
PHYSICAL REVIEW D 66, 024042 ~2002!
Fresnel analysis of wave propagation in nonlinear electrodynamics
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We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the
derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear
Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes,
yielding the generic birefringence effect. We show that the closure of the effective constitutive~or jump! tensor
is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone
structure. As another application of the Fresnel approach, we analyze the light propagation in a moving
isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and
axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the
corresponding optical metrics.
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I. INTRODUCTION

Wave phenomena belong to the most interesting and
portant processes in physics. Among other field theor
nonlinear electrodynamics attracts a lot of attention in c
nection with the prominent role played by light in the expe
mental and theoretical studies of the structure of space
and matter.

Nonlinearities in electrodynamical models can arise
different ways in classical and quantum field theories. F
example, the old Born-Infeld theory@1# was a fundamenta
theory alternative to classical Maxwell electrodynam
which provided a model of a classical electron. On the ot
hand, quantum Maxwell electrodynamics predicts nonlin
effects which arise due to radiative corrections, see@2–4#.
Finally, in modern string theories a generalized Born-Infe
action naturally arises as the leading part of the effec
string action, see@5–7#, for example.

Wave propagation in the various nonlinear electrodyna
cal theories was studied previously in@8–13# and also in
@14–19#. A general feature revealed in these studies is
existence of birefringence. In crystal optics, the notion
birefringence means the emergence of two rays~ordinary and
extraordinary! with different velocities inside the materia
medium. We will use the expression ‘‘birefringence’’ in
similar sense, associating it with the situation when two d
ferent light cones exist for the wave normal covectors. Ho
ever, the earlier results are incomplete in the sense tha
full Fresnel equation, governing the wave normals, w
never derived explicitly. Moreover, it was not demonstra
how it happens that the original quartic surface of wave n
mals reduces to the light cone. That is the primary interes
our study, and we will try to clarify this aspect for loca
nonlinear electrodynamical models, using and expanding

*On leave from Department of Theoretical Physics, Moscow S
University, 117234 Moscow, Russia.
0556-2821/2002/66~2!/024042~11!/$20.00 66 0240
-
s,
-

e

r

r
r

e

i-

e
f

-
-
he
s
d
r-
in

ur

earlier results obtained within the framework of linear ele
trodynamics@20,21#.

We restrict our attention tolocal electrodynamical mod-
els, thus assuming that, at each point, the corresponding~ef-
fective! constitutive tensor of the medium under consid
ation depends only on the field strength itself and not on
derivatives. In other words, dispersive effects are neglec
This approximation is valid in general when the waveleng
of the propagating electromagnetic field is larger than
length scales related to the microscopic~sub!structure of the
medium. For instance, for the Heisenberg-Euler effective
grangian, which describes nonlinearities due to radiative c
rections in QED, this means that the wavelength of the p
tons has to be much larger than the Compton length of
electron. For the isotropic media considered in Sec. XI, t
means that the wavelength of the photons is assumed t
much larger than the length scales related to the reson
frequencies of the medium.

Our basic tool will be thegeneral formulafor the Fresnel
equation derived earlier within linear electrodynami
@20,21#. Now we observe that the analysis of the wave pro
gation in a general local nonlinear model reduces to the
ear case because the jumps of the derivatives of the ex
tion and of the field strength are in all cases related b
linear law. We can then make use of our master formula
the Fresnel tensor andderive the Fresnel equation for an
local nonlinear model, and thereby explain the reduction t
the light cones.

II. ELECTROMAGNETIC WAVES AND FRESNEL
TENSOR

Quite generally, Maxwell’s equations for the excitatio
2-form H5(D,H) and the field strength 2-formF5(E,B)
read

dH5J, dF50. ~2.1!
te
©2002 The American Physical Society42-1
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Here J is the electric current 3-form. These equations m
be supplemented by a constitutive lawH5H(F). The latter
relation contains the crucial information about the underly
physical continuum~i.e., spacetime and/or material m
dium!. Mathematically, this constitutive law arises eith
from a suitable phenomenological theory of a medium
from the electromagnetic field Lagrangian. It can be a n
linear or even nonlocal relation between the electromagn
excitation and the field strength.

If local coordinatesxi are given, withi , j , . . . 50,1,2,3,
we can decompose the excitation and field strength 2-fo
into their components according to

H5
1

2
Hi j dxi`dxj , F5

1

2
Fi j dxi`dxj . ~2.2!

There are several approaches to the study of the w
propagation in nonlinear electrodynamics. For example,
can consider the geometric optics approximation sche
when a field strength is split into a sum of a background fi
plus a wave term of the formf i j e

iF where the amplitudef
varies slowly compared to the phaseF. Under the condition
that the scale over which the background electromagn
field varies is much larger than that of variations ofF, one
then derives the algebraic system for the amplitudef which
ultimately determines the characteristics of the wave so
tions in terms of the background field. The advantage of
approach is its clear physical interpretation.

An alternative approach is represented by the Hadam
theory of weak discontinuities. It yields the same resu
whereas it is more mathematically transparent, in our op
ion. Correspondingly, here we will study the propagation o
discontinuity of the electromagnetic field using the Ha
amard approach following the lines of Ref.@20#, see also
Ref. @21#. The surface of discontinuityS is defined locally by
a functionF such thatF5const onS. AcrossS, the geomet-
ric Hadamard conditions are satisfied:

@Fi j #50, @] iF jk#5qi f jk , ~2.3!

@Hi j #50, @] iH jk#5qihjk . ~2.4!

Here@F#(x) denotes the discontinuity of a functionF across
S, andqiª] iF is the wave covector. Given the constitutiv
law H(F), which determines the excitation in terms of th
field strength, the corresponding tensorsf i j andhi j , describ-
ing the jumps of the derivatives of field strength and exc
tion, are related by@22#

hi j 5
1

2
k i j

kl f kl , with k i j
kl
ª

]Hi j

]Fkl
. ~2.5!

