as the
formal TT equations. Guess a metric and extrinsic curvatu
setg̃ i j to the guess for the metric, andK andM̃ i j to the trace
and trace-free pieces of the guess for the extrinsic curvat
Then solve the physical TT equations to obtain a correc
metricg i j and a corrected extrinsic curvatureKi j that satisfy
the constraint equations.

The transverse traceless piece ofKi j ~with respect tog i j )
will be the transverse traceless piece ofc210M̃ i j . One can
also easily rewrite the physical TT equations such t
c210M̃ i j can be freely chosen instead ofM̃ i j . So, in this
decomposition we can directly control the TT piece of t
physical extrinsic curvature. We have chosen to follow@32#
since it seems somewhat more natural to specify two con
mal quantitiesg̃ i j andM̃ i j than to specify one conformal an
one physical quantity.

3. Conformal thin sandwich decomposition

The conformal and physical TT decompositions rely on
tensor splitting to decompose the trace-free part of the
trinsic curvature. In contrast, the conformal thin sandw
decomposition simply definesAi j by Eq. ~10! and the de-
composition

Ãi j [
1

2ã
@~ L̃b! i j 2ũi j #, ~28!

whereũi j is symmetric and tracefree. Equation~28! is moti-
vated by Eq.~6!: If one evolves an initial-data set withAi j of
the form ~28! using as lapse and shift

N5c6ã,

Ni5b i , ~29!

then

TF~] tg i j !5c4ũi j . ~30!
7-4
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Therefore, the decomposition~28! is closely related to the
kinematical quantities in an evolution. Althoughã andb i are
introduced in the context of initial data, one usually refers
them as the ‘‘conformal lapse’’ and ‘‘shift.’’ While the form
of Eq. ~28! is similar in form to the conformal and physica
TT decompositions, there are differences. In particular,ũi j is
not divergenceless.

Within the conformal thin sandwich decomposition, the
constraint equations take the form

¹̃2c2
1

8
cR̃2

1

12
c5K21

1

8
c27Ãi j Ã

i j 522pGc5r

~31!

D̃Lb
i2~ L̃b! i j ¹̃j ln ã2

4

3
ãc6¹̃ iK2ã¹̃j S 1

ã
ũi j D

516pGãc10j i .
~32!

Having solved Eqs.~31! and ~32! for c and the vectorb i ,
one obtains the physical metric from Eq.~8! and the extrinsic
curvature from

Ki j 5c210Ãi j 1
1

3
c24g̃ i j K. ~33!

In this decomposition we are free to specify a conform
metric g̃ i j , the trace of the extrinsic curvatureK, a symmet-
ric trace-free tensorũi j and a functionã.

It seems that the conformal thin sandwich decomposit
contains additional degrees of freedom in the form of
function ã and three additional unconstrained components
ũi j . This is not the case. The longitudinal piece ofũi j corre-
sponds to the gauge choice of the actual shift vector use
an evolution. Thusũi j really only contributes two degrees o
freedom, just likeM̃ i j in the conformal and physical TT
decompositions. Furthermore, we can reach anyreasonable

physical solution (g i j ,Ki j ) with any reasonablechoice ofã;
each choice ofã simply defines a new decomposition.
forthcoming article by York@35# will elaborate on these
ideas. Note that forã51/2 we recover the conformal TT
decomposition.

Let us now turn to the question of how one should p
the freely specifiable data in the conformal thin sandw
approach. We motivate our prescription again by conside
how to recover a known spacetime: Assume we are give
full four-dimensional spacetime with 311 quantitiesg0i j ,
K0

i j , N0
i andN0. Further assume the spacetime is station

and the slicing is such that] tg i j 5] tKi j 50. An example for
such a situation is a Kerr black hole in Kerr-Schild or Boye
Lindquist coordinates.

Using ] tg0i j 50 in Eq. ~6! yields a relation for the trace
free extrinsic curvature
02404
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A0
i j 5

1

2N0
~LN0! i j . ~34!

This is a decomposition of the form~28! with ũi j 50. There-
fore, if we choose the freely specifiable data for the conf
mal thin sandwich equations as

g̃ i j 5g0i j , ã5N0 , ~35!

K5K0 , ũi j 50,

and if we use appropriate boundary conditions, then the
lution of the conformal thin sandwich equations will bec
51 andb i5N0

i . As part of the solution, we obtain the shi
vector needed for an evolution to produce TF(] tg i j )50. Not
needing a guess for the trace-free extrinsic curvature,
having the solutionb i automatically provide an initial shift
for evolution, make the conformal thin sandwich equatio
very attractive.

In order to generate initial-data slices that permit an e
lution with zero time derivative of the conformal metric —
highly desirable feature for quasi-equilibrium data, or for
situation with holes momentarily at rest — one can proce
as follows: Setg̃ i j andK to the guess for the metric and trac
of extrinsic curvature, respectively. Setã to the lapse func-
tion that one is going to use in the evolution, and setũi j

50. If these guesses are good, the conformal factorc will be
close to 1, andN5c6ã as well asNi5b i give us the actual
lapse function and shift vector to use in the evolution.

III. CHOICES FOR THE FREELY SPECIFIABLE DATA

A. Kerr-Schild coordinates

We base our choice for the freely specifiable data o
superposition of two Kerr black holes in Kerr-Schild coord
nates. In this section we describe the Kerr-Schild solut
and collect necessary equations. We also describe how
compute the 3-metric, lapse, shift and extrinsic curvature
a boosted black hole with arbitrary spin.

A Kerr-Schild metric is given by

gmn5hmn12Hl ml n , ~36!

wherehmn is the Minkowski metric, andl m is a null-vector
with respect to both the full metric and the Minkowski me
ric: gmnl ml n5hmnl ml n50. The 3-metric, lapse and shift ar

g i j 5d i j 12Hl i l j , ~37!

N5~112Hl tl t!21/2, ~38!

Ni52
2Hl tl i

112Hl tl t
. ~39!

For a black hole at rest at the origin with massM and
angular momentumMaW , one has
7-5
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H5
Mr 3

r 41~aW •xW !2
, ~40!

l m
rest5~1,lW rest!, ~41!

lW rest5
rxW2aW 3xW1~aW •xW !aW /r

r 21a2
, ~42!

with

r 25
xW22aW 2

2
1S ~xW22aW 2!2

4
1~aW •xW !2D 1/2

. ~43!

