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Fresnel analysis of wave propagation in nonlinear electrodynamics
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We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the
derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear
Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes,
yielding the generic birefringence effect. We show that the closure of the effective constiartjuenp tensor
is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone
structure. As another application of the Fresnel approach, we analyze the light propagation in a moving
isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and
axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the
corresponding optical metrics.

DOI: 10.1103/PhysRevD.66.024042 PACS nuni§er04.20.Cv, 04.30.Nk, 11.10.Lm

[. INTRODUCTION earlier results obtained within the framework of linear elec-
trodynamicg20,21].

Wave phenomena belong to the most interesting and im- We restrict our attention téocal electrodynamical mod-
portant processes in physics. Among other field theoriesgls, thus assuming that, at each point, the corresportéing
nonlinear electrodynamics attracts a lot of attention in confective) constitutive tensor of the medium under consider-
nection with the prominent role played by light in the experi- ation depends only on the field strength itself and not on its
mental and theoretical studies of the structure of spacetim@erivatives. In other words, dispersive effects are neglected.
and matter. This approximation is valid in general when the wavelength

Nonlinearities in electrodynamical models can arise inOf the propagating electromagnetic field is larger than the
different ways in classical and quantum field theories. Fofength scales related to the microscofsabstructure of the
example’ the old Born-Infeld theor[\l] was a fundamental medium. For instance, for the Heisenberg'Euler effective La-
theory alternative to classical Maxwell electrodynamicsgrangian, which describes nonlinearities due to radiative cor-
which provided a model of a classical electron. On the othefections in QED, this means that the wavelength of the pho-
hand, quantum Maxwell electrodynamics predicts nonlineafons has to be much larger than the Compton length of the
effects which arise due to radiative corrections, E&e4]. electron. For the isotropic media considered in Sec. Xl, this
Finally, in modern string theories a generalized Born-Infeldmeans that the wavelength of the photons is assumed to be
action naturally arises as the leading part of the effectivanuch larger than the length scales related to the resonance
string action, se¢5—7], for example. frequencies of the medium.

Wave propagation in the various nonlinear electrodynami- Our basic tool will be thejeneral formulafor the Fresnel
cal theories was studied previously [B—13 and also in equation derived earlier within linear electrodynamics
[14-19. A general feature revealed in these studies is thé20,21. Now we observe that the analysis of the wave propa-
existence of birefringence. In crystal optics, the notion ofgation in a general local nonlinear model reduces to the lin-
birefringence means the emergence of two Kwdinary and ear case because the jumpS of the derivatives of the excita-
extraordinary with different velocities inside the material tion and of the field strength are in all cases related by a
medium. We will use the expression “birefringence” in a Iinear |a.W. We can then make use Of our master formula for
similar sense, associating it with the situation when two dif-the Fresnel tensor anderive the Fresnel equation for any
ferent light cones exist for the wave normal covectors. HowJocal nonlinear modeland thereby explain the reduction to
ever, the earlier results are incomplete in the sense that tHge light cones.
full Fresnel equation, governing the wave normals, was
never derived explicitly. Moreover, it was not demonstrated
how it happens that the original quartic surface of wave nor-
mals reduces to the light cone. That is the primary interest in

our study, and we will try to clarify this aspect for local  Quijte generally, Maxwell’s equations for the excitation
nonlinear electrodynamical models, using and expanding oW _form H —(D,H) and the field strength 2-forr = (E,B)

read
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Here J is the electric current 3-form. These equations mustinear electrodynamics remain also valid in the general case
be supplemented by a constitutive l&w=H(F). The latter because whatever local relatibl{F) may exist, the relation
relation contains the crucial information about the underlyingbetween thgumpsof the field derivatives, according to Eq.
physical continuum(i.e., spacetime and/or material me- (2.5, is always linear.
dium). Mathematically, this constitutive law arises either If we use Maxwell's equation§2.1), then Eqs.(2.3) and
from a suitable phenomenological theory of a medium or(2.4) yield
from the electromagnetic field Lagrangian. It can be a non- - -
linear or even nonlocal relation between the electromagnetic €' dqjhy=0, €'q;f=0. (2.6)
excitation and the field strength. . C . .
If local coordinatesx' are given, withi,j, ...=0,1,2,3, Here s the Levi-Civita tensor density of weight 1,
we can decompose the excitation and field strength 2-form@ith € "= 1. We will also use the Levi-Civita tensor den-
into their components according to sity of weight —1, which we denote by, with €p;23
=1.
Let us introduce the analogue of the conventional consti-
tutive matrix

ijkl

1 ) ) 1 ) )
H=SHjdxAdxX, F=3FdxAdX. (22

There are several approaches to the study of the wave ikl
propagation in nonlinear electrodynamics. For example, one X
can consider the geometric optics approximation scheme - -
when a field strength is split into a sum of a background fieldvhere we denoté" :=%¢'_'m”Hmn. Similarly to Kijkl , we
plus a wave term of the forrfy;€'® where the amplitudé  will often call the tenson¢'/¥' the jump tensor density.
varies slowly compared to the pha®e Under the condition Now, making use of Eq92.5 and(2.7), we rewrite the
that the scale over which the background electromagnetisystem(2.6) as
field varies is much larger than that of variationsdaf one ki ki
then derives the algebraic system for the amplittigénich xqif=0, €'q;f,=0. 2.9
ultimately determines the characteristics of the wave solu, . . _ )
tions in terms of the background field. The advantage of thig0Ving the last equation bi; =q;a; —q;a;, we finally re-
approach is its clear physical interpretation. duce the first part of E¢2.8) to

