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Gravitational radiation from cosmological turbulence
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An injection of energy into the early Universe on a given characteristic length scale will result in turbulent
motions of the primordial plasma. We calculate the stochastic background of gravitational radiation arising
from a period of cosmological turbulence, using a simple model of isotropic Kolmogoroff turbulence produced
in a cosmological phase transition. We also derive the gravitational radiation generated by magnetic fields
arising from a dynamo operating during the period of turbulence. The resulting gravitational radiation back-
ground has a maximum amplitude comparable to the radiation background from the collision of bubbles in a
first-order phase transition, but at a lower frequency, while the radiation from the induced magnetic fields is
always subdominant to that from the turbulence itself. We briefly discuss the detectability of such a signal.
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I. INTRODUCTION undetectably small on scales amenable to direct detection
(i.e. laboratory to solar system scale&nother possibility is
Gravitational radiation is likely the only direct source of a significant background from the evolution of topological
information about the Universe at very early times. Electro-defects such as cosmic strini. Current measurements of
magnetic radiation has propagated freely only since the epghe microwave background and the large-scale distribution of
och of recombination at a redshift=1000; any radiation galaxies rule out defects as the sole structure formation
produced at earlier times was quickly thermalized by Comp-mechanism, although it is conceivable that some small frac-
ton scattering from free electrons in the primordial plasmation of the microwave background fluctuations arise from
Neutrinos probe to somewhat earlier epochs since they wergefects. In this case as well, direct detection of the gravita-
in thermal equilibrium only until the Universe was around tional radiation from defects appears improbable.
one second old, but detection prospects for the cosmic neu- The most promising source of a detectable cosmological
trino background are nil. In contrast, gravitational radiationbackground of stochastic gravitational waves is a phase tran-
was in thermal equilibrium only at temperatures approachingition in the early Universg3,4]. A first-order phase transi-
the Planck energy when the Universe had an age of arounibn proceeds via the random nucleation of bubbles of the
the Planck time. Furthermore, gravitational radiation, unlikenew phase, which subsequently expand and merge, convert-
electromagnetic radiation, propagates virtually unimpededng the old phase to the new phase. The coherent motion of
throughout the entire history of the Universe. These properthe bubble walls, which contain a significant fraction of the
ties make gravitational radiation a powerful probe of the veryfree energy associated with the phase transition, can produce
early Universe, in principle. The difficulty is of course the copious gravitational radiatigid—7]. The radiation spectrum
extremely small amplitude of the propagating metric perturgenerically peaks at a comoving wavelength corresponding
bations. to the Hubble length at the time of the phase transition times
The most cosmologically interesting gravitational radia-the bubble wall velocity in units of the speed of light. Re-
tion sources are stochastic backgrounds produced by sonmearkably, the horizon scale at the electroweak phase transi-
event in the early evolution of the Universe. One widelytion falls into the frequency band of the proposed Laser In-
discussed example is the background of tensor metric pertuterferometer Space AntenndLISA) space-based laser
bations produced by quantum fluctuations during inflationinterferometric gravitational radiation detec{8i, and a rea-
[1]. However, the amplitude of temperature fluctuations insonably strong electroweak phase transitialthough much
the cosmic microwave background likely limits the ampli- stronger than in the standard modetould be detectable
tude of an inflationary gravitational wave background to bewith currently planned gravitational wave experimejg$
Besides the bubble wall motions in a phase transition, a
related source of gravitational radiation is the subsequent tur-

*Email address: kosowsky@physics.rutgers.edu bulent motion of the plasma following the phase transition.
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larger than that from bubble wall motiof8,10]. In the ab- Il. MODEL ISOTROPIC TURBULENCE
sence of bubble shape instabilities, the bubbles of the low-

e ; and dimensional analysis intractable. Model isotropic turbu-
amounts of energy are being injected on a particular charaggnce js experimentally tested via wind tunnel measurements

teristic length scale. As the phase transition completes, thgn scales small compared to the size of the tunnel, and the
bubble wall motions SOUrCing the turbulence cease to be eﬁ:oncepts of a cascade of kinetic energy from |arge to small
fective, and the turbulence damps away with a characteristi§cales and the role of viscosity are well established. But clas-
damping time scale depending on the plasma viscosity. If thejcal turbulence analysis is done for non-relativistic fluid ve-
bubbles are unstable to distortions of their shapes, then thecities and incompressible fluids. Here we need to model
expansion of the non-spherical bubbles can also create addiisrbulence in a radiation-dominated plasma, potentially with
tional turbulence. If the turbulence is strong, with velocitiesmoderately relativistic fluid velocities and complications like
some non-negligible fraction of the speed of light, significantshock formation. While the theory of turbulence in highly
gravitational radiation can be generated during the intervalelativistic plasmas is not well understood, we will simply
between the initial bubble collisions and the damping of theextend the nonrelativistic results in the naive manner with
turbulence after the completion of the phase transition. ~ the understanding that some corrections might apply.

In this paper, we quantify these claims by computing the Consider an event in the early Universe, presumably a
gravitational radiation resulting from an idealized turbulentfirst-order phase transition, which converts an energy density
source. We assume that a source of turbulence exists fdfPvac iNtO kinetic energy of the primordial plasma in some
some specified length of time, injecting energy on a particupharacterlstlc time scaleg;, on some characteristic source

lar length scale at a particular redshift. We model the resultl€ngth scaleLs. Here p,.c is the total free energy density
ing turbulence as having a Kolmogoroff energy SpectrumIlberated and is an efficiency factor which accounts for the
fraction of the available energy which goes directly into ki-

Details of the turbulence model and discussion of the validity >
HetIC, as opposed to thermal, energy. The length stale

of various assumptions are presented in Sec. Il. We the -
P P ust be connected to the Hubble lengty *=mg /T2,

compute the generated gravitational waves using the turbust b . :
lent plasma motions as a source to the wave equases which is the only cosmological length scale at early times;

. — _l . .-

[11); the results are then converted to present-day amplitude‘ge writeLs=yH, *. HereT, is the tem_perature of the Uni
and enrgy desies as uncions of fequeny. Secton V2158 ' e Sl s poce S Le Pk e,
derives the additional gravitational radiation generated by X . . . ’
turbulence-induced magnetic fields, showing that the peal ade will develop in which energy will be transferred from

) . 9 . ' 9 P rger to smaller scales as eddies of progressively smaller
amplitude from this source will be far smaller than the peakSizes are formed from larger ones. The cascade stops at a
amplitude from the turbulence itself, though at a higher fre-

W th | i | amping scalé., when the fluid kinematic viscosity dif-
quency. In Sec. V, we apply the results to a generic model of ,qe5 the turbulent velocities at the same rate as they are

first-order_phase transition_s, includi_ng a bri_ef review of hy'replenished from larger scales. We assume that for stales
drodyngmlc bubble eyolut|on. Section V_I discusses the dej, the range. <L <Lg (the inertial rangg the turbulence is
tectability of the resulting backgrounds with planned and ent,omogeneous and isotropic. We also must know the enthalpy
visioned experiments. Throughout the paper we emp|0)densityw=p+p of the (nonturbulent plasma, which ap-
natural units withc=7=kg=1. pears in the stress-energy tensor. In our simplified model,
A substantial literature on cosmological turbulence ap-any turbulent source in the early Universe is determined
peared three decades ago, when turbulent vorticity was corompletely by the physical quantiti@§ac, «, 7sirs Ls, Ty »
sidered as a mechanism for initiating galaxy formafidh].  w, andv. These quantities in turn determihg , the damp-
While this particular idea soon fell out of favor due to incon- ing scale, andr, the total duration of the turbulence. Note
sistency with the microwave background isotrdd2] and that a given cosmological model determingsand » from
nucleosynthesig13], some formal aspects of these treat-the temperaturd, . We also define the wave numbeks
ments are relevant for this work; see, e|[d4-16¢, which =2n/Lg andkp=2w/Lp corresponding to the largest and
develop phenomenological descriptions of cosmological tursmallest turbulence scales.
bulence similar in spirit to that presented in this paper. The The turbulent energy in the cascade is characterized by
hydrodynamic equations in an expanding Universe were dethe stationary Kolmogoroff spectrum
rived through a transformation of the nonexpanding case in
[17], a special case of a more general_ theofés;. 1 dpyn o
We emphasize that our results are independent of the na- E(= gk~ Cke %, 1)
ture of the turbulence source. While first-order phase transi-
tions are the only obvious source of strong turbulence in the
early Universe, the calculations presented here are equalyherepwn, is the kinetic energy density of the turbulent mo-
applicable to any other potential source of turbulefeee, tions. The Kolmogoroff constari@, is of order unity and: is
e.g.,[19)). the energy dissipation rate per unit enthalpy giver] 28}
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J— kD V V I(D
8=2VJ dkICE(k) 2 (uz(x)>=wj dk2P(k)=?Jk dkkeP(k). (8)

ks

wherev is the kinematic viscosity of the plasma. This spec-But this quantity is just the kinetic energy density per unit

trum holds for a constant rate of energy flow from larger toenthalpy density of the fluid; thus we derive the connection
smaller scales; the amplitude is fixed by the rate of energy

dissipation. For a non-relativistic plasma, the enthalpy den- \V;

sity w is just the mass density of the plasma, while for tem- E(k)= —k?P(k). 9
peratures large compared to the masses of particles in the m

plasma or for any radiation-dominated plasmvas 4/3 times
the thermal energy density of the plasma. Combining th
above two equations and solving for the energy dissipation

rate gives P(k)= E m2e2l3—113 (10)