We will call k i j
kl the jump tensor. In linear electrodynamics

its components coincide with the components of the con
tutive tensor ~which describes the linear lawHi j
5 1

2 k i j
klFkl), and they are independent of the electroma

netic field. However, in general the jump tensork i j
kl is a

function of the electromagnetic field, the velocity of matt
the temperature, and other physical and geometrical v
ables. Quite remarkably, all the earlier results obtained
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linear electrodynamics remain also valid in the general c
because whatever local relationH(F) may exist, the relation
between thejumpsof the field derivatives, according to Eq
~2.5!, is always linear.

If we use Maxwell’s equations~2.1!, then Eqs.~2.3! and
~2.4! yield

e i jkl qjhkl50, e i jkl qj f kl50. ~2.6!

Here e i jkl is the Levi-Civita tensor density of weight11,
with e012351. We will also use the Levi-Civita tensor den
sity of weight 21, which we denote byê i jkl , with ê0123
51.

Let us introduce the analogue of the conventional con
tutive matrix

x i jkl
ª

1

2
e i jmnkmn

kl5
]H i j

]Fkl
, ~2.7!

where we denoteH i j
ª

1
2 e i jmnHmn . Similarly to k i j

kl , we
will often call the tensorx i jkl the jump tensor density.

Now, making use of Eqs.~2.5! and ~2.7!, we rewrite the
system~2.6! as

x i jkl qj f kl50, e i jkl qj f kl50. ~2.8!

Solving the last equation byf i j 5qiaj2qjai , we finally re-
duce the first part of Eq.~2.8! to

x i jkl qjqkal50. ~2.9!

This algebraic system has a nontrivial solution forai only
when the wave covectors satisfy a certain condition. T
latter gives rise to ourcovariant Fresnel equation@20,21#

G i jkl ~x!qiqjqkql50, ~2.10!

with the fourth order Fresnel tensor densityG of weight 11
defined by

Gi jkl ~x!ª
1

4!
êmnpqê rstux

mnr( ix j upsukx l )qtu. ~2.11!

It is totally symmetric,Gi jkl (x)5G ( i jkl )(x), and thus has 35
independent components. A particular case of that const
tion has been introduced by Tamm@23#.

III. LOCAL NONLINEAR ELECTRODYNAMICS

Let us denote the two independent electromagnetic inv
ants as

I 1ªFi j F
i j , I 2ªFi j F̃

i j , ~3.1!

where F̃ i j
ª

1
2 h i jkl Fkl and h i jkl

ª(2g)21/2e i jkl . The Hodge
operator for the exterior forms is denoted by as asterisk (* ),
as usual; and we use a tilde to denote the dual 2-tensor

We will study the class of nonlinear electrodynami
models which are described by the Lagrangian 4-form

V5Lh, with L5L~ I 1 ,I 2!. ~3.2!
2-2
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Here, as usual,h is the 4-form of the spacetime volume. O
analysis is generally covariant, i.e., we do not restrict o
selves to Cartesian coordinates for whichgi j 5diag(1,21,
21,21). We instead considergi j as an arbitrary Lorentzian
spacetime metric, although we do not take into account p
sible nonminimal coupling of the electromagnetic field to t
spacetime curvature. In other words, we exclude the
grangian models with the curvature terms arising from
quantum corrections on a curved spacetime which were s
ied by Drummond and Hathrell@18#, e.g. As a matter of fact
such terms can be straightforwardly included in our gene
approach using the general quartic Fresnel equation~2.10!,
~2.11! but this goes beyond the scope of the current pa
The corresponding generalization will be discussed e
where.

The electromagnetic excitation 2-form, which enters
Maxwell equation~2.1!, is derived as the derivative of th
Lagrangian form,H52]V/]F. Explicitly, we then have the
nonlinear constitutive law

H54~2L1* F1L2F !. ~3.3!

We denote the partial derivatives of the Lagrangian funct
with respect to its arguments as

Laª
]L

]I a
, Labª

]2L

]I a]I b
, a,b51,2. ~3.4!

In accordance with Eqs.~2.5! and ~2.7!, the direct differen-
tiation of Eq.~3.3! yields the jump tensor density

x i jkl 5A2g@k1gi [kgl ] j1k2Fi j Fkl1k3F̃ i j Fkl

1k4Fi j F̃kl1k5F̃ i j F̃kl1k6h i jkl #. ~3.5!

The coefficientskA ,A51, . . . , 6, arefunctions of the elec-
tromagnetic fields:

k154L1 , k258L11, k35k458L12,

k558L22, k652L2 . ~3.6!

The identifications~3.6! are derived for the nonlinear La
grangian~3.2! from the constitutive law~3.3!. However, in
most computations below we will consider the most gene
case with unspecified arbitrary coefficientskA . This may be
useful if we want to study nonlinear electrodynamics o
more general type, for instance, with dissipation effe
and/or in moving media.

In general, the untwisted tensor densityx i jkl (x) of weight
11 has 36 independent components. We can decompo
into irreducible pieces@21# with respect to the 6-dimensiona
~‘‘bivector’’ ! linear group as follows:

x i jkl 5 (1)x i jkl 1 (2)x i jkl 1 (3)x i jkl . ~3.7!

The irreducible pieces ofx are defined by
02404
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(2)x i jkl :5
1

2
~x i jkl 2xkli j !52 (2)xkli j ,

(3)x i jkl
ªx [ i jkl ] , ~3.8!

(1)x i jkl :5x i jkl 2 (2)x i jkl 2 (3)x i jkl 5 (1)xkli j . ~3.9!