An alternative approach is represented by the Hadamard ikl . _

. S X X" g;0q¢a=0. (2.9
theory of weak discontinuities. It yields the same results,
whereas it is more mathematically transparent, in our opinThis algebraic system has a nontrivial solution &ronly
ion. Correspondingly, here we will study the propagation of ayhen the wave covectors satisfy a certain condition. The

discontinuity of the electromagnetic field using the Had-|atter gives rise to oucovariant Fresnel equatio[‘QO,Zj;l
amard approach following the lines of R¢R0], see also

) IH "
elimn . kl_ , (27)
mn aFkl

1
2

Ref.[21]. The surface of discontinuitgis defined locally by G"™(x)qia;aka1=0, (2.10
a function® such thatb = const onS. AcrossS the geomet- ) )
ric Hadamard conditions are satisfied: with the fourth order Fresnel tensor denfgy)f W6|ght +1
defined by
[Fij]=0, [aiFj]=aifjk, 2.3 L
[Hi1=0, [aiH]=gihy. (2.4 G (y) :=H%mnpc%rstuxmnr(ixjIpslk)(l)qtu- (2.11)

Here[ F](x) denotes the discontinuity of a functidhacross |t js totally symmetricG¥ (x) =G ¥ (y), and thus has 35
S andg;:=d;® is the wave covector. Given the constitutive jndependent components. A particular case of that construc-
law H(F), which determines the excitation in terms of the tion has been introduced by Tan{23].
field strength, the corresponding tensgsandh; , describ-
ing the jumps of the derivatives of field strength and excita- IIl. LOCAL NONLINEAR ELECTRODYNAMICS
tion, are related by22]

Let us denote the two independent electromagnetic invari-

1 dH ants as

hijzzKijklfkh with Kijkl::ﬁ. (25) ) -
|1==FijF”, |2==FijF”, (31)

We will call Kijkl thejump tensorin linear electrodynamics,

its components coincide with the components of the constiwhere Fi:=1 X' F,, and 7% :=(—g) 21X, The Hodge

tutive tensor (which describes the linear lawH;;  operator for the exterior forms is denoted by as astefigk (

=3«ij*'Fi), and they are independent of the electromagas usual; and we use a tilde to denote the dual 2-tensors.

netic field. However, in general the jump tensef*' is a We will study the class of nonlinear electrodynamics

function of the electromagnetic field, the velocity of matter, models which are described by the Lagrangian 4-form
the temperature, and other physical and geometrical vari-

ables. Quite remarkably, all the earlier results obtained for V=Lzn, with L=L(lq,l5,). (3.2
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Here, as usualy is the 4-form of the spacetime volume. Our
analysis is generally covariant, i.e., we do not restrict our-

(2)X|]kl C= E(lekl _Xk|lj): _(2)X|(|IJ '
selves to Cartesian coordinates for whigh=diag(1,-1,

—1,—1). We instead considey;; as an arbitrary Lorentzian (3) IiKT = y LiiKI] (3.9
spacetime metric, although we do not take into account pos- '
sible nonminimal coupling of the electromagnetic field to the (D)KL = Ik (2) 1K (3) iikl = (1) Kii] (3.9

spacetime curvature. In other words, we exclude the La-

grangian models with the curvature terms arising from therne jrreducible piece&y, @y, and @y have 20, 15, and
quantum corrections on a curved spacetime which were stud: jngependent components, respectively. The possible pres-
ied by Drummond and Hathrell8], e.g. As a matter of fact, ence of an axion piecé®y was first studied by N[24],

such terms can be straightforwardly included in our generalhereas a constitutive law with an isotropic skewGy
approach using the general quartic Fresnel equa®at0, \y5s discussed by Nieves and P25].

(2.11) but this goes beyond the scope of the current paper. |n the Lagrangian modeks.2), the effective constitutive
The corresponding generalization will be discussed elsegnsor is automaticallpymmetric i.e., @y =0, which fol-

where. lows from Eq.(3.6), sinceks=Kk,. However, in general the

The electromagnetic excitation 2-form, which enters the,mp tensor density3.5) has all three irreducible pieces:
Maxwell equation(2.1), is derived as the derivative of the

Lagrangian formH= —dV/dF. Explicitly, we then have the

N (kg+ky)
nonlinear constitutive law (1)X”k| =v—9g — s

kgl + k,Fil K + 5

H=4(—L¥F+L,F). 3.3 =i = =iz L
(~LIF+LoF) 33 X (FUFH FITEM) + kTR — = (kg k)1

We denote the partial derivatives of the Lagrangian function

with respect to its arguments as + (ks — k)l 5] nijkl} (3.10
L o L L b=1,2 3.4
e N G0} 312
In accordance with Eq€2.5) and (2.7), the direct differen- 1
tiation of Eq. (3.3 yields the jump tensor density (@)Kl = 1—2\/—_9[(k3+k4)| 1+ (Ks— ko) o+ 12Kg] 711K
1K = g kg + k,Fl X 1 kg E (3.12
+ K FIER 4 K FITEK 4 kg 7K. (3.5 IV. FRESNEL EQUATION AND BIREFRINGENCE
o ) Our analysis in the framework of the Hadamard formal-
The coefﬁqeptskA.,A:l, .-+, 6, aréfunctions of the elec- jgm yields the Fresnel equation in the generally covariant
tromagnetic fields: form (2.10 with the Fresnel tensor densit@.11). For the
explicit jump tensor density3.5), it thus remains to substi-
ki=4L;, ky=8Ly1, ks=ks=8Lyy, tute its components into E¢2.11). A straightforward calcu-

lation yields the result:
k5:8|—22, k6:2|_2. (36)

gleI:__ [ X (ij kl)+2y (”tkl)-i-Zt(”tkl) )