é:or the case of a Kolmogoroff spectrum, Eg) implies that

g="gfo? 3 We are interested in the characteristic eddy velocity on a
given scalel. From the slope of the Kolmogoroff spectrum
assumin@k:]_ andks< kD . However’E(k) is not yet de- and Eq(8), it follows that the total turbulent VE|OCity at a
termined since we do not know the wave numkgrcorre-  given point is dominated by the eddy velocity on the largest
sponding to the smallest-scale turbulent motions. scale. We can thus estimate the characteristic eddy velocity
Before completing the specification &f(k) in terms of 0N the scald by cutting off the integral in E¢(8) at a wave

the physical variables defining the phase transition, considdumberk, =2/L corresponding to that scale:
the time scales involved in the turbulence. Assume that the

only peculiar velocities present afielativistic) turbulent ve- u = JdekE(k) 12
locities with spatial distributiom(x); we employ the Fourier L k.
convention
1/2
1 ) N —1/3 7 \1/3
u(k) = \_/f dxe u(x). @ 2) (2m) " H(eL)2, (1)

We retain the fiducial volume factor to insure consistent Ve can also estimate an eddy turnover time sdalewn as
dimensions for all quantities; all physical results will be in- the circulation timg on a length scezllél./zas the ratio ot to
dependent olV. A statistically isotropic and homogeneous the physical velocityv, =u, /(1+ui)™. We argue below

velocity field of an incompressible fluid has the two-point that the physical velocity will be approximately bounded by
correlation function the sound speed of the fluid; for a radiation-dominated

plasma, this condition is, <1/y/3. Making the simple ap-

. (2m)3 R , proximation thatv, =u, until the sound speed is reached,
(uitkuy (k") =—y—Pi(K)P(K)S(k=K"), (5  after which timev,_is the sound speed, the circulation time is

where 371828 | <3%78e) L

’7'|_2|_/l)|_2 L\/§ h . (12)
r ~on , otherwise.
Pij (k)= 6ij —kik; (6)
is a projector onto the transverse plane: Now the remaining undgtermiqed quantity in_the tl_eru—
lence spectrunmkp, can be fixed via energy considerations.
PiPi=Py. P k=0 @) Two different cases must be considered separately, depend-

U ing on whether the duration of the turbulent sourcg is

The angular brackets in Eq5) mean a statistical average 10N Or short compared to the eddy turnover time seglen
when the velocities are considered as random variaskes e characteristic length scale of the soutgg First con-
Ref.[22], Volume 1, for a detailed discussiprf the fluid is ~ Sider the simpler case wherg;>7s. Fully developed tur-
compressible, a second arbitrary function appears in the coRulence is established in a time on the orderrgf so this
relation function, proportional t&iRj, describing longitudi- case gives approximately a stationary source lasting for a

. o : . time 7= 1. To keep the turbulence stationary, the energy
nal motions. A specific model for isotropic turbulence con- . —.° . .
) o . ) dissipation rate must equal the mean input power of the
sists of specifying the functioP(k); we assume the power

spectrum is a power lawP (k) =AKk", where the normaliza- source:

tion A and the spectral inder can be deduced from the

Kolmogoroff spectrum. The mean square velocity of the fluid Py &‘""C_ (13)
at any point in space is given by W Tt
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This expression immediately determines the amplitude of th&he only assumption required for this conclusion is that the
Kolmogoroff spectrum, Eq(l), and comparing with Eq3)  time scale for establishing eddies on a given scale via the

gives cascade from larger scales is the same as the time scale for
va dissipating the same eddies via the cascade to smaller scales.

8KpPyac The time displacements of the time intervals for the exis-

D:(m) : (14 tence of eddies on different scales are essentially irrelevant

for the generation of gravitational radiation, leading only to
Thus the turbulent gravitational wave source is completelysome relative phase shift between the gravitational radiation
determined for this case. The circulation time scale on thét two different frequencies. Therefore, for the purposes of
scale of the source is approximated by combining Efjg) ~ modeling a gravitational wave source, we assume the plasma

and(13) to give motion consists of kinetic energy simultaneously on all
scales within the inertial range, lasting for a total time
3 Lérsmw s =r1g, the circulation time on the scale of the turbulence
ST o KPyac ' (15 source, with a kinetic energy density spectrum given by the
Kolmogoroff spectrum, Eq(l). To normalize the spectrum,
so the condition for this case to be valid becomes we simply treat the total free energy density as being injected
continually over the timerg rather than as an impulse. Now
1/2 . . . .
oSl (16) this case looks just like the previous one, except that
S S\ kpyad must be replaced byg in Egs.(14) and (15):
Finally, the Reynolds number for this turbulence is given by 8xp va 3132\ \12
= — rs=Lg —) ( ) . (19
ko2 2 1143 kpald) 2713w 2]\ Kpvac
N
Ks 3\ 27 V3T W Combining the two cases gives the simple expressions
The critical Reynolds number for the onset of stationary tur- 8kp va 3/ L2rw\ 13
. . " . vac S
bulence is around 2000. Early Universe phase transitions will kp= 3 Ts= 5| , (19
generally have Reynolds numbers exceeding this value. 27 Tw Prac
The alternate case, fat;,<7g, is more subtle. Here, an alid for either case. where
impulsive force is imparted to the plasma, resulting in a total’®" : W
kinetic energy density equal to the total free energy density r=max s, 7o) (20)

of the phase transition times the efficiency factoicoherent

on the length scales. The efficiency factor depends on the The eventual expression for the gravitational wave amplitude
mechanical details of the stirring process and will be a funcig only very weakly dependent upon so the distinction
tion of mean input powep,ac/ 7sir. A cascade of kinetic petween the two cases is largely unimportant for our results.
energy to smaller scales will occur, but stationary, isotropic \when computing the gravitational wave signal, we will

turbulence will never develop because the plasma is not consncounter unequal time velocity correlators of the form
tinually being stirred by the source. We can estimate the time

for which significant kinetic energy on a given scale lasts. . (2m)3 . ) )
On the largest scales, the kinetic energy will last for atime ~ (Ui(K,Duj (K',t"))=——Py(K)F(k,t—t") o(k—k’)
set by the dissipation time scale, approximately equal to the (21)

eddy turnover timerg. As in fully developed turbulence, this

kinetic energy will cascade to smaller scales. The eddies ofcf. Eq.(5)]. The dependence of the functi&ronly upon the

the largest scale will act as a source for eddies on a slightlyime differencet—t’ follows from the assumption that the
smaller scald. for a time 7. On the smaller scale, we as- turbulence can be treated as stationary, Witlk,0)=P(k).
sume the plasma has no kinetic energy at the moment of theo general form is known foF. However, general physical
impulsive force but rather acquires kinetic energy only fromconsiderations imply tha& must be a decreasing function of
the cascade. The smaller-scale eddies are spun up in a timet’, and we assume that the decay Fofshould have a
corresponding to the circulation time on the smaller scalecharacteristic time scale on the order of the circulation time
7_; these eddies will last until the large-scale source been the scalé =27/k. We actually will only need to guaran-
comes ineffectual and then will dissipate also on the circulatee thatF goes to zero no faster than the light-crossing time
tion time scaler . So by this argument, the eddies on aof L, which is guaranteed by causality.

