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Geodesically complete nondiagonal inhomogeneous cosmological solutions in dilatonic gravity
with a stiff perfect fluid
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New nondiagonalG2 inhomogeneous cosmological solutions are presented in a wide range of scalar-tensor
theories with a stiff perfect fluid as a matter source. The solutions have no big-bang singularity or any other
curvature singularities. The dilaton field and the fluid energy density are regular everywhere, too. The geodesic
completeness of the solutions is investigated.
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All versions of string theory and higher dimensional gra
ity theories predict the existence of the dilaton field whi
determines the gravitational ‘‘constant’’ as a variable qu
tity. The existence of a scalar partner of the tensor grav
may have a serious influence on the space-time structure
important consequences for cosmology and astrophysic
large amount of research has been done in order to unvei
possible cosmological significance of the dilaton~@1–14#,
and references therein!. With a few exceptions most of th
cosmological studies within the scalar-tensor theories w
devoted to the homogeneous case. The homogeneous m
are good approximations of the present universe. There
however, no reason to assume that such a regular expan
is also suitable for a description of the early universe. Mo
over, as is well known, the present universe is not exa
spacially homogeneous. That is why it is necessary to st
inhomogeneous cosmological models. They allow us to
vestigate a number of long standing questions regarding
occurrence of singularities, the behavior of the solutions
the vicinity of a singularity, and the possibility of our un
verse arising from generic initial data.

In this work we shall address the question of the occ
rence of singularities in inhomogeneous cosmologies wit
the framework of scalar-tensor theories. As is well know
most of the homogeneous models~both in general relativity
and in scalar-tensor theories! predict a universal spacelik
big-bang singularity in a finite past. It was, theorefore, b
lieved that this would be the usual singularity in general. T
inclusion of inhomogeneities drastically changes this poin
view. There are inhomogeneous cosmological solutions
general relativity which have no big-bang or any other c
vature singularity. The first such solution was discovered
Senovilla in 1990@15#. Senovilla’s solution represents a c
lindrically symmetric universe filled with radiation. This so
lution has a diagonal metric and is also globally hyperbo
and geodesically complete@16#. Senovilla’s solution was
generalized by Ruiz and Senovilla in Ref.@17# where a large
family of singularity-free diagonalG2 inhomogeneous per
fect fluid solutions was found. Nonsingular diagonal inhom
geneous solutions in general relativity describing cylind
cally symmetric universes filled with stiff perfect fluid wer
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0556-2821/2002/66~2!/024031~6!/$20.00 66 0240
-

-
n
nd
A

he

re
els

is,
ion
-

ly
y
-

he
n

r-
n
,

-
e
f

in
-
y

c

-
-

found by Patel and Dadhich in Ref.@18#. Other examples of
diagonal nonsingular solutions in general relativity can
found in Refs.@19–25#.

In Ref. @26#, Mars found the first nondiagonalG2 inho-
mogeneous cosmological solution of the Einstein equati
with stiff perfect fluid as a source. This solution is global
hyperbolic and geodesically complete. Mars’s solution w
generalized by Griffiths and Bicak in Ref.@27#.

Within the framework of scalar-tensor theories there
also inhomogeneous cosmological solutions without b
bang or any other curvature singularity. In Ref.@28#, Giovan-
nini derived gravi-dilaton inhomogeneous cosmological
lutions with everywhere regular curvature invariants a
bounded dilaton in tree-level dilaton driven models. In a su
sequent paper@29#, it was shown that these solutions d
scribe singularity-free dilaton driven cosmologies. A non
agonal inhomogeneous cosmological solution with regu
curvature invariants and unbounded dilaton in the tree le
effective string models was found by Pimentel@30#. Very
recently, inhomogeneous cosmological solutions without a
curvature singularities were obtained by the author in a w
class of scalar-tensor theories with stiff perfect fluid as
source@31#.

In this work we take a further step upwards and pres
new nondiagonalG2 inhomogeneous cosmological stiff pe
fect fluid solutions with no curvature singularities in a wid
range of scalar-tensor theories. Scalar-tensor theories~with-
out a cosmological potential! are described by the following
action in Jordan~string! frame @32,33#:

S5
1

16pG*
E d4xA2g~F~F!R2Z~F!gmn]mF]nF!