The identifications(3.6) are derived for the nonlinear La- 8 9(Ag™g g )
grangian(3.2) from the constitutive law(3.3. However, in (4.)
most computations below we will consider the most general_|ere we denote
case with unspecified arbitrary coefficiets. This may be
useful if we want to study nonlinear electrodynamics of a K 1
more general_ type, for instance, with dissipation effects — x=kZ+ El(k3+ k4)|2—k1k5|1+Z(k3k4—k2k5)|§,
and/or in moving media. B 4.2

In general, the untwisted tensor densit§ (x) of weight 4.2
+1 has 36 independent components. We can decompose it ., _ _
into irreducible piecef21] with respect to the 6-dimensional V=kalkatks)+(keks—kaoke)l1, 4.3
(“bivector”) linear group as follows: Z= A(koks— kaky), 4.4

K = (D)KL () 1Ky (3), kI 3.7 and

The irreducible pieces of are defined by t:=FKF] . 4.5
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The latter is closely related to the Minkowski energy- y2_;yz:|\|§+ N,N3, (5.2
momentum tensor

where we have denoted

. 1
[ _ I
Th=—tit gl 49 N =Ky(ky—ks) + (Ksks—koks)l1, (52
The most remarkable property of E@.1) is that it is N, :=2Kkks+ (ksks—koks)l 5, (5.3
obviously factorizable into a product of two second order
tensors. Correspondingly, the quartic Fresnel surface of the N3:=2Kk;ks+ (kzks—kaks)l 5. (5.9
wave normals reduces to the product of two second order
surfaces: The expressioii5.1) is always non-negativin every nonlin-

ear theory(3.2) becauséN,= N5 when we take into account
y —ky thatk;=k,, see Eq(3.6).
ki a. = Ydiaag) (g 3T 4 . . _ .
g7 (x)i0; At = —5-(916%i9;) (92 Ak The signature of a four-dimensional metric is Lorentzian
if and only if its determinant is negative. Straightforward

_ —_kl(alj Q'Q‘)(ESQM) 4.7 computation yields, for the optical metri¢4.8), (4.9);
82 i ' '

i, - af, § 2
In other words, the wave normals lie not on the quartic sur- (degy)=(deg")| a®+ 5 1~ Elé ,
face but on one of the two cones which are determined by the
pair of optical metrictensors: a=12. (5.5
g1 =g+ (V+ VY- A, (48 Herea=xX andB,= Y+ V7= AZ, Bo=YV—V?—AZ. As
N - - we see, both optical metrics have Lorentzian signature as
g4 1= xg" + (Y- VY?-az)th. (4.9  soon as the spacetime metgt is Lorentzian.

o _ o Summarizing, we have demonstrated that Hgs3) and
The second equality in E¢4.7) offers a different description (4.9) indeed describe the generic effect of a birefringent light
of the cones by means of the conformally equivalent metrigyropagation forll local nonlinear Lagrangian@.2).

tensors: Recently, the emergence of the two “effective geom-
1 etries” has been described ifl4,15 without using the
i (v N2 7\ i = (v N2 7\ ] Fresnel approach. These results agree with those obtained in
g1 = (Y=Y - AZ)gl+ 2t X(y Vi-a2)ar, our analysis, since one can show that our optical metrics are

(4.10 conformally equivalent to the effective metrics [df4,15.

Moreover, one can recast the optical metridsd)—(4.11)

_ . 1 o into the form of the so-called Boillat metrics pf6].
3=+ \/yz—XZ)g'J+Zt'J:j((y+ VJ’Z—XZ)QE- brel

(4.11) VI. SPECIAL LAGRANGIANS

Thus, the genera| Fresnel ana|ysis demonstrates t}*m[]yn It is worthwhile to discuss certain particular nonlinear
local nonlinear electrodynamics mod8l2) the quartic wave ~Models which are potentially of physical interest.
surfacealwaysreduces to two light cones. This is the bire-

fringence effect which is thus a general feature of the local A. Lagrangian L=L(l,)

nonlinear models3.2). When the Lagrangian depends only on the second electro-

magnetic invariant, we havie,=0, and there are no waves

V. PROPERTIES OF OPTICAL METRICS in such models.
Let us discuss the results obtained in the previous section. )
The following general observations are in order. B. Lagrangian L=L(I)
The Fresnel equation is trivially satisfifdr all wave For the Lagrangian which, on the contrary, depends on the

