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Role of scalar field in the formation of structure in the universe
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A scalar field approach to the Jeans mass calculation is discussed. Considering a massive scalar field
arbitrarily coupled to a gravitational background, the stress-energy tensor expectation values are computed in
a coherent state. The density matrix is used to represent the expectation values. The energy density and
pressure associated with the density perturbations are evaluated. Using these results, the exact expressions for
the Jeans length and Jeans mass are evaluated.
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[. INTRODUCTION models. The gravitational instability of a spatially uniform
state of a relativistic scalar field on a time-dependent back-
The standard theory of cosmological structure formatiorground is discussed by Khlopov, Malomed, and Zeldovich
[1-3] is based on the idea of gravitational instabiligy—6],  [6] and the instability is demonstrated to be similar to the
according to which small initial irregularities in the distribu- Jeans instability. Ferreira and Joyce have studied the struc-
tion of matter become amplified by the attractive nature ofture formation with a self-tuning scalar field and they have
gravity. Gravitational instability is a consequence of smallexplained the effect of scalar field on cosmic microwave
fluctuations in the density{7]. Gravitational instability ~background(CMB) [21]. Structure formation within the
causes the growth of perturbations in an expanding universéemaitre-Tolman model have been investigated by Krasinki
The gravitational instability of a spatially uniform state of and Hellaby[22]. They have determined how fast the con-
dustlike matter described by classical nonrelativistic equadensations can grow, once they appear in a homogeneous
tions has been first investigated by Jef89]. If the mass of background. In Ref.23] Wetterich describes the influence of
a body is larger than some minimum mass called the Jearibe back reaction of density fluctuations on the cosmological

mass, the self-gravity of matter will start affecting the struc-evolution for a homogeneous and isotropic average metric.
ture of the body significantly. Density fluctuations of a cosmological quantum real scalar

The potential role of the scalar field in cosmology hasfield in a coherent state is studied and the Jeans instability

been well discussed and it is found that quantum fields havéechanism is generalized in this context by Bianchi, Grasso,
a profound influence on the dynamical behavior of the earlyand Ruffini[24].

universe[10-12. The inflationary universe scenar[d3] In the present work we consider a massive scalar eld
broaches the question concerning the role of a scalar field inoupled arbitrarily to the gravitational background. A coher-
cosmological evolution and particularly of its influence onent state representati¢@5] is constructed for each mode of
the development of cosmological inhomogeneities. The inthe quantized scalar field in Sec. Ill and the stress-energy
fluence of quantum fields on the cosmological phase transtensor expectation values are computed in the coherent state.
tions, inflation and particle creation has been investigated bjn Sec. IV the density matrix26] is used to represent the
many author§14—17. In order to explain nonlinear struc- €xpectation values of the stress-energy tensor. A simplified
tures observed today on the scale of galaxies and clusters v@pression is obtained by using the WKB approximation. In
require initial perturbationgl8]. There are two distinct theo- Sec. V the energy density and pressure associated with the
ries of how the initial seed fluctuations might have ariggn  density perturbations are evaluated. This result is used to
One of these models involved the idea of topological defect¢valuate the Jeans mass for the present case in Sec. VI. The
created during phase transitions in the early universe. Thegsults and discussions are presented in Sec. VII.

alternative picture involves the inflationary model of the uni-

verse, in which the primordial quantum fluctuations get am- 1l. SCALAR FIELD GRAVITATIONALLY COUPLED TO

plified and evolve to become classical seed perturbations BIANCHI TYPE-I SPACETIME

[2,19]. The most natural choice for the seed perturbations is

; ; : i Consider a massive scalar fiettl coupled arbitrarily to
the quantum fluctuations in the scalar fieldx,t) drivin o )
the i%flation[zo]. ) g the gravitational background and described by the Lagrang-

Perturbations in a universe filled by a scalar field mini-1an density

mally coupled to gravity is clearly described by Mukhanov, 1
Feldman, and Brandenberdds8]. They have calculated the £=\-0{5[9""9,03d,6—(M?+£R) $?] )
growth rates of perturbations and the analysis is applied to 2

study the evolution of fluctuations in inflationary universe, .4 ihe energy-momentum tensor,

. L . T,u,V: au¢av¢_ g,l,LVL’ (2)
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"Email address: vck@cusat.ac.in whereL=(—g) Y% In the gravitationally coupled case,
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Tw=(1-28)d,¢d,0+