smaller scalel will exist for the same total amount of time We have sidestepped the issue of relativistic versus non-
as the eddies on the largest schlg although their estab- relativistic turbulence. The Kolmogoroff model of turbulence
lishment and dissipation will be displaced to a slightly laterphenomenology has only been formulated and tested for tur-
time compared with the largest-scale eddies. The same rebulence with nonrelativistic velocities in plasmas with non-
soning can then be applied to eddies at successively smalleslativistic equations of state. No general model exists for the
scales, with the following conclusion: on any given scaleopposite situation of a relativistic plasma with relativistic
betweenLg and L, eddies will exist for a total timerg. velocities. The plasma in our case will also be compressible,
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contrary to the basic assumption above. For a large enough vV

input of energy, plasma velocities may be driven past the Tij(k-t)zmwj dqui(g,t)uj(k—q,t). (23
sound speed, leading to shock formation. We conservatively

assume that the sound velocity represents an upper limit 10 Gr4yitational radiation is produced by the transverse and
the turbulent plasma velocity, because shocks will result ifaceless piece of the stress-energy tensor. Given an arbitrary
significant thermal dissipation. Note that to the extent thatstress-energy tensor in Fourier spagg(k,t), the portion

shock fronts retain k.inetic.energy, our uIt_imate gravita.tionalsourcing gravitational radiation can be obtained by applying
wave background will be increased relative to the estimateg projection tensofsee, e.g.[23)):

made here, in the case of highly relativistic fluid velocities.
To summarize, this model for cosmological turbulence re- 1
quires (i) kpyae, the energy density converted to turbulent ILj=| PyiPjm— §Pi1P|m Tim- (24)
motion wherep, . is a characteristic energy density axds
an efficiency factor(ii) Ls, the characteristic length scale of §,ce the source is specified, the gravitational wave metric

tl_j_e source produci_ng the turbulen@be “stirring scale”; perturbationsh;; obey the wave equation
(iii) 7, the duration of the source producing the turbu-

lence;(iv) T, , the temperature of the Universe at the onset d2h.. 2 da dh.
e . i T
of the turbulence, which in turn determinag the enthalpy — = — — 11 ¥%h, =8nGall;, (25)
) . o ; 2 "adn d j ij

density, andv, the kinematic viscosity of the plasma. The dn 7 4n
assumption of stationary homogeneous and isotropic Kol- 5
mogoroff turbulence then specifies in terms of these quantiwhere# is conformal timek is the comoving wave number,
ties (i) the normalization of the turbulence power spectrum,anda is the scale factor of the Universe. Note that we have
(i) the length scalé, at which the turbulence is dissipated defined the tensor metric perturbatidi; = 2h;;. For rel-
by viscosity, and(iii ) the circulation time for any particular evant phase transitions, the duration of the source will be
turbulent length scale betweéry andLp . short compared to the Hubble time, which means the expan-

We have neglected the expansion of the Universe in thision of the Universe can be neglected during the generation
description of turbulence. If the duration of the turbulence of the waves. We can thus drop the expansion drag term in
is longer than the Hubble timid ~1, then the expansion will Eg. (25) and change variables to physical time and physical
produce additional damping of the turbulence as the energywave number, obtaining the simple oscillator equation
density is redshifted. Furthermore, if the circulation time on
the stirring scalers is comparable to or longer than the Hij(k,t)+kzhij(k,t)=87rGHij(k,t), (26)
Hubble time, the expansion damping may inhibit the estab-
lishment of a turbulent cascade. Particular cases should hehere dots denote derivatives with respectt.té-rom this
checked individually, but in general, if a phase transition ispoint on, all wave numbers will refer to physical, not comov-
strong enough to drive turbulence producing an interestinglyng, quantities.
large gravitational radiation amplitude, it will last for a time  The source considered here turns on at a specific tjme
short compared to the Hubble time and expansion dampingnd we assume no gravitational radiation exists prior to this
will be negligible. This claim can be quantified using thetime. The initial conditions for Eq.(26) are simply

expressions derived in Sec. V below. hij(k,t*)zhij(k,t*)zo. In the Euclidean space approxima-
tion we have made, the radiation generated cannot depend on
IIl. GRAVITATIONAL RADIATION FROM TURBULENT the particular value of, , so for convenience we sgf =0
PLASMA in this section. Of course, once the results are translated back

into expanding spacetime, the tirhg of the phase transition

fixes the energy and length scale associated with the phase
The source of gravitational radiation is the transverse an¢ransition. The Green function for the homogeneous equation

traceless piece of the stress-energy tensor of a given systei.simply

For turbulent plasma, the relevant stress-energy tensor is

given by 0, o<t<t’,

G(t,t')=

A. General considerations

1 2
Tij (X) =wu (X)uj(X). (22) Sintk(t=t)], - o<t'<t, @
The above expression drops the diagoftiilce component _ . _
of the stress-energy because it cannot source any gravitdith G=G=0 att=0. The general solution for the wave
tional radiation. To simplify the problem, we assuifoen-  amplitude is then
servatively that the enthalpy density remains constant G
throughout space, while the variation of the velocity vector | _om jf e VISt IR
describes the turbulent motions of the plasma. If this as- hij (k,t) k 0®(t )sinlk(t=t) ]I (k,t")dt
sumption does not hold, the resulting gravitational wave am- (29
plitude will increase. In Fourier space, the stress-energy is
then given by the convolution where® is a step function.
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B. Time averaging technique

Since turbulence is a stochastic process, we cannot compute the exact gravitational waveforms. Our goal is to compute the
average power spectrum or characteristic amplitude of the waves. We are concerned here only with the power spectrum, so
consider the quantity

(87TG)2
(hij(k,)hi (k" 1) =

S(k— k)< fdtlf dt,0(t—t,) O (t—t,)simk(t—t;)]
Xsir{k(t—tz)]l'[ij(k,tl)l'[ﬁ(k,t2)>. (29)

The delta-function factor is guaranteed by statistical isotropy of the gravitational waves; we have written this dependence out
explicitly and then changed all factors bf to k within the angular brackets. To make further progress, we need a practical

way to deal with the averaging process. We are assuming a stationary, homogeneous and isotropic source, so we make the
simple assumption that the statistical average can be estimated by either a time or space average. To eV2aieEpe

a time average, since all of the time dependence is in the Green functions and not in the source terms. Then we have

(hy; (kDA% (k' )= S(k— k)(—r dtlf dtoI1; (K, t)IT (K, t)
1 (s+T
x?J dtO(t—t;) O (t—t,)sink(t—ty) Isin k(t—t,)], (30)

wheres is some arbitrary time when the source is active, @nd an interval of time long enough for the average to be
approximated by the time average. In practice, this will be some time on the order of a few circulation times on a given scale.
As t; or t, approaches, it will not be possible to choos& large enough for a rigorously valid average, but this will not
appreciably affect our estimates since we are considering only statistical averages for the source terms: the time integration is
a convenient device for approximating the effect of this averaging, and the averaging itself becomes only a rough approxi-
mation for durations shorter than the circulation time on a given scale. Since we are assuming a stationary sa@®e, Eq.
must be independent of the chosen value.diVe choose ais which eliminates the step functions from the integral, keeping
in mind the above discussion.

The integral ovet is now elementary:

1 (s+T ) 1 1
Tfs dtSIr[k(t—tl)]Sll’[k(t—tz)]:zCOik(tg—tl)] 2TkSIn(Tk)CO{k (2s+T—-t;—ty)]. (3D

We neglect the second term with respect to the first sikce 1: k! will be on the order of the light crossing time for a given
scale, whileT will be at least as long as the circulation time on the given skafe so the comparison will be valid on all
scales except for possibly the largest, where at least the simple inedquiatity will hold. Since the terms are both oscillatory,
the comparison really only applies to the size of the prefactors, but this is sufficient for our purpose. Now substitu8iyg Eq.
into EqQ. (30) and making the substitution=t,—t, gives

K, 7)h (K’ PN CLAC) i Y L 2
(hij(k, D (k' 7)) =(k—k') =72 ftl y cog y)fO I (k)T (K, ty +y). (32

We now use the; integral as an estimator for the statistical average of the sources, giving

(k= T "y o (11 ot T 3. @

where the delta-function has been reabsorbed into the statistical average. Note that the average on the right side is independen
of t; since the source is assumed to be stationary.

We now have an expression involving the average source correlation at different times, integrated against an oscillating
function. Note that the total value is proportional#tothe duration of the source, as it should be for an incoherent source. To
make further progress, we require a more explicit form for the source average.
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C. Evaluation of the source average
We have expressions for averages of the fluid velocities in the turbulent source; we need to connect these with the particular
average required in Eq433). Writing out the projectors in Eq24) gives
(I (K, DI (Kt y)) = [ Pia(K) Pip(K) = 3 Pij (K)Pap(K) [ Pio(k ) Pja(K") = 3Py (K" ) Pog(k ) [ Tap(K, ) TEg(K' , t+y)).
(34)

We need to evaluate the expectation value of the stress tensor product. EqRatisimows that this product will involve the
expectation value of four velocity vectors evaluated at two different times. No general solution is known for such expectation
values for turbulent flow. The simple@nd most conservatiyassumption is that the correlation function factors into products

of pairs of velocities, as for a Gaussian field. Then Wick’s theorem applies and we have

V2
(Tan(k,DTE(K" t+y)) = WWZJ dgds(ua(a,t)ug (a—K,D)){uc(=st+y)ug (k' —st+y)) +{ua(ag,t)ug (st+y))

X(up(k=a,0)ug (K" —s,t+y))+(ua(a,)ug (k' —st+y)up(k—g,0ug (st+y))]. (35

This expression can be simplified using the correlation functions in GBysnd (21), giving

(Tap(K O TE(K' t+y)) =w25(k—k') f da[ Pac(Q)Poa(K— )+ Pag(Q)Po(K— @) IF (a,Y)F([k—dl,y). (36)

The first of the three terms in EQ35) does not contribute, since it is nonzero only for the constant offset modekwittl
=0. After substituting the explicit form for the projectors, Ef), settingk=k’ from the delta function, and simplifying the
contractions, we obtain

<Hij(k,t)Hﬁ(k',t+y)>=W25(k—k’)J daF(a,y)F(k—al.y)(1+¥*)(1+B?), (37

where we have defined the auxiliary quantiti)eslz-a andB=R~k/—\q.
Substituting this simple form for the unequal time source correlation inta E).gives

. (87G)%rw? ) N
(hij(k, 7)) (K", 7)) = Tﬁ(k—k’)f dg(1+y9)(1+p )JOdycos{ky)F(q,y)F(|k—QI.y)- (38

Now F(k,0)=P(k) so we make the further assumption that the light crossing time for a given scdle Thus regardless of

F can be separated as the particular time dependence Bf we approximate
F(k,y)=P(k)D(yk?3); (39
that is, we have assumed a universal form for the time decay fo dycogky)F(q,y)F(lk—al.y)

for all k values, with the time argument &fscaling with the

circulation time on the length scalen2k, and D is some T

monotonically decreasing function of its argument. This is =f0dycos{ky)P(q)P(|k—q|)

likely a reasonable assumption for fully developed turbu-

lence. On the other hand, we are only concerned with the 2

time dependence to the extent that it is integrated against the = EP(Q)P(“(_QD- (40
oscillatory function cod(t) in Eq. (38). SinceF or D is ev-

erywhere positive, the integral itself is oscillatory. If our

crude turbulent model were exact, the induced power specFhis approximation replaces the time-dependent fundion
trum of gravitational waves would exhibit oscillations. But by the constanD(0). Actually D will decrease with time.
this is an artifact of the assumption that the turbulence beginghis will increasethe mean value of the integral unless the
and ends at precisely defined times. For the present task characteristic time scale for the decreaseDofs less than
estimating characteristic amplitudes for a realistic turbulencé ™!, which we have argued will never be obtained, so the
source, we instead approximate the time integral by its rootapproximation in Eq(40) is actually a conservative one.
mean-square value. The ckg(term will always oscillate on Substituting this result into E438) and replacingy? and

a time scale shorter than the characteristic timeDfoyk>?), 32 by their average values of 1/2 over the integral gives the
as seen from a simple comparison of the circulation time tsimple approximate form
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S(k—k") acteristic gravitational wave amplitude(f) per unit loga-

9\/5(8WG)27w2 the numerical prefactor is about 0.007. We define the char-
3 rithmic frequency interva(following Maggiore[24]) via

<h|](k77)hﬁ(k’17)>:

« [ dap@p(k—a). (@

o

1(=df ,
thyenhyxny=; | FHEn. e

We now have an expression which can be evaluated for the

particular turbulent power spectrum to give the final expres- . .
sion for the power in gravitational radiation in terms of the Note that Eq/(46) is smaller than the corresponding expres-

turbul ters. sior_1 in_[24] by_ a fac_tor of 4 since the tensor metric_: pertur-
urbuience parameters bation in[24] is defined assg;;=h;; whereas ours i$g;;
=2h;; [see comments after E§25)] Comparing with Eq.

D. The power spectrum (45) gives
For a power law power spectrum, the remaining integral
IQAEkﬂ (41) is elementary. Using the general forfi(k) hc(f)=0.1$s_7’4W71’2f§1’2f’“’4 (47)
f dqP(q)P(lk—g|) L?irr:irr(]a;t;iglc;es betweely andfp, with the frequency at the
=2wA2Jdeq q“+2fl dy(k®+qg°—2kqy)™ 2.
ks -1 fo= 363" (48)
k2”+3n k2Dn+3 knkg+3
=47A? + - :
(n+3)(2n+3) 2n+3 n+3 E. Relic gravitational radiation
(42 The above expressions apply to the waves generated at

o the time of the phase transition. We then stretch the waves
For the specific case of Kolmogoroff turbulence, the powenyit the expansion of the Universe: the frequency and am-
law is n=—11/3; then the last term in E¢42) is dominant. plitude are both inversely proportional to the scale factor.
Keeping only this term and inserting EQLO) for the power  The |atter follows from the fact that the total energy density

spectrum gives in gravitational radiation scales like™* with the expansion,
(hi (k, 7)h% (K’ 7)) and the energy density is proportional <tbh>. For turbu-
WA AT lence generated at a time when the temperature of the Uni-
216m7'\2G2 B verse wasT, , the ratio of the scale factor then to the scale
=z w?e K20 ?P5(k—k'). (43 factor now is
. iy a, 100\*3/100 Ge
To make contact with measurable quantities, we evaluate —=8.0x10" 16( —) (—V) (49
the real-space correlation function o * T
(hij(x, ) hij(x,7)) whereg, is the number of relativistic degrees of freedom at
V2 the temperaturd, . The Hubble parameter at this time is
:—(277)4 dk dk’e'® =9 X(hy; (k, 7)h* (k' 7))
, 8wG 87°g, T2
2 H* = 3 Prad— 90’]’]2 (50)
27\2m _ k
- \/2_ G2k 2 °dk K143 (44) PI

ks

_ _ _ _ with mp, the Planck mass. This gives the relation
Now we need to convert this expression to one involving the
gravitational wave frequendy The frequency is determined f T 16
by the scale of time variation corresponding to the spatial F=1.65x10"° Hz(—*) <—*\) (g_*) (51)
Fourier modek, the circulation timer, given in Eq.(12). H, /1100 GeV 100
Writing f=r[l and changing variables in thle integral
gives wheref, is a radiation frequency at the cosmic temperature
T, andT is the corresponding frequency of the radiation
?’ZGzﬂNZf’lijdf (130 today. Scaling Eqs(47) and (48) by the expansion of the

5/2,_7/3 S ' ; T Py
3% fg Universe and substitutingv=4p,,f3 and e = kpyac/(WT)
(45) gives

2/3

<hij(X1T)hij(X1 7-)>2
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s\ 1/6

H*l

*

he(f)=5.6x 10"

(100 Ge\/) ( 100) 13
X -
T* g*

for the characteristic amplitude, which holds forfs, and

Kpad V3 7\ V3 L 2R
w Ho! Ho !

* *

(vaac) 23 Ls )13/6 maximum characteristic amplitude of gravitational radiation
1

Ho which is always much smaller than the maximum amplitude
* from the turbulence which generated them. The magnetic
”f)“"‘ field gravitational radiation peaks at a much higher fre-

7 ) (52)  quency, though, and can have a larger amplitude than the
S

turbulence-induced gravitational radiation at that frequency.
As in the previous section, quantities below are physical,
except for comoving quantities denoted with a tilde.

A. General magnetic field considerations

X

fs=1.1x107° Hz
Ty Y ve (53 First, we assume the turbulence-induced magnetic fields
100 GeV | 100 are generated almost instantaneously during the time of the
phase transition. To a good approximation, the turbulence-

Equations(52) and (53) are our fundamental results. Con- induced magnetic fields are generated within a tiny fraction

verting to the characteristic energy density in gravitationalyt the Hubble timeH~!. thus we can normalize the mag-
radiation via the relation .

netic field power spectrum at the time of the phase transition.
Hz Second, we assume the turbulence-induced magnetic fields
he(f)=1.3x 10" 18( T) VQew(f)h?, (54)  are saturated at an equipartition value up to a physical scale
f Ly at the time of the phase transition. We will leave the ratio
, , i between the magnetic field physical saturation scale to the
whereh is the curr~ent Hubble parameter in units of 100 km/sturbulence stirring scale, i.é.q/Ls, as a free parameter in
Mpc™* and Qgy(f) is the energy density in gravitational our final expressions. This will make the comparison with
waves per logarithmic frequency interval in units of the cur-the previous turbulence results easier. Generally, we expect

rent critical density, gives Lg/Ls to be on the order of 0.003: the turbulence circulation
) ERT time scales likeL?3 so (Lg/Lg)?® gives the ratio of
T2 —7[ KPvac T S e-foldings of the magnetic field on the scaleg and Lg.
Qen(f)h?=2.2x10 - S , agne
w H, H, Conservatively estimating that the turbulence lasts for a
~\ 72 single circulation time on the largest scale, a rangefiL 5

f

fs

between 0.003 and 0.0017 gives a range of magnetic field
amplification factors between 1%and 16° The exponential
amplification makes this estimate robust: making the seed
fields smaller by a factor of #®only reduced g by a mod-
est fraction. Third, we assume the turbulence-induced mag-
netic fields are just frozen into the plasma and retain the form
In addition to the turbulent motions, gravitational radia- of the spectrum until they are damped away by neutrino
tion also may be generated by magnetic fields arising from &iscosity. Damping of magneto-hydrodynami@MHD)
turbulent dynamo mechanism: generically, the turbulencénodes by neutrino viscosity is most efficient before and
will exponentially amplify any seed magnetic fields until the around nucleosynthesig ¢-0.1 MeV). At the time of neu-
field strength saturates at equipartition with the turbulent kitrino decoupling T~1 MeV), the neutrino physical mean
netic energy. The characteristi&folding time scale on a free path [, ge~10' cm) and the Hubble lengthH(, j..
given length scalé will be simply the circulation timer_ . ~5x10'° cm) are comparable, hence all the subhorizon
The mechanism of seed field generation is not clear, but seedagnetic perturbations generated during the electroweak
fields might naturally arise during a phase transition due tghase transition will be damped away by the time of nucleo-
bubble wall instabilities combined with surface charge densynthesiqsee, e.9.[18,26). We do not consider any kind of
sities on the bubble walls and magnetohydrodynamic ampliinverse-cascade mechanism that will transfer small-scale
fication [25]. Once a magnetic field is generated, the highmagnetic fields to larger scales. Invoking an inverse cascade
conductivity of the primordial plasma will keep the field fro- will spread the magnetic energy to scales larger thgand
zen in. reduce the overall gravity wave amplitude. This will also
It is reasonable to suspect that such a field may give @ush the gravitational radiation frequencies to smaller values
significant background of gravitational radiation: since thethan those obtained below.
magnetic field has a nonzero stress, it will provide a coherent A statistically homogeneous and isotropic stochastic mag-
source term in Eq(25). Such a magnetic field will act as a netic field has a two-point correlation function given by Eq.
gravitational radiation source from the time of the phase5) with a power spectrum we deno®g(k). We assume that
transition until the field is dampe@r until matter-radiation the turbulence-induced magnetic field exists on scales be-
equality, if the field lasts that longrather than just during tween the saturation scale; and the turbulence damping
the brief period of turbulence. The following calculation, scaleLp. The mean-square value of the magnetic field is
however, shows that induced magnetic fields produce gsee, e.g., Eq2.7) of Ref.[27]]

0, -1/3
X ( ﬁ)) (55)

IV. GRAVITATIONAL RADIATION FROM INDUCED
MAGNETIC FIELDS
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, V[ko ~ 87GII® (k)
B —;JKB dk KCPg(k). (56) hi(jB)(k,ﬂ)=~k—2"
We now normalizePg(k) using the fact that the turbulence- x Fo(X)Yo(X) = Yo(X")jo(X)
induced magnetic field energy density is half of the turbulent X f dx’ > , )
kinetic energy density X a“W(x’)
(61)
1, B?
SWUg=g—- (57)  whereW is the Wronskian of the homogeneous solutions

Using Egs.(8) and(56), btai _ d d . 1
sIng Gs{8) and (56), we obiain W(X) = jo(X) g ¥o(X) Yo X0 gyioX) = . (62

47T3W8 2/3k7 11/3

P(k)=47wP(K) = v

(58) Note that in the turbulence case, the time dependence of the

turbulent source is known only statistically. The magnetic
using Eq.(10). field, however, is @oherentsource, and it evolves by frozen
In Fourier space, the turbulence-induced magnetic stresdlux until being damped away by neutrino viscosity. There-
energy tensor is given by the convolution of the magnetidore in writing down the gravitional wave equation inhomo-
field [see Eq(2.9) of Ref.[27]]: geneous solution in Eq61), the explicit time dependence of
the magnetic source is known and we can immediately per-
form the time integral, unlike the turbulence case. Substitut-

Ti(jB)(k,t*)= — dq[Bi(q,t*)Bj(k—q,t*) ing Eq. (62) into Eq.(61), using the explicit expressions for
(2m)3 4w the zero-order spherical Bessel functions, jgx) = sinx/x
1 andyy= —cosx/x, and the approximation for the scale factor
—55ijB|(q,t*)B|(k—qyt*)}’ (59 in_the radiation-dominated epoe@t{ ) =H 7y Q 4 We ob-
tain
where the explicit, dependence is to remind ourselves of 7GITE(K)
the assumption that the turbulence-induced magnetic fields hi(jB)(E,,,): _ 4 ékomym), m=<mp, (63
are generated almost instantaneously during the time of the anéﬂrad

phase transition. In addition, we have neglected the induced
electric field due to the fact that the early Universe is highlywhere 73 corresponds to the conformal time at which the
conductive. The source for gravitational radiation is given bymagnetic perturbation comoving wave numieis damped
the transverse-traceless projection of this stress tensor, Egyay by neutrino viscosity. Here we have abbreviated
(24).

In the absence of any inverse-cascade mechanism, mag- , sir[T<( — ]
netic fields are just frozen into the plasma and evolve by  £% 5 | 7)=¢ky, ky)= dﬂ'#-
simply redshifting with the Universe’s expansion until they 74 '
are damped away by neutrino viscosity. Therefore, magnetic (64)
fields act on a longer time scale than the turbulent fluid ve-
locities. To facilitate the computation, we introduce a comov-It is simple to see that is an oscillating function with a
ing quantitnyjB)(E) corresponding tcHi(jB)(k,t*) via monotonically decreasing amplitud(::‘ of oscillation; the am-

plitude decays more slowly than the * dependence of free

gravitational waves, since the wave is continually sourced by
the magnetic field.

As in the turbulence case, we are interested in the average

wherek is the comoving wave vector corresponding to thepower spectrum of the waves, so we consider the quantity
physical wave vectok at the time of the phase transition.

P ®=1®k,t,)a?, (60

2

B)(T B)x T/
B. Gravitational radiation power spectrum <hi(j )(kvﬂ)hi(j )*(k , 7)) = /M)

] o ) T("’7HSQrad
During the radiation-dominated epodcix » and the ho- _ _

mogeneous solutions to E(R5) are the zero-order spherical (P RIP* (k"). (65

Bessel functions, i.ejo(k7) andy(kz). Defining x=k7

andx, =k7, , wherey, is the conformal time correspond- From Ed.(60), we have

ing to the turbulent source generating the magnetic field, the _ 5

usual Green function technique yields the following inhomo-  (IT{P (K TI{* (k")) =al(TTP (k,t, )T (k' t,)).

geneous solution for the radiation-dominated epoch: (66)
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Asin Eq. (2.20 of Eef- [27], the two-point correlation func-  —k")/a? . As in the previous section, we evaluate the real-
tion (TT{P (k,t, ) IT{S)* (k’,t,.)) at the time of the phase tran- space correlation function to make contact with measurable
sition can be written as quantities:
(B) (B)* (|7 ~ ~
(I (kL) T (K ) (hPx, mhP (X, 7))
_ Mim(K) 2 , V2o _
=T|H( )(k,t*)| 5(k—k ), (67) — (277)6f dkdk’e'(k 7k).x<hi(jB)(k,n)hi(jB)*(k/'ﬂ»

where the tensor structuret;j, is [Eq. (2.21) of Ref.[27]] 5422 AT 2325
~ ~ ~ ~ ~ ~ ~ ~ m € B % kad"k"Ii*llBgZ('E )
Mijim (K)=Pj; (K) Pjm(K) 4 Pim (k) Pji (K) = Py (K) Py (K) a?H2Q, T T2 1)
(73)

= 81 Sjm+ Simji — 8ij Sim+ kikjk ke + 8 kikin
+ 8mk; RJ_ — 5iIRij_ 5ijiRI C. Relic gravitational radiation
As in Eq. (46), we define the characteristic gravitational
wave amplituden(®)(f) per unit logarithmic comoving fre-
and satisfiesM;j;; =4 and M, =M;;; =0. Then using guency interval via
Egs.(59), (24), and(6), a similar calculation as in the previ- -
ous sectiorn(see also the Appendix of RgR27]) gives <hi(jB)(’;(-n)hi(jB)(;(-77)>E%J’w£hf:‘3)2(fv77)1 (74)

o f
(TP E)TTP* (K 1))

- 5iijR|_ 5j|RiRm (68)

and the statistical average on the left side implies that the
L _ time dependence on the right side is not the exact time de-
ok =k )J daPs(@)Ps(|k—dl) pendence of the gravitational wave but only the time depen-
5 5 dence of its amplitud€di.e., the oscillations are averaged
X(1+y9)(1+B9), (69  oven. Since Eq(63) gives the exact time dependence of the
. . . gravitational radiation(as opposed to the turbulence case,
where as in Eq.(37) we have definedy=k-q and 8 when we only know the statistically averaged time depen-
=k-k—q. In deriving Eq.(69), we have assumed the dence, the standard wave dispersion relation holds:
turbulence-induced magnetic field to be Gaussian, as in the , 7 (In contrast, for the turbulence source, we only know
case of the turbulent fluid velocities, and hence we can app%e statistically averaged time dependence, so we use only

Wick's theorem. Comparing with E467), replacingy? and : : : . 1 )
B? by their average values over the integral of 1/2, and usinézg \iﬁﬂrgﬁr??;? g;ifg:rsmn relatiér- 7, ".) Then compar

Eq. (58) gives

 (4m)?

9V 33/2 G WS_ZI?’?‘; l/3al4/3
(®) 2 7V 2 _ h®(F, o) = =
MOkt 2= Tew qu P(q)P(lk—a)). (70 e () =| o 2m) o
This integral has already been done in E4R), except that XTBe(Fn, T end (75
now the lower limit for the physical wave number kg o
instead ofkg; hence which depends on the functioé which we define as the
275 amplitude of the oscillations ig(7), times the numerical
|H(B)(k’t )|2= om wz?’3k‘11’3k5_2’3. (72) factor \2/2 to convert to a root-mean-square value, in accor-
* 8V dance with the definition of the characteristic amplitude Eq.

(74). In deriving Eq.(75), we have used the fact that after the

conformal time 7., When the magnetic fields are damped

away via viscosity and cease to be an efficient source of

gravitational radiation, the characteristic amplitude
86477 G2 W2?’3R’17’3Rg2’3ai8’3 hEB)(7,n) will simply scale inversely witha. Note that

= h®)(f, 7o) is only weakly dependent one,q, Which occurs

through the upper limit of the integral i&(f, 7, , 7end . The
X &K, 7, 1) o(k—K"), (720 time 7e,q technically depends on the scale considered, but
for simplicity we simply use the saturation scalg at which
where we have approximated=H7y(,,q While the Uni-  the gravitational radiation peaks.
verse is radiation dominated, and we have converted to the The functioné(k, ,k%) cannot be expressed in terms of

comoving quantitiesV=V/a3, k=ka,, s(k—k’)=8(k  elementary functions, but it is simple to obtain an upper

Equations(65), (66), (67), and(71) together then give

V2 a?H3Q o
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bound. Since the amplitude of the oscillationséits mono-  ergy difference balances the inward hydrodynamic force
tonically decreasing, the amplitude at the initial time gives from pushing plasma outwards, the bubble reaches an equi-

librium and expands at a constant velocity. We will consider

T o)< 76 only the case of quantum tunnelling, applicable to a strong

El 721 7) 4ty ' (76) first-order phase transition with a high barrier between the
* two phases. In this case the nucleated bubbles are spherical

which is useful for constraining the gravitational wave am-and negligibly small compared to the horizon sd&8|. The
plitude. more complex case of thermally activated bubbles has been
In an analogous calculation to the previous section, writconsidered irf29].

ing fg=fga, and fB=L,;1 and approximating H,

=HoVQ,,a, %, we obtain A. Turbulence
23 . s In general, the rate for nucleating a bubble will be the
h®(F, ) =9.7x 101 pVﬁC) <_1 (_Bl exponential of some tunnelling actiofi<exp(S(t)). As a
w H, H, simple model of a phase transition, we expand the acion
sl ¥ | 43 into a power series in time and keep only the constant and
y 100 GeV (1005 f & ) linear terms. This gives a characteristic bubble nucleation
T, Ox Ta 17 7lend: rate per unit volumé30]
(77 =T et (80
;Lh'SECh?éiﬁtensuc amplitude is valid féc-fg, wherefus- so the quantity3 ! sets the characteristic time scale for the
g Eq. phase transition. Numerical calculations show that the largest
Lo\t T g, |\ bubbles reach a size of ordgr v, by the end of the phase
fg=1.65x107° Hz _Bl) ( * \)(—*> transition[31], wherev,, is the bubble expansion velocity,
H 100 GeV 1100 assuming the bubbles remain spherical as they expand. In

(78 general, B is expected to be of the order 4in{/T)H
=100H for a Hubble rateH [30].
A first-order phase transition is generically described by
several parameterst) a= pyac/ pPinerma= 4Pvad3W, the ratio
of the vacuum energy associated with the phase transition to
~ Kpuad 3 7 ECIREE the thermal density of the Universe at the tifmeéhich char-
08 (F)h?=6.0x 106< Vac) ( —1) ( _Bl acterizes the strength of the phase transjtigin) «, an effi-
w H, H, ciency factor which gives the fraction of the available
g, |18 _o3 vacuum energy which goes into the kinetic energymof the
% (1_80) 2.1, ned. (79 expanding bubble walls, as opposed to thermal endiiy;
V. FIRST-ORDER COSMOLOGICAL PHASE
TRANSITIONS

The corresponding energy density in gravitational waves per
logarithmic frequency interval in units of current critical
density is

B, which sets the characteristic time scale for the phase tran-
sition; (iv) vy, the velocity of the expanding bubble walls,
which set the characteristic length scale of the phase transi-
tion; (v) T, , the temperature at which the phase transition
occurs.

The most likely mechanism for creating turbulence witha  Once the bubbles expand and percolate, much of their
large energy density is a first-order phase transition. Such kinetic energy will be converted to turbulent bulk motions of
transition is controlled by an effective potential for somethe primordial plasmafor an illustration, see the numerical
quantity which functions as the order parameter of the phasgvolution of two scalar field bubbles in R¢6€]). The energy
transition. Initially, the Universe sits in a minimum of the density contained in a bubble wall of radiuscales wittr?,
effective potential. As the Universe expands and cools, théhe bubble volume. As the phase transition ends, far more
effective potential develops a local minimum at a differentsmall bubbles have been nucleated than large ones, but the
value of the order parameter; this new local minimum even€nergy density in the large ones dominates the total energy
tually evolves to be the true minimum energy state. Then th&lensity[30]. We therefore make the apprOXImatlon that tur-
order parameter wants to evolve to the new minimum. If abulent energy is injected on a stirring scalg=v,5~* cor-
potential energy barrier exists between the old local minifesponding to the size Of the largest bubbles. The stirring will
mum and the new true minimum, the phase transition muslast for roughlyrg;;= 81, the duration of the phase transi-
occur via quantum tunnelling through the barrier or thermaltion. The durationr of the turbulence then follows from Egs.
fluctuations over the barrier. As a result, bubbles of the low<{20) and(18) as
temperature phase are nucleated at random places in the
high-temperature phase. The energy difference between the ){ 3\/5 o 1

7= "may 1

Ts

two phases creates an effective outward force on the bubble,

(81)
causing it to expand. Once this outward force from the en-

12 (Ka)1/2 ’
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The fundamental symmetry breaking mechanism which _ - H, \?/100 Ge
drives the phase transition determines some effective poten- he(f)=3.8x10 18&9/8<?) (T—\/)
tial for bubble nucleation. The difference in energy density *
between the two phases and the bubble nucleation rate are 100\ V3 F\ 14
both determined by this mechanism. Thus the parameters x(—) (:) , (85
T, , B, anda are all determined directly by the underlying 9« fs
physics, and are precisely calculable to some given order in . .
the various particle interaction strengths. On the other hancY}’ ith the characteristic frequency
the bubble velocity, and the fraction of kinetic energy into _ B T, g, \ Yo
the bubblesc depend on the detailed microphysics involved ~ fs=5.7X107° Hz a3’4< H_) (M) (ﬁ)) .
in the bubble propagation through the relativistic plasma and * (86)

are not determined from general properties of the effective
potential. Generally, the larger the vacuum energy densitfrhe corresponding energy density per logarithmic frequency
driving phase transition, the higher bubble wall velocitigs interval is
will be obtained. ) Lal v\ —712
The hydrodynamic boundary between a lower-ener H - f
yerocy y 9y Qeywh?=2.7x 10—1°a15“<—*) ( O ) (7:,—) .
s

phase and a higher-energy one can propagate via two modes, B
detonation and deflagration. Details of these modes in the 87)
case of spherical geometry are knof@2]. For a detonation

front, the velocity of the phase boundary exceeds the sound In a first-order phase transition, the expanding, colliding
speed in the fluid, so that a shock forms at the burning frontbubbles are themselves a potent source of gravitational ra-
In the opposite case, a deflagration propagates slower thatiation [9]. For our idealized model phase transition with
the sound speed and piles up an overdensity of fluid in fronspherical expanding bubbles, the ratio of the maximum am-
of it, like a snowplow. The boundary conditions for a deto- plitude of gravitational radiation due to turbulence to the
nation are more restrictive, so that once the energy densitigaaximum amplitude due to bubble collisions is approxi-
and pressures are specified in each phase, the complete sofnately

tion for the propagating detonation is determined. In this

case, we havgs2] hun(Ts) 018438 9
houd Fnad ’
1B+ (a?+ 2al3)12 e _
vp(a)= 1t a (82 so only forae<<0.01 will the amplitude of the turbulent signal

be largenalthough in this case, turbulent damping due to the
. expansion of the Universe is significant and our estimate for
and the approximate fori®] the turbulence gravitational wave amplitude may be signifi-
cantly too large For realistic models with interesting gravi-
tational wave production, the turbulence amplitude will be
(83) subdominant to the bubble amplitude, but non-negligible.
This is in contrast to the naive dimensional estimate of the
with A=0.72. If the bubbles propagate as a deflagratior;[urbUIence gravitational radiation in Rdg] Whi.Ch gavea
omewhat larger value. The frequencies at which these maxi-

front, no such general relations apply. However, it has beemum amplitudes occur scale differently with the parameters:
argued that for relativistic plasmas, instabilities in the bubble P y P '

shape will accelerate the bubble walls and the hydrodynamic
expansion mode is unstable to becoming a detonation. For =
this reason, in the following analysis, we will assume Egs. f max
(82) and (83) hold. We also assume that<1 to simplify
further Eqgs.(82) and (83), which will generally hold for

3&) 1/2

ki
—° —1.12%4 (89)

The different scaling arises because the duration of the phase

realistic phase transition models; for unusual cases with Ver?ansitionr str Sets the characteristic frequency for the radia-
ion from expanding bubbles, while the circulation time on

strong detonations ang= 1, the following formulas must be he stirri | he ch istic f for th
corrected. The duration of the turbulence is then given by thé'€ StiTing scalers sets the characteristic frequency for the

second term in Eq(81), becomin radiation from turbulgnc_e. o
a8 g Note that the gravitational radiation in the bubble case has

3,94 a long tail in the amplitudeh,(f)ef Y3 while turbulence
) B ta3 (84) driven at a single scale drops off very quickly likg(f)

«f~14 The tail for bubble collisions arises in the case of
bubble collisions because at any given moment, the charac-
teristic frequency of radiation from the collision of two
bubbles isv,/d, whered is the size of the colliding region.

The characteristic gravitational wave amplitude from tur-Sinced ranges from zero to the maximum size of the smaller
bulence becomes bubble as the bubbles expand, the gravitational radiation is

2

T=

B. Relic radiation from the phase transition
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produced over a wide range of frequencies. This tail of the _ H,\[Lg 53/100 Ge
frequency spectrum is somewhat model-dependent, and will h{ (T, 70)=1.0x 10—17&3/2( 7) (L_) (T—\/)
be modified if the bubbles are not spherical. Departures from s *
sphericity could arise from thermal activation over the po- 100013/ F\ Y
tential barrier, resulting in non-spherical nucleation, or from X(—) ( ) Efn, T Mend, (90
shape instabilities as the bubble expands. The results for ex- 9«
panding bubbles also depend on the thin-wall approximation, . -
namely that the width of the bubble wall is small comparedWIth the characteristic frequency
to the radius of the bubble. While this approximation will be L B T g, |1
very good for relativistic detonations, it will not be as good ?Bzz_gx 105 Hz( —S> (—) <—*\) (—*) .
for deflagrations. Le/1H, /1100 GeV1100
The gravitational wave signal from turbulence from a (
single stirring scald g is somewhat more generic, although
if the phase transition does not proceed via detonation th
specific expressions fot anduvy, in Egs.(83) and (82) will
not hold. However, the single-scale assumption obviously 5 Lg| %3 g, |~ 13
will never be exactly correct; any realistic source like a phase QB (f)h?=4.8x 10‘8a3<L—) ( 150)
transition will deposit bulk kinetic energy over a range of s

B

The corresponding energy density per logarithmic frequency
fhterval is

scales. The energy density in bubble walls of a given size T\
will generically peak at a scale comparablestg8~* that we X ~—> T, T nend- (92
have taken fot g, because the kinetic energy in the wall of fg

a bubble of radius scales liker® so the energy distribution ) . . o
is heavily weighted towards the largest bubbles. Analytic ex- 1he ratio of the maximum amplitude of gravitational ra-

pressions for the size distribution of bubbles, the fraction ofdiation due to turbulence-induced magnetic fields to the
space taken up by bubbles, and related quantities are given fRa&ximum amplitude due to the turbulent fluid today is ap-
Ref.[30]. On the other hand, the stirring scale appropriate td°roximately

the collision of two bubbles of unequal radius is not entirely B)% o3

clear: some turbulence will clearly be created on the scale of hc(fg) 5 a3’8( B )(LB> —%

H,

= | &fen Tenend. (99
S

the smaller bubble, but since the larger bubble has greater h<turb)(“f‘s) o
energy density in the wall, a significant part of the energy ¢

will remain in coherent motion determined by the largerthe ratio of the frequencies at which these maximum ampli-

bubble. o _ tudes occur is
In realistic cases, the gravitational wave amplitude spec-

trum in Eq.(85) must be convolved over a range of stirring Ts Ls
scales. A specific model of the distribution of stirring scales ~—25.1a_3/4( L—) (99
in a first-order phase transition is beyond the scope of this fs B

paper. However, we can make a rough estimate of its effect. . . . ) . .
Assume that the actual turbulence source stirs the plasmi€ Scaling witha arises because the circulation time on the

over a range of frequenciesfs. The actual bubble size stirring scalerg sets the characteristic frequency for the ra-
distribution has a significant tail towards larger bubi2@). dlatl_oln from turbulence, whereas for magnetic fields,

If the same total energy goes into gravitational radiation as i~ L& " - )

the single stirring scale case, then the characteristic ampli- The value of7.nq corresponding to the scale; can be
tudeh,(fs) will be reduced by a factor of ordef§/Afg)¥2 ~ determined via consideration of the neutrino viscosége
This very crude estimate neglects the strong dependence [33]) but §(~k77* ,T(nencp is only weakly dependent ong,qSO
the amplitude on the stirring scale and employs only a boxwe do not compute it here. Instead, we derive an upper
shaped energy density spectrum, but the general scaling ound on the amplitude. The approximate relateyH,
correct. Generically,_ the djstribution of bubble sizes in a~ 1/7m, , valid during radiation domination, give$gz,
model phase transition points thfs/fs on the order of a =H_ !/Lg. Then Eq.(76) combined with the frequency de-
few (see[30]), but a more precise estimate requires a dependence in Eq(85) gives

tailed model of stirring in a phase transition. As a rule of

thumb, when estimating the gravitational radiation back- h®(Fy) L) 212
ground from turbulence arising from a phase transition with tcb—f< 27a 21, b(—s) : (95
a single stirring-scale model of the turbulence, the resulting h{v™ () Le

amplitude may be overestimated by a modest factor. _ .
As discussed abovd,s/Lg=300 generically, so the peak

C. Relic radiation from the induced magnetic fields characteristic amplitude from the magnetic field at frequency

For the magnetic fields from the turbulent dynamo mechals Will always be negligible compared to the peak character-
nism, the characteristic gravitational wave amplitude beistic amplitude from the turbulence at frequenty. The
comes turbulence gravitational waves drop so quickly with fre-
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quency, however, that the magnetic field gravitational waves,.tor of {t)Y4 for observation over a time, or h.(f)
! c

will give a larger characteristic amplitude & . ~4x10 % at 0.01 Hz over one year of observing. Such a
sensitivity level depends on a precise understanding of the
system noise properties and elimination of other correlated
noise sources between the various arms of the detector,
The detectability of a given stochastic background dewhich is only partially practicable. Flying and cross-
pends on both its characteristic frequency and its amplitudecorrelating two independent LISA-like detectd42,43 is
The Laser Interferometer Gravitational-Wave Observatorystill clearly preferable for detecting stochastic backgrounds.
(LIGO) [34] is nearing the commencement of scientific ob-  For stochastic background detection at LISA frequencies,
servations; it is comprised of two facilities in the United raw sensitivity is not the only issue. White dwarf binaries in
StateS, eaCh essentia”y a MiChe|SOI’1 interferometer W|th aBur ga|axy will produce an approximate'y Stochastic gravita_
arm Iengt_h c_)f 4.kilometers. LIGO has sensitivity to gravita- tjonal wave background which probably becomes compa-
tional radiation in the frequency range from 10 to 1000 Hz.rapje 1o the LISA sensitivity limits for frequencies below
Seismic noise prevents useful gravitational wave detectlo%bout 10°® Hz [44]. Detection of such a signal will be inter-
from the surface of the Earth at frequencies lower than abo"gsting in its own right, but will effectively provide a lower

10 Hz. Cross-correlation .Of the two LIGO detectors, alongIi{nit of around 10 * Hz to the stochastic background signals
with several smaller laser interferometers and bar detectors at, .

other sites around the world, allow a clean detection of stoyvhICh are dete_ctable, ur_1t|l grawtatlon_al wave detec_tpr_s im-
rove to the point of having enough directional sensitivity to

chastic signals, since widely separated detectors have no cot:~ .~ ™. . . o
related sources of noise. Detailed estimates show that in th |st|ngmsh sources in the galactic plane from sources distrib-
uted isotropically.

frequency range, LIGO will be able to detect stochastic The characteristic aravitational wave fr nev for turb
gravitational wave backgrounds with a characteristic ampli- € characteristic gravitational wave frequency for turbu-

~ Cop ; lence from known phase transitions is not promising for de-
tude of aroundh,(f)=3x10 ** at f=100 Hz after inte-  tociion in the near future. For the electroweak phase transi-
grating for four month$35—-38. These levels will hopefully tion atT, =100 GeV, Eq(86) shows that, the ratio of the

be obtained within three years. Planned technical improvey, ., ym energy density to the thermal density at the time of
ments are projected to reduce this threshold amplitude bﬁwe phase transition, must be of order 0.1 for the frequency

another factor of 10 on the time scale of a decade. . S 4 . ;
The oth ; itational ; maximum to be as high als= 10 Hz, if ,B{H* takes its
e other major gravitational wave observation program’charactenstlc value of 100. This frequency is the lower limit

the Laser Interferometer Space Anterthé8A) [8], is a cor- i ; )
nerstone mission of the European Space Agency in partneP-) what LISA might be able to detect. The amplitude at this

ship with NASA. Current design studies envision threefrequency fora=0.1 would beh(fs)=2.8x10 %% more
spacecraft arrayed in an equilateral triangle with an arnfhan two orders of magnitude smaller than a LISA Sagnac
length of around 5 10° kilometers with laser interferometry Cconfiguration could detect at this frequency. Any push to-
between each of the three pairs of arms; the spacecraft coM@rds higher frequencies via a shorter phase transition fur-
figuration will trail the Earth’s orbit by about 20°. LISA will ther reduces the characteristic amplitude, sintgf)
likely be sensitive to a frequency range from around 0.000%(H, /8)2. For an extreme case withv=1 and

Hz to 0.1 Hz. The detection of stochastic backgrounds with=100(H,, , the characteristic frequency is near LISA's maxi-
LISAis more complicated than with LIGO, because any pairmum sensitivity, fs=5.7x10"2 Hz, with a characteristic

of interferometers formed by LISA's arms share one arm N3 mplitudeh,(T<) =3.8x 10~ This amplitude is an order of

common, S itis not po§5|ble to cross-corrglate two 'ndep.e.nﬁwagnitude smaller than the LISA Sagnac sensitivity at this
dent interferometers with uncorrelated noise. It was origi

llv believed that this limited d ) ¢ hastic b k'frequency. An analysis of the electroweak effective potential
nally believed that this limited detection of a stochastic backy, 5 |5rge class of supersymmetric models, 46 shows that
ground to the level of the instrument noise power becaus

R . r models with large values af, generally3<10(H, , and
there would be no way to distinguish between instrumental 9 9 vA *

. . ) ) is never as large as unify#7]. Other well-motivated ex-
noise and a background signal. This noise level correspontfénsions of the standard model may result in a very strong

to a stochastic background amplitude of arouhg(~f) electroweak phase transitida.g.,[48]).

=10 * at 0.01 Hz. It has now been realized that if the  Satellite missions to probe stochastic backgrounds to
complete time series data for positions of 6 independent teggwer frequencies have been discus$d€l], which would
masses are recorded, so-called Sagnac observables caniRgolve multiple spacecraft arrayed at separations on the or-
synthesized which are highly insensitive to various kinds ofder of 1 a.u. Such configurations would be a more natural
noise in the systerf39)], including one which is largely in-  match for the frequency scale of electroweak turbulence, al-
dependent of low-frequency stochastic gravitational wavehough dealing with the binary foreground signal would still
backgrounds, allowing a direct measurement of the systerfe a major hurdle.

noise[40]. This results in a significant improvement in the  phase transitions at lower temperatures, like the QCD
ability of the system to measure stochastic backgroltls  phase transitions, have larger characteristic length scales and
For one year of observation, this kind of analysis could inthus even lower frequencies for gravitational radiation.
principle give sensitivities comparable to two independentspeculative phase transitions could occur at energy scales
Michelson interferometers, reducing the thresholtf) by a  higher than the electroweak scale, resulting in higher charac-

VI. POTENTIAL DETECTABILITY
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teristic frequencies. However, a higher energy scale also Our results in this work supercede the dimensional esti-
translates into a smaller characteristic amplitude, and it is nanates in Ref[9], which predicted that the turbulence signal
possible to give a set of parameters witts1 for which  could be significantly larger than the bubble signal at similar
cosmological turbulence would be detectable in LIGO. LISAfrequencies. Resulting optimistic calculations of turbulent
could detect the turbulence from a range of imagined phasgignals from the electroweak phase transition, e.g. Ré&f,
transitions at energy scales above the weak scale, but ahfortunately do not hold up to more detailed analysis. We
present no compelling theoretical motivation for such phas@emphasize, however, that the results presented here apply in
transitions is at hand. a generic way to any turbulence in the early Universe, and
In contrast to turbulent sources, the expanding bubbles ithe search for stochastic gravitational radiation backgrounds
a first-order phase transition, which drive the turbulence, arén the frequency range from 16 Hz to 1000 Hz is in part a
themselves a strong source of gravitational radiat@jrand  search for unanticipated, dramatic physics at energies above
are a much more promising source of detectable signals frortne electroweak scale. Perhaps we will be lucky.
the electroweak phase transition. The difference between the
detectability of the two sources is essentially the factor of
«®*in Eq. (89), arising from the different time scales of the
sources. The characteristic frequency for the expanding We would like to thank A. Smilga for discussions about
bubbles is set by the phase transition time sglé because turbulence, V. Oudovenko and G. Chitov for help with nu-
the bubbles expand and percolate in this time. For turbumerical calculations supporting analytical estimates, Ruth
lence, the time scale is instead the circulation time on théurrer for discussions about magnetic fields, Sterl Phinney
stirring scale. The turbulent fluid velocities are significantly for guidance about LISA sensitivities, and Dario Grasso for
smaller than the bubble expansion velocities unless the tufinding an errant factor of 2. John Barrow kindly directed our
bulent flows are near the sound speed, giving lower chara@ttention to numerous historical papers about cosmological
teristic frequencies(Extremely strong turbulence with rela- turbulence. This work has been supported by the NASA As-
tivistic fluid velocities would likely produce gravitational trophysics Theory Program through grant NAG5-7015. T.K.
radiation in a more detectable range of frequencies and anitas been supported in part by a grant from the Collaboration
plitudes, but the amount of energy in turbulent motions isin Basic Science and Engineering Program of the National
limited by shock formation and heating, and turbulence isResearch Council. A.K. is a Cotrell Scholar of the Research
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