covectors wherk; =0, see Eq(4.1). Thus, in order to have first invariant only, we findkz=k,=ks=0. Accordingly,
waves, every electrodynamical Lagrangiarshould neces- from Egs. (4.2 —(4.4) we find X=k3,)=k;k,, and Z=0,
sarily depend on the invariant;=F;;F" (thus providing  and thus Eqs(4.8) and (4.9) yield
k,# 0). Accordingly, we will always assume thif#0. B B B B B
In order to have a decent light propagation, the optical g =kq(kg' +2k,t'), gl=kig. (6.2
metrics should be real and with Lorentzian signature. How
can one bea priori sure that for even. an optical metric ~ Correspondingly, we still have birefringence with some pho-
necessarily has these properties? tons moving along the standard null rays of the spacetime
Using Egs.(4.2—(4.4) we find an explicit expression for metricg", whereas other photons choosing the rays null with
the quantity under the square root in the above formulas: respect to the optical metric,;g" +4L,4t", cf. [14].

024042-4



FRESNEL ANALYSIS OF WAVE PROPAGATION IN . .. PHYSICAL REVIEW 6, 024042 (2002

C. Lagrangian L=U(l)+al, Thus we have birefringence and both light cones differ from

This is a simple generalization of the previous case. Herd€ One determined by the spacetime metric, cf. pls.

a does not depend on the electromagnetic field, although it is

not a constant, in general. When it depends on the spacetime F. Born-Infeld theory
coordinates,a= a(x), one can identify it with the axion  The Lagrangian of the Born-Infel(Bl) theory[1] reads
field, cf.[24].

Here we again hav&;=k,=ks=0 and we recover the 1 1
same light cone structur@.1). To put it differently, the ax- L b2( - \/1 5 4|2)
ion field does not disturb the light cones which are solely b 6o
determined by the spacetime metric and by the dependen
of the Lagrangian on the invariaht.

(6.9

%Fereb is the coupling constant which has the meaning of the
critical field. Correspondingly,
D. Lagrangian L=al+V(l,)

Thenk;=4a, k,=k;=k,=0, andks=8V", which yields
X=16a’-32V"l,, Y=32aV", and Z=0. Consequently, X= (

=

(6.10
gi =16a[(a—2V"I,)g" +4v"tl], '§>
gy =16a(a—2V"l,)g", 6.2 ( .

. ll)

i.e., there is again birefringence with one cone determined by .
the standard spacetime metric. Y=

)2, (6.17

E. Heisenberg-Euler Lagrangian

In the one-loop approximation, polarization of vacuum in 1
guantum electrodynamics is described by the Heisenberg- Z=
Euler effective Lagrangiaf2—4]. The critical magnetic field a
By=(m?c%/ef) ~4.4x10° T (for the electron mass and b <1+ szll 160t 2
chargee) essentially determines the physical structure of the
nonlinear model. For the weak fields which satisfy  As a result, we findy?—AxZ=0, and thus the two optical
<B2,1,<Bg the Heisenberg-Euler Lagrangian reads metrics(4.8) and (4.9) coincide,

)2. (6.12

L 1I N a I2Jr7|2 I4 2|2 13|2 6.2 1+ 1 |
_Zl_gﬁlZZB__ +5g!2 (6.3 - op2 '
g{=9g7= 2
Herea= (e?/4wfic) is the fine structure constant. From this ( 1+ i| - L| g)
Lagrangian we find, keeping only the leading order terms, b? 6b*
1 1
6al, ) ij_ ij
_ 1+ —1,|gl——t (6.13
X=1+ , 6.4 2'1 2
4535 6.4 2b b
Birefringence disappears, and the photons propagate along a
Y= a | n E‘I_l 6.5 single light cone determined by the “quasi-metric” of Ple-
~ 45B2 7 g2’ ' banski[11]
2 1 1
o 3520 Il (1 Il) gll__t” (614)
Z= 448 — — |. 6.6 2 2
555) ( 7 Bﬁ) (6.6) 2b b
As a result, we obtain the optical metrics VII. VELOCITY OF LIGHT
The knowledge of the optical metric is sufficient for de-
gi=[1 6al, ij_ 16a tii 6.7) termining the velocity of light. The phase velocityof wave
! 455& 4555 ' ' propagation is defined by the wave covector components by
means of the relation
gl=| 1+ 6al, gi— 28 i 6.8 o
2 4SBE 4585 ’ ’ Ja =—ka, a=1,2,3, (7.1
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where k, are the components of the unit 3-covector. Al- VIIl. NO BIREFRINGENCE CONDITION
though we confine our attention to the phase velocity, it is In this section, we will restrict our attention to the La-
straightforward to show that for the models under consider- rangian theorie.s: for which the constitutive tensor is Eq
ation the group velocity is always greater or equal to the?3 5, and the coefficients are derived as E&6). It is im- '
phase velocity. Substituting Ed7.1) into the light cone pdrtént that the Fresnel analysis reveals ﬂh@t& 0, other-
equationg{¢;q; =0 andgq;q;=0, one can find the veloci- wise there is no decent wave propagation at all ,
.ties of light e_xplipitly. U;ually, of interest i; the mean ve[oc- As it is clear from Eq(5.1), the necessary and sufficient
ity value which IS obtained afFer averaging over the d'".ac'condition of the absence of birefringence is provided by the
tions of propagation and polarizations. A direct computatlonpair of equations:
using the general form of the optical metrigs8) and (4.9 '
yields, in Cartesian coordinates,