1 N Lo
26— E)gwg“ﬁﬁa@?ﬁ(i) #00=(2m) 23, [ag(n)cosk-5+q_i(n)sink 5]
2 ©)

m
_2§¢VMVV¢+2§QW¢D¢_gGMV"Sz_" 79W¢2- Since the background metric is spatially homogeneous we
require the quantum state of the system to be also spatially
(3) homogeneous. Thus we need consider only the spatially ho-
mogeneous modes of the expressions in Ed@s.and (8).
Consider a(3+1)-dimensional Bianchi type-l spacetime Substituting the above expression in E¢8. and (8) and
which is spatially homogeneous with small anisotropy andapplying (27) ~*2fdx to the result yields the spatially av-

has the line element eraged components
3 ) T = 1 2 % 2+ 2 2 (10)
ds?=dt>~ >, a(t)(dx)? (4) " gomic < || oy o (7)0;
i=1
and
as the background metric. Taking the conformal time trans-
formation, 9t= C¥29% where C=(a,a,a;)?* and denoting _ 1, oqp\ 2 [ 2K ) 5
dplit=¢, we can write the diagonal components of the Ti= 3273C ai Ek an __zc_“’ﬁ( NCHE
stress-energy tensor: : (11)
: 3 where
$? 1 1 )
Ti=3c 1263 249 o
I
_ ol(m=C| 2 —+m? (12
C . 3¢/c? , (M3 =13a
t28 S dot S| K| dTH 56T O _
c C and X extends over both even and odd parity modes.
and fori=1,2,3: Ill. STRESS-ENERGY TENSOR EXPECTATION VALUES
IN COHERENT STATE
Ti=(1-28)(0¢)* As an alternative to thBl representation, we can construct

1\|a
(25 2) scalar field near the cosmological singularity is best followed
guantum mechanically by constructing such a representation.
5 Coherent states are defined to be eigenstates of the annihila-
)¢ () tion operator

2 3 an (ovencomplete normalized séf’y) of coherent state for
_i('ﬁz_a_z 2 i(ﬁ ) each mode of the scalar field. The behavior of the classical
C \=a?

C2 2

I 2_
2C 4(:2 >¢ al

N|3

&
+66

adl') =T, (13
Considering the minimally coupled cases 0, we get
wherel'; is the time-dependent complex number aqdis

) 3 defined by
¢2 2 m2 5
Tim=3c 13| 2 M’) )¢ ™ o dBi(7)- ) N
ag=—i a7 ————Qi+iBi(n)pi where pg=—idldiq;.
14
and (19
The complex functionBg(7) is a solution to the classical
1[ a2 3 4 equation of motion corresponding to the Lagrangian density,
=(9,)%+ =| =¢?—a 2 —(9;¢)? Eq. (1), such that
2| C = af
« dBk dﬁ
m? R 0Pk

To completely fix the representation, a boundary condition
Each mode of the quantized scalar field can be expanded imust be imposed omBi(#»). In most models there exists a
even and odd parity modes, regime n= nwgg defined by the WKB condition
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_, doy and
—<wy (16

- dB(n)
lim

7= > NWKB

in which we can require =loB(n). (18

lim  Bi(n)=(2wg) ™~ l’Zex;{ J wid 77) (17)  Taking the expectation values of the diagonal components in
7= > 1WKB the coherent state we get

d,BE 2 \
dy +wp(mBE|Th
= 1 dB\?
(Toes=o3 a2 Zk ulkm +wi(n) BE|TE? (19
dBy®
|1, T edmIBd?|2ri+1)
\ Y J
and
( dg; |’ 2k,2 )
W —C- wk(ﬂ) ﬁk
= 1 dgi\? |2 *2
Tides= a2\ H[ g, ) H 2 Cekn | B¢ - (20
k a;
+ ‘ c a%(nﬂ (2rZ+1)
(Lldw af )
|
IV. THE DENSITY MATRIX AND (T 5,,) R
ry)*= T, 23
The coherent state for the scalar field is the product over || m(ng) € 23
modes of the coherent state for each mode. We assume the
modes to be noninteracting so that the density matrix for theahys
field is just the product of the density matrices for each
mode. Thus we find a density matrix . da:l?
K IBK 2 12
e (T =5ag 20+ D) g1 +wimlB
k
_ : 24
-] ( kw<ng>) p( <nk>) 2
d
I 2y &
nnere (=2 2y 1
i/ = ng
) =TI{TR). 3am°C
The density matrix given by Eq21) may be used to evalu- <R 2
ate expectation values througi)=tr(pA), where(A) is x dn a? C wk(”) | (25)

the expectation value of any operathr Using the density
matrix, the stress-tensor expectation values are evaluated as T interpretation ofng) as a particle number is valid

