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Geodesically complete nondiagonal inhomogeneous cosmological solutions in dilatonic gravity
with a stiff perfect fluid
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New nondiagona, inhomogeneous cosmological solutions are presented in a wide range of scalar-tensor
theories with a stiff perfect fluid as a matter source. The solutions have no big-bang singularity or any other
curvature singularities. The dilaton field and the fluid energy density are regular everywhere, too. The geodesic
completeness of the solutions is investigated.
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All versions of string theory and higher dimensional grav-found by Patel and Dadhich in R¢fL8]. Other examples of
ity theories predict the existence of the dilaton field whichdiagonal nonsingular solutions in general relativity can be
determines the gravitational “constant” as a variable quanfound in Refs[19-29.
tity. The existence of a scalar partner of the tensor graviton In Ref.[26], Mars found the first nondiagon&, inho-
may have a serious influence on the space-time structure af@ogeneous cosmological solution of the Einstein equations
important consequences for Cosm0|ogy and astrophysics. )A(Ith stiff perfect fluid as a source. This solution is globaIIy
large amount of research has been done in order to unveil té/perbolic and geodesically complete. Mars’s solution was
possible cosmological significance of the dilatga—14, 9eneralized by Griffiths and Bicak in R¢R7].
and references therginwith a few exceptions most of the  Within the framework of scalar-tensor theories there are
cosmological studies within the scalar-tensor theories wer Iso inhomogeneous cosmo_loglcal_ solutions W't.hOUt big-
devoted to the homogeneous case. The homogeneous mod f19 or any other_ cgrvatur_e singularity. In Ret8], G|oyan-
are good approximations of the present universe. There i ,'m denvgd gravi-dilaton inhomogeneous co_smolpglcal S0
however, no reason to assume that such a regular expansi urglons with everywhere regular curvature invariants and

is also suitable for a descrintion of the earlv universe. More- ounded dilaton in tree-level dilaton driven models. In a sub-
. P arly un : sequent papef29], it was shown that these solutions de-
over, as is well known, the present universe is not exactl

) i . %cribe singularity-free dilaton driven cosmologies. A nondi-

spacially homogeneous. That is why it is necessary 10 studyq,na| inhomogeneous cosmological solution with regular

inhomogeneous cosmological models. They allow us t0 ing,yature invariants and unbounded dilaton in the tree level

vestigate a number of long standing questions regarding thgsfective string models was found by Pimenf80]. Very

the vicinity of a singularity, and the possibility of our uni- curvature singularities were obtained by the author in a wide

verse arising from generic initial data. class of scalar-tensor theories with stiff perfect fluid as a

In this work we shall address the question of the occursource[31].

rence of singularities in inhomogeneous cosmologies within In this work we take a further step upwards and present

the framework of scalar-tensor theories. As is well known,new nondiagonas, inhomogeneous cosmological stiff per-

most of the homogeneous modétoth in general relativity  fect fluid solutions with no curvature singularities in a wide

and in scalar-tensor theorjepredict a universal spacelike range of scalar-tensor theories. Scalar-tensor the(uiis-

big-bang singularity in a finite past. It was, theorefore, be-out a cosmological potentiahre described by the following

lieved that this would be the usual singularity in general. Theaction in Jordar(string frame[32,33:

inclusion of inhomogeneities drastically changes this point of

view. There are inhomogeneous cosmological solutions in 1 4

general relativity which have no big-bang or any other cur- S~ 755 f d*x\=g(F(®)R-Z(P)g*"d,D3,P)

vature singularity. The first such solution was discovered by *

Senovilla in 199015]. Senovilla’s solution represents a cy- + S [ Vim;9u.]- (0]

lindrically symmetric universe filled with radiation. This so-

lution has a diagonal metric and is also globally hyperbolic Here, G, is the bare gravitational constant aRdis the

and geodesically completgl6]. Senovilla’s solution was Ricci scalar curvature with respect to the space-time metric

generalized by Ruiz and Senovilla in REE7] where a large  g,,. The dynamics of the scalar field depends on the

family of singularity-free diagonaGG, inhomogeneous per- functionsF(®) andZ(®). In order for the gravitons to carry

fect fluid solutions was found. Nonsingular diagonal inhome-positive energy the functiofr(®) must be positive. The

geneous solutions in general relativity describing cylindri-nonnegativity of the energy of the dilaton requires that

cally symmetric universes filled with stiff perfect fluid were 2F(®)Z(®)+3[dF(P)/d®]?>=0. The action of matter de-
pends on the material field¥ ,, and the space-time metric
g, but does not involve the scalar fiefl in order for the

