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Role of scalar field in the formation of structure in the universe

Minu Joy* and V. C. Kuriakose†

Department of Physics, Cochin University of Science and Technology, 682 022, India
~Received 2 May 2002; published 30 July 2002!

A scalar field approach to the Jeans mass calculation is discussed. Considering a massive scalar field
arbitrarily coupled to a gravitational background, the stress-energy tensor expectation values are computed in
a coherent state. The density matrix is used to represent the expectation values. The energy density and
pressure associated with the density perturbations are evaluated. Using these results, the exact expressions for
the Jeans length and Jeans mass are evaluated.
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I. INTRODUCTION

The standard theory of cosmological structure format
@1–3# is based on the idea of gravitational instability@4–6#,
according to which small initial irregularities in the distribu
tion of matter become amplified by the attractive nature
gravity. Gravitational instability is a consequence of sm
fluctuations in the density@7#. Gravitational instability
causes the growth of perturbations in an expanding unive
The gravitational instability of a spatially uniform state
dustlike matter described by classical nonrelativistic eq
tions has been first investigated by Jeans@8,9#. If the mass of
a body is larger than some minimum mass called the Je
mass, the self-gravity of matter will start affecting the stru
ture of the body significantly.

The potential role of the scalar field in cosmology h
been well discussed and it is found that quantum fields h
a profound influence on the dynamical behavior of the ea
universe @10–12#. The inflationary universe scenario@13#
broaches the question concerning the role of a scalar fiel
cosmological evolution and particularly of its influence
the development of cosmological inhomogeneities. The
fluence of quantum fields on the cosmological phase tra
tions, inflation and particle creation has been investigated
many authors@14–17#. In order to explain nonlinear struc
tures observed today on the scale of galaxies and cluster
require initial perturbations@18#. There are two distinct theo
ries of how the initial seed fluctuations might have arisen@7#.
One of these models involved the idea of topological defe
created during phase transitions in the early universe.
alternative picture involves the inflationary model of the u
verse, in which the primordial quantum fluctuations get a
plified and evolve to become classical seed perturbat
@2,19#. The most natural choice for the seed perturbation
the quantum fluctuations in the scalar fieldf(x,t) driving
the inflation@20#.

Perturbations in a universe filled by a scalar field mi
mally coupled to gravity is clearly described by Mukhano
Feldman, and Brandenberger@18#. They have calculated th
growth rates of perturbations and the analysis is applied
study the evolution of fluctuations in inflationary univer

*Email address: minujoy@cusat.ac.in
†Email address: vck@cusat.ac.in
0556-2821/2002/66~2!/024038~7!/$20.00 66 0240
n

f
ll

e.

-

ns
-

e
y

in

-
i-
y

we

ts
e

-
-
s

is

-
,

to

models. The gravitational instability of a spatially unifor
state of a relativistic scalar field on a time-dependent ba
ground is discussed by Khlopov, Malomed, and Zeldov
@6# and the instability is demonstrated to be similar to t
Jeans instability. Ferreira and Joyce have studied the st
ture formation with a self-tuning scalar field and they ha
explained the effect of scalar field on cosmic microwa
background ~CMB! @21#. Structure formation within the
Lemaitre-Tolman model have been investigated by Krasi
and Hellaby@22#. They have determined how fast the co
densations can grow, once they appear in a homogen
background. In Ref.@23# Wetterich describes the influence o
the back reaction of density fluctuations on the cosmolog
evolution for a homogeneous and isotropic average me
Density fluctuations of a cosmological quantum real sca
field in a coherent state is studied and the Jeans instab
mechanism is generalized in this context by Bianchi, Gras
and Ruffini @24#.

In the present work we consider a massive scalar fieldf
coupled arbitrarily to the gravitational background. A coh
ent state representation@25# is constructed for each mode o
the quantized scalar field in Sec. III and the stress-ene
tensor expectation values are computed in the coherent s
In Sec. IV the density matrix@26# is used to represent th
expectation values of the stress-energy tensor. A simpli
expression is obtained by using the WKB approximation.
Sec. V the energy density and pressure associated with
density perturbations are evaluated. This result is used
evaluate the Jeans mass for the present case in Sec. VI
results and discussions are presented in Sec. VII.