For a nonrotating black hole withaW 50, H has a pole at the
origin, whereas for rotating black holes,r has a ring singu-
larity. We will therefore have to excise from the comput
tional domain a region close to the center of the Kerr-Sch
black hole.

Under a boost, a Kerr-Schild coordinate system tra
forms into a Kerr-Schild coordinate system. Applying a Lo
entz transformation with boost velocityv i to l m

rest, we obtain
the null vectorl m of the boosted Kerr-Schild coordinate sy
tem. Equations~37!–~39! give then the boosted 3-metric
lapse, and shift. Since all time dependence is in the unifo
motion, evolution with lapseN and shiftNi yields ] tg i j 5
2vk]kg i j , and from Eq.~5! one can compute the extrins
curvature

Ki j 5
1

2N
~vk]kg i j 1¹iNj1¹jNi !. ~44!

If this initial-data set is evolved with the shiftNi , the
black hole will move through the coordinate space with v
locity v i . However, if the evolution uses the shift vectorNi

1v i , the coordinates will move with the black hole, and t
hole will be at rest in coordinate space. The spacetime
nonetheless different from a Kerr black hole at rest. T
ADM momentum will bePADM

i 5gMv i , whereM is the rest

mass of the hole andg5(12vW 2)21/2.

B. Freely specifiable pieces

We want to generate initial data for a spacetime conta
ing two black holes with massesMA,B , velocitiesvW A,B and
spinsMAaW A andMBaW B . We follow the proposal of Matzne
et al. @21,22# and base our choices for the freely specifia
choices on two Kerr-Schild coordinate systems describ
two individual black holes. The first black hole with label
has an associated Kerr-Schild coordinate system with me

gAi j5d i j 12HAl Ail A j , ~45!

and with an extrinsic curvatureKA i j , a lapseNA and a shift
NA

i . The trace of the extrinsic curvature isKA . All these
quantities can be computed as described in the previous
tion ~Sec. III A!. The second black hole has a similar set
associated quantities which are labeled with the letter B.
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For all three decompositions, we need to choose a con
mal metric and the trace of the extrinsic curvature. W
choose

g̃ i j 5d i j 12HAl Ail A j12HBl Bil B j ~46!

K5KA1KB. ~47!

The metric is singular at the center of each hole. Theref
we have to excise spheres around the center of each
from the computational domain. We now specify for ea
decomposition the remaining freely specifiable pieces
boundary conditions.

1. Conformal TT and physical TT decompositions

For the conformal TT and physical TT decompositions
will be solving for a correction to our guesses. As guess
the trace-free extrinsic curvature, we use a superposition

M̃ i j 5S KAk
( i 1KBk

( i 2
1

3
dk

( i~KA1KB! D g̃ j )k. ~48!

M̃ i j is symmetric and trace-free with respect to the conf
mal metric, g̃ i j M̃

i j 50. Solving for a correction only, we
expect thatc'1 andVi'0, hence we use Dirichlet bound
ary conditions

c51, Vi50. ~49!

2. Conformal thin sandwich

For the conformal thin sandwich decomposition, we
strict the discussion to either two black holes at rest, or i
quasi-circular orbit in corotating coordinates. In these cas
one expects small or even vanishing time derivatives,] tg i j
'0, and so Eq.~30! yields the simple choice

ũi j 50. ~50!

The conformal 3-metric and the trace of the extrinsic c
vature are still given by Eqs.~46! and ~47!. Orbiting black
holes in a corotating frame will not move in coordina
space, therefore we do not boost the individual Kerr-Sch
metrics in this decomposition:vA/B

i 50. The lapse functions
NA/B and the shiftsNA/B

i are also for unboosted Kerr-Schil
black holes.

We use Dirichlet boundary conditions:

c51 all boundaries ~51a!

b i5NA
i sphere inside hole A ~51b!

b i5NB
i sphere inside hole B ~51c!

b i5VW 3rW outer boundary. ~51d!

Equation~51d! ensures that we are in a corotating refe
ence frame; the cross-product is performed in flat space,
VW 50 corresponds to two black holes at rest. Close to
7-6
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COMPARING INITIAL-DATA SETS FOR BINARY . . . PHYSICAL REVIEW D66, 024047 ~2002!
holes we force the shift to be the shift of a single black h
in the hope that this choice will produce a hole that is at r
in coordinate space.

For the conformal lapse we use

ã5NA1NB21 ~52!

or

ã5NANB . ~53!

The first choice ofã follows the philosophy of adding quan
tities of each individual hole. However,ã of Eq. ~52! be-
comes negative sufficiently close to the center of each h
and is therefore a bad choice if the excised spheres are s
The choice~53! does not change sign and has at large d
tances the same behavior~same 1/r term! as Eq.~52!.

IV. NUMERICAL IMPLEMENTATION

We implemented an elliptic solver that can solve all thr
decompositions we described above in complete genera
The solver uses domain decomposition and can handle
trivial topologies. It is based on pseudospectral collocati
that is, it expresses the solution in each subdomain as
expansion in basis functions. This elliptic solver is describ
in detail in a separate paper@31#.

From the computational domain we excise two sphe
containing the singularities of the Kerr-Schild metric close
the center of each hole. Around each of the excised sph
we place a spherical shell. These shells are patched tog
with 53333545 rectangular blocks, with the two blocks
the location of the spheres removed. Around these 43 blo
another spherical shell is placed that extends far out, t
cally to an outer radius of 107M . In the rectangular blocks
we expand in Chebyshev polynomials, while in the sphe
we use Chebyshev polynomials radially and spherical h
monics for the angular variables. This setup is depicted
Fig. 1.

The domain decomposition in Fig. 1 is fairly complicate
Even if the shells were made as large as possible, they do

FIG. 1. Structure of domains. Spherical shells around each
cised sphere are surrounded by 43 rectangular blocks and an
spherical shell. The rectangular blocks touch each other and ov
with all three spherical shells.
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cover the full computational domain when the excis
spheres are close together. Thus additional subdomains
needed in any case. Choosing the 43 cubes as depicte
lows for relatively small inner shells and for a relative
large inner radius of the outer shell. Thus each shell cove
region of the computational domain in which the angu
variations of the solution are fairly low, allowing for com
paratively few angular basis functions.