1Sm@Cm ;gmn#. ~1!

Here,G* is the bare gravitational constant andR is the
Ricci scalar curvature with respect to the space-time me
gmn . The dynamics of the scalar fieldF depends on the
functionsF(F) andZ(F). In order for the gravitons to carry
positive energy the functionF(F) must be positive. The
nonnegativity of the energy of the dilaton requires th
2F(F)Z(F)13@dF(F)/dF#2>0. The action of matter de
pends on the material fieldsCm and the space-time metri
gmn but does not involve the scalar fieldF in order for the
weak equivalence principle to be satisfied.
©2002 The American Physical Society31-1
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As a matter source we consider a stiff perfect fluid w
equation of statep5r.

The general form of the solutions is given by

ds25F21~F~ t !!Fega2r 2
cosh~2at!~2dt21dr2!

1r 2cosh~2at!df21
1

cosh~2at!
~dz1ar2df!2G ,

8pG* r5 f ~l!
a2~g21!F3@F~ t !#e2ga2r 2

cosh~2at!
, ~2!

um5F21/2~F~ t !!e(1/2)ga2r 2
cosh1/2~2at!dm

0 .

The solution depends on three parameters —a, g (g
.1) andl. The range of the coordinates is

2`,t,z,`, 0<r ,`, 0<f<2p. ~3!

The explicit form of the functionsF(t) and f (l), and the
range of the parameterl depend on the particular scala
tensor theory. These solutions can be generated1 from the
general relativistic Mars’s solution@26# using the solution
generating methods developed in Ref.@31#. Below we con-
sider the explicit form of the general solution for some p
ticular scalar-tensor theories.

Barker’s theory.Barker’s theory is described by the fun
tions F(F)5F andZ(F)5(423F)/2F(F21).

In the case of Barker’s theory the explicit forms of th
functionsF(t) and f (l) are

F21~ t !512lcos2~aAg21t !, ~4!

f ~l!512l, ~5!

where the range ofl is 0,l,1. This range can be extende
to 0<l<1. Forl50 andl51 we obtain the Mars’s solu
tion and gravi-dilaton vacuum solution, respectively. Tha
why we consider only 0,l,1. It should be noted that th
range of the parameterl is crucial for the curvature invari
ants. It is easy to see that the gravi-dilaton vacuum solu
corresponding tol51 has divergent curvature invariants b
cause of the conformal factorF21(t)5sin2(aAg21t).

Brans-Dicke theory.Brans-Dicke theory is described b
the functionsF(F)5F andZ(F)5v/F, wherev is a con-
stant parameter. Here we consider the casev.23/2. The
explicit form of the functionsF(t) and f (l) in the Brans-
Dicke case is the following:

1Some of the solutions were first obtained by solving the co
sponding system of partial differential equations for nondiago
G2 cosmologies@34#.
02403
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F21/2~ t !5lexpS aA g21

312v
t D 1~12l!

3expS 2aA g21

312v
t D , ~6!

f ~l!54l~12l!. ~7!

Here the range of the parameterl is 0,l,1. The solu-
tion exists forl50 andl51, too. In these cases, howeve
we obtain a gravi-dilaton vacuum solution which is just P
mentel’s solution@30#. That is the reason we do not consid
these limiting values ofl. The solution is invariant under th
trasformationsl↔12l and t↔2t. In this generalized
sense, we can say that the solution is even in time.

Theory with ‘‘conformal’’ coupling. The theory with
‘‘conformal’’ coupling is described by the functionsF(F)
512 1

6 F2 andZ(F)51. In this case we have

F21@F~ t !#5114l~12l!sinh2S aAg21

3
t D , ~8!

f ~l!5~122l!2. ~9!

The range of the parameterl is 0,l<1/2. Forl51/2
we obtain a gravi-dilaton vacuum solution which is well b
haved and can be included as a limiting case.

Z(F)5(V223F)/2F2 theory.Here we consider the scala
tensor theory described by the functionsF(F)5F and
Z(F)5(V223F)/2F2 whereV.0. The explicit forms of
F(t) and f (l) are

F21~ t !5S 11
1

V
aAg21t D 2

1l, ~10!

f ~l!5l. ~11!