The irreducible pieces(1)x, (2)x, and (3)x have 20, 15, and
1 independent components, respectively. The possible p
ence of an axion piece(3)x was first studied by Ni@24#,
whereas a constitutive law with an isotropic skewon(2)x
was discussed by Nieves and Pal@25#.

In the Lagrangian models~3.2!, the effective constitutive
tensor is automaticallysymmetric, i.e., (2)x50, which fol-
lows from Eq.~3.6!, sincek35k4. However, in general the
jump tensor density~3.5! has all three irreducible pieces:

(1)x i jkl 5A2gFk1gi [kgl ] j1k2Fi j Fkl1
~k31k4!

2

3~ F̃ i j Fkl1Fi j F̃kl!1k5F̃ i j F̃kl2
1

12
@~k31k4!I 1

1~k52k2!I 2#h i jkl G , ~3.10!

(2)x i jkl 5
~k32k4!

2
A2g~ F̃ i j Fkl2Fi j F̃kl!, ~3.11!

(3)x i jkl 5
1

12
A2g@~k31k4!I 11~k52k2!I 2112k6#h i jkl .

~3.12!

IV. FRESNEL EQUATION AND BIREFRINGENCE

Our analysis in the framework of the Hadamard form
ism yields the Fresnel equation in the generally covari
form ~2.10! with the Fresnel tensor density~2.11!. For the
explicit jump tensor density~3.5!, it thus remains to substi
tute its components into Eq.~2.11!. A straightforward calcu-
lation yields the result:

Gi jkl 52
k1

8
A2g~Xg( i j gkl)12Yg( i j tkl)1Zt ( i j tkl)!.

~4.1!

Here we denote

X5k1
21

k1

2
~k31k4!I 22k1k5I 11

1

4
~k3k42k2k5!I 2

2 ,

~4.2!

Y5k1~k21k5!1~k3k42k2k5!I 1 , ~4.3!

Z54~k2k52k3k4!, ~4.4!

and

t i j
ªFikF j

k . ~4.5!
2-3
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The latter is closely related to the Minkowski energ
momentum tensor

Ti j
ª2t i j 1

1

4
I 1gi j . ~4.6!

The most remarkable property of Eq.~4.1! is that it is
obviously factorizable into a product of two second ord
tensors. Correspondingly, the quartic Fresnel surface of
wave normals reduces to the product of two second o
surfaces:

Gi jkl ~x!qiqjqkql5
2k1

8X ~g1
i j qiqj !~g2

klqkql !

5
2k1

8Z ~ ḡ1
i j qiqj !~ ḡ2

klqkql !. ~4.7!

In other words, the wave normals lie not on the quartic s
face but on one of the two cones which are determined by
pair of optical metrictensors:

g1
i j :5Xgi j 1~Y1AY 22XZ!t i j , ~4.8!

g2
i j :5Xgi j 1~Y2AY 22XZ!t i j . ~4.9!

The second equality in Eq.~4.7! offers a different description
of the cones by means of the conformally equivalent me
tensors:

ḡ1
i j :5~Y2AY 22XZ!gi j 1Zt i j 5

1

X ~Y2AY 22XZ!g1
i j ,

~4.10!

ḡ2
i j :5~Y1AY 22XZ!gi j 1Zt i j 5

1

X ~Y1AY 22XZ!g2
i j .

~4.11!

Thus, the general Fresnel analysis demonstrates that inany
local nonlinear electrodynamics model~3.2! the quartic wave
surfacealwaysreduces to two light cones. This is the bir
fringence effect which is thus a general feature of the lo
nonlinear models~3.2!.

V. PROPERTIES OF OPTICAL METRICS

Let us discuss the results obtained in the previous sec
The following general observations are in order.

The Fresnel equation is trivially satisfiedfor all wave
covectors whenk150, see Eq.~4.1!. Thus, in order to have
waves, every electrodynamical LagrangianL should neces-
sarily depend on the invariantI 15Fi j F

i j ~thus providing
k1Þ0). Accordingly, we will always assume thatk1Þ0.

In order to have a decent light propagation, the opti
metrics should be real and with Lorentzian signature. H
can one bea priori sure that for everyL an optical metric
necessarily has these properties?

Using Eqs.~4.2!–~4.4! we find an explicit expression fo
the quantity under the square root in the above formulas
02404
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Y 22XZ5N1
21N2N3 , ~5.1!

where we have denoted

N1 :5k1~k22k5!1~k3k42k2k5!I 1 , ~5.2!

N2 :52k1k31~k3k42k2k5!I 2 , ~5.3!

N3 :52k1k41~k3k42k2k5!I 2 . ~5.4!

The expression~5.1! is always non-negativein every nonlin-
ear theory~3.2! becauseN25N3 when we take into accoun
that k35k4, see Eq.~3.6!.

The signature of a four-dimensional metric is Lorentzi
if and only if its determinant is negative. Straightforwa
computation yields, for the optical metrics~4.8!, ~4.9!;

~detga
i j !5~detgi j !Fa21

aba

2
I 12

ba
2

16
I 2

2G2

,

a51,2. ~5.5!

Herea5X andb15Y1AY 22XZ, b25Y2AY 22XZ. As
we see, both optical metrics have Lorentzian signature
soon as the spacetime metricgi j is Lorentzian.

Summarizing, we have demonstrated that Eqs.~4.8! and
~4.9! indeed describe the generic effect of a birefringent lig
propagation forall local nonlinear Lagrangians~3.2!.

Recently, the emergence of the two ‘‘effective geom
etries’’ has been described in@14,15# without using the
Fresnel approach. These results agree with those obtain
our analysis, since one can show that our optical metrics
conformally equivalent to the effective metrics of@14,15#.
Moreover, one can recast the optical metrics~4.8!–~4.11!
into the form of the so-called Boillat metrics of@16#.