The code can handle a general conformal metric. In p
ciple, the user needs to specify onlyg̃ i j . Then the code
computesg̃ i j , and—using numerical derivatives—the Chris
offel symbols, Ricci tensor and Riemann scalar. For the s
cial case of the Kerr-Schild metric of a single black hole a
the superposition of two Kerr-Schild metrics, Eq.~46!, we
compute first derivatives analytically and use numerical
rivatives only to compute the Riemann tensor.

The solver implements Eqs.~12! and~13! for the confor-
mal TT decomposition, Eqs.~24! and ~25! for the physical
TT decomposition, and Eqs.~31! and~32! for the conformal
thin sandwich decomposition.

After solving for (c,Vi) @conformal TT and physical TT#,
or (c,b i) @thin sandwich# we compute the physical metri
g i j and the physical extrinsic curvatureKi j of the solution.
Utilizing these physical quantities (g i j ,Ki j ), we implement
several analysis tools. We evaluate the constraints in
form of Eqs.~3! and ~4!, we compute ADM quantities and
we search for apparent horizons. Note that these ana
tools are completely independent of the particular decom
sition; they rely only ong i j andKi j .

Next we present tests ensuring that the various system
equations are solved correctly. We also include tests of
analysis tools showing that we can indeed compute c
straints, ADM quantities and apparent horizons with go
accuracy.

A. Testing the conformal TT and physical TT decompositions

We can test the solver by conformally distorting a know
solution of the constraint equations. Given a solution to
constraint equations (g0 i j ,K0

i j ) we pick functions

C.0, Wi ~54!

and set

g̃ i j 5C24g0i j , ~55!

K5K0 , ~56!

and

M̃ i j 5C10S K0
i j 2

1

3
g0

i j K0D2C4~L0W! i j ~57!

for conformal TT or

M̃ i j 5C10S K0
i j 2

1

3
g0

i j K02~L0W! i j D ~58!

x-
her
ap
7-7
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PFEIFFER, COOK, AND TEUKOLSKY PHYSICAL REVIEW D66, 024047 ~2002!
for physical TT. With these freely specifiable pieces and
propriate boundary conditions, a solution of the conform
TT equations~12!, ~13! or the physical TT equations~24!,
~25! will be

c5C ~59!

Vi5Wi . ~60!

From Eq.~8! we recover our initial metricg0i j , and from
Eq. ~16! @conformal TT# or Eq. ~27! @physical TT# we re-
cover the extrinsic curvatureK0

i j .
In our tests we used the particular choices

C511
8~r 22!

361x210.9y211.3~z21!2
~61!

Wi5
50~r 22!

~641r 4!
~2y,x,1!. ~62!

These functions are plotted in Fig. 2.C varies between
0.8 and 1.5,Wi varies between60.5, and both take thei
maximum values around distance;7 from the center of the
hole. We used for (g̃0i j ,K0

i j ) a single, boosted, spinnin
black hole in Kerr-Schild coordinates.

Figure 3 shows results of testing the conformal TT d
composition on a single spherical shell. The numerical so
tion (c,Vi) converges to the analytic solutions (C,Wi) ex-
ponentially with the number of basis functions as expec
for a properly constructed spectral method. Moreover,
reconstructed metric and extrinsic curvature satisfy the c
straints.

Now we test the solver for the physical TT decompo
tion, and demonstrate that we can correctly deal with m
tiple domains. In this example the computational domain
covered by an inner spherical shell extending for 1.5M<r

FIG. 2. Plot of the functionsC andWi from Eqs.~61! and~62!.
The solid line depictsC along the positivex axis; the short dashed
line depictsC along the negativez axis. The long dashed line is
plot of Wy along the positivex axis.
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<10M . This shell is surrounded by 26 rectangular bloc
that overlap with the shell and extend out tox,y,z5625M .
Finally another spherical shell covers the region 20M<r
<106M . As can be seen in Fig. 4, the solution converg
again exponentially.

For realistic cases we do not know the analytic solut
and therefore need a measure of the error. Our major

FIG. 3. Testing the solver for the conformal TT decompositio
Equations~12!, ~13! with freely specifiable data given by Eqs
~55!–~57!, are solved in a single spherical shell with 1.5M,r
,10M . N is the cube root of the total number of unknowns. Plott
are the L2 norms ofc2C,Vx2Wx, and the residuals of Hamil-
tonian and momentum constraints, Eqs.~3! and ~4!.

FIG. 4. Physical TT decomposition with domain decompositio
Equations~24!, ~25! with freely specifiable data given by Eqs.~55!,
~56!, ~58! are solved in multiple domains~one inner spherical shell
26 rectangular blocks, one outer spherical shell!. N is the cube root
of the total number of grid points.diff denotes the L2 norm of the
difference of the solution and the solution at the next lower reso
tion. Triangles denote the L2 norm of the difference to the analy
solution. The remaining symbols denote the errors of numeric
extracted ADM quantities.
7-8
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will be the change in results between different resolution
particular we consider theL2 norm of the point-wise differ-
ences of the solution at some resolution and at the next lo
resolution. This diagnostic is labeled by circles in Fig.
Since the solution converges exponentially, these circles
sentially give the error of thelower of the two resolutions.

In addition to testing the equations, this example te
domain decomposition and the integration routines for
ADM quantities. The ADM quantities are computed by t
standard integrals at infinity in Cartesian coordinates,

EADM5
1

16p È ~g i j , j2g j j ,i !d
2Si , ~63!

J(j)5
1

8p È ~Ki j 2g i j K !j jd
2Si . ~64!

For thex component of the linear ADM momentum,j5êx in
Eq. ~64!. The choicej5xêy2yêx yields thez component of
the ADM-like angular momentum as defined by York@4#.
Since the space is asymptotically flat there is no distinct
between upper and lower indices in Eqs.~63! and~64!. Note
that Eq.~63! reduces to the familiar monopole term

2
1

2p È ] rcdA ~65!

only for quasi-isotropic coordinates. Our outer domain
large, but since it does not extend to infinity, we extrapol
r→`.

For a Kerr black hole with massM and spinaW , that is
boosted to velocityvW , the ADM quantities will be

EADM5gM , ~66!

PW ADM5gMvW , ~67!

JWADM5FgaW 2~g21!
~aW vW !vW

vW 2 GM , ~68!

whereg5(12vW 2)21/2 denotes the Lorentz factor. Equatio
~68! reflects the fact that under a boost, the component of
angular momentum perpendicular to the boost direction
multiplied by g.