Here, the range of the parameter is 0,l,`.
Z(F)5 1

2 (F223F13)/F(F21) theory. The theory
with F(F)5F andZ(F)5 1

2 (F223F13)/F(F21) pos-
sesses the following solution:

F21~ t !5
l2

l21~12l2!sin2~laAg21t !
, ~12!

f ~l!5l2. ~13!

In order for the dilaton field in this solution to have pos
tive energy we should restrict the range of the parameterl to
0,l,1.

Using the solution generating methods developed in R
@31# we can generate nondiagonalG2 inhomogeneous cos
mological solutions in many other scalar-tensor theories
ferent from those considered above. However, the soluti
we have presented here are expressed in a closed an
form and they are also representative and cover a wide ra
of the possible behaviors of the scalar-tensor solutions wh
can be generated from Mars’s solution.

-
l
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Let us consider the main properties of the found solutio
The metric functions, the gravitational scalar~the dilaton!,
and the fluid energy density are everywhere regular. T
space-times described by our solutions have no big-bang
any other curvature singularity—the curvature invariantsI 1
5CmnabCmnab, I 25RmnRmn, andI 35R2 are regular every-
where. The solution possesses a two-dimensional Abe
group of isometries inherited from the seed Mars’s solut
and generated by the Killing vectors]/]z and]/]f. In ad-
dition, the metrics have a well defined axis of symmetry a
the elementary flatness condition@35# is satisfied. Since the
presented solutions are conformally related to the Mars’s
lution, the spacetimes described by them are globally hy
bolic. In fact, the global hyperbolicity can be proved ind
pendently as a consequence of the proof of the geod
completeness presented below.

The existence of two Killing vectors gives rise to tw
constants of motion along the geodesics

K5F21@F~ t !#Fcosh~2at!r 2
df

ds

1
ar2

cosh~2at! S dz

ds
1ar2

df

dsD G , ~14!

L5
F21@F~ t !#

cosh~2at! S dz

ds
1ar2

df

dsD .

The affinely parametrized causal geodesics satisfy

F21@F~ t !#H ega2r 2
cosh~2at!F S dt

dsD
2

2S dr

dsD
2G

2
L2cosh~2at!

F22@F~ t !#
2

~K2Lar2!2

r 2F22@F~ t !#cosh~2at!
J 5e,

~15!

wheree50 and 1 for null and timelike geodesics, respe
tively. Taking into account Eqs.~14! and ~15! the geodesic
equations fort and r can be written in the following form:

d

dsS F21@F~ t !#ega2r 2
cosh~2at!

dt

dsD
5F@F~ t !#e2ga2r 2

cosh21~2at!M ~ t,r !] tM ~ t,r !, ~16!

d

dsS F21@F~ t !#ega2r 2
cosh~2at!

dr

dsD
52F@F~ t !#e2ga2r 2

cosh21~2at!M ~ t,r !] rM ~ t,r !,
~17!

where
02403
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M ~ t,r !5F21/2@F~ t !#e(1/2)ga2r 2
cosh1/2~2at!

3F e1
L2cosh~2at!

F21@F~ t !#

1
~K2Lar2!2

r 2F21@F~ t !#cosh~2at!
G 1/2

. ~18!

To demonstrate the geodesic completeness of our me
we have to show that all nonspacelike~i.e., causal! geodesics
can be extended to arbitrary values of the affine parame
We shall consider only future directed geodesics. The p
directed geodesics can be treated analogously.

First we consider null geodesics withK5L50. For them
we havedt/ds5udr/dsu and

d

dsS F21@F~ t !#ega2r 2
cosh~2at!

dt

dsD50. ~19!

After integrating we obtain

dt

ds
5C$F21@F~ t !#ega2r 2

cosh~2at!%21, ~20!

whereC.0 is a constant. Taking into account that for ea
of our solutions there exists a constantB such that

0,B<F21@F~ t !# ~21!

for arbitrary values oft and fixed parameterl, we obtain

dt

ds
5Udr

dsU< C

B
. ~22!

Therefore the geodesics under consideration are comple
Now let us turn to the general case when at least one

the constantse, K or L is different from zero. Here we sha
use a method similar to that for diagonal metrics describe
Ref. @16#. Let us parametrizedt/ds anddr/ds by writing

dt

ds
5

F@F~ t !#e2ga2r 2

cosh~2at!
M ~ t,r !cosh~y!, ~23!

dr

ds
5

F@F~ t !#e2ga2r 2

cosh~2at!
M ~ t,r !sinh~y!. ~24!