VI. SPECIAL LAGRANGIANS

It is worthwhile to discuss certain particular nonline
models which are potentially of physical interest.

A. Lagrangian LÄL „I 2…

When the Lagrangian depends only on the second elec
magnetic invariant, we havek150, and there are no wave
in such models.

B. Lagrangian LÄL „I 1…

For the Lagrangian which, on the contrary, depends on
first invariant only, we findk35k45k550. Accordingly,
from Eqs. ~4.2!–~4.4! we find X5k1

2 ,Y5k1k2, and Z50,
and thus Eqs.~4.8! and ~4.9! yield

g1
i j 5k1~k1gi j 12k2t i j !, g2

i j 5k1
2gi j . ~6.1!

Correspondingly, we still have birefringence with some ph
tons moving along the standard null rays of the spacet
metricgi j , whereas other photons choosing the rays null w
respect to the optical metricL1gi j 14L11t

i j , cf. @14#.
2-4
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C. Lagrangian LÄU„I 1…¿aI 2

This is a simple generalization of the previous case. H
a does not depend on the electromagnetic field, although
not a constant, in general. When it depends on the space
coordinates,a5a(x), one can identify it with the axion
field, cf. @24#.

Here we again havek35k45k550 and we recover the
same light cone structure~6.1!. To put it differently, the ax-
ion field does not disturb the light cones which are sol
determined by the spacetime metric and by the depend
of the Lagrangian on the invariantI 1.

D. Lagrangian LÄaI 1¿V„I 2…

Thenk154a, k25k35k450, andk558V9, which yields
X516a2232V9I 1 , Y532aV9, andZ50. Consequently,

g1
i j 516a@~a22V9I 1!gi j 14V9t i j #,

g2
i j 516a~a22V9I 1!gi j , ~6.2!

i.e., there is again birefringence with one cone determined
the standard spacetime metric.

E. Heisenberg-Euler Lagrangian

In the one-loop approximation, polarization of vacuum
quantum electrodynamics is described by the Heisenb
Euler effective Lagrangian@2–4#. The critical magnetic field
Bk5(m2c2/e\) '4.43109 T ~for the electron massm and
chargee) essentially determines the physical structure of
nonlinear model. For the weak fields which satisfyI 1

!Bk
2 ,I 2!Bk

2 the Heisenberg-Euler Lagrangian reads

L52
1

4
I 11

a

90Bk
2F I 1

21
7

4
I 2

22
I 1

Bk
2 S 2

7
I 1

21
13

28
I 2

2D G . ~6.3!

Herea5 (e2/4p\c) is the fine structure constant. From th
Lagrangian we find, keeping only the leading order term

X511
6aI 1

45Bk
2

, ~6.4!

Y5
a

45Bk
2S 2221

74

7

I 1

Bk
2D , ~6.5!

Z5S a

45Bk
2D 2S 4482

3520

7

I 1

Bk
2D . ~6.6!

As a result, we obtain the optical metrics

g1
i j 5S 11

6aI 1

45Bk
2D gi j 2

16a

45Bk
2

t i j , ~6.7!

g2
i j 5S 11

6aI 1

45Bk
2D gi j 2

28a

45Bk
2

t i j . ~6.8!
02404
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Thus we have birefringence and both light cones differ fro
the one determined by the spacetime metric, cf. also@14#.

F. Born-Infeld theory

The Lagrangian of the Born-Infeld~BI! theory @1# reads

L5b2S 12A11
1

2b2
I 12

1

16b4
I 2

2D . ~6.9!

Hereb is the coupling constant which has the meaning of
critical field. Correspondingly,

X5

S 11
1

2b2
I 1D 2

S 11
1

2b2
I 12

1

16b4
I 2

2D 2 , ~6.10!

Y5

2S 11
1

2b2
I 1D

b2S 11
1

2b2
I 12

1

16b4
I 2

2D 2 , ~6.11!

Z5
1

b4S 11
1

2b2
I 12

1

16b4
I 2

2D 2 . ~6.12!

As a result, we findY 22XZ50, and thus the two optica
metrics~4.8! and ~4.9! coincide,

g1
i j 5g2

i j 5

S 11
1

2b2
I 1D

S 11
1

2b2
I 12

1

16b4
I 2

2D 2

3F S 11
1

2b2
I 1D gi j 2

1

b2
t i j G . ~6.13!

Birefringence disappears, and the photons propagate alo
single light cone determined by the ‘‘quasi-metric’’ of Ple
banski@11#

S 11
1

2b2
I 1D gi j 2

1

b2
t i j . ~6.14!

VII. VELOCITY OF LIGHT

The knowledge of the optical metric is sufficient for d
termining the velocity of light. The phase velocityv of wave
propagation is defined by the wave covector components
means of the relation

qa5
q0

v
ka , a51,2,3, ~7.1!
2-5
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where ka are the components of the unit 3-covector. A
though we confine our attention to the phase velocity, i
straightforward to show that for the models under consid
ation the group velocity is always greater or equal to
phase velocity. Substituting Eq.~7.1! into the light cone
equationsg1

i j qiqj50 andg2
i j qiqj50, one can find the veloci

ties of light explicitly. Usually, of interest is the mean velo
ity value which is obtained after averaging over the dire
tions of propagation and polarizations. A direct computat
using the general form of the optical metrics~4.8! and ~4.9!
yields, in Cartesian coordinates,

^v2&5S 11
4

3
T00

Y1Zt00

X12Yt001Z~ t00!2D
1

2

3
dabt

0at0b
2Y 22XZ1Z~ t00!212YZt00

@X12Yt001Z~ t00!2#2
.

~7.2!

