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S-brane solutions in supergravity theories
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In this paper time-dependent solutions of supergravities with a dilaton and an arbitrary rank antisymmetric
tensor field are found. Although the solutions are nonsupersymmetric the equations of motion can be integrated
in a simple form. Such supergravity solutions are related to Euclidean or spacelike hfamenés.
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[. INTRODUCTION field theory[22]. However, one can imagine a similar notion
for the time-dependent case. Suppose the initial diateD]
There has been a recent surge of interest in timefor the D3-brane tachyon field is located at the unstable
dependent solutions in string theory.[th-4] the question of maximum, U(0), with a small constant positive velocity.
a stringy resolution of cosmological singularities in time- Then the tachyon field will roll off from the top of the po-
dependent string orbifolds was discussed. The de Sitteténtial and evolve to the positive minimum tat . During
conformal field theory(dS/CFT) correspondenckb,6] iden-  this evolution closed string radiation will be emitted and then
tifies time evolution in de Sitter space with renormalizationwill propagate to infinity. Similarly, as a consequence of
group flow[7]. Very recently Seri8,9] (see alsd10]) con- time-reversal symmetry, the tachyon field will approach the
structed a conformal field theory description of dynamicalnegative minimum at= —cc. This process can be realized as
open string tachyon condensation. For earlier work on timeincoming radiation which excites the tachyon field to the top
dependent solutions sé&l1-16. of the potential barrier. The full picture is a timelike kink in
Dirichlet braneq17] are extended solitonic objects carry- the tachyon field which is aB2-brane.
ing Ramond-RamondRR) charge and therefore the world  Using the known coupling of the spacetime RR fields to
volume of such dstatig brane includes the time direction. It the world volume open string tachyon it was shown that this
is a natural question, partly motivated by the dS/CFT correS2-brane carries charge, defined as the integral of the RR
spondence, whether there are Euclidean branes which havefiald over a surrounding sphef@cluding the time dimen-
purely spacelike world volume. Euclidean branes were firssion). The same kind of charge is carried by an ordinary
constructed 18,19 in type II* theories which are nonuni- D2-brane. In analogy with Sen’s identification, this timelike
tary theories obtained by timelikeduality from the standard kink can be identified as @@D2-brane, i.e. a Dirichlet brane
type Il theories. The simplest starting point for the construc-arising from open string with a Dirichlet boundary condition
tion of a Euclidean brane in type Il theories is given byon the time dimension.
considering open strings which satisfy Dirichlet boundary Obviously this construction can be generalized to other
conditions in the time directiof20]. Such a spacelike brane codimensions, for example to branes as vortices in a brane-
(S-brang only exists for one instant in time. antibrane pair. Moreover, a similar discussion for the initial
Another argument for the existence $foranes uses the data along the null direction will lead to null branes
open string tachyons in unstalebranes oD-brane—anti-  (N-branes.
D-brane pairs.(Similar constructions are also possible in  Both the boundary state and the tachyon picture of the
field theory[21].) The basic argument for the existence of Shrane suggests that &p-brane[with (p+ 1)-dimensional
Sbranes, illustrated by a specific example, is the following.Euclidean world volumg in d dimensions should have
In type IIA string theory there exists “mismatched” ISO(p+1)XSQ(d—p—2,1) symmetry. The noncompact
D-branes, such as tli23-brane, which are unstable and con- SO(d— p—2,1) can be interpreted as tfesymmetry of a
tain a tachyon field. Let us consider tiE3-brane as our Euclidean field theory living on th&brane. In[20] super-
example. The potential of the tachyon fieldl(T), resembles  gravity solutions respecting this symmetry were found in two
a double well; it was argued that the stabBl@-brane is the particular cases. It is the aim of this paper to generalize these
tachyonic kink solution of the unstable3 world volume  Sbrane solutions to arbitrary form field, codimensions, and
dilaton coupling. These solutions are new interesting time-
dependent or cosmological solutions of supergravities. Note,
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Il. GENERAL S-BRANES = -
Rap=0(K—1)Gap-

(8

In this section we analyze equations governing _
S(p-1)-branes associated with the charge af-form field ~ The metrics above havBOQ(k—1,1), ISO(k), and SO(k)
strength. The system contains a gravitong-form field ~ Symmetries, respectively. [r20] in order to have a solution
strength,F |y, and a dilaton scalag, coupled to the form  With the correcR symmetry only the case=—1 and hence
field with the coupling constard. This is a general frame- SO(k—1,1) symmetry was considered. In the following we
work which encompasses the bosonic sector of various sill discuss all three choices af.
pergravity theories, coming from a truncation of the low en-  With this ansatz, the equation for the form fielt), can
ergy limit of M-theory and string theories, by a certain €asily be solved giving

choice of the dimensiod, the rank of the form field}, and
the dilaton couplinga. In the Einstein frame, the action is
given by
1 1
S= f di%+\—g —

R=50,¢0" ¢~ 2] fF . (D

This action is invariant under the following discre3edual-
ity:
Foe 2F, ¢——d, )

where * denotes @-dimensional Hodge dual. This may be
used to construct electric versions of magn&isranes and

g,uv_>g,u1/!