Substituting these expressions in the equations fort andr
we obtain

dy

ds
52

F@F~ t !#e2ga2r 2

cosh~2at!
@] tM ~ t,r !sinh~y!

1] rM ~ t,r !cosh~y!# ~25!

or, equivalently,

dy

ds
52

1

2M ~ t,r !
$G1~ t,r !ey1G2~ t,r !e2y%, ~26!
1-3
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STOYTCHO S. YAZADJIEV PHYSICAL REVIEW D66, 024031 ~2002!
where

G1~ t,r !5eFatanh~2at!1
1

2

dln$F21@F~ t !#%

dt
1ga2r G

1
~K2Lar2!2

r 2F21@F~ t !#cosh~2at!
Fga2r 2

1

r

2
2Lar

K2Lar2G1
L2cosh~2at!

F21@F~ t !#
@2atanh~2at!

1ga2r #,

G2~ t,r !5eF2atanh~2at!2
1

2

d ln$F21@F~ t !#%

dt
1ga2r G

1
~K2Lar2!2

r 2F21@F~ t !#cosh~2at!
Fga2r 2

1

r

2
2Lar

K2Lar2G1
L2cosh~2at!

F21@F~ t !#
@22atanh~2at!

1ga2r #. ~27!

In order for the geodesics to be completedt/ds anddr/ds
have to remain finite for finite values of the affine parame
In fact, it is sufficient to consider onlydt/ds, sincedr/ds
and dt/ds are related via Eq.~15!. The derivativesdf/ds
and dz/ds are regular functions oft and r, and the only
problem we could have appear whenr approachesr 50 for
KÞ0. We shall show, however, thatr cannot become zero
for KÞ0.

First we consider geodesics with increasingr ~i.e., y
.0). In this case it is not difficult to see that the term

F@F~ t !#e2ga2r 2

cosh~2at!
M ~ t,r ! ~28!

in Eq. ~23! cannot become singular~for increasingr ). There-
fore,dt/ds could become singular only fory. We shall show,
however, thaty cannot become singular for finite values
the affine parameter. For increasingr, y cannot diverge since
for large t ~large r! the derivativedy/ds becomes negative
Indeed, for all exact solutions presented here, there exis
constantB1.0 such that

Ud ln$F21@F~ t !#%

dt U,B1 ~29!

for arbitrary t and fixedl.
Therefore, as can be seen from Eqs.~27!, the terms asso

ciated with the constant«, K, andL are all positive for large
values oft. As a consequence we obtain that the functio
G1(t,r ) andG2(t,r ) are positive, i.e.,dy/ds,0 for larget
~large r ).2

2In fact, the functionG2(t,r ) is exponentially small compare
with G1(t,r ) and may not be considered.
02403
r.
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In the second case, whenr decreases (y,0), the problem
comes fromr 50 whenKÞ0. The geodesics withK50 can
reach the axisr 50 without problems and then continue wit
dr/ds.0(y.0). When KÞ0, y cannot diverge for finite
values of the affine parameter. This follows from the fact th
the derivativedy/ds becomes positive for smallr ~larget) as
can be seen from Eqs.~27! and~26!, taking into account that
G1(t,r ) is exponentially suppressed compared withG2(t,r ).
The positiveness of the derivativedy/ds when the geodesics
are close to the axisr 50 prevents the radial coordinate from
collapsing too quickly and reaching the axis. The fact thar
cannot become zero forKÞ0 may be seen more explicitly a
follows. Whenr approaches zero the dominant term is th
associated withK and the other terms can be ignored. So,
small r the geodesics behave as null geodesics withL50:

dt

ds
5

F@F~ t !#e2ga2r 2

cosh~2at!
M ~r !cosh~y!, ~30!

dr

ds
5

F@F~ t !#e2ga2r 2

cosh~2at!
M ~r !sinh~y!, ~31!

dy

ds
52

F@F~ t !#e2ga2r 2

cosh~2at!
] rM ~r !cosh~y!, ~32!

whereM (r )5(uKu/r )e(1/2)ga2r 2
. Hence, we obtain the orbi

equation

dr

dy
52

M ~r !