In accordance with Eq. ~4.6!, T0052t001I 1/45(B2

1E2)/2 is the energy density of the Maxwell field, where
dabt

0at0b5S2 whereS5E3B is the energy flux density.

A. Velocity shift in a polarized vacuum

As an application of the general formula~7.2!, let us ob-
tain the velocity of light in a polarized vacuum. For the we
field limit of the Heisenberg-Euler electrodynamics, subs
tuting Eqs.~6.4!–~6.6! into Eq. ~7.2!, we find, in the leading
order,

^v2&512
88a

135S B21E2

2Bk
2 D . ~7.3!

This value of the mean velocity shift is in agreement with t
previous results derived by different methods@13,19#.

B. Light velocity in the Born-Infeld theory

Although there is no birefringence in the Born-Infe
model, the velocity of light in it is different fromc251. We
can use the same general formula~7.2! to find its value.
Using Eqs.~6.10!–~6.12!, we obtain

^v2&512
2

3

E21B2

b21B2
1

2

3

E2B22~E•B!2

~b21B2!2
. ~7.4!

It is worthwhile to note that in contrast to the approxima
formula ~7.3! which is valid only for the weak fields, the
velocity shift~7.4! is the exact relation which is applicable
arbitrarily strong electromagnetic fields. Since eviden
(E21B2)(b21B2)1(E•B)22E2B2>0, the velocity^v2& is
always less than or equal to 1. It is remarkable though
due to the existence of the critical~maximal possible! value
of the field b, the averaged velocity of light in the Born
Infeld model cannot be arbitrarily small. It follows from Eq
~7.4! that the minimum possible value of^v2& is 1/3 for E2

5b2 andB zero or~anti-!parallel toE.
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VIII. NO BIREFRINGENCE CONDITION

In this section, we will restrict our attention to the La
grangian theories for which the constitutive tensor is E
~3.5!, and the coefficients are derived as Eq.~3.6!. It is im-
portant that the Fresnel analysis reveals thatk1Þ0, other-
wise there is no decent wave propagation at all.

As it is clear from Eq.~5.1!, the necessary and sufficien
condition of the absence of birefringence is provided by
pair of equations:

N15k1~k22k5!1~k3k42k2k5!I 150, ~8.1!

N25N352k1k31~k3k42k2k5!I 250. ~8.2!

Here the propertyk35k4 of the Lagrangian models is used
Taking into account that allk’s are the partial derivatives

of the LagrangianL with respect toI 1 and/orI 2 as displayed
in Eq. ~3.6!, we can view the above system as a pair
partial differential equations, the solutionL5L(I 1 ,I 2) of
which describes amodel without birefringence~i.e., with a
single light cone!. At least two such particular solutions ar
already known: one is rather simple, namely, the stand
Maxwell theory withL52I 1/4. Another is more nontrivial,
this is the Born-Infeld theory with the Lagrangian~6.9!. One
may ask the question: Are these the only solutions of
system~8.1!, ~8.2!? The immediate inspection of the syste
~8.1!, ~8.2! shows that the answer is negative. For examp
the Lagrangian functionL(I 1 ,I 2)5aI1 /I 2, with constanta,
satisfies the equations~8.1!, ~8.2!. Such a nonlinear~and
nonpolynomial! model thus also has no birefringence. It is
open problem to find the complete set of solutions of E
~8.1!, ~8.2!, leading then to a single light cone.

IX. CLOSURE CONDITION

Let us denote the ‘‘traceless’’ part of the jump tensor de
sity as

x” i jkl
ª

(1)x i jkl 1 (2)x i jkl . ~9.1!

As we know @21#, only the traceless part determines t
Fresnel surface, whereas the axion part(3)x i jkl drops out
completely from the wave propagation analysis.

For the general jump tensor density~3.5!, we find, after
some algebra,

1

4
êpqi jx”

i jkl êklrsx”
rsmn5S 2k1

21
a0

2

k1
2D dp

[mdq
n]

1a0hpq
mn1a1FpqF̃

mn1a2F̃pqF
mn

1a3FpqF
mn1a4F̃pqF̃

mn. ~9.2!

Here the coefficients read:
2-6
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a05
k1

6
@~k31k4!I 11~k52k2!I 2#

5
1

6 F2N1I 21
~N21N3!

2
I 1G , ~9.3!

a152~k31k4!k12k3k4I 2

1
k5

3
@2~k31k4!I 11~2k51k2!I 2#

5N1S 2
2k5

3k1
I 2D1

~N21N3!

2 S 211
2k5

3k1
I 1D , ~9.4!

a252~k31k4!k12k3k4I 2

1
k2

3
@2~k31k4!I 11~k512k2!I 2#

5N1S 2k2

3k1
I 2D1

~N21N3!

2 S 212
2k2

3k1
I 1D , ~9.5!

a35~k52k2!k11k2k5I 1

1
k3

3
@2~k52k2!I 21~2k32k4!I 1#

5N1S 212
2k3

3k1
I 2D1

~N21N3!

2 S 2k3

3k1
I 1D , ~9.6!

a452~k52k2!k12k2k5I 1

2
k4

3
@2~k52k2!I 21~2k42k3!I 1#

5N1S 11
2k4

3k1
I 2D1

~N21N3!

2 S 2
2k4

3k1
I 1D . ~9.7!

The third lines in Eqs.~9.4!–~9.7! give thea’s in terms of the
combinations~8.1!–~8.2!. Certainly, we use the assumptio
that k1Þ0.

Like the constitutive tensor of linear electrodynamics, t
jump tensork i j

kl
ª

1
2 ê i jmn xmnkl determines a linear map i

the six-dimensional space of 2-forms. When the action
this map, repeated twice, brings us~up to a factor! back to
the identity map, we speak of theclosureproperty ofk i j

kl .
The importance of the closure property is related to the
that ultimatelyk i j

kl turns out to be aduality operatorwhich
determines a unique conformal Lorentzian metric on
spacetime.