*Email address: yazad@phys.uni-sofia.bg weak equivalence principle to be satisfied.
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As a matter source we consider a stiff perfect fluid with

equation of stat@=p.
The general form of the solutions is given by

ds?=F Y(d(t))| e *coshi2at)(—dt2+dr?)

+r2cosh2at)d¢?+ (dz+ar?d¢)?|,

cosh2at)

a%(y—1F[d(t)]e "

87Gyp=1(N) cosh2at) '

vy

u,=F~YA® (1)) costt? 2at) .

The solution depends on three parametersa—y (y
>1) and\. The range of the coordinates is

—0<t,z<w, O0<r<owo, O0<

)

The explicit form of the function®(t) andf(\), and the
range of the parametex depend on the particular scalar
tensor theory. These solutions can be genetafenn the
general relativistic Mars’s solutiof26] using the solution
generating methods developed in Rgf1]. Below we con-
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f(N)=4N(1—\).

+(1—\)

; (6)

)

Here the range of the parameteiis 0<A<<1. The solu-
tion exists forn=0 and\ =1, too. In these cases, however,
we obtain a gravi-dilaton vacuum solution which is just Pi-
mentel’'s solutiorf30]. That is the reason we do not consider
these limiting values ok. The solution is invariant under the
trasformationsh<—1—\ and t« —t. In this generalized
sense, we can say that the solution is even in time.

Theory with “conformal” coupling. The theory with
“conformal” coupling is described by the functionis(®)

=1-%id? andZ(P)=1. In this case we have

F Y®(t)]=1+4N(1—\)sint?| a

f(N)=(1-2)\)2 9
The range of the parametaris 0<A<1/2. ForA=1/2
we obtain a gravi-dilaton vacuum solution which is well be-

haved and can be included as a limiting case.
Z(®) =(0?—3d)/2d? theory.Here we consider the scalar-

sider the explicit form of the general solution for some par-tensor theory described by the functiofRf®)=® and

ticular scalar-tensor theories.
Barker’s theoryBarker’s theory is described by the func-
tionsF(®)=® andZ(P)=(4—3P)/20(d—1).

In the case of Barker’s theory the explicit forms of the

functions®(t) andf(\) are
® Yt)=1-AcoF(ayy—1t), (4)
f(N)=1—\, (5)

where the range of is 0<A <1. This range can be extended
to OsA=<1. ForA=0 and\ =1 we obtain the Mars’s solu-

tion and gravi-dilaton vacuum solution, respectively. That is

why we consider only &x<1. It should be noted that the
range of the parameter is crucial for the curvature invari-

ants. It is easy to see that the gravi-dilaton vacuum solution
corresponding ta =1 has divergent curvature invariants be-

cause of the conformal factdp ~(t) = sir’(ayy—1t).
Brans-Dicke theoryBrans-Dicke theory is described by
the functiond=(®)=® andZ(®P)= w/P, wherew is a con-
stant parameter. Here we consider the case—3/2. The
explicit form of the functionsgb(t) and f(\) in the Brans-

Z(®P)=(Q%-3d)/2d? whereQ2>0. The explicit forms of
d(t) andf(\) are

1 2
O Ht)= 1+5a\/y—1t +X, (10)

f(N)=NA\. (11

Here, the range of the parameter i R<<oo.
Z(®)=3(P%2-3d+3)/d(P—1) theory. The theory
with F(®)=® andZ(®)=3(P?— 3D +3)/d(P—1) pos-
sesses the following solution:
)\2
A2+ (1-N\)sirf(hayy—1t)

f(N)=\2.