The example in Fig. 4 usesvW 5(0.2,0.3,0.4), andaW 5
(21/4,1/4,1/6)M . The evaluation of the angular momentu
Jz seems to be less accurate since our current procedu
extrapolate to infinity magnifies roundoff. We plan to im
prove this in a future version of the code. Until then we se
to be limited to an accuracy of;1026.

B. Testing conformal thin sandwich equations

The previous decompositions could be tested with a c
formally distorted known solution. In order to test the co
formal thin sandwich decomposition we need to find an a
lytic decomposition of the form~28!. To do this, we start
with a stationary solution of Einstein’s equations and boos
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with uniform velocityv i . Denote the metric, extrinsic curva
ture, lapse and shift of this boosted spacetime byg̃0 i j , K0

i j

5A0
i j 1 1

3 g0
i j K0 ,N0 and N0

i , respectively. Since we booste
the static solution, we willnot find ] tg i j 50 if we evolve it
with the shift N0

i . However, all time dependence of th
spacetime is due to the uniform motion, so in the comov
reference frame specified by the shiftN0

i 1v i , we will find
] tg i j 50. In this case, Eq.~6! yields

A0
i j 5

1

2N0
@L~N01v !# i j . ~69!

If we chooseã5N0 andũi j 50, the thin sandwich equation
~31! and ~32! will thus be solved byc51 andb i5N0

i 1v i .
Similar to the conformal TT and physical TT decompositi
above, we can also conformally distort the metricg0 i j . Fur-
thermore, we can consider nonvanishingũi j . We arrive at the
following method to test the solver for the conformal th
sandwich equations: given a boosted version of a station
solution with shift N0

i , lapseN0, 3-metric g0 i j , trace of
extrinsic curvatureK0, and boost-velocityv i . Pick any func-
tions

C.0 ~70!

Wi ~71!

and set

g̃ i j 5C24g0 i j ~72!

K5K0 ~73!

ã5C26N0 ~74!

ũi j 5C4~L0W! i j . ~75!

Then a solution to the thin sandwich equations~31!, ~32! will
be

c5C ~76!

b i5N0
i 1v i1Wi ~77!

assuming boundary conditions respecting this solution.
Figure 5 shows results of this test for a single spheri

shell and a Kerr black hole withvW 5(0.2,20.3,0.1), aW
5(0.4,0.3,0.1)M . The solution converges to the expect
analytical result exponentially. In addition, apparent horiz
searches were performed. For the numerically found ap
ent horizons, the apparent horizon areaAAH as well as the
apparent horizon mass

MAH5AAAH

16p
~78!

were computed. The figure comparesMAH to the expected
value
7-9
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M S 1

2
1

1

2
A12

aW 2

M2D 1/2

. ~79!

As described in@19,36#, the apparent horizon finder expan
the apparent horizon surface in spherical harmonics up
fixed orderL. For fixedL, the error in the apparent horizo
mass is dominated by a discretization error of the ellip
solver at low resolutionN. As N is increased, the discretiza
tion error of the elliptic solver falls below the error due
finite L. Then the error inMAH becomes independent ofN.
Since the expansion in spherical harmonics isspectral, the
achievable resolution increases exponentially withL. Note
that for exponential convergence it is necessary to posi
the rays in the apparent horizon finder at the abscissas o
Gauss-Legendre integration.

C. Convergence of binary black hole solutions

Figure 6 presents the convergence of the solver in
binary black hole case. In this particular example, the c
formal TT equations were solved for two black holes at r
with coordinate separation of 10M . The computational do-
main is structured as in Fig. 1. The excised spheres h
radiusr exc52M , the inner spherical shells extend to radi
4M . The rectangular blocks cover space up tox,y,z5
625M , and the outer spherical shell extending from inn
radius 20M to an outer radius ofR5107M .

We do not use fall-off boundary conditions at the ou
boundary; we simply setc51 there. This limits the compu
tations presented in this paper to an accuracy of orderR
;1027. Figure 6 shows that even for the next to highe
resolution (N'80) the solution will be limited by the oute
boundary condition. All results presented in the followin
section are obtained at resolutions aroundN'80. If the need

FIG. 5. Testing thin sandwich decomposition with apparent
rizon searches. Equations~31! and~32! with freely specifiable data
given by Eqs.~72!–~75! are solved in a single spherical shell.N and
diff are as in Fig. 4. Apparent horizon searches with different s
face expansion orderL were performed, and the errors of the a
parent horizon massMAH are plotted.
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arises to obtain solutions with higher accuracy, one can e
ily change to a fall-off boundary condition, or just move th
outer boundary further out.

V. RESULTS

The purpose of this paper is to compare the initial-d
sets generated by different decompositions using sim
choices for the freely specifiable pieces in each decomp
tion. We solve the following:

ConfTT. Conformal TT equations~12! and ~13! with
freely specifiable pieces and boundary conditions given
Eqs.~46!, ~47!, ~48! and ~49!.

PhysTT. Physical TT equations~24! and ~25! with the
same freely specifiable pieces and boundary conditions
ConfTT.

CTS. Conformal thin sandwich equations~31! and ~32!
with freely specifiable pieces and boundary conditions giv
by Eqs.~46!, ~47!, ~50! and ~51!. The lapseã is given by
either Eq.~52! or by Eq.~53!.

We will apply the terms ‘‘ConfTT,’’ ‘‘PhysTT’’ and
‘‘CTS’’ only to these particular choices of decompositio
freely specifiable pieces and boundary conditions. When
ferring to different freely specifiable pieces, or a decompo
tion in general, we will not use these shortcuts. If we need
distinguish between the two choices ofã in CTS, we will
use ‘‘CTS-add’’ for the additive lapse Eq.~52! and ‘‘CTS-
mult’’for the multiplicative lapse Eq.~53!. Below in Sec.
V C we will also introduce as a forth term ‘‘mConfTT.’’

A. Binary black hole at rest

We first examine the simplest possible configuration: T
black holes at rest with equal mass, zero spin, and with so

-

r-

FIG. 6. Binary black hole with conformal TT decompositio
The residuals of several quantities are plotted as a function of
cube root of the total number of grid points.diff is as in Fig. 4,Ham
and Mom are the residuals of Hamiltonian and momentum co
straints.EADM denotes the difference between ADM energy at re
lution N and ADM energy at highest resolution.
7-10
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COMPARING INITIAL-DATA SETS FOR BINARY . . . PHYSICAL REVIEW D66, 024047 ~2002!
fixed proper separation between the apparent horizons o
holes. We construct initial data using the following deco
positions: ConfTT, PhysTT, CTS~with both choices ofã).
In the comparisons, we also include inversion symme
conformally flat initial data obtained with the conforma
imaging formalism.

We excised spheres with radiusr exc52M , which is close
to the event horizon for an individual Eddington-Finkelste
black hole. This results in the boundary conditions be
imposed close to, but within the apparent horizons of,
black holes. The centers of the excised spheres have a
dinate separation ofd510M .

We now discuss the solutions. The conformal factorc is
very close to 1 for each of the three decompositions. It
viates from 1 by less than 0.02, indicating that a conform
metric based of a superposition of Kerr-Schild metrics d
not deviate far from the constraint surface.

Figure 7 presents a plot of the conformal factor along
axis through the centers of the holes. One sees thatc is close

FIG. 7. The conformal factorc along the axis connecting th
holes for several decompositions.x measures the distance from th
center of mass, so that the excised sphere is located between,x
,7. mConfTT is explained below in Sec. V C. The solution
PhysTT is not plotted since it is within the line thickness
ConfTT. The inset shows an enlargement for largex.
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to 1; however, between the holes ConfTT and CTS forcec
in oppositedirections. For CTS,c.1 between the holes
whereas for ConfTT,c,1. The contour plots in Fig. 8 also
show this striking difference between the decompositions

The result of PhysTT was found to be almost identic
with ConfTT. This is reasonable, since these two decom
sitions differ only in that in one case the TT decomposition
with respect to the conformal metric, and in the other ca
the TT decomposition is with respect to the physical met
Sincec'1, the conformal metric is almost identical to th
physical metric, and only minor differences arise. In the f
lowing we will often use ConfTT/PhysTT when referring t
both data sets.

We performed apparent horizon searches for these ca
For all data sets, the apparent horizon is outside the sp
with radius 2M , that is outside the coordinate location fo
the apparent horizon in a single hole spacetime. For Conf
PhysTT, the radius of the apparent horizon surface
'2.05M , for CTS it is'2.15M . We computed the apparen
horizon areaAAH , the apparent horizon mass

MAH5AAAH

16p
~80!

of either hole, and the combined mass of both holes,

m52MAH . ~81!

There is no rigorous definition of the mass of an individu
black hole in a binary black hole spacetime, and Eq.~80!
represents the true mass on an individual black hole onl
the limit of wide separation of the black holes. A hard upp
limit on the possible gravitational radiation emitted to infi
ity during the coalescence process of a binary will be

EM PRC5EADM2A2AAH

16p
, ~82!

where 2AAH is the combined apparent horizon area of bo
holes. Thus,EM PRC represents the maximum possible rad
tion content ~MPRC! of the initial data. This, of course
makes the unlikely assumption that the binary radiates a
all of its angular momentum.
l

s

FIG. 8. Black holes at rest:
Contour plots of the conforma
factor c for ConfTT ~left! and
CTS-add ~right!. The circles de-
note the excised spheres of radiu
2.
7-11
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TABLE I. Solutions of different decompositions for two black holes at rest. Ham and Mom are the rms residuals of the Hamilton
momentum constraint,l is the proper separation between the apparent horizons.mConfTTrepresents the modified conformal TT decomp
sition which is explained in Sec. V C.inv. symm.represents a conformally flat, time symmetric and inversion symmetric solution o
Hamiltonian constraint.

Ham Mom EADM AAH MAH l l /m EADM /m EM PRC/EADM Eb /m

ConfTT 931027 431027 2.06486 57.7369 1.07175 8.062 3.761 0.9633 0.2660 20.1467
PhysTT 931027 331027 2.06490 57.7389 1.07176 8.062 3.761 0.9633 0.2660 20.1467
CTS-add 231026 431027 2.08121 62.3116 1.11340 8.039 3.610 0.9346 0.2434 20.2615

CTS-mult 231026 531027 2.05851 60.8113 1.09991 8.080 3.672 0.9358 0.2444 20.2569
mConfTT 331026 131026 2.0827 62.404 1.1142 0.9346 0.2434 20.2617

inv. symm. – – 4.36387 284.851 2.38053 17.731 3.724 0.9166 0.2285 20.3337
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We also compute the proper separationl between the ap-
parent horizon surfaces along the straight line connecting
centers of the excised spheres. In order to compare diffe
data sets we consider the dimensionless quantitiesl /EADM ,
EADM /m andEM PRC/EADM . We will also useEb /m which
will be defined shortly.

Table I summarizes these quantities for all three deco
positions. It also includes results for inversion symmet
initial data, which for black holes at rest reduces to the M
ner data@33#.1 The results in Table I are intended to repres
nearly thesamephysical configuration.

From Table I one finds that the black holes have roug
the same dimensionless proper separation. However,
scaled ADM energyEADM /m differs by as much as 4.7%
between the different data sets.EM PRC/EADM , which does
not depend on any notion of individual black hole masse
all, differs by 16% between the different data sets.

The inversion symmetric data has lowestEADM /m and
EM PRC/EADM , CTS has somewhat larger values, a
ConfTT/PhysTT lead to the biggest values forEADM /m and
EM PRC/EADM . This indicates that, relative to the sizes of t
black holes, ConfTT/PhysTT and CTS probably conta
some excess energy.

A slightly different argument uses the binding ener
which is defined as

Eb

m
[

EADM22MAH

m
, ~83!

wherem5MAH/2 is the reduced mass. Two Newtonian po
masses at rest satisfy

Eb

m
52

1

l /m
. ~84!

From Table I we see that for ConfTT/PhysTT,uEb /mu
.( l /m)21, and for CTS,uEb /mu'( l /m)21. Since gravity in
general relativity is typicallystrongerthan Newtonian grav-

1Although the Misner solution can be obtained analytically,
found it more convenient to solve the Hamiltonian constraint
merically. The configuration in Table I corresponds to a separa
b512 in terms of@34#.
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ity, we find again that CTS and ConfTT/PhysTT contain t
much energy relative to the black hole masses, Conf
PhysTT having even more than CTS.

The proper separation between the apparent horizonsl /m
is about 4% smaller for CTS than for ConfTT/PhysTT. B
Eq. ~84! this should lead to a relative difference in bindin
energy of the same order of magnitude. SinceEb /m differs
by almost a factor of two between the different decompo
tions, the differences inl /m play only a minor role.

B. Configurations with angular momentum

Now we consider configurations which are approximati
two black holes in orbit around each other. The conform
metric is still a superposition of two Kerr-Schild metrics. Th
black holes are located along thex axis with a coordinate
separationd. For ConfTT/PhysTT, we boost the individua
holes to some velocity6vêy along they axis. For CTS we
go to a corotating frame with an angular frequencyVW

5Vêz . Thus, for each decomposition we have a two para
eter family of solutions, the parameters being (d,v) for
ConfTT and PhysTT, and (d,V) for CTS.

By symmetry, these configuration will have an ADM a
gular momentum parallel to thez axis which we denote byJ.
In order to compare solutions among each other, and aga
the conformally flat inversion symmetric data sets, we adj
the parameters (d,v) and (d,V), such that each initial-data
set has angular momentumJ/mm52.976 and a proper sepa
ration between the apparent horizons ofl /m54.880. In Ref.
@37#, these values were determined to be the angular mom
tum and proper separation of a binary black hole at the
nermost stable circular orbit.

Table II lists the parameters corresponding to this sit
tion as well as results for each initial-data set.2 As with the
configuration with black holes at rest, we find again th
ConfTT/PhysTT and CTS lead to different ADM energie
Now, EADM /m andEM PRC/EADM differ by 0.02 and 0.013,

-
n

2Because of the Lorentz contraction, the apparent horizons
ConfTT/PhysTT intersect the sphere with radius 2. In order to h
the full apparent horizon inside the computational domain, the
dius of the excised spheres was reduced to 1.9 for these data
7-12
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TABLE II. Initial-data sets generated by different decompositions for binary black holes with the same angular momentumJ/mm and
separationl /m. The mConfTT dataset is explained in Sec. V C. It should be compared to CTS-add.

Parameters MAH EADM J/mm l/m EADM /m EM PRC/EADM Eb /m

ConfTT d511.899,v50.26865 1.06368 2.12035 2.9759 4.879 0.9967 0.2906 20.0132
PhysTT d511.899,v50.26865 1.06369 2.12037 2.9757 4.879 0.9967 0.2906 20.0132
CTS-add d511.860,V50.0415 1.07542 2.10391 2.9789 4.884 0.9782 0.2771 20.0873
CTS-mult d511.750,V50.0421 1.06528 2.08436 2.9776 4.880 0.9783 0.2772 20.0867

mConfTT d511.860,V50.0415 1.0758 2.1061 3.011 4.883 0.979 0.278 20.085
inv. symm.a 2.976 4.880 0.9774 0.2766 20.09030

aData taken from@37#.
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respectively, between CTS and ConfTT/PhysTT. Howev
in contrast to the cases where the black holes are at rest,
CTS and the inversion symmetric data set have very sim
values forEADM /m andEM PRC/EADM .

C. Reconciling conformal TT and thin sandwich

We now investigate further the difference betwe
ConfTT/PhysTT and CTS. Since the resulting initial-da
sets for PhysTT and ConfTT are very similar, we restrict o
discussion to ConfTT.

1. Motivation

The construction of binary black hole data for th
ConfTT/PhysTT cases produces an extrinsic curvature
almost certainly contains a significant TT component.
would be interesting to know how significant the presence
this component is for the values of the various physical
rameters we are comparing. Ideally, we would like to co
pletely eliminate the TT component and see what effect
has on the resulting data sets. Unfortunately, this is a d
cult, if not impossible, task.

The TT component of a symmetric tensorMi j is defined
as

MTT
i j [Mi j 2~LY! i j , ~85!

where the vectorYi is obtained by solving an elliptic equa
tion of the form

DLYi5¹jM
i j . ~86!

The problem resides in the fact that the meaning of the
component depends on the boundary conditions used in s
ing Eq. ~86!.

For the ConfTT/PhysTT cases we are actually solving
a vectorVi that is a linear combination of two componen
one that solves an equation of the form of Eq.~86! to obtain
the TT component ofM̃ i j and one that solves the momentu
constraint. But by imposing inner-boundary conditions
Vi50, we do not specify the boundary conditions on eith
part independently. Nor is it clear what these boundary c
ditions should be. Since we cannot explicitly construct
TT component of the extrinsic curvature, we cannot elim
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nate it. Although it is not ideal, there is an alternative we c
consider that does provide some insight into the importa
of the initial choice ofM̃ i j .

2. Black holes at rest

Consider the following numerical experiment for tw
black holes at rest: GivenM̃ i j from Eq. ~48!, make a trans-
verse traceless decomposition by setting

2NM̃i j 5M̃TT
i j 1~ L̃Y! i j ~87!

where ¹̃j M̃ TT
i j 50 and N5NA1NB21. Notice that we are

decomposing 2NM̃i j , not M̃ i j . Taking the divergence of Eq
~87! one finds

D̃LYi5¹̃j~2NM̃i j !. ~88!

The decomposition chosen in Eq.~87! is motivated by the
conformal thin sandwich decomposition. With this decomp
sition we can, in fact, use the shift vectorNi to fix boundary
conditions onYi , just as it was used to fix the bounda
conditions in Eqs.~51b!–~51d!. For the black holes at rest in
this case, we haveV50. After solving Eq.~88! for Yi , we
can construct a new conformal extrinsic curvature by

M̃ 8 i j 5
1

2N
~ L̃Y! i j ~89!

which is similar to what would result if we could eliminat
M̃TT

i j from M̃ i j . Using M̃ 8 i j in place of M̃ i j , we can again
solve the conformal TT equations. The result of this modifi
conformal TT decomposition ‘‘mConfTT’’ is striking: Fig. 7
shows that mConfTT generates a conformal factorc that is
very similar toc of CTS. mConfTT is also included in Tabl
I where it can be seen that the quantitiesEADM /m and
EM PRC/EADM differ only slightly between mConfTT and
CTS.

The fact that modification of the extrinsic curvatu
changes the ADM energy by such a large amount underl
the importance of a careful choice for the extrinsic curvat
M̃ i j in ConfTT/PhysTT. The extremely good agreement b
tween CTS and mConfTT is probably caused by our pro
dure to determineM̃ 8 i j . We force the extrinsic curvature o
mConfTT into the form Eq.~89!. This is precisely the form
7-13
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of the extrinsic curvature in CTS, Eq.~28!, even using the
same functionN and the same boundary conditions on t
vectorsYi andb i .