In local nonlinear electrodynamics, the jump tensor d
sity ~3.5! has the closure property when

a050, a150, a250, a350, a450, ~9.8!

as is evident from Eq.~9.2!.
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X. EQUIVALENCE OF CLOSURE AND NO
BIREFRINGENCE CONDITIONS

In linear electrodynamics, there is much evidence~al-
though the final rigorous proof is still missing! that the quar-
tic Fresnel surface of wave covectors reduces to a uni
light cone if and only if the constitutive tensor has the c
sure property.

For the local nonlinear Lagrangian theories~3.2! it is pos-
sible to make some progress in solving the equivalence p
lem. In a certain sense, the situation here is simpler beca
we have discovered that the quartic Fresnel surface is alw
reduced to the product of the light cones~birefringence!. The
next step is thus to study under which conditions the b
fringence disappears and, correspondingly, a unique l
cone arises.

Theorem. For the nonlinear electrodynamical models d
scribed by the Lagrangian~3.2!, the Fresnel equation implie
a single light cone~no birefringence! if and only if the trace-
less part of the jump tensor density satisfies the closure p
erty.

Proof. As a preliminary remark, we note that for the L
grangian models~3.2! the jump tensor density~3.5! is sym-
metric becausek35k4. As a result,N25N3.

The necessary condition is evident. The birefringence
absent whenN15N2(5N3)50, see Eq.~8.2!. Then we im-
mediately read from Eqs.~9.3!–~9.7! that a05a15a25a3
5a450, and thus the closure is recovered from Eq.~9.2!.

The sufficient condition is also proved straightforward
The closure condition~9.8! has the unique solution

N150,
N21N3

2
50, ~10.1!

when we analyze Eqs.~9.3!–~9.7!. Since for the Lagrangian
models ~3.2! we haveN25N3, then Eq.~10.1! yields N1
5N25N350. Thus, there is no birefringence.

To put it differently, we have proven that the closure
the traceless jump tensor density is the necessary and s
cient condition for the reduction of the fourth order Fresn
wave surface to a single light cone. This is true forall non-
linear Lagrangian electrodynamical theories~3.2!. Returning
to our studies of the generallinear electrodynamics, we ex
pect that a similar result holds true there.

On asymmetric jump tensors

Symmetry of the jump tensor density is very important
the equivalence proof above. In order to clarify this point,
us consider an arbitrary jump tensor density~3.5! without
assuming the explicit form of the coefficients~3.6!. When
k3Þk4, the jump tensor density has the nontrivial skew
part ~3.11!. Also, N2ÞN3 @in fact, as we can see from Eq
~5.3! and ~5.4!, N22N352k1(k32k4)#.

We can easily verify that the closure of an asymmet
operator is not equivalent to the no-birefringence prope
Indeed, take, for instance,k1Þ0, k25k350, k4Þ0, and
k550. Then the jump tensor density is asymmetric andN1
5N250, but N3Þ0. We then obtain a unique light con
because Eq.~5.1! vanishes identically. However, the closu
2-7
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condition ~9.8! is not satisfied, since Eqs.~9.3!–~9.7! are
nontrivial for N15N250 andN3Þ0. This also means tha
the requirement of a unique light cone does not necess
imply that x must be symmetric.

The opposite is also true: Suppose an asymmetric ju
tensor density~3.5! has the closure property, i.e., Eq.~9.8! is
fulfilled. Then we find Eq.~10.1! again. However, the secon
part of Eq. ~10.1! yields N252N3, and consequently Eq
~5.1! together with Eqs.~4.8! and~4.9! describe the case of
birefringent and dissipative wave propagation.

These examples show that the closure of anasymmetric
jump ~or constitutive! tensor density does not guarantee t
absence of birefringence, and, vice versa, no-birefringenc
not accompanied by the closure property for an asymme
operator.

XI. MOVING ISOTROPIC NONLINEAR MEDIA

Recently, there has been some interest in the light pro
gating in moving media with nontrivial dielectric and ma
netic properties. The first covariant analysis of the Fres
equation for this case was done by Kremer@26#. An isotropic
medium is characterized by the constitutive law

H i j 5A2gF 1

m
Fi j 12S 1

m
2« DukF

k[ iuj ] G , ~11.1!

whereui is the 4-velocity of the moving matter~normalized
as usual byuiu

i51), and« andm are the permeability and
permittivity functions of the isotropic medium. The ca
when they do not depend on the electromagnetic fi
strength~being constant in space and time, for example! was
investigated in@26#.

More recently, the nonlinear case when«5«(F) and m
5m(F) are functions of the electromagnetic field has be
studied by De Lorenciet al. @15#. However, the attention wa
restricted to certain special cases, and the general resu
still missing.

We can perform a fairly complete analysis of the wa
propagation in a nonlinear moving media on the basis of
covariant Fresnel equation~2.10!. By differentiation, we eas-
ily find the jump tensor density~2.7!:

x i jkl 5A2gF 2

m
gi [kgl ] j14S 1

m
2« Du[kgl ][ iuj ]

1mklFi j 12~mkl2ekl!umFm[ iuj ] G . ~11.2!

The second line is absent in the linear theory, and the ten

mi j
ª

]~1/m!