D H(t)=

(12)

(13

In order for the dilaton field in this solution to have posi-
tive energy we should restrict the range of the parameter
0<A<1.

Using the solution generating methods developed in Ref.
[31] we can generate nondiagon@} inhomogeneous cos-

mological solutions in many other scalar-tensor theories dif-
ferent from those considered above. However, the solutions
we have presented here are expressed in a closed analytic

Some of the solutions were first obtained by solving the correform and they are also representative and cover a wide range
sponding system of partial differential equations for nondiagonalof the possible behaviors of the scalar-tensor solutions which
G, cosmologieg34]. can be generated from Mars’s solution.

Dicke case is the following:
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Let us consider the main properties of the found solutions. M(t,r)= F—1/2[@(1:)]e(1/2)7a2r2COSH./2(Zat)
The metric functions, the gravitational scaldne dilaton,
and the fluid energy density are everywhere regular. The L2cosh2at)
space-times described by our solutions have no big-bang nor R —
any other curvature singularity—the curvature invaridnts F o]

=C,,a5C*"*#, 1,=R,,R*", andl3=R? are regular every- (K—Lar?)? 12
where. The solution possesses a two-dimensional Abelian
group of isometries inherited from the seed Mars’s solution r2F Y d(t)]cosh2at)
and generated by the Killing vectosgdz and d/d¢. In ad- . )
dition, the metrics have a well defined axis of symmetry and T0 demonstrate the geodesic completeness of our metric,
the elementary flatness conditif®5] is satisfied. Since the We have to show that all nonspacelike., causalgeodesics
presented solutions are conformally related to the Mars's sof@n be extended to arbitrary values of the affine parameter.
lution, the spacetimes described by them are globally hypeiVe shall consider only future directed geodesics. The past
bolic. In fact, the global hyperbolicity can be proved inde- directed geodesics can be treated analogously.
pendently as a consequence of the proof of the geodesic First we consider null geodesics wikh=L=0. For them
completeness presented below. we havedt/ds=|[dr/ds| and

The existence of two Killing vectors gives rise to two
constants of motion along the geodesics

(18

d 20 dt
— | F7 Y ®(t)]e”™ " “cosh 2at)

s ds =0. (29
K=F- ()] cosHZat)er—ﬁ After integrating we obtain
dt -1 a’r? -1
ar> [(dz d¢ go = CiF [@(1)]e”™ " coshizat)} ™+, (20
+———|—+ar’—||, (14) S
cosh2at) | ds ds
whereC>0 is a constant. Taking into account that for each
4 of our solutions there exists a constasuch that
_F ()] (dz ,d¢
~ cosh2at) ds " gs) 0<B<F d(1)] (21)

for arbitrary values of and fixed parametex, we obtain

dt
-

dr
ds

22
S—_

F-Yd(1)]{ " "cosh2at)

The affinely parametrized causal geodesics satisfy
dt) 2 (dr) 2
ds ds Therefore the geodesics under consideration are complete.
) - Now let us turn to the general case when at least one of
L°cosh2at) (K—Lar?) B the constantg, K or L is different from zero. Here we shall
F 2d(t)] r2F 4 d(t)]coshk2at) N use a method similar to that for diagonal metrics described in
Ref.[16]. Let us parametrizet/ds anddr/ds by writing

(15

dt  F[®(t)]e "
wheree=0 and 1 for null and timelike geodesics, respec- ds cosh(2at) M(t.r)costiv), (23
tively. Taking into account Eqg14) and (15) the geodesic
equations fort andr can be written in the following form: dr F[®(t)]e ya?r?

d—SZWM(t,r)sinf{v). (24)
d(__, Va2 dt
gs| F1@m]e™ eosh2at) Substituting these expressions in the equations &ovdr

e . we obtain
=F[d(t)]e” " " cosh “(2at)M(t,r)d;M(t,r), (16) -
dv F[d(t)]e "

ds_  coshzap oM(Lrsinf(w)