II. SCALAR FIELD GRAVITATIONALLY COUPLED TO
BIANCHI TYPE-I SPACETIME

Consider a massive scalar fieldf coupled arbitrarily to
the gravitational background and described by the Lagra
ian density

£5A2gH 1

2
@gmn]mf]nf2~m21jR!f2#J ~1!

with the energy-momentum tensor,

Tmn5]mf]nf2gmnL, ~2!

whereL5(2g)21/2£. In the gravitationally coupled case,
©2002 The American Physical Society38-1
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Tmn5~122j!]mf]nf1S 2j2
1

2Dgmngab]af]bf

22jf,m,nf12jgmnfhf2jGmnf21
m2

2
gmnf2.

~3!

Consider a~311!-dimensional Bianchi type-I spacetim
which is spatially homogeneous with small anisotropy a
has the line element

ds25dt22(
i 51

3

ai
2~ t !~dxi !2 ~4!

as the background metric. Taking the conformal time tra
formation, ]t5C1/2]h whereC5(a1a2a3)2/3 and denoting
]f/]t5ḟ, we can write the diagonal components of t
stress-energy tensor:

Thh5
ḟ2

2C
2S 2j2

1

2D S (
i 51

3
1

ai
2 ~] if!2D

12j
Ċ

C2
fḟ1

3j

C S Ċ2

C2
1k D f21S m2

2 Df2 ~5!

and for i 51,2,3:

Tii 5~122j!~] if!2

2S 2j2
1

2D Fai
2

C
ḟ22ai

2S (
j 51

3
1

aj
2 ~] jf!2D G

16
j

C S C̈

2C
2

Ċ2

4C2
1k D f22ai

2S m2

2 Df2. ~6!

Considering the minimally coupled case,j50, we get

Thh5
ḟ2

2C
1

1

2 S (
i 51

3
1

ai
2 ~] if!2D 1S m2

2 Df2 ~7!

and

Tii 5~] if!21
1

2 Fai
2

C
ḟ22ai

2S (
j 51

3
1

aj
2 ~] jf!2D G

2ai
2S m2

2 Df2. ~8!

Each mode of the quantized scalar field can be expande
even and odd parity modes,
02403
d

-

in

f~x!5~2p!23/2(
kW

@qkW~h!coskW•xW1q2kW~h!sinkW•xW #.

~9!

Since the background metric is spatially homogeneous
require the quantum state of the system to be also spat
homogeneous. Thus we need consider only the spatially
mogeneous modes of the expressions in Eqs.~7! and ~8!.
Substituting the above expression in Eqs.~7! and ~8! and
applying (2p)23/2*d3x to the result yields the spatially av
eraged components

T̄hh5
1

32p3C
(

kW
F S ]qkW

]h D 2

1vkW
2
~h!qkW

2G ~10!

and

T̄ii 5
1

32p3C
ai

2(
kW

F S ]qkW

]h D 2

1S 2ki
2

ai
2

C2vkW
2
~h!D qkW

2G ,

~11!

where

vkW
2
~h!5CS (

i 51

3 ki
2

ai
2

1m2D ~12!

and(kW extends over both even and odd parity modes.

III. STRESS-ENERGY TENSOR EXPECTATION VALUES
IN COHERENT STATE

As an alternative to theN representation, we can constru
an ~over!complete normalized setuGkW& of coherent state for
each mode of the scalar field. The behavior of the class
scalar field near the cosmological singularity is best follow
quantum mechanically by constructing such a representa
Coherent states are defined to be eigenstates of the ann
tion operator

akWuGkW&5GkWuGkW&, ~13!

whereGkW is the time-dependent complex number andakW is
defined by

akW52 i
dbkW~h!

dh
q̂kW1 ibkW~h! p̂kW where p̂kW52 i ]/]q̂kW .

~14!

The complex functionbkW(h) is a solution to the classica
equation of motion corresponding to the Lagrangian dens
Eq. ~1!, such that

bkW
*

dbkW

dh
2bkW

dbkW
*

dh
5 i . ~15!

To completely fix the representation, a boundary condit
must be imposed onbkW(h). In most models there exists
regimeh5hWKB defined by the WKB condition
8-2



s in

ROLE OF SCALAR FIELD IN THE FORMATION . . . PHYSICAL REVIEW D66, 024038 ~2002!
vkW
21 dvkW

dh
!vkW ~16!

in which we can require

lim
h2.hWKB

bkW~h!5~2vkW !
21/2expS i Eh

vkWdh̄ D ~17!
ve
e
th
ch

-

d

02403
and

lim
h2.hWKB

dbkW~h!

dh
5 ivkWbkW~h!. ~18!

Taking the expectation values of the diagonal component
the coherent state we get
^T̄hh&cs5
1

32p3C
(

kW 5
F S dbkW

*

dh
D 2

1vkW
2
~h!bkW

* 2GGkW
2

1F S dbkW

dh D 2

1vkW
2
~h!bkW

2GGkW
* 2

1FUdbkW

dh U2

1vkW
2
~h!ubkWu2G~2GkW

2
11!

6 ~19!

and

^T̄ii &cs5
1

32p3C
ai

2(
kW 5

F S dbkW
*

dh
D 2

1S 2ki
2

ai
2

C2vkW
2
~h!D bkW

* 2GGkW
2

1F S dbkW

dh D 2

1S 2ki
2

ai
2

C2vkW
2
~h!D bkW

2GGkW
* 2

1FUdbkW

dh U2

1S 2ki
2

ai
2

C2vkW
2
~h!D ubkWu2G ~2GkW

2
11!

6 . ~20!
r
e

IV. THE DENSITY MATRIX AND ŠT µn
k¢
‹

The coherent state for the scalar field is the product o
modes of the coherent state for each mode. We assum
modes to be noninteracting so that the density matrix for
field is just the product of the density matrices for ea
mode. Thus we find a density matrix

r5E S PkW
d2GkW

p^nkW&
D expS 2(

kW

uGkWu2

^nkW&
D

3u$GkW%&^$GkW%u, ~21!

where

u$GkW%&[PkWuGkW&.

The density matrix given by Eq.~21! may be used to evalu
ate expectation values through^A&5tr(rA), where ^A& is
the expectation value of any operatorA. Using the density
matrix, the stress-tensor expectation values are evaluate

^Tmn
kW &5tr~Tmn

kW rkW !5E d2GkWua~GkW !u2^GkWuTmn
kW uGkW&,

~22!

where
r
the
e

as

ua~GkW !u25
1

p^nkW&
e2uGkW u2/^nkW&. ~23!

Thus

^Thh
kW &5

1

32p3C
~2^nkW&11!FUdbkW

dh U2

1vkW
2
~h!ubkWu2G

~24!

and

^Tii
kW &5

ai
2

32p3C
~2^nkW&11!

3FUdbkW

dh U2

1S 2ki
2

ai
2

C2vkW
2
~h!D ubkWu2G . ~25!

The interpretation of̂ nkW& as a particle number is valid
only in a WKB regime defined byvkW

21(dvkW /dh)!vkW . This
condition will be valid for modes with wavelength smalle
than the Hubble radius~oscillation period much less than th
expansion time scale!. In such a regime we require the WKB
limit Eq. ~17! for bkW . Evaluating Eqs.~24! and ~25! in the
8-3
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WKB limit we get a simplified expression for the diagon
components of the expectation value of the ener
momentum tensor,

lim
h→hWKB

^Thh
kW &5

1

16p3C
~^nkW&11/2!vkW~h! ~26!

and

lim
h→hWKB

^Tii
kW &5

ki
2

16p3vkW
~^nkW&11/2!. ~27!

Using the definition Eq.~12! of vkW and the metric~4! it is

clear that the trace of̂Tmn
kW & is formally zero for a massles

scalar field. Regularization of the vacuum stress-energy t
may yield a trace anomaly.

V. ENERGY DENSITY AND PRESSURE ASSOCIATED
WITH THE PERTURBATIONS

The vanishing of the nondiagonal terms of the expecta
values of the components ofTmn allows us to treat the scala
field in complete analogy to a perfect fluid. The similarity
the gravitational instabilities of a free scalar field and du
like matter was pointed out by Turner@25#. Consider the
relation @1,2#

^Tmn&5~r12p1!umun2p1gmn, ~28!

whereum5(1,0,0,0) andp1 and r1 are the first order fluc-
tuation amplitudes of the corresponding quantities. The
ergy density and pressure associated with the perturba
are

r5^T0
0& and p521/3̂ Ti

i&. ~29!

From the definition of the sound velocity of adiabatic pe
turbations,

vs
25

p1

r1
5

ki
2

3ai
2S (

i 51

3 ki
2

ai
2

1m2D . ~30!

In a nonrelativistic regimeki /ai!m and we can write

vs
25

1

3

ki
2

ai
2m2

. ~31!