]Fi j
, ei j

ª

]«

]Fi j
, ~11.3!

are responsible for the nonlinear electrodynamical effect
Inspection immediately reveals that the jump tensor d

sity ~11.2! containsboth an axion and a skewon part. The
are claims in the literature that axion and skewon, in gene
do not have physical sense. However, here we encoun
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simple and a physically sound example with both pieces
ing nontrivial. The irreducible pieces~3.8!, ~3.9! read:

(1)x i jkl 5A2gF 2

m
gi [kgl ] j14S 1

m
2« Du[kgl ][ iuj ]

1
1

2
~mi j Fkl1mklFi j !1~mkl2ekl!P[ iuj ]

1~mi j 2ei j !P[kul ]

1
1

12
h i jkl @Fmnm̃mn12~m̃mn2ẽmn!P

mun#G ,
~11.4!

(2)x i jkl 5A2gF1

2
~Fi j mkl2Fklmi j !

1~mkl2ekl!P[ iuj ]2~mi j 2ei j !P[kul ] G , ~11.5!

and for the axion piece, we have

ê i jkl x
i jkl 5A2gê i jkl @Fi j mkl12~mkl2ei j !Piuj #. ~11.6!

Here we have denotedPj
ªui Fi j . Thus, nonlinear isotropic

matter does have axion and skewon induced by nonlinea

Nonmagnetic matter

Let us consider the case when the magnetic constan
independent of the electromagnetic field, that ismi j 50. @In
the simplest case, we can restrict the attention to the pu
dielectric medium withm51. However, we will formally
keepmÞ1, for the sake of generality.#

It is convenient to make the evident split of Eq.~11.2! into
the sumx i jkl 5f i jkl 1c i jkl , with

f i jkl 5A2gF 2

m
gi [kgl ] j14S 1

m
2« Du[kgl ][ iuj ] G , ~11.7!

c i jkl 522A2geklumFm[ iuj ] . ~11.8!

It is straightforward to find the Fresnel tensor for the fi
piece:

Gi jkl ~f!52
«

m2
A2gg° ( i j g° kl). ~11.9!

Here we have denoted the so-calledGordon optical metric
@27# as

g° i j
ªgi j 1~«m21!uiuj . ~11.10!

Its inverse reads

g° i jªgi j 1S 1

«m
21Duiuj , ~11.11!
2-8
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and the determinant can be easily computed: dg°

5(detg)/(«m).
Using this optical metric we can simplify the form of Eq

~11.7!, bringing it to

f i jkl 5
2

m
A2gg° i [kg° l ] j52A«

m
Aug° ug° i [kg° l ] j . ~11.12!

Now, for x5f1c, using a compact notation by omittin
the indices, we have

G~x!5G~f!1G~c!1
1

4!
~O11O21O31T11T21T3!.

~11.13!

Here the mixed termsOa contain onec factor and theTa’s
two c factors.Postponing the symmetrizationover i , j ,k,l to
the very last moment, these terms read explicitly as follo

O1
i jkl ~f,c,f!5 êmnpqê rstuf

mnric jpskf lqtu, ~11.14!

O2
i jkl ~c,f,f!5 êmnpqê rstuc

mnrif jpskf lqtu, ~11.15!

O3
i jkl ~f,f,c!5 êmnpqê rstuf

mnrif jpskc lqtu, ~11.16!

T1
i jkl ~c,f,c!5 êmnpqê rstuc

mnrif jpskc lqtu, ~11.17!

T2
i jkl ~c,c,f!5 êmnpqê rstuc

mnric jpskf lqtu, ~11.18!

T3
i jkl ~f,c,c!5 êmnpqê rstuf

mnric jpskc lqtu. ~11.19!

An important observation is that allT’s are vanishing for
Eq. ~11.8!. Indeed, since

c i jkl 522A2gP[ iuj ]ekl, ~11.20!

we straightforwardly find, for example,

T1
i jkl ~c,x,c!524gêmnpqê rstuP

[mun]eri P[ luq]etux jpsk

522gêmnpqê rstux
jpskPmun

3~Pluq2Pqul !eri esk

50. ~11.21!

This is zero because either the symmetricunuq or symmetric
PmPq is contracted with the antisymmetricêmnpq. Note that
we on purpose writex jpsk as the second argument, becau
its form is arbitrary, not necessarily equal to Eq.~11.7!.
Analogously, we find:

T2
i jkl ~c,c,x!524gêmnpqê rstuP

[mun]eri P[ jup]eskx lqtu

522gêmnpqê rstux
lqtuPmun

3~Pjup2Ppuj !eri esk

50. ~11.22!
02404
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It is a little bit more nontrivial to prove thatT3 also vanishes.
We have, explicitly:

T3
i jkl ~x,c,c!524gêmnpqê rstuP

[ jup]eskP[ luq]etuxmnri

52gêmnpqê rstux
mnri~PjupPluq

2Ppuj Pluq2PjupPqul1Ppuj Pqul !esketu

50. ~11.23!

The first and the last terms in the parentheses contain
symmetric combinationsupuq andPpPq which are vanishing
when contracted with the antisymmetricêmnpq. The two re-
maining terms in the parentheses are reduced, by means
relabeling of indices, to2Ppuq(Pluj2Pjul). Recalling that
at the end we impose the symmetrization over the free in
ces (i , j ,k,l ), we thus prove thatT3(x,c,c)50.

Since in all the three formulas~11.21!–~11.23!, the argu-
mentx jpsk is completely arbitrary, we can putx jpsk5c jpsk,
in particular. Then Eqs.~11.21!–~11.23! yield thatG(c)50.
As the next choice, we putx jpsk5f jpsk. Then Eq.~11.13!
combined with Eqs.~11.21!–~11.23!, yields

G~x!5G~f!1
1

4!
~O11O21O3!. ~11.24!

It thus remains to compute theO terms. The corresponding
calculation is straightforward and simple if we use the re
resentation~11.12!. Then we find

O1
i jkl ~f,c,f!5O2

i jkl ~c,f,f!

5O3
i jkl ~f,f,c!