] rM ~r !
tanh~y!. ~33!

Integrating, we have

e2(1/2)ga2r 2
r 5C1cosh~y!, ~34!

whereC1.0 is a constant. Since cosh(y)>1, r cannot be-
come zero.

From the proof of the geodesic completeness it follo
that every maximally extended null geodesic intersects
of the hypersurfacest5const. According to Ref.@36#, this a
sufficient condition that the hypersurfacest5const are glo-
bal Cauchy surfaces. Therefore, the solutions are glob
hyperbolic.

We have explicitly proven the geodesic completeness
the solutions using their particular properties. The geode
completeness can be proved independently by conside
the solutions from a more general point of view. In Ref.@37#
~see also Ref.@38#!, Fernandez-Jambrina presented a gene
theorem providing wide sufficient conditions for an orthog
nally transitive cylindrical space-time to be geodesica
complete. It can be verified that the solutions presented h
satisfy all conditions in the Fernandez-Jambrina theorem
therefore they are geodesically complete.
1-4
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GEODESICALLY COMPLETE NONDIAGONAL . . . PHYSICAL REVIEW D 66, 024031 ~2002!
New diagonal solutions can be obtained from Eq.~2! as a
limiting case. Takinga→0 and keepinga2g5b fixed, we
obtain the following diagonal inhomogeneous cosmologi
scalar-tensor solutions:

ds25F21@F~ t !#@ebr 2
~2dt21dr2!1r 2df21dz2#,

8pG* r5b f ~l!e2br 2
F3@F~ t !#,

um5F21/2@F~ t !#e(1/2)br 2
dm

0 , ~35!

where aAg21 should be replaced byAb in the explicit
formulas forF21@F(t)#.

We have proven that the solutions presented in the pre
paper are geodesically complete. This result is not in con
diction with the well-known singularity theorems because
our case the strong energy condition is violated in the Jor
frame. This can be explicitly seen by calculating the com
nents of the Ricci tensor. All components are bounded exc
for Rtr52rga2] tln$F @F(t)#%. Therefore, for large enoughr,
one can always find timelike and null vectorsym such that
Rmnymyn,0, i.e., the strong energy condition is violate
However, the situation is different in the Einstein frame. T
Einstein frame metricgmn

E is just the Mars’s metric and it is
geodesically complete as we have already mentioned. S
the energy conditions are satisfied in the Einstein fram
remains to see which other conditions of the singularity th
rems are violated. The space-time described by the me
gmn

E does not contain closed trapped surfaces. In orde
prove this we will employ the techniques of differential g
ometry described in Refs.@39# and @40#. Let us consider a
closed spacelike surfaceS and suppose that it is trappe
Since the surface is compact it must have a pointq wherer
reaches its maximum. Let us denoter max5R on a constant
time hypersurfacet5T. For the traces of both null secon
fundamental forms atq, it can be shown that~see Refs.@39#
and @40#!
Re

02403
l

nt
a-

n
-
pt

ce
it
-

ric
to

KS
1uq>

e2(1/2)ga2R2

A2Rcosh1/2~2aT!
.0,

~36!

KS
2uq<2

e2(1/2)ga2R2

A2Rcosh1/2~2aT!
,0.

The traces have opposite signs so that there are no tra
surfaces.

Our solutions are stiff perfect fluid cosmologies an
therefore, the natural question which arises is what happ
if the fluid is not stiff. In this case, however, the situation
much more complicated. In contrast to the stiff fluid case,
dilaton-matter sector does not possess nontrivial symme
which allow us to generate new solutions from known on
The only way to find exact solutions is to attack directly t
corresponding system of coupled partial differential eq
tions. This question is currently under investigation.

Summarizing, in this work we have presented new non
agonal G2 inhomogeneous stiff perfect fluid cosmologic
solutions in a wide range of scalar-tensor theories. The fo
solutions have no big-bang nor any other curvature singu
ity. The gravitational scalar~dilaton! and fluid energy density
~pressure! are regular everywhere, too. Moreover, the so
tions are globally hyperbolic and geodesically complete.
the best of our knowledge, these solutions are the first
amples of nonsingularG2 inhomogeneous perfect fluid
scalar-tensor cosmologies with a nondiagonal metric.
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in part by Sofia University Grant No. 459/2001.
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