N1 =K1 (ka—Ks) + (k3ks—kaks)11 =0, (8.9
Y+ 2t%

X+ 2M00+Z(t00)2 N2=N3=2k1k3+(k3k4_k2k5)|220. (82)

4
<l)2>: 1+ §T00

22— XZ+ Z(t1%9)2+ 27t
[ X+ 2190+ (199272

Here the propertk;=k, of the Lagrangian models is used.
Taking into account that ak’s are the partial derivatives
(7.2) of the Lagrangiar. with respect td ; and/orl, as displayed
in Eq. (3.6, we can view the above system as a pair of
In accordance with Eq.(4.6), T%=-—t%+|,/4=(B? partial differential equations, the solutidn=L(l,,l,) of
+E?)/2 is the energy density of the Maxwell field, whereaswhich describes anodel without birefringencéi.e., with a

2
+ 3 apt

S.5t%%t%=S? whereS=EX B is the energy flux density. single light cong At least two such particular solutions are
already known: one is rather simple, namely, the standard
A. Velocity shift in a polarized vacuum Maxwell theory withL = —1,/4. Another is more nontrivial,

. this is the Born-Infeld theory with the Lagrangié®9). One
_AS an appl_|cat|0p of _the gene_ral formua.2), let us ob- may ask the question: Are these the only solutions of the
tain the velocity of light in a polarized vacuum. For the Weaksystem(&l), (8.2? The immediate inspection of the system
field limit of the Heisenberg-Euler electrodynamics, substi—(&l) (8.2) shows that the answer is negative. For example
tuting Eqgs.(6.4—(6.6) into Eq.(7.2), we find, in the leading the Lagrangian functiot(1,,1,)=al,/l,, with constanta,

order, satisfies the equation8.1), (8.2. Such a nonlineafand

880 | B2+ E2 nonpolynomial model thus also has no birefringe.nce. Itis an
(v =1—— (7.3 open problem to find the complete set of solutions of Egs.
135\ 2B2 (8.1), (8.2, leading then to a single light cone.
This value of the mean velocity shift is in agreement with the
previous results derived by different methdds,19. IX. CLOSURE CONDITION
Let us denote the “traceless” part of the jump tensor den-
B. Light velocity in the Born-Infeld theory sity as

Although there is no birefringence in the Born-Infeld
model, the velocity of light in it is different frone?=1. We FK = ()5 IKTy (2) ikl (9.2)
can use the same general formila2 to find its value.
Using Eqs.(6.10—(6.12, we obtain
As we know [21], only the traceless part determines the
, 2 E2+B2 2 E?B?—(E-B)? Fresnel surface, whereas the axion p&y'/' drops out
(v)=1- 3 Bz+ 3 (prEd? (7.4 completely from the wave propagation analysis.
For the general jump tensor densi§.5), we find, after

some algebra,

It is worthwhile to note that in contrast to the approximate
formula (7.3 which is valid only for the weak fields, the

velocity shift(7.4) is the exact relation which is applicable to 1 o a3
arbitrarily strong electromagnetic fields. Since evidently Zepqi,—j(”"' sk M= —ki+— | ooy
(E2+B?)(b2+B2) + (E- B)?— E2B%=0, the velocity(v?) is ki

always less than or equal to 1. It is remarkable though that
due to the existence of the criticahaximal possiblgvalue
of the field b, the averaged velocity of light in the Born-

80 7p ™™+ ArF M g g™

S v +agF o F™"+a,F o F ™ 2
Infeld model cannot be arbitrarily small. It follows from Eq. 3% pq 4% pq .2
(7.4) that the minimum possible value 662) is 1/3 for E2
=b? andB zero or(anti-parallel toE. Here the coefficients read:
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k
80= 5 [(Ks+ka)l 1+ (Ks— ko)1 ]

(N2+N3)
:g|:_N1|2+T 11

a;= — (kg ka)ky —kskql

k
312kt ko)l 1+ (2ks+ ko)l o]

B ks | (Np+Ns) ke
—N1<—3—|(1|2)+T _1+W

a;= — (Kz+kg)ky—Kkskyl
ka
+§[2(k3+ kg)l1+ (Ks+2ky)1 ]

2k, (N,+Ng)
E

az=(ks—kp)ky+koksly

2k,

k
+§3[2(k5—kZ)I2+(2k3—k4)|1]

2k (No+N3) [ 2ks

as=—(ks—Kka)k; —koKsl ¢

Kq
— 3 [2(ks— ko)l o+ (2ks—kg)l 4]

:Nl

2k, (No+Ng) [ 2Kkg

_3_k1|

_3_k1|1

3

)

)

3k, *

|

The third lines in Eqs(9.4)—(9.7) give thea’s in terms of the

9.3

(9.4)

(9.9

(9.6)

9.7

PHYSICAL REVIEW 6, 024042 (2002

X. EQUIVALENCE OF CLOSURE AND NO
BIREFRINGENCE CONDITIONS

In linear electrodynamics, there is much evideneé
though the final rigorous proof is still missipthat the quar-
tic Fresnel surface of wave covectors reduces to a unique
light cone if and only if the constitutive tensor has the clo-
sure property.