(Flcb 7" cosh( 2 dr)
[P(t)]e cosh at)d—s

7

+d,M(t,r)coshv)] (25

— valr2 _
=—F[®(t)]e" ¥ cosh Y(2at)M(t,r)d,M(t,r), or, equivalently,

dv 1 -,
where d—S=—m{F+(t,r)e+F,(t,r)e 1, (26
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where In the second case, wherdecreasesy<0), the problem
1 dinE- (0]} comes fromr =0 whenK 0. The geodesics witK=0 can

_ i 1 va2 reach the axis =0 without problems and then continue with
[+(tr)=¢ atant(2at) 2 dt a r} dr/ds>0(v>0). WhenK=#0, v cannot diverge for finite

(K—Lar?)? values of the affine parameter. This follows from the fact that

+ ya?r— = the derivativedv/ds becomes positive for small(larget) as
r2F [ d(t)]cosh2at) r can be seen from Eq&7) and(26), taking into account that
I' . (t,r) is exponentially suppressed compared vith(t,r).
2Lar L2cost(2at) patanh 2at The positiveness of the derivatige/ds when the geodesics
T K=Lar? Fd(t)] [2atanh(2at) are close to the axis=0 prevents the radial coordinate from
collapsing too quickly and reaching the axis. The fact that
+va?r], cannot become zero fét# 0 may be seen more explicitly as
follows. Whenr approaches zero the dominant term is that
r o oaf)— 1dInfF P11} 5 associated witlK and the other terms can be ignored. So, for
-(t,r)=¢ —atani(2at) 2 dt tyat smallr the geodesics behave as null geodesics WitD:
(K—Lar?)? , 1 -
+ = yar—— dt F[D(t)]e ™"
r2F 1 d(t)]cosh2at r —_—
[®(t)]costi2at) 45~ cosrizan M(ncosttv), (30
2Lar . chosr(2at)[ 2atant2at)
- > — —2atanh(2a
K=Larl F o) dr F[(I)(t)]e"azrzM _ a1
4 ya?r], 27 ds  cosh2at) (Dsint(), 3D
In order for the geodesics to be compldtéds anddr/ds a2
have to remain finite for finite values of the affine parameter. dv_ F[®(D)]e "

In fact, it is sufficient to consider onlgt/ds, sincedr/ds ds cosh2at) dM(r)costv), (32)

and dt/ds are related via Eq(15). The derivativesd¢/ds

and dz/ds are regular functions of andr, and the only B (112)ya?r? . .
problem we could have appear wheapproaches=0 for ~ WhereM(r)=([K|/r)e - Hence, we obtain the orbit
K+0. We shall show, however, thatcannot become zero €duation

for K#0.
First we consider geodesics with increasing(i.e., v dr M(r)
>0). In this case it is not difficult to see that the term Fvia mtank( v). (33

FL®()]e ™
cosh2at) M(t,r) (28)  Integrating, we have

in Eq. (23) cannot become singuldior increasing ). There-
fore,dt/ds could become singular only far. We shall show,
however, thatv cannot become singular for finite values of
the affine parameter. For increasing cannot diverge since whereC,>0 is a constant. Since cosj#g1l, r cannot be-
for larget (larger) the derivativedv/ds becomes negative. come zero.

Indeed, for all exact solutions presented here, there exists a From the proof of the geodesic completeness it follows

e~ (1203 = ¢ cosHv), (34)

constantB;>0 such that that every maximally extended null geodesic intersects any
of the hypersurfaces= const. According to Ref.36], this a
dIn{F (1]} sufficient condition that the hypersurfaces const are glo-
dt <B; (29 bal Cauchy surfaces. Therefore, the solutions are globally
hyperbolic.
for arbitraryt and fixed\. We have explicitly proven the geodesic completeness of

Therefore, as can be seen from E(%), the terms asso- the solutions using their particular properties. The geodesic
ciated with the constant, K, andL are all positive for large completeness can be proved independently by considering
values oft. As a consequence we obtain that the functionghe solutions from a more general point of view. In R&f7]