F[q]:bVOI(Ek,U)/\dyl/\' . '/\dyq—kv (9)
whereb is the field strength parameter, val{ ,) denotes the
unit volume form of the hyperspacg, , .

The ansat46) and (9) hasq—k flat directions and takes
these directions to be toroidal. The solutions are in some
sense “smeared” or delocalized along these directions. Note
that from the tachyon picture the appearance of delocalized
coordinates is quite natural since the tachyon is localized on
a brane. The solutions ¢20] can be obtained by settirg

To derive the equations for the metric functioAsB,C,
andD one calculates first the Ricci tensor for the metfig

vice versa. The equations of motion, derived from the variathe nonvanishing components being

tion of the action with respect to the individual fields, are
et
R — thd’ﬁv(ﬁ—m

q-1

@ a 2 —
X Fﬂaz" aqFV 2 q—mF[q]gMV —O, (3)
0, (=g =0, (4)
1 a 42
—_—gﬂﬂ(\/—gﬂMgﬁ)—Z—q!Ga F[q]ZO. (5)

We study S-branes with a world volume given by a

Ry=—p(B+B2—AB)—k(C+C2—-AC)
—(q—k)(D+D?-AD), (10)

Ry =2 2 [B—AB+pB?+kBC+(q—k)BD], (11)
Ry,—€® 2AID—-AD+pBD+kCD+(q—k)D?], (12
Rap={€?C 2A[C—AC+pBC+kC?

+(d=K)CD]+ o (k—1)}gap- (13

From the expressions for the Ricci tensor, we note that the

p-dimensional conformally flat space and with a transversdormulation can be largely simplified once we chose the fol-

space being thé&-dimensional hyperspacEy , and q—k
dimensional delocalized space. Obviouslydidimensions,
p=d—qg—1. With this in mind we choose the metric

ds?=—Adt?+eB(dxe+ - - - +dxd) +Cd3?
+e0(dyi+ -+ dyg ),

parametrized by fout-dependent functionA(t),B(t),C(t),
and D(t). The hyperspace.,, for 0=0,+1,—1 is the

k-dimensional flat space, the sphere, and the hyperbolic

space, respectively. They can be described as
dy?+sinfydQ2_,, o=-1,

d32  =gapdZ2dZ=1 dy?+y2dQg 4, =0,

dy?+sirfydQi_,, o=+1,
(7

satisfying

lowing gauge condition:
—A+pB+kC+(g—k)D=0. (14

After taking the above gauge, the Einstein equati(8)sfi-
nally reduce to the following set of equations:

—A+A2-pB2—kC?—(q—k)D?— §¢2

_ 2
—%—f);)ea‘f’”p% 0, (15)
. —1)b?
B+ (zq(d—_):)ew“pf‘: 0, (16)
. b2
C+o(k—1)e?A2C— heaq”m: 0, (17
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2

.. b 0 — (k=1)g—
B PP asezpe_g 18 g+o(k—1)€ 0, (29)
2(d—2) ,
- . . . p .. ., (d=2)x,, pc
Substituting our ansatz into E¢p) one obtains the following ——h—-kg+k(k—1)g°— —h"— —
i ion: q-1 2(q—1) X
dilaton equation:
(q—1)b?
. ab? _WT P ah
bt e 2080, (19 2d-2)¢ % (30

In fact, Egs.(28), (29), and (30) are equivalent to the two

where the dots denote derivatives with respedt to first order equations

Equationg16), (18), and(19) are of similar structure, and

it is easy to see that the appropriate combination® pB, . (g—-1)b?
and ¢, B obey simple homogeneous equations. Therefore h2+ Wé{h: a?, (31
a(d—2) _
¢= q-1 B+cyttcy, (20 g2+ ok Do= g2, (32)

with constantc, ,c,. A similar relation can be found fob  Provided the integration constantsand 8 satisfy
andB, for which, however, we simply take ) )
E (d=2)xa

A _ 2_
2y Kk-DE=0. (33)

D=— q_Ll B. (22) X
These equations can easily be integrated and the solution in
It is more convenient to reparametrize terms off andg are given by