For the Bianchi type-I spacetime with scale factorsai let
V5a1a2a3 be the ‘‘volume scale factor’’@14#. Then the
mean scale factorā}V1/3 andC}ā2. Let us putā instead of
ai in Eq. ~31!. Then,

vs
25

1

3

ki
2

ā2m2
. ~32!

Rewriting the metric for the Bianchi type-I spacetime,
Eq. ~4!, using spherical polar coordinates,
02403
-

m

n

-

n-
on

-

ds25c2dt22R1
2~ t !

dr2

~12kr2!
2R2

2~ t !r 2du2

2R3
2~ t !r 2sin2udf2 ~33!

with

R1
2~ t !

~12kr2!
5a1

2~ t !,

R2
2~ t !r 25a2

2~ t !, ~34!

R3
2~ t !r 2sin2u5a3

2~ t !.

Taking c51 we get

R0
05

R̈1

R1
1

R̈2

R2
1

R̈3

R3
,

R1
15

R̈1

R1
1

Ṙ1Ṙ2

R1R2
1

Ṙ1Ṙ3

R1R3
1

2k

R1
2

,

R2
25

R̈2

R2
1

Ṙ1Ṙ2

R1R2
1

Ṙ2Ṙ3

R2R3
1

2k

R1
2

2
1

r 2 F 1

R1
2

2
1

R2
2G ,

~35!

R3
35

R̈3

R3
1

Ṙ1Ṙ3

R1R3
1

Ṙ2Ṙ3

R2R3
1

2k

R1
2

2
1

r 2 F 1

R1
2

2
1

R2
2G ,

R52F R̈1

R1
1

R̈2

R2
1

R̈3

R3
G12F Ṙ1Ṙ2

R1R2
1

Ṙ1Ṙ3

R1R3
1

Ṙ2Ṙ3

R2R3
G

1
6k

R1
2

2
2

r 2 F 1

R1
2

2
1

R2
2G .

The Einstein equationGy
m5kTy

m with k58p and Ty
m

5diag(r,2pr ,2pu ,2pf) then yields the set of equations

8pr52F Ṙ1Ṙ2

R1R2
1

Ṙ1Ṙ3

R1R3
1

Ṙ2Ṙ3

R2R3
G2

3k

R1
2
1

1

r 2 F 1

R1
2

2
1

R2
2G ,

8ppr52F R̈2

R2
1

R̈3

R3
1

Ṙ2Ṙ3

R2R3
1

k

R1
2G1

1

r 2 F 1

R1
2

2
1

R2
2G ,

~36!

8ppu52F R̈1

R1
1

R̈3

R3
1

Ṙ1Ṙ3

R1R3
1

k

R1
2G ,

8ppf52F R̈1

R1
1

R̈2

R2
1

Ṙ1Ṙ2

R1R2
1

k

R1
2G .

Let R̄ be the mean scale factor of the Bianchi type-I unive
with metric in Eq.~33!. Then
8-4
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H5
Ṙ̄

R̄
and

R̈̄

R̄
52q~ t !@H~ t !#2 ~37!

and Eq.~36! becomes

8pr523F Ṙ̄2

R̄
1

k

R̄2G , ~38!

8pp52F2
R̈̄

R̄
1

Ṙ̄2

R̄
1

k

R̄2G .

For a system behaving like dust@2# p50 and r
5r0(R0

3/R3) where the suffix ‘‘0’’ denotes the correspondin
quantity in the present epoch. Using the above equations
can write

r5
3

8pG S H21
k

R̄2D , ~39!

where 3k/8pGR̄2 is the contribution due to anisotropy,rAN
@14#.

VI. JEANS MASS

Let us consider the simple case witha15a25a35ā and
k50. Then the equation that tells us how or whether gra
tational instability leads to the growth of condensation in
expanding universe@1–4# is

d̈12
ǡ

ā
ḋ1S vs

2k2

ā2
24pGr D d50, ~40!

whered5r1 /r, the density contrast parameter.
During most phases of the expansion of the universe,

can approximate the expansion factor byā(t)}tn with a suit-
ablen which is less than unity@3#. For the matter-dominated
case, the scale factorā(t)}t2/3 and for the spatially flatk
50 case,

r5
1

6pGt2
. ~41!

For a general specific heat ratiog, pressure varies aspg and
the speed of sound is

vs5S gp

r D 1/2

5S grg

r D 1/2

}r
g21

2
. ~42!

But Eq. ~41! implies that

t22}r. ~43!