', (t,r) andI" _(t,r) are positive, i.e.dv/ds<<O for larget  (see also Ref.38]), Fernandez-Jambrina presented a general
(larger).? theorem providing wide sufficient conditions for an orthogo-
nally transitive cylindrical space-time to be geodesically
complete. It can be verified that the solutions presented here
2In fact, the functionI'_(t,r) is exponentially small compared satisfy all conditions in the Fernandez-Jambrina theorem and
with T (t,r) and may not be considered. therefore they are geodesically complete.
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New diagonal solutions can be obtained from Et).as a e—(l/Z)yasz
limiting case. Takinga—0 and keepinga®y= g fixed, we K§|q> B >0,
obtain the following diagonal inhomogeneous cosmological J2Rcosi?(2aT)
scalar-tensor solutions: (36)
ds?=F Y d(t)][e?(— dt2+dr?) + r2dg?+d 2], | e (127a’R®
Kslgs

87G, p=pI(Ne PR (1)), V2Rcosit?(2aT)

_ -1 (1/2)Br?2
u,=F 1o(t)]e r 52 (39) The traces have opposite signs so that there are no trapped

— . - surfaces.
where a'y—1 should be replaced by in the explicit Our solutions are stiff perfect fluid cosmologies and,

formulas forF 1 d(t)]. heref h I , hich arises is what h
We have proven that the solutions presented in the presettere ore, the natural question which arises s what happens
it'the fluid is not stiff. In this case, however, the situation is

paper are geodesically complete. This result is not in contra- . . X
diction with the well-known singularity theorems because inmuch more complicated. In contrast to the stiff fluid case, the

o . dilaton-matter sector does not possess nontrivial symmetries
our case the strong energy condition is violated in the Jordan, . X
) 2 : which allow us to generate new solutions from known ones.

frame. This can be explicitly seen by calculating the compo- ' . X )
" The only way to find exact solutions is to attack directly the

nents of the Ricci tensor. All components are bounded except

for Ry = — 1 ya2a,In{F [®(1)]}. Therefore, for large enough corresponding system of coupled partial differential equa-

one can alwavs find timelike and null vectos& such that tions. This question is currently under investigation.
Y Y o T Summarizing, in this work we have presented new nondi-
R,,v*v"<0, i.e., the strong energy condition is violated.

o T ST ; ; . agonal G, inhomogeneous stiff perfect fluid cosmological
E_ow:a\(er% the snua:pn;s_dﬁfer:em |n|\}|he ,E'”Stet“f‘ framde_i Thesolutions in a wide range of scalar-tensor theories. The found
InStein frame metrig,,, 1S Just tne Mars's metric and it1s = o) ions have no big-bang nor any other curvature singular-

geodesically complete as we have already mentioned. SinGg e gravitational scalaidilator) and fluid energy density

the energy conditions are satisfied in the Einstein frame ifpressur}e are regular everywhere, too. Moreover, the solu-
remains to see which other conditions of the singularity theogi, ¢ e globally hyperbolic and geodesically complete. To
reEms are violated. The space-time described by the Melrife pest of our knowledge, these solutions are the first ex-
g,, does not contain closed trapped surfaces. In order t%mples of nonsingulaiG, inhomogeneous perfect fluid

prove this we will employ the techniques of differential ge- scajar-tensor cosmologies with a nondiagonal metric.
ometry described in Ref$39] and[40]. Let us consider a

closed spacelike surfacg8 and suppose that it is trapped. | would like to thank V. Rizov for discussions and espe-
Since the surface is compact it must have a pqintherer cially L. Fernandez-Jambrina for his valuable comments on
reaches its maximum. Let us denaig,=R on a constant the geodesic completeness of the orthogonally transitive cy-
time hypersurface=T. For the traces of both null second lindrical spacetimes. My thanks also go to J. Senovilla for
fundamental forms af, it can be shown thaisee Refs[39]  sending me some valuable papers. This work was supported

and[40]) in part by Sofia University Grant No. 459/2001.
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