3. Black holes with angular momentum

We now apply the modified conformal TT decompositi
to the orbiting configurations of Sec. V B. In the corotati
frame, the black holes are at rest, and we start withg̃ i j and
M̃ i j of two black holesat restwith coordinate separationd
511.860. We now solve Eq.~88! with

N5NA1NB21 ~90!

and corotating boundary conditions onYi @cf. Eqs. ~51b!–
~51d!#:

Yi5NA
i sphere inside hole A, ~91a!

Yi5NB
i sphere inside hole B, ~91b!

Yi5VW 3rW outer boundary. ~91c!

NA/B andNA/B
i are lapse and shift of individual Kerr-Schil

black holes at rest.M̃ 8 i j is again constructed by Eq.~89! and
used in solving the conformal TT equations.

Results from this procedure are included in Table
Again, mConfTT generates results very close to CT
EADM /m changes by 1.8% of the total mass betwe
ConfTT and mConfTT, again highlighting the importance
the extrinsic curvature.

D. Dependence on the size of the excised spheres

The framework presented in this paper requires the e
sion of the singularities at the centers of each hole.3 So far
we have usedr exc52M or r exc51.9M in order to impose
boundary conditions close to the apparent horizons, but
ferent choices can be made. Indeed, one might expect
the boundary conditions~49! and ~51! become ‘‘better’’ far-
ther inside the apparent horizon, where the metric and ex
sic curvature of that black hole dominate the superpo
metric g̃ i j and superposed extrinsic curvatureM̃ i j .

In order to test this assumption, we solve the constra
equations for two black holes at rest for different radiir exc.
We find that for all three decompositions, the data sets
pend strongly on the radius of the excised spheres.

Figure 9 presents plots of the conformal factorc andVx

for ConfTT with different r exc. There is no clear sign o
convergence ofc asr exc→0. Forr exc50.2M , the conformal
factorc even oscillates close to the excised sphere. Table
displays various quantities for the ConfTT decomposition
different r exc. As r exc varies between 2.0M and 0.1M , the
ADM energy varies between 2.065 and 2.106, whereas
apparent horizon area changes by nearly 4%. The appa
horizons move around somewhat asr exc changes. Figure 10
shows the location of the apparent horizons for differ
r exc.

3Marronetti and Matzner@22# effectively excised the centers, too
by using ‘‘blending functions.’’
02404
.
.

n
f

i-

if-
at

n-
d

t

e-

II
r

e
ent

t

For CTS-add~with ã5NA1NB21), the initial-data sets
seem to diverge asr exc is decreased. This has to be expect
since this choice forã changes sign if the excised spher
become sufficiently small. Changing toã5NANB so that the
lapse does not change sign reduces this divergent beha
Von Neumann boundary conditions onc at the excised
spheres,

]c

]r
50, ~92!

lead to an increase inAAH , especially for large excised
spheres. This combination of lapseã and boundary condi-
tions exhibits the smallest variations inEADM /m; cuts
throughc,bx and through the apparent horizons are sho
in Figs. 11 and 12. From the three examined combination
lapse and boundary conditions, the one shown behaves
but there is still no convincing sign of convergence.

Table IV presents ADM energies and apparent horiz
areas and masses for CTS with differentr exc and different
choices of lapse and boundary condition. From the unsca
ADM energy EADM it is apparent thatã5NA1NB21 di-
verges most strongly. Note that between all choices of lap
boundary conditions andr exc, the unscaled quantitie
EADM , MAH , andl exhibit a much broader variation than th
scaled quantitiesEADM /m and l /EADM .

VI. DISCUSSION

Our results clearly show that different decompositio
lead to different initial-data sets, even when seemingly si
lar choices for the freely specifiable pieces are used. F
Tables I and II one sees thatEADM /m changes by as much a
0.029 between ConfTT/PhysTT and CTS. The difference
tween ConfTT/PhysTT and the inversion symmetric data
even larger, 0.047. These numbers seem to be small; h

FIG. 9. Plots ofc andVx along the positivex axis for ConfTT
for different radii r exc52M ,M ,0.5M ,0.2M . The excised sphere
are centered on thex axis at x565. The position where a line
terminates givesr exc for that line.
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TABLE III. Solutions of ConfTT for different radii of the excised spheres,r exc. The results for PhysTT are nearly identical.

r exc EADM AAH l EADM /m l/EADM

2.0 2.0649 57.737 8.062 0.9633 3.904
1.0 2.0682 57.825 8.101 0.9641 3.917
0.5 2.0808 58.520 8.101 0.9642 3.893
0.2 2.0978 59.514 8.093 0.9640 3.858
0.1 2.1064 60.025 8.089 0.9638 3.840
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ever, current evolutions of binary data usually find the to
energy emitted in gravitational radiationEGW /m to be be-
tween 0.01 and 0.03@1,2,38#, which is the same order o
magnitude as the changes inEADM /m we find. This means
that, in principle, most of the energy radiated in these sim
lations could originate from ‘‘spurious’’ energy in the syste
and not from the dynamics of the binary system we are
terested in.

These findings highlight the fact that current binary bla
hole initial data sets are inadequate for the task of accura
describing realistic binary systems. We see that the cho
of the conformal 3-geometryg̃ i j and the freely specifiable
portions of the extrinsic curvature, embedded inM̃ i j , influ-
ence the content of the initial data at a significant level. F
thermore, the results suggest that small changes in the
data associated with the extrinsic curvature are more sig
cant than small changes in the choice ofg̃ i j .4 This assertion
is supported by the fact thatEADM /m is consistently larger
for the ConfTT solutions than for the CTS solutions but t
two approaches can be made to produce quite consisten
sults by using the modified extrinsic curvature of t
mConfTT method. All of these decompositions use the sa
non-flat conformal metric, but differ in the extrinsic curv
ture. On the other hand, results for the conformally fl
inversion-symmetric data agree rather well with the res
from the CTS method when we consider orbiting bla
holes. For black holes at rest, CTS differs from the invers
symmetric data, which seems to contradict our conclus
However, this difference is likely due to the time symmet
nature of the inversion symmetric data, which is especia
adapted to the time-symmetry of the particular configurat
of ‘‘two black holes at rest.’’