A(t),B(t),C(t),D(t) ensuring the gaugel4) choice by two

independent function§(t),g(t) as ()= Eln a N Eln( (d_Z)Xz)
p p X cos?{xa(t to) x 1a=1)b
_ __v — L 5 T lo
A=kg q—1f' B=f, C=g _1f, 2
ac, ac
P X 4
Consequently, the equations of motion reduce to ! I i =—1
quently, the eq k1M snHeDa—t)]) 7
_ 2
f+ &eXeraClliwaczzo, (23) g(t): iB(t_tl), o= O
2(d—2) 1 B
In( ) , =+1.
g+ o(k—1)e2k" 9=, (24) k—=1"1cosh(k=1)B(t—ty)] @5
P f—kg+k(k—1)g%— (d—Z)sz_ EC% Superficially it might seem that the solu_tio_n depen_ds on six
q-1 2(q-1) 2 parameterstg,t;,¢1,C,,b,3. However, it is possible to
ac(d—2). (q—1)b? eliminate two of them. First3 can be eliminated by rescal-
o4 f— g efracitrac— g (25 ing t— B!t together with suitable scaling for coordinates
(q-1) 2(d=2) {x,y}, and secondlyf; can be set to zero by a shift of

Hence the solution depends on four parameters.

where the parametey is defined as In Table | we list the values of parameters for eleven-

a2(d—2) dimensional supergravity and types IIA and IIB theories in
x=2p+ 1 (26)  ten dimensions where the dilaton couplingais (5—q)/2.
q The correspondin@-branes are not entirely independent; the
The terms linear irt can be absorbed intoby defining discreteS-duality (2) relates them in pairs. These electric-
magnetic pairs are indicated in parentheses.
ac; ac, For the S3-brane of IIB supergravity the five-form field
f(t):h(t)_Tt_T- (27 strength should be self-dual, which is not ensured by our
previous ansatz. Therefore we solve this case separately. By
In terms ofh the equations of motion become self-duality F[25]:O the equation of motion for the dilaton
field in the gaug€14) becomes
G REOL (29)
2(d—2) - $=0. (36)
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TABLE |. Parameters of-branes.

M-theory Type Il string theories

S5 2 S6 NS S5 S5 S4 [S3] S2 (*S4) S1 (*S5) NSS1 (*NS S5) SO (*S6)
d 11 11 10 10 10 10 10 10 10 10 10
q 4 7 2 3 3 4 5 6 7 7 8
a 0 O 3/2 -1 1 12 0 -1/2 -1 1 -3/2
p 6 3 7 6 6 5 4 3 2 2 1
x 12 6 32 16 16 32/3 8 32/5 16/3 16/3 3217

In fact, the dilaton coupling with form fiel& s, is absent in
[IB theory,a=0, so the dilaton field can be set to a constant.
Following an analogous calculation we found that the self-
dual five-form field should be

B. Flat transverse space

The asymptotic region near—0 the metric becomes

ds?_~e 2PP/@D(—dt?+d3f j+dyz ) +efodxd.

b (42)
= — * DR
P \/§(1+ WOIZ k) Ay AdYsy. - (37) The larget, near-brane behavior is given by
The S3-brane solution is therefore given by settag 0 and dsf ~ e 2pf1/(a-1)g2p/(g-D)][a+(acy /)]t
c,=0 and the metric can be directly read from the general o
expressions of solutions given in this section by using the X (—e" g2+ e 2d3 2 + df’é-k)
values of parameters in Table I. '
+e2f1e‘2[“+(a°1/x)]td§f,. (43

A. Hyperbolic transverse space

In this section we will discuss the form of the metric in
special limiting cases. In order to simplify notation we set
t;=0 andB=1 by a shift and rescaling discussed before.

The asymptotic region is @t—0 where the radius of the —2pfo/(q—1) 2 2 v, fo 22

. oS ~ —dte+ + +elodxs .
31 diverges. Definingi=[(k—1)t]" Y&~ neart=0u ds’o~e (—dt+d=y 4y +dyg ) +elodxg
=o the metric becomes (44)

C. Spherical transverse space

The metric in the asymptotic region near0 becomes

ds[Zﬂowe—prO/(q—l)(_dUZ_l_u2d22Y71+d9§7k)+e2f0d)'2‘2), The larget, near-brane behavior is given by

(38) ds2 ,~e 2Ph/a-Dg2pla-Dlla+(acy /]t
with
X ( _ 22k/(k— 1)e— ktd t2+ 22/(k— l)e—tdzi i
. 2I a +1I (d=2)x\ ac, '
= - 7\ - T Lo =2 — 2| o2
0 n )’()(a ) Y n (q_l)bz Y . +dyq7k)+e2f1e 2[ +(ac1/)()]tdxp. (45)
cosh —=-tg
2

(39 lll. STATIC SOLUTIONS

The larget, near-brane behavior is given by

ds2 | ~e 2P /(a-Dg2p/(a-Dla+ (acy /WY — p2K/(k-1)

xe M2+ 220 Detds?  +dyZ )

+ 2hig2lat(ac /X)]td;(’Z) , (40)
with
2 2 1 ((d=2)x\ ac,
fi=—Ina+ at ——In2+—|n(— -
Y x 0 x \(q—1)b?] x

(41)

In this section we will briefly describe the application of
the ansatz and gauge we used in the previous section to the
case of static solutions. As it turns out these solutions are
related(for a different choice of gaugeo the general black
brane[25] solutions found in 23] (see alsd?24,26)).