For the local nonlinear Lagrangian theori{8s2) it is pos-
sible to make some progress in solving the equivalence prob-
lem. In a certain sense, the situation here is simpler because
we have discovered that the quartic Fresnel surface is always
reduced to the product of the light congeérefringence. The
next step is thus to study under which conditions the bire-
fringence disappears and, correspondingly, a unique light
cone arises.

Theorem For the nonlinear electrodynamical models de-
scribed by the Lagrangiai3.2), the Fresnel equation implies
a single light conéno birefringencgif and only if the trace-
less part of the jump tensor density satisfies the closure prop-
erty.

Proof. As a preliminary remark, we note that for the La-
grangian model$3.2) the jump tensor densit{3.5) is sym-
metric becaus&;=k,. As a resultN,=Ns.

The necessary condition is evident. The birefringence is
absent whemN;=N,(=N3)=0, see Eq(8.2). Then we im-
mediately read from Eq99.3)—(9.7) thatag=a;=a,=a;
=a,=0, and thus the closure is recovered from E32).

The sufficient condition is also proved straightforwardly.
The closure conditiori9.8) has the unique solution

N5+ N5

N1=0, 2

0, (10.1

when we analyze Eq$9.3—(9.7). Since for the Lagrangian
models (3.2 we haveN,=Nj, then Eq.(10.1) yields N,
=N,=N3=0. Thus, there is no birefringence.

To put it differently, we have proven that the closure of
the traceless jump tensor density is the necessary and suffi-
cient condition for the reduction of the fourth order Fresnel
wave surface to a single light cone. This is true &irnon-
linear Lagrangian electrodynamical theorigs2). Returning

combinations(8.1)—(8.2). Certainly, we use the assumption (4 oy studies of the generlihear electrodynamics, we ex-

thatk,#0.

pect that a similar result holds true there.

Like the constitutive tensor of linear electrodynamics, the

jump tensorx;;¥':=3 &;mn x™"' determines a linear map in
the six-dimensional space of 2-forms. When the action of
this map, repeated twice, brings (g to a factoy back to

the identity map, we speak of treosure property of;;*!. \ ( _ _
The importance of the closure property is related to the fackS consider an arbitrary jump tensor densiB/5 without

that ultimately;;*' turns out to be aluality operatorwhich

On asymmetric jump tensors

Symmetry of the jump tensor density is very important in
the equivalence proof above. In order to clarify this point, let

assuming the explicit form of the coefficient3.6). When

determines a unique conformal Lorentzian metric on the<s#Ka, the jump tensor density has the nontrivial skewon

spacetime.

part (3.11). Also, N,# N [in fact, as we can see from Egs.

In local nonlinear electrodynamics, the jump tensor den{5.3) and(5.4), N,—N3=2k;(k3—kj)].

sity (3.5 has the closure property when

8,=0, a;=0, a,=0, az=0,

as is evident from Eq9.2).

a4:0,

(9.9

We can easily verify that the closure of an asymmetric
operator is not equivalent to the no-birefringence property.
Indeed, take, for instanceés; #0, k,=k;=0, k,#0, and
ks=0. Then the jump tensor density is asymmetric &hd
=N,=0, but N;#0. We then obtain a unique light cone
because Eq5.1) vanishes identically. However, the closure
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condition (9.8) is not satisfied, since Eq$9.3—(9.7) are  simple and a physically sound example with both pieces be-
nontrivial for N;=N,=0 andN3#0. This also means that ing nontrivial. The irreducible piece8.8), (3.9 read:
the requirement of a unique light cone does not necessarily
imply that y must be symmetric. O
The opposite is also true: Suppose an asymmetric jump XTENTY
tensor density3.5) has the closure property, i.e., H§.8) is
fulfilled. Then we find Eq(10.1) again. However, the second
part of Eq.(10.1) yields N,=—Ng3, and consequently Eq.
(5.1) together with Eqs(4.8) and(4.9) describe the case of a i i okl
birefringent and dissipative wave propagation. +(m—el)Ptu
These examples show that the closure ofasgmmetric 1
jump (or con;utu'.uve) tensor deng,lty does not ggargntee the_ + 1—27;'Jk'[Fm“mmn+ 2(Mpn— Emp) P™Mu"]
absence of hirefringence, and, vice versa, no-birefringence is
not accompanied by the closure property for an asymmetric (11.4
operator.

%gi[kgl]j +4 %_8> ulkgliy]

_l_%(mijFkl+mkIFij)+(mkI_ekl)P[iuj]

) 1 )
2 kl kl kl
XI. MOVING ISOTROPIC NONLINEAR MEDIA @y =\-g 5 (FIm‘—Fmf)

Recently, there has been some interest in the light propa- . o
gating in moving media with nontrivial dielectric and mag- +(mK— ek pligll— (m'l — el plky'T| (11.5
netic properties. The first covariant analysis of the Fresnel
equation for this case was done by Krerf@&]. An isotropic . .
medium is characterized by the constitutive law and for the axion piece, we have
1 1 ;’ijk|Xijk| = \/—g;in[Fijmk|+2(mk|—eij)Piuj]. (ll@
HI=\-g ;F”+2 ;—s)uka[iu” , (11

Here we have denote!:=u; F'l. Thus, nonlinear isotropic

- . . . matter does have axion and skewon induced by nonlinearity.
whereu' is the 4-velocity of the moving matténormalized y Y

as usual byu;u'=1), ande and . are the permeability and _

permittivity functions of the isotropic medium. The case Nonmagnetic matter

when they do not depend on the electromagnetic field Let us consider the case when the magnetic constant is

strength(being constant in space and time, for examplas  independent of the electromagnetic field, thatmi$=0. [In

investigated i 26]. the simplest case, we can restrict the attention to the purely
More recently, the nonlinear case where(F) andu  dielectric medium withu=1. However, we will formally

= u(F) are functions of the electromagnetic field has beerkeepu+ 1, for the sake of generality.

studied by De Lorencét al.[15]. However, the attention was It is convenient to make the evident split of Ef1.2) into

restricted to certain special cases, and the general result fie sumy' = ¢!kl + /Kl with

still missing.