Improved binary black hole initial data will requir
choices for the freely specifiable data that are physically m
tivated, rather than chosen for computational convenien
The same is true for the boundary conditions used in solv
the constraints. The boundary conditions used in this pa
carry the implicit assumptions that the approximate me
and extrinsic curvature are correct at the excision bounda
and that the value of the single-hole Kerr-Schild shift at
excision boundary is correct in a multi-hole situation. This
clearly not true, but we might hope that the impact of t

4Following submission of this paper, a preprint by Damouret al.
@39# has appeared that lends support to our idea that the extr
curvature plays a key role in constructing quasi-equilibrium bin
black hole initial data.
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error in this choice would diminish as we decrease the rad
of the excision boundary. However, our results presented
Tables III and IV do not support this conjecture. Examini
the change inEADM /m as we varyr exc shows only a small
change, but more importantly, it shows no sign of converg
as we decreaser exc. The effects of changingr exc are much
more significant forl /EADM , changing its value by as muc
as 10% in the case of CTS-mult for the range of valu
considered. Furthermore, as with the energy, we see no
of convergence inl /EADM as r exc decreases. Interestingly
although the solutions show no sign of convergence as
shrink the excision radius, we do find that the dimensionl
quantitiesEADM /m and l /EADM do become independent o
the choice of the inner-boundary condition asr exc decreases.
This can be seen in comparing the result in Table IV for
cases usingc51 and ]c/]r 50 as inner-boundary condi
tions. Additional tests, not reported in this paper, further s
port this assertion.

VII. CONCLUSION

Using a new elliptic solver capable of solving the initia
value problem of general relativity for any of three differe
decompositions and any choice for the freely specifia

ic
y

FIG. 10. Apparent horizons for ConfTT with different radii o
excised spheres. Results shown are forr exc52M ~long-dashed
line!, M ~dotted line!, 0.5M ~short-dashed line! and 0.2M ~outer
solid line!. The inner solid line is a circle with radius 2. The ins
shows a parametric plot ofr (f)22, which emphasizes the differ
ences between the different apparent horizons.
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PFEIFFER, COOK, AND TEUKOLSKY PHYSICAL REVIEW D66, 024047 ~2002!
data, we have examined data sets representing binary b
hole spacetimes. We find that the choices for the freely sp
fiable data currently in use are inadequate for the task
simulating the gravitational radiation produced in astrophy
cally realistic situations. In particular, we studied the resu
of using a superposition of two Kerr-Schild black holes to
the freely specifiable data and compared them to the res
obtained from conformally flat initial data.

FIG. 11. Cuts throughc andbx for CTS-mult for different radii

r exc. Here ã5NANB and the boundary condition onc at the ex-
cised spheres isdc/dr50. The curves forbx are shifted up by 0.5
for x,5, and are shifted down by 0.5 forx.5 to allow for better
plotting.dc/dr approaches zero at the inner boundary on scales
small to be seen in this figure.
02404
ck
i-

of
i-
s

lts

Although the new Kerr-Schild-based data provide a va
able point of comparison, it is not clear that the data p
duced are significantly superior to previous conformally fl
data. What is clear is that the choice of the freely specifia
data will be very important in constructing astrophysica
realistic binary black hole initial data. Progress will requi
that these data,and the boundary conditions needed to sol
the constraints, must be chosen based on physical gro
rather than computational convenience.

How can better initial data be achieved and how can
quality of initial data be measured? We believe that the c
formal thin sandwich decomposition will be especially us

o

FIG. 12. Apparent horizons for CTS withã5NA NB and inner
boundary conditiondc/dr50. The different curves belong to dif
ferent r exc as explained in Fig. 10.
TABLE IV. Solutions of CTS as a function of the radius of excised spheres,r exc. Different choices of the lapseã and boundary
conditions forc at the excised spheres are explored.

r exc EADM AAH l EADM /m l/EADM

ã5NA1NB21, c51
2.0 2.0812 62.312 8.039 0.9346 3.863
1.0 2.1846 68.279 8.000 0.9372 3.662
0.5 2.3085 76.253 7.925 0.9371 3.433
0.2 2.5463 93.534 7.750 0.9333 3.044
0.1 2.8543 118.834 7.489 0.9282 2.624

ã5NANB , c51
2.0 2.0585 60.811 8.080 0.9358 3.925
1.0 2.1216 64.080 8.044 0.9395 3.792
0.5 2.1696 66.790 8.017 0.9411 3.695
0.2 2.2120 69.456 7.991 0.9409 3.613
0.1 2.2326 70.809 7.978 0.9405 3.573

ã5NANB , ]c/]r 50
2.0 2.1110 64.229 8.085 0.9337 3.830
1.0 2.1533 66.128 8.030 0.9387 3.729
0.5 2.1794 67.427 8.011 0.9409 3.676
0.2 2.2136 69.559 7.990 0.9409 3.609
0.1 2.2330 70.836 7.978 0.9405 3.573
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COMPARING INITIAL-DATA SETS FOR BINARY . . . PHYSICAL REVIEW D66, 024047 ~2002!
ful. Genuine radiative degrees of freedom cannotin principle
be recognized on a single time slice. The conformal t
sandwich method uses in effect two nearby surfaces, giv
it a potential advantage over other methods. Also, it avo
much of the uncertainty related to specifying a conform
extrinsic curvature. Moreover, the conformal thin sandw
approach is especially well suited for the most interest
configurations, a black-hole binary in a quasi-equilibrium
bit. In this case time derivatives of all quantities are sm
and the choiceũi j 50 is physically motivated. One shoul
exploit the condition of quasi-equilibrium as fully as po
sible, i.e. one should use the conformal thin sandwich
proach together with the constantK equation,] tK50. The
latter yields another elliptic equation for the lapse which
moves the arbitrariness inherent in choosing a confor
lapseã. One will also need more physical boundary con
tions. Work in this direction was begun in@23,24# and refined
in @40#.

Ultimately, the gravitational wave content of an initia
data set can be determined only by long term evolutions. O
.
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ed

A

.
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must compute an initial-data set representing a binary bl
hole in quasi-circular orbit and evolve it. Then one mu
repeat this process with an initial-data set representing
samebinary black hole, say, one orbital period earlier, a
evolve that data set, too. If both evolutions lead to the sa
gravitational waves~modulo time offset! then one can be
confident that the gravitational radiation is indeed astroph
cally realistic. This approach has recently been used for
first time in conjunction with conformally flat puncture dat
where it proved remarkably successful@3#.
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