Equations~42! and ~43! show that

vs}t12g. ~44!
02403
e

i-
e

e

Equation~40! takes the form

d̈1
4

3t
ḋ1S L2

t2g22/3
2

2

3t2D d50, ~45!

where

L25t2g22/3
vs

2k2

ā2
~46!

andg is the specific heat ratio.
The solution of Eq.~45! for g. 4

3 is

d6}t21/6J75/6nS Lt2n

n D , ~47!

whereJn(x) are Bessel functions of the first kind andn5g
2 4

3 .0. The Bessel functionJn(x) oscillates forx@1 as
shown Figs. 1~a! and 1~b!. Forx,1, the solutionsd1 andd2

behave as in Figs. 2~a! and 2~b!. Both the growing as well as
damped modes are present. It is evident from Fig. 2 that
growing modes dominate over the decaying modes.

The critical conditionx51 gives

t1/3'L. ~48!

Equations~46! and ~48! together imply that

FIG. 1. ~a! Oscillating moded1 . ~b! Oscillating moded2 .
8-5
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t22;6pGr;
vs

2k2

ā2
~49!

which corresponds to the classical Jeans criterion. Subst
ing the expression for sound velocity in Eq.~49! we get the
classical Jeans length for the perturbations as

lJ52p/KJ where KJ
2;mApGr, ~50!

whereK5k/ā. Perturbations for which the wave number
smaller than the Jeans wave number can grow to form
ferent structures in the universe. The instability growth r
monotonically falls off whenK2 increases from 0 toKJ

2 . The
above expression for the Jeans wave numberKJ well agrees
with the results of similar calculations@6,24,27#. The Jeans
mass for the perturbations is then given by

MJ5
4

3
prS 2p

KJ
D 3

5
32

3
p13/4r1/4S 1

mAG
D 3/2

~51!

5
32

3
p13/4r1/4S mpl

m D 3/2

5102r1/4S mpl

m D 3/2

.

The fluctuations will have a chance to grow under its se
gravitation if the mass is greater thanMJ . This implies that
the perturbation for which the mass of the fluctuating ma
is greater thanMJ , may grow under its self-gravitation t
form a galaxy.

FIG. 2. ~a! Growing moded1 . ~b! Decaying moded2 .
02403
t-

f-
e

-

r

VII. DISCUSSIONS AND CONCLUSIONS

The theory of gravitational perturbations in an expand
universe is used to describe the growth of structure in
universe. Khlopov and co-workers have discussed the gr
tational instability of the free scalar field and the Jeans w
number is obtained from the solution of the dispersion re
tion @18#. Jetzer and Scialom have obtained the express
for the Jeans wave number starting from the general rela
istic equations and solving the dispersion relation@27#. In the
present work the same result is obtained by a different
proach. The scalar field approach to the Jeans mass cal
tion is discussed. The application of the classical Je
theory to the scalar field is conditioned by the vanishing
the expectation values of the nondiagonal components of
energy-momentum tensor. The scalar field is treated in c
plete analogy to a perfect fluid and the energy density
pressure associated with the gravitational perturbations
evaluated. The exact expressions of the Jeans length an
Jeans mass for the perturbations are obtained.

Jeans considered the problem of the formation of galax
in the universe as a process involving the interplay of gra
tational attraction and the pressure force acting on a mas
nonrelativistic fluid. So long as the pressure forces are n
ligible an overdense region is expected to accrete mate
from its surroundings by the gravitational attraction and th
becomes even more dense. The denser it becomes the m
will accrete, resulting in an instability which can ultimate
cause the collapse of a fluctuation to a gravitationally bou
object. The instability is the first step to an understanding
where the structure in the galaxy distribution came from
grew by gravity out of smaller structures that existed earl
The knowledge of Jeans wavelengthlJ52p/KJ provides an
estimate of the size of the objects which can be formed
gravitational collapse. The present calculations show that
perturbations for which the mass of the fluctuating matte
greater than the Jeans massMJ given by Eq.~51! have the
prospects to grow under its self-gravitation to form differe
structures.

Briefly, quantum fluctuations in an expanding univer
can lead to energy density perturbations. It is usually
sumed that there exist small primordial perturbations wh
slowly increase in amplitude due to the gravitational ins
bility to form the structures we observe at the present time
the scales of galaxies and galaxy clusters. The simple c
rion needed to decide whether a fluctuation will grow w
time is that the typical length scale of a fluctuation should
greater than the Jeans lengthlJ for the fluid.
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