58
«

m
g° ( i j ckumnu l )g° mn . ~11.25!

Note that this result is validfor all possible tensorsc, not
only Eq. ~11.8! which means that we can further use E
~11.25! for the future calculations involving more gener
nonlinear pieces~in particular, for the case with a nontrivia
mi j ). Using then Eq.~11.25! in Eq. ~11.24!, we get

Gi jkl ~f1c!52
«

m2
A2gg° ( i j g

1
kl). ~11.26!

Here we denoted

g
1

i j
ªg° i j 2

m

A2g
c ( i umnu j )g° mn . ~11.27!

Hence, a purely dielectric nonlinear moving medium w
in general exhibit the birefringence effect: the light w
propagate in such a medium along the cone of the orig

optical metricg° i j ~one may call it ordinary ray!, and along

the second cone determined by the metric
1

gi j ~‘‘extraordi-

nary’’ ray!.
2-9
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The explicit form of the extraordinary optical metric
obtained when we substitute Eq.~11.20! into Eq. ~11.27!:

g
1

i j 5g° i j 2mPke
k( iuj )1

1

«
uke

k( i Pj ), ~11.28!

5g° i j 1mek( iuj )Fklu
l2

1

«
uke

k( iF j ) lul . ~11.29!

These results generalize the special cases considered in@15#.
As an example, let us consider the case of double ref

tion caused by an electric field. We consider the medium
its rest frame and use adapted coordinates such thatui5d0

i

5(1,0W ). We assume that the dielectric permittivity is give
by

«5 «̄1aE2. ~11.30!

Here«̄ anda are constant parameters. The components of
electric 3-vectorE are defined as usual,Ea52F0a . Then
we find

e0a52ea0522aEa, and Pj5uiF
i j 5~0,Eb!. ~11.31!

The spatial indices are lowered and raised with the help
the 3-metricdab ~we neglect gravity!. As a result, from Eq.
~11.31! we obtain

Pke
ki5~22aE2,0!, uke

ki5~0,22aEb!. ~11.32!

Finally, using all this in Eq.~11.28! we find the components
of the extraordinary optical metric:

g005n2S 11
2a

«
E2D , gab52dab2

2a

«
EaEb. ~11.33!

HerenªA«m is the refraction index of the medium. In th
way we obtain a natural description of the optical Kerr effe
~see@28#, for example! when birefringence is induced by th
applied electric field.

XII. DISCUSSION AND CONCLUSION

In this paper, we have performed a systematic analysi
the light propagation for two classes of local nonlinear el
trodynamics models on the basis of the Fresnel approach
studied~a! general local nonlinear Lagrangian theories, a
~b! moving isotropic nonlinear matter. In the former case,
Lagrangian~3.2! is an arbitrary function of the two electro
magnetic invariants, whereas in the latter case, the per
ability and permittivity functions of the medium~11.1! de-
pend arbitrarily on the electromagnetic field.

The study of the first class of models reveals thegeneric
nature of the birefringence effect: The quartic Fresnel surf
reduces to the two light cones forall nonlinear Lagrangians
~3.2!. We show that the resulting optical metrics are alwa
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real and have the correct Lorentzian signature. In this w
we confirm and extend the recent results of@14,15#. Further-
more, we are able to demonstrate the validity of the so-ca
closure–no birefringence conjecture in the context of non
ear electrodynamics: Birefringence is absent~and thus the
quartic Fresnel surface reduces to a unique light cone! if and
only if the effective constitutive~or jump! tensor satisfies the
closure property.

The nonlinear isotropic moving matter with the constit
tive law ~11.1! gives a sound example of a model in whic
the effective constitutive tensor naturally has nontrivial axi
and skewon contributions. Accordingly, one should then
pect that the Fresnel surface remains quartic, in general@21#.
However, for nonmagnetic material media, we show that
refringence is again the generic effect. The Fresnel surf
factorizes into two light cones, one of which corresponds
the Gordon optical metric~independent of nonlinearities!,
whereas the other@Eq. ~11.28!# manifests the nonlinear prop
erties of the model. The optical Kerr effect represents a p
ticular example of our general derivations. It is worthwh
to mention other natural applications of our formalism an
in particular, of the general Fresnel equations~2.10! and
~2.11!: nonlinear electrodynamics for the case of finite te
perature@19# or Casimir@29# quantum vacuum. We will dis-
cuss these cases elsewhere.

As a final remark, we feel it is necessary to comment
the recent paper@30# which also discusses wave propagati
in local Lagrangian nonlinear electrodynamics. Our resu
basically agree within the more narrow class of models c
sidered in@30#. However, in our opinion, the concept of b
refringence is misused in@30# in the sense that it is applie
there also to the case when the Fresnel quartic surfacedoes
not factorize into the two light cones. We find this unfortu
nate because it contradicts the standard terminology of
classical crystal optics. Namely, as it is well known~see@28#,
for example!, an electromagnetic wave falling on a surface
a uniaxial crystal is refracted, giving rise to thetwo waves,
ordinary and extraordinary. Correspondingly, such an eff
is calledbirefringence. The mathematical explanation of th
phenomenon is based precisely on the fact that the qu
Fresnel surface decomposes into a product of the two l
cones for uniaxial crystal. In contrast, for abiaxial crystal the
Fresnel surface does not factorize. As a result, an elec
magnetic wave refracts on the surface of a biaxial crysta
a more complicated way giving rise to what is known as
conical refractionwhich is markedly distinct from the bire
fringence in a uniaxial crystal. In conformity with this stan
dard terminology, we thus prefer to speak of birefringence
the broader context of the general local nonlinear mod
only when the Fresnel wave surface factorizes into the pr
uct of two light cones. This makes the introduction of
notion of ‘‘bimetricity’’ @30# redundant and unnecessary.
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