Q only in a WKB regime defined b;olgl(dwg/d n)<wg. This
K T';V|T|2>, condition will be valid for modes with wavelength smaller
(22) than the Hubble radiu@scillation period much less than the
expansion time scaleln such a regime we require the WKB

where limit Eq. (17) for B;. Evaluating Egs(24) and (25) in the

(T = tI’(T’u,,Pk):deF’a
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WKB limit we get a simplified expression for the diagonal dr?
components of the expectation value of the energy- ds?=c?dt?~ Ri(t) ——— —R3(t)r’d ¢’
momentum tensor, -
—R3(t)r?sirf6d ¢ (33
lim <T >— ((nk>+1/2)wk( n (20 :
1= KB with
and R2(t)
1
2 l( )
k2 (1—kr )
lim (T} >— L (N0 +12. 27
7= 7WKB Rg(t)r2=a§(t), (34)
Using the definition Eq(12) of wi and the metri¢4) it is R%(t)rzsinzazaé(t).

clear that the trace qﬂ'k ,» is formally zero for a massless
scalar field. Regularlzatlon of the vacuum stress-energy termakingc=1 we get
may yield a trace anomaly.

o R R R
V. ENERGY DENSITY AND PRESSURE ASSOCIATED o Ri R, Ry’
WITH THE PERTURBATIONS
The vanishing of the nondiagonal terms of the expectation i1 = & RiR>  RiRs + 2_k
values of the components @f,, allows us to treat the scalar Ri RiR; RiR; RZ’
field in complete analogy to a perfect fluid. The similarity of
t_he gravitational ins_tabilities of a free scalar fielq and dust- R, RRy R,Rs 2k 1[1 1
like matter was pointed out by Turn¢25]. Consider the RZ2,=—"+ —"+—"+ =S|l =)
relation[1,2] Ra RiRy RoRs RY r?|Rf RS
(35
(TH)=(p1—pp)uku’—pigh’, (28) ) o o
_ Rs RIRs RR; 2k 1|1 1
whereu#=(1,0,0,0) andp, and p, are the first order fluc- R33:R—+ RR + RR TSl o)
tuation amplitudes of the corresponding quantities. The en- 3 13 2R3 Ry rf[Ry R;
ergy density and pressure associated with the perturbation ) o o o o
are - Ri R Ry RiRs  RiRs  RoRs
p=(Tg) and p=-13T)). (29 Ri Re Rsl 1RiRz RiRs RoRs
From the definition of the sound velocity of adiabatic per- + 6_k - E R
turbations, RZ r?|R? R}
, P k? The Einstein equatiorG#=kT* with k=87 and T*
US:E = 3 k2 (30 =diag(p,—pr,— Py, —Py) then yields the set of equations
3ai<2—+m .
1a? o RiR, RiR; R,Rs 3k+ 11 1
™= 2 52 P2’
In a nonrelativistic regimd; /a;<m and we can write [RiRz  RiRs  RoRs| Ry Ri R
, 1K o 'R2+ﬁ3+R2R3+k RETE!
== . 31 =gttt =S =)
Y573 2t S PTTIR TR RRs R 2R RE
(36)
For the Bianchi type-l spacetime with scale factaydet ) o
V=a,a,a; be the “volume scale factor[14]. Then the R, Ry RiR; k
mean scale factaec VY3 andCxa?. Let us puta instead of 87py=— R, "R:  RiRs + 2|’
a; in Eq. (31). Then, . 1
1 k2 [ I':'Ql I.:.ZZ R1R2 k
2:— ! 877 = |5 —— + —|.
Ug 3 52m2 (32) p¢ I Rl Rz R1R2 R%

Rewriting the metric for the Bianchi type-I spacetime, in Let R be the mean scale factor of the Bianchi type-I universe
Eq. (4), using spherical polar coordinates, with metric in Eqg.(33). Then
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H R d R (D[H(1)]? (37
== and == —
R R .
and Eq.(36) becomes
8 3 Sk (39
mp=— — 4 = ,
P R R?
8 2R+EZ+ k
TTIRR R

For a system behaving like dud2] p=0 and p

= pO(RS/RS) where the suffix “0” denotes the corresponding
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quantity in the present epoch. Using the above equations wit -

can write

__3 H? K 39
P8 G +§, (39

where &/87GR? is the contribution due to anisotropyan
[14].

VI. JEANS MASS

Let us consider the simple case widh= a2:a3:§and

k=0. Then the equation that tells us how or whether gravi- ="

i

2

_| A . . . NI
111 0 kF 8 axjo x1 x10

-2

-4

tational instability leads to the growth of condensation in the (b)

expanding universgl—4] is

v2k?
T—47TGp

. 5=0, (40)

. a.
5+2=5+
a

where 6=p4/p, the density contrast parameter.