The ansatz for the static solution is given by

ds’=e?Adr?+eB(—d?+dxi+ - +dx5 )
+eCd3f A+ P(dyi+ -+ dys ), (46)

with the same metric fo, , given by Eq.(7) and field
strength(9), but in this case all function&(r),B(r),C(r),

Even though the Ricci scalar tends to zero in this region thend D(r) depend only on the radius coordinateUsing the
geometry is singular because for example the coefficient ojauge conditiori14) the equations of motion beconehere

dx? vanishes.

primes now denote derivatives with respect jo
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—A”+A’2—pB’Z—kC’Z—(q—k)D’z—Edﬂz c _Ap=4) In b sini (p—8)«ro] (55)
2 2 p(8-p) \«(8-p)” o)
(g—1)b? - :
21 T agt2pB The relation of parameters is
+ 2[d—2) e 0, (47)
(q—1)b? P (56)
"__ — ¢+2pB_ = 8—p’
B 2(d-2) e 0, (48) p
C'— o(k—1)eA~2C Cp=cott{ (p—8)«ro], (57)
pb?
_ T A¢t2pB_ _ p
T 3d-2° 0 “9 po=2"C 8>exr{ =22 (58)
.. pb? $+2pB_ where
_ 2
Again ¢ must be related to the functidd as follows: K2=2(9 P) — PC . (59)
8—p 168-p)
a(d—2)
= q-1 B+cir+cs. (51) In [24] the static solutions for= + 1 were interpreted as

supergravity solutions corresponding to coincident brane-
Using the same relations as in E@2) the equations of antibrane pairs. Note that whether this interpretation is cor-
motion can be reduced to two first order differential equa+ect is not cleaa priori since one would not expect to have

tions for f(r),g(r). The solutions are given by a static time-independent solution for an object which is un-
stable and decays. It is, however, tempting to speculate that
F(r)= 2 n a the time-dependent solutions we have found could describe

exactly such a process.

L lXxa
sm?‘{ 5 (r—ro)
IV. CONCLUSION

1 [(d=2)x ac; ac,
+;'”(m - 7“7: (52) In this paper we have constructed new time-dependent
solutions in supergravities. For transverse spaces which are
1 8 hyperbolic these solutions generalize the ones founf@h
k—1|n<cosrﬁ(k— E; )]), =—1 to arbitrary codimension, rank of field strength, and dilaton
1 coupling. These solutions are expected to be supergravity
g(r)y=¢ =B(r—ry), o=0. realizations ofS-branes, Euclidean branes which only exist at
1 B an instant in time. Although the solutions are not supersym-
k—lln(sinﬁ(k—l)ﬂ(r—rl)])’ +1. metric the field equations can be integratéot the hyper

bolic as well as the flat and spherical cag@ne motivation
for considering Sbranes was the role which Euclidean
branes play in the dS/CFT correspondence and the role of
holography in comparison to AAS/CHZ7-30. It would be
—+1 case to the fully localizedk=gq, three-parameter VErY intéresting to explore the role the solutions in this paper
( - ?) solutions found ir{23,24 for type Il theories in mlght play in this contgxt. Relapedly it is an interesting ques-
tgrg ,dilrﬁeznsion%A closer anal sié shows that these solutionstIon whether the solutions in this paper have a cosmological
y interpretation and if als-brane can be used to get a nonsin-

are indeed equivalent after a coordinate transformation gular connection between big crunch and big bang cosmolo-

(53

After rescaling and shifts the solution will depend on four
parametersr(,Cq,C,,b). It is instructive to compare the

1
r=g—pM

8-p gies.
1+(polp) (54) The same gauge and ansatz can be used to find static
1—(po/p)®P) solutions. We showed that these solutions are equivalent to
the ones found iH123,24]. We have speculated that the time

and a specific value af, dependent solutions could be realizations of a brane-

antibrane annihilation process. It would be very interesting to

explore this relation further. Furthermore, given the relation

The most general solutions [24] actually contain a fourth pa- of brane-antibrane systems to fluxbraf8$—44, it might

rameterc, which seems unrelated to the parametehere. More-  be possible that the time-dependent solutions describe the
over, please also note our notationpdfias value one different from dynamical evolution of fluxbranes. We leave this question for
the convention irff24]. future work.
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