We can perform a fairly complete analysis of the wave K = 2 ikl 1 (k1L ]
propagation in a nonlinear moving media on the basis of our ¢ =9 ;g gr+4 ;_8 utfgtiut), (117
covariant Fresnel equatid@.10. By differentiation, we eas-
ily find the jump tensor densit{2.7): YK = — 2 [ gekly, Fmliyl, (11.8
XijkI: \/—_g Egi[kgl]j+4 i_s)u[kgl][iuj] It is straightforward to find the Fresnel tensor for the first
) M piece:
+miET 4+ 2(mK —ekhyu Fmliull| 11. i & o i o
( JUm (11.2 GiM ()= — = —9gUigeD. (11.9
o

The second line is absent in the linear theory, and the tensors ) )
Here we have denoted the so-callédrdon optical metric

s [27] as
) i 9 (11.3

0F|] ’ ':aF” ’

m'l:

gl =gl +(su—1)uul. (11.10
are responsible for the nonlinear electrodynamical effects. )

Inspection immediately reveals that the jump tensor denlts inverse reads
sity (11.2 containsboth an axion and a skewon part. There
are claims in the literature that axion and skewon, in general, °
do not have physical sense. However, here we encounter a

1
__1)Uin, (111])
e
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and the determinant can be easily computed: E]det It is a little bit more nontrivial to prove thaf; also vanishes.

=(deg)/(ep).
Using this optical metric we can simplify the form of Eq.
(11.7), bringing it to

. 2 0.1 0 q: € 01 0k O i
d’”kl:; /_ggl[kglllzz\/; lglg'tkg'l. (11.12

Now, for y= ¢+ ¢, using a compact notation by omitting
the indices, we have

1
G(x)=6(¢)+3G(¢) + 2701+ 02+ O3+ Ty + To+ Ta).
(11.13

Here the mixed term®, contain oney factor and theT,’s
two ¢ factors.Postponing the symmetrizatiaveri,j,k,| to

the very last moment, these terms read explicitly as follows:

O (4,1,6) = emmpersnud ™ WP, (1119
Y (116, 6) = emmprstu "B P, 49
O (b, 1) = emmprstud ™ PP, (49
TE ) = et ™ B, —
I ,0) = Eompirsat ™ PP, (1119
TY(B 0= Emnprsra ™ U HP (49

An important observation is that all's are vanishing for
Eqg. (11.8. Indeed, since

wijkl =—2 ’—gP[iu”e"',

we straightforwardly find, for example,

(11.20

T?kl(‘//aXv )= _‘]'g;mnpq;rstul:)[mun]eri P[qu]etqupSk
= 2g";mnpq;rstu)(jpSkPmun
X (P'ud—Pau')e'esk

=0. (11.21)

This is zero because either the symmetria® or symmetric
P™PYis contracted with the antisymmetr&,;mpq. Note that

we on purpose writg/PK as the second argument, because

its form is arbitrary, not necessarily equal to E@11.7).
Analogously, we find:

T (4,40, x) = — 4G €mnpersiPMuMe" PUUPlesky fat
=- 2gémnpq‘ErstquqtuPmun
X (PluP—PPul)eesk

=0. (11.22

We have, explicitly:
T (x4, 9) = — Ag€mnpcrstuPl uPleskPlludettymnri
= _g;mnpq;rstuanri(PjupPIUq
— Ppuj Pluq_ PjuquUl + ppuj Pqu|)eSke'[u
=0. (11.23

The first and the last terms in the parentheses contain the
symmetric combinationsPu9 andPPPY which are vanishing

when contracted with the antisymmet%ig,npq. The two re-
maining terms in the parentheses are reduced, by means of a
relabeling of indices, to- PPud(P'ul — P/u'). Recalling that

at the end we impose the symmetrization over the free indi-
ces (,j,k,1), we thus prove that;(x,¢,¥)=0.

Since in all the three formulag1.29—-(11.23, the argu-
ment y!P3 is completely arbitrary, we can pytPsk= y/PsK

in particular. Then Eqg11.29—(11.23 yield thatG()=0.

As the next choice, we pup/Psk= ¢IPsX Then Eq.(11.13
combined with Eqs(11.2)—(11.23, yields

1
G(X)=G9(#)+ 77(01+ 02+ 0Oy). (11.24

It thus remains to compute th@ terms. The corresponding
calculation is straightforward and simple if we use the rep-
resentation11.12. Then we find

O (¢, 4, ) =00 (¢, b, $)
=0UM(,¢,9)

_ &2 Kimnl)?2
_8;9 ¢ 9mn- (11-25

Note that this result is validor all possible tensorg, not
only Eqg. (11.8 which means that we can further use Eq.
(11.29 for the future calculations involving more general

nonlinear piecesin particular, for the case with a nontrivial
m"). Using then Eq(11.29 in Eq. (11.29, we get

1
N € o i
M (p+y)=——V-gg¥g.  (11.26
y73
Here we denoted
1__ o.. Iu, . .\ O
0'=g)— MG, (1120

Hence, a purely dielectric nonlinear moving medium will
in general exhibit the birefringence effect: the light will
propagate in such a medium along the cone of the original

optical metricéij (one may call it ordinary rgy and along
the second cone determined by the meuit (“extraordi-

nary” ray).
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The explicit form of the extraordinary optical metric is real and have the correct Lorentzian signature. In this way,
obtained when we substitute Ed.1.20 into Eq. (11.27%: we confirm and extend the recent result§ bf,15. Further-
more, we are able to demonstrate the validity of the so-called
closure—no birefringence conjecture in the context of nonlin-
Lo e L ki lectrodynamics: Birefri is absémd thus th
gl =gl — uP e liul) + ~u,ekip)), (1129  €ar electrodynamics: Birefringence is abséa us the
€ quartic Fresnel surface reduces to a unique light pdrand
1 only if the effective constitutivéor jump) tensor satisfies the
UF U — ZuekipDly, . (11.29 closure property. _ _ _ _
€ The nonlinear isotropic moving matter with the constitu-

h | lize th il id . tive law (11.1) gives a sound example of a model in which
These results generalize the Special cases consl efedin the effective constitutive tensor naturally has nontrivial axion
As an example, let us consider the case of double refrac:

tion caused by an electric field. We consider the medium inand skewon contributions. Accordingly, one should then ex-
) : . Uihab pect that the Fresnel surface remains quartic, in geh2tl
Its reft frame and use adapteq cooerates SUCh 70 However, for nonmagnetic material media, we show that bi-
=(1,0). We assume that the dielectric permittivity is given refringence is again the generic effect. The Fresnel surface
by factorizes into two light cones, one of which corresponds to
the Gordon optical metri¢independent of nonlinearitigs
whereas the othéEg. (11.28] manifests the nonlinear prop-
erties of the model. The optical Kerr effect represents a par-
icular example of our general derivations. It is worthwhile
0 mention other natural applications of our formalism and,
in particular, of the general Fresnel equatidizs10 and
(2.11): nonlinear electrodynamics for the case of finite tem-
peraturg[19] or Casimir[29] quantum vacuum. We will dis-
el3=—e30=—23F% and P/=uF'=(0E"). (11.3) cuss these cases elsewhere.
As a final remark, we feel it is necessary to comment on
The spatial indices are lowered and raised with the help ofhe recent papd@()] which also discusses wave propagation
the 3-metricd,, (we neglect gravity As a result, from Eq. in local Lagrangian nonlinear electrodynamics. Our results
(11.39) we obtain basically agree within the more narrow class of models con-
sidered in[30]. However, in our opinion, the concept of bi-
Ki_ o 2 Ki_ b refringence is misused if80] in the sense that it is applied
Pie=(~2aE%0), we"=(0,-2ak?. (11.32 theregalso to the case when the Fresnel quartic sur?e?ee
Finally, using all this in Eq(11.28 we find the components not factorize into the two light cones. We find this unfortu-
of the extraordinary optical metric: nate because it contradicts the standard terminology of the
classical crystal optics. Namely, as it is well knoysee[ 28],
for example, an electromagnetic wave falling on a surface of
a uniaxial crystal is refracted, giving rise to the/o waves,
ordinary and extraordinary. Correspondingly, such an effect
is calledbirefringence. The mathematical explanation of this
Heren:=\/e u is the refraction index of the medium. In this phenomenon is based precisely on the fact that the quartic
way we obtain a natural description of the optical Kerr effectFresnel surface decomposes into a product of the two light
(see[28], for example when birefringence is induced by the cones for uniaxial crystal. In contrast, fobaxial crystal the

— aij + ek

e=s+aE2. (11.30
Heree anda are constant parameters. The components of th

electric 3-vectorE are defined as usuak,=—Fg,. Then
we find

2a
. g¥P=—%0— ?EaEb. (11.33

2a
g%= nz( 1+ ?Ez

applied electric field. Fresnel surface does not factorize. As a result, an electro-
magnetic wave refracts on the surface of a biaxial crystal in
XII. DISCUSSION AND CONCLUSION a more complicated way giving rise to what is known as the

. ) ~conical refractionwhich is markedly distinct from the bire-
In this paper, we have performed a systematic analysis afingence in a uniaxial crystal. In conformity with this stan-
the light propagation for two classes of local nonlinear elecyard terminology, we thus prefer to speak of birefringence, in
trodynamics models on the basis of the Fresnel approach. We proader context of the general local nonlinear models,
studied(a) general local nonlinear Lagrangian theories, andpnly when the Fresnel wave surface factorizes into the prod-
(b) moving isotropic nonlinear matter. In the former case, the,ct of two light cones. This makes the introduction of a

magnetic invariants, whereas in the latter case, the perme-

ability and permittivity functions of the mediurfl1.1) de-
pend arbitrarily on the electromagnetic field. ACKNOWLEDGMENTS
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