During most phases of the expansion of the universe, we

can approximate the expansion factorafy) «t" with a suit-

ablen which is less than unity3]. For the matter-dominated

case, the scale facta(t)t?3 and for the spatially flak
=0 case,
1

= . (41)
67Gt?

p

For a general specific heat ratjg pressure varies g8’ and
the speed of sound is

1/2 1/2
A
But Eq. (41) implies that

t~2%up. (43
Equations(42) and (43) show that

vt (44)

FIG. 1. (a) Oscillating modes, . (b) Oscillating modes_ .

Equation(40) takes the form

. 4. A? 2\
where
21,2
vk
A2=t2vy—283 %2 (46)

and vy is the specific heat ratio.
The solution of Eq(45) for y>3% is

At™Y
S

Seoct™ Mg,

whereJ,(x) are Bessel functions of the first kind ame- y
—2>0. The Bessel functio,(x) oscillates forx>1 as
shown Figs. 1a) and 1b). Forx<1, the solutionsS, andé§_
behave as in Figs.(@ and Zb). Both the growing as well as
damped modes are present. It is evident from Fig. 2 that the
growing modes dominate over the decaying modes.

The critical conditionx=1 gives

t3~A. (48)

Equations(46) and (48) together imply that
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& VII. DISCUSSIONS AND CONCLUSIONS
350000 1 The theory of gravitational perturbations in an expanding
universe is used to describe the growth of structure in the
universe. Khlopov and co-workers have discussed the gravi-
tational instability of the free scalar field and the Jeans wave
number is obtained from the solution of the dispersion rela-
tion [18]. Jetzer and Scialom have obtained the expression
for the Jeans wave number starting from the general relativ-
istic equations and solving the dispersion relafidr]. In the
present work the same result is obtained by a different ap-
proach. The scalar field approach to the Jeans mass calcula-
tion is discussed. The application of the classical Jeans
theory to the scalar field is conditioned by the vanishing of
the expectation values of the nondiagonal components of the
energy-momentum tensor. The scalar field is treated in com-
plete analogy to a perfect fluid and the energy density and
pressure associated with the gravitational perturbations are
evaluated. The exact expressions of the Jeans length and the
Jeans mass for the perturbations are obtained.

Jeans considered the problem of the formation of galaxies
in the universe as a process involving the interplay of gravi-
tational attraction and the pressure force acting on a mass of
¢ nonrelativistic fluid. So long as the pressure forces are neg-

ligible an overdense region is expected to accrete material

from its surroundings by the gravitational attraction and thus
becomes even more dense. The denser it becomes the more it
will accrete, resulting in an instability which can ultimately
212 cause the collapse of a fluctuation to a gravitationally bound
t 2~ 67Gp~ vsk (49) object. The instability is the first step to an understanding of
P~ = . e »
a where the structure in the galaxy distribution came from; it
grew by gravity out of smaller structures that existed earlier.
which corresponds to the classical Jeans criterion. Substitutfhe knowledge of Jeans wavelength=27/K ; provides an
ing the expression for sound velocity in E49) we get the  estimate of the size of the objects which can be formed by

300000

250000

200000

(a)

(b)

FIG. 2. (a) Growing modes, . (b) Decaying modes_ .

classical Jeans length for the perturbations as gravitational collapse. The present calculations show that the
) perturbations for which the mass of the fluctuating matter is
Ny=27/K; where Kj~mymGp, (30 greater than the Jeans mads given by Eq.(51) have the

_ . ) _ prospects to grow under its self-gravitation to form different
whereK =k/a. Perturbations for which the wave number is gty ctures.

smaller than the Jeans wave number can grow to form dif- pgrjefly quantum fluctuations in an expanding universe
ferent structures in the universe. The instability growth rate.;, jead to energy density perturbations.
monotonically falls off wherk? increases from 0 t&3. The

above expression for the Jeans wave nunibgewell agrees
with the results of similar calculatior{$,24,27. The Jeans
mass for the perturbations is then given by

It is usually as-
sumed that there exist small primordial perturbations which
slowly increase in amplitude due to the gravitational insta-
bility to form the structures we observe at the present time on
the scales of galaxies and galaxy clusters. The simple crite-
rion needed to decide whether a fluctuation will grow with

4 (2m\® 32 1\
M,= _Trp(_”) =2 134,104 (51) time is that the typical length scale of a fluctuation should be
3"TIKy) 3 JG greater than the Jeans length for the fluid.
3/2 3/2
_ 3_27713/4 ayaf Mot |77 10PpY4 Mp|
3 m m '
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