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We investigate Hilbert space in the Lorentz covariant approach to loop quantum gravity. We restrict our-
selves to the space where all area operators are simultaneously diagonalizable, assuming that it exists. In this
sector, quantum states are realized by a generalization of spin network states based on Lorentz Wilson lines
projected on irreducible representations of an3@ubgroup. The problem of infinite dimensionality of the
unitary Lorentz representations is absent due to this projection. Nevertheless, the projection preserves the
Lorentz covariance of the Wilson lines so that the symmetry is not broken. Under certain conditions, the states
can be thought of as functions on a homogeneous space. We define the inner product as an integral over this
space. With respect to this inner product, the spin networks form an orthonormal basis in the investigated
sector. We argue that it is the only relevant part of a larger state space arising in the approach. The problem of
the noncommutativity of the Lorentz connection is solved by restriction to the simple representations. The
resulting structure shows similarities with the spin foam approach.
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[. INTRODUCTION In particular, the area spectrum has been derj\&#] and
the result differs essentially from the one obtained in the
The loop approach to quantum gravity is a wide programapproach with the S(2) gauge groug9,10]. It does not
of quantization of general relativitgfor review, sed1]). In depend on the Immirzi parameter, strictly positive and Lor-
recent years, it has achieved a large amount of progress Entz invariant. Also, the path integral has been shown to be
different directions. However, all this time it was compli- independent of the Immirzi parametg¥]. Among other
cated by a number of problems which were little dark staingleasant features of this approach, we mention the polyno-
on the nice picture drawn by loop quantum gravity. Suchmiality of the Hamiltonian constraint.
problems as the appearance of a nonphysical parameter in However, a quantization of the new formulation on the
the spectra of geometrical operatofsnmirzi parameter |eve| of Hilbert space was still lacking. There are several
problem[2,3]), the coincidence of the black hole entropy reasons for that. The main reason is the noncompactness of
with the quasiclassical result only up to a numerical factorpe gauge group and all problems coming with it. To illus-
[4], and the absence of an explicit relation with the covariant, ;¢a them, it is enough to give one example: even Wilson

formalls_m were considered as temporary d'ﬁ'C_UIt'eS \_Nh'ChIoops of a Lorentz connection in a unitary representation are
cannot influence the structure of the theory and its basic COMot well defined since one has to trace over an infinite-

clusions. : : . s
But the situation turned out to be more complicated. It hasd:cr?r(]e nsLlonaI tspace. Ar:_o ther reason Is the noncqmrlnuta_twgtly
been shown that, actually, these problems are a manifestatiop ¢ -Orentz connection appearing as a canonical variable
of deep problems with the chosen formulation itself. That is/N the cpvanant approad]’?]:
it breaks the classical diffeomorphism invariance at the quan- In thls_paper, we are going to attack these problems alto-
tum level[5].! This happens due to a partial fixation of the 98ther. Since we do not know how the state space of general
gauge freedom reducing the gauge group from the Lorent€lativity is embedded into the space of Lorentz Wilson
one to SU2). As is well known, it is not allowed before loops, our strategy will be, in a sense, the opposite. At first,
quantization. Therefore, there arises a question about the coite assume that the Hilbert space can be constructed from the
rectness of the whole program of loop gravity. However, thestates which are eigenstates of all area operators in direct
formulation used so far to carry out the quantization is onlyanalogy with the S(2) case. We derive the structure of such
a particular realization of the ideas upon which the loop apstates from the known result for the area spectrum. This is
proach relies. Thus there may be a better formulation whictdone in Secs. Il and 1ll, where we end up with well-defined
is free of the problems of the standard one. Lorentz spin network states. Then in Sec. IV we show that it
Recently, such a formulation, the so-called covariant loofs possible to introduce the Hilbert space structure on the
gravity, was proposel]. Its main feature is that it possesses resulting space. We argue that it is sufficient to describe all
an explicit Lorentz invariance and avoids any gauge fixinggravitational degrees of freedom. However, we are not able
In its framework, the first results have already been obtainedo give strict proof of this assumption. Also, we obtain some
restrictions on the representations to be used and, surpris-
ingly, they give a solution of the noncommutativity problem.
*Also at V.A. Fock Department of Theoretical Physics, St. Petersin addition, we find much correspondence with spin foam
burg University, Russia. Email address: alexand@spht.saclay.ceaiinodels[11], which indicates that we are not far from con-
The first sign of this breaking has been given by Sanfi6ig! struction of a solid bridge between these two approaches to
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guantum gravity. This and other issues are discussed in Sesubgroup to which representation the Wilson line should be

V. In two Appendixes, one can find some basic results on theestricted is “rotated” along the line.

covariant canonical formulation and representations of the How can this be realized? First of all, to pick out a part of

Lorentz group. the Wilson line that is in a definite representation of the
It should be mentioned that the paper does not claim &Q(3) subgroup, one can act by the corresponding projector

high level of mathematical rigorousness. For example, we don this representation from both ends of the firnEhe pro-

not always indicate explicitly in what mathematical sensejector is given by the so-callggrojective operatof12],

some equations should be understood, or to what spaces

some quantities belong. Rather, our aim is to present the

main ideas regarding the appearance of the Hilbert space.

Nevertheless, we try to show that the emerging picture is _ _

self-consistent and very interesting in many respects. where x!(h)=2,D},(h) is the character of the representa-
We use the following notation for indices. The indicestion j, dj=2j+1 is its dimensionR(h) is a unitary repre-

i,j,... from the middle of the alphabet label the space co-sentation of the elemeiit and the integral is over the $8)

ordinates. The latin indicea,b, ... from the beginning of ~subgroup defined by with the Haar measure. It is easy to

the alphabet are theo(3) indices, whereas the capital letters obtain the following properties of this projector:

X,Y, ... from the end of the alphabet are the(3,1) indi-

t=d JSO(S)XdM(h)Xj(h)R(h), (5)

(DG s D
ces. Lo 100 = 9zt 0o ©)
Il. PROJECTED WILSON LINES R =1DR). (7)

In [8,5] it was found that to be an eigenstate of a quantunBesides, the crucial fact for our construction is that it trans-
area operator, the Wilson line forms in the covariant way under the Lorentz transforma-
tions. Indeed, we have

b
UQ[A]ZPex;{ dx‘AiXTX) (1) A |
: Ph=a | duti iRy

should be defined by the Lorentz connect'uétlﬁ( given by

Eqg. (A5). The corresponding area spectrum is given by ei- _ f T -1
genvalues of two Casimir operators, g so 3y«d’u(h)x (MR(ghg )

S=871G/C[s0(3)]— C,[s0(3,1)], ®) =R(9)IDRX(g). (®)
C4[s0(3,)]=g " Ty Ty, (3) To introduce the picture of the “rotated” subgroup, this
projector should be inserted in each point on the line. A
0[80(3)]=I(XJ)TXTY- (4) rigorous definition of such a Wilson line can be given by the

use of a partition of the line into small piecesy

In this section, we are going to give a more detailed con=Un-1a, . In this case, it is defined as a limit of infinitely
struction of the Wilson lines diagonalizing the area operatorsmany insertions of the projectg®). Let the Wilson line(1)
The problem is that the Wilson lin@) is an element of the be in an irreducible representatiar-(l,,1,) of the Lorentz
Lorentz group, whereas the spectry®) contains the Ca- group (see Appendix B Then we define the so-callguto-
simir operator of its SC8) subgroup. This means that to be jected Wilson line
an eigenstate of the area, the Wilson line must be in definite N
irreducible representations of both &) and S@3). We N . ; ;
should emphasize that we do not require it to be an element ug ")[A,x]=l\|llinx73 nl;ll IEQ)(a““)U“n[A]ng)(a”) :
of the SA3) subgroup. This requirement means only that the (9)
generators of this subgroup are in the given representation,
whereas the Wilson line itself is an operator acting in theThe projected Wilson lines are operators acting in finite-
space of this representation. Nevertheless, in the followinglimensional spaces of irreducible representations of the
we shall use the shortened terminology. SO(3) group, despite the fact that they are defined by the

The Lorentz group contains a lot of possible embeddings orentz connectiondX. (It is worth noting that this finite-
of SO(3). Which subgroup should be considered is definethess allows the Wilson loops to be well defined in the sense
by the value of the fieldy (see Appendix A This depen- that they produce finite numbers. Otherwise, we would have
dence comes from the projectbfy) entering the Casimir to trace an infinite-dimensional matrix and, at least in the
operatorC[so(3)]. Therefore, if we want the Wilson line to
give a definite area for any surface, we must require that,——
being cut at any point of the curve, it be in the same  2This approach has been suggested by Carlo Rovelli.
representation of the §8) subgroup defined by the value of  3Throughout this paper, superscripts suclyas h mean the cor-
x at this point. Thus, we arrive at the picture where therespondinglocal) group transformations.
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case of a vanishing connection, the answer would be defin fact, it is a consequence of the Wigner-Eckart theorem
nitely divergent. Nevertheless, they arise from Lorentz sinceF, can be considered as a vector operator for th€850
group elements and it is important that they transform in thegroup. By this theorem, its matrix element is a product of the
standard covariant way under the local Lorentz transformaso-called reduced matrix element and a Clebsch-Gordon co-
tions: efficient. In our case, the former coincides wjgh, and the
. . B latter can be rewritten as a matrix elementf, thus giving
UMDLA X = RLa(0) U LA XIR Tg(@)], (10 Eq, (11).

Of course, it is not exactly what we want. We are inter-
ested in the group elements which are given by the Wilson
lines rather than in generato.priori the projected boosts
do not form the SR) group or any other group. Besides,
there is a problem in that generally we should project to
'?epresentation spaces of different (SDsubgroups at differ-

line does not belong to el_ther £ or Sq?’_'l)' This fact ent ends of a line. Whether the resulting objects will form a
makes the construction quite complicated since, for examplegroup is questionable

the usual definition of the cylindrical functions and construc- Nevertheless, we can overcome these obstacles in the fol-

tion of the inner producfl13] generalized to the case of the lowing way. First of all, let us fix a gauge taking=0. This

Lorentz group would not work—the projected Wilson Ilnes' an always be done due to the transformation (&) at the

are not maps to any group. However, there IS a way to avol xpense of Lorentz group elements at the ends of the line:
at least some of these problems. Let us consider the Lorentz

generators in an irreducible representation, and then project (\.)) —RrIrq (N A 9y 0

them on the subspade;={&; m}y,— | of an irreducible rep- Ve AXI=R g (U TLA ,O]Rk[gx(a)],(lz)
resentation of the S@) subgroup which is chosen to be the

canonically embedded one. To make this projection, it iSNhereQX is the local Lorentz transformation sendiggo O.
enough to restrict ourselves to such matrix elements a$hen all projectors become constant along all Wilson lines
(&j ml Tx|&j m). From the explicit expression86) and(B7) and this is the canonically embedded (30on which the

whereR, (g) is a Lorentz group element in the representa-
tion \ carried by the line. That this is indeed true can be
easily seen from the propert$). This means that the Lor-
entz invariance is not broken by the projection.

As we pointed out, in a general case the projected Wilso

for the matrix elements, we find the following property: Lorentz Wilson lines are projected.
e 1) D 1) Let us proceed with the definitio(®). For a sufficiently
LoyFal ©= Bl oyHal (0) - (1) fine partition, we can write

U&”'“[A,x]=7>{1] 10 (@ns1)| 1+ f dx‘A?Tx)lgg’,(an)} (13)
=7>[H 1) (1) 1+L dxi|§ix>)(x)AiXTx|giX>)(x))|§JX>)(an)J (14)
i L ECCRORTERTTRES]S as
|
Due to the propertyll) in the time gauge, we obtain the Immirzi parameter is defined by the Lorentz andZ3U
_ . representations of the initial Wilson line
UQILA0]= 0, (U [AV]), (16)
np L .
where:, denotes the embedding of an operator in a repre- ﬁ(j)_j(j +1) (principal series (18)
sentation of S(P) into the representation of SO(3,1) and
AU is thesu(2) connection given by However, one should be careful using the representation
. (16). It gives the right value of the projected Wilson line
ADA=163, wP°— B 0 2+ O(Gy). (170  itself, but it cannot be used in calculations involving com-

mutators. For example, it contradicts the area spectrum with
As a result, the projected Wilson line turns out to be anwhich we started. Indeed, instead of
element of the S(2) group in the representation with the
spinj. It is given by the ordinary S(2) Wilson line with the S~tNj(j+1)—n’+p’+1, (19
connection coincidinglon the surface of the Gauss con-
strainy with the Ashtekar-Barbero connecti¢h4] in which  the Wilson line(16) gives
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#in|p| spaces. We emphasize that due to the transformation law
S~h|BpIVi(j+1)=—x=. (200  (10), the Lorentz invariance is not broken.
Vi(j+1) Let us apply the transformatiofl2) to the constructed

. ) i spin network states. The result can be written in the follow-
The reason for the discrepancy is that the projectors Ofhg way:

SQ(3) representations should be inserted only between op-
erators in different points, as the expressi{@ntells us. On

= “1rqy (M (NiJdr 49
the other hand, in the calculation of the area spectrum, a Vs(Ax) © R*i [9,(vi )]in [A%0]

guadratic expression in generators in the same point appears. e et

In the Wilson line(16), they are already S@) generators, XRA-[éx(vi(i))]' ® N,

whereas the correct way is to project only their quadratic ' nodesv el

combination. As a result, we have to conclude that the initial _ _—
representatioii9), but not the simplified onél6), should be = ® in(hi(“))- ® NsX @ (23
used in this case. links ¥ eT nodesv el

Actually, this means that the limit in Eq9) does not ‘
commute with the action of quantum operators due to theiwheré hi(]i):UJ’i[A(j)] eSU(2), g,(v)eSO3,1), and
distributional nature. This can be illustrated as follows. Atvi(i) v are the initial and final points of thigh link. In the

finite but sufficiently fine partition, the projected Wilson line second line, we used the propefts). We see that the effect
(9) can be repr%senbtled zShFhﬁ (SUVP]/'ISOH. Ilr;]e (36) plus of a nonvanishingy reduces to the Lorentz transformations
corrections of order N and higher, wherél is the degree of ¢ 6 connection and interwiners. In particular, for the gauge

the partition. Sincg A(x),P(y)]~&(x—y), all corrections invariant spin networks, the latter transformation is absent
of order less than the number of commutators involved coNgue to the Lorentz invariance Nv . In the next Section1 we
tribute to the result and cannot be neglected. will argue that these spin networks form a basis of the Hil-

Nevertheless, the important conclusion is that the Propert space of quantum gra\/ity in the |Oop approach_
jected Wilson lines in calculations without quantum commu-

tators, up to Lorentz transformations at the ends arising due
to a nonvanishing fielgy, can be considered as 8) group
elements in the representations on which the Wilson lines are As a foundation of the loop approach, we assume that the
projected. physical excitations of quantum space are concentrated on
one-dimensional structures, which are, in a general case,
I1. SPIN NETWORKS graphs. Then it is natural to suppose that the Hilbert space is
formed by spin-network-like states. A generalization of the
Let us neglect, for a moment, the noncommutativity of theusual spin networks was presented in the previous section.
connection used. Then one can construct natural spin neHowever, we should check whether they span the whole state
work states from the Wilson lines described in the previoussPace, find which representations should be taken into ac-
section. To this end, it is enough to associate them with th€0unt, and construct an inner product on the resulting space.
links of a graphl’ and contract with interwiners of the Lor- [N this section, we address these issues. The idea is to
entz group at the nodes, associate with each quantum state a funct|on_ on a homoge-
neous space. Then the whole state space is given by the
VT Ayx)= ©® g ,ii)[A,X]_ ® N,. (21 space of such functions subjegt to condjtions to be specified.
links 5 el nodesv el One can apply the harmonic analysis on homogeneous
spaces to find a basis in this space, and the inner product is
The subscripS denotes the collection of the graph, @)  given by the integral over the homogeneous space. Once the
and S@3) representations assigned to the links, and interinner product is defined on the space of functions and the
winers at the nodesS=(T',{\;},{j;},{N,}). The interwiners ~correspondence with quantum states is established, it induces
N, should be elements of the tensor product of representdhe Hilbert structure on the quantum state space. We empha-

IV. HILBERT SPACE STRUCTURE

tion spaces assigned to the links meeting at the node, size that the functional space plays an auxiliary role in this
construction, and there are certain restrictions on its identifi-
Hy=H\,®- - @H,,. (22 cation with the quantum state space.

The crucial point is the choice of homogeneous space. At
[To get a Lorentz invariant spin network, one should takefirst. we analyze the kinematical space of general relativity.
interwiners to be invariant tensors only, i.e., lying in the However, as we _W|II see, this analys!s is insufficient to find
trivial representations entering the decomposition of thehe right space since the representation of quantum states by
product of representatior{@2).] Due to the projectors at the functions on such space fails to be always correct. Neverthe-
ends of the Wilson lines, each index of the interwiners is
projected to the corresponding subspace of an irreducible
representation of S@). Thus, the problem of infinite dimen-  “We omitted the superscript, for A0). Actually, thesu(2) con-
sionality of the unitary representations of the Lorentz groupnection is given by Eq(17) with o transformed by the local
is avoided, since we trace, actually, over finite-dimensionalorentz transformatio@x.
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less, a little extension of the chosen homogeneous space @pace of the full spack?(). To use this requirement, one
lows us to make the emerging picture consistent with thenqiq decide how the elementstéfandX transform under
previous analysis of the quantum area operator, althougfhe action ofG. The transformations can be found from the
strict proof that it is sufficient is still lacking. representatiori23), which relates the elements 1 and ,
whose transformation laws under the local Lorentz grGup
A. The state space are known. In particular, we identify an element X of the

."_1 .

First of all, let us discuss the degrees of freedom whicHf'0mogeneous space with, = and choose it to be a pure
give rise to the state space of general relativity with theP00St. Sincey=0 is a stationary point under the actiontdf
SO(3,1) gauge group. Now we have an 18-component Lor-this identification IS an isomorphism.
entz connectiotd. So we can expect that the quantum states Let ge g, and g g, '=gh is the Cartan decomposition
can be represented as functions of this conneétiseing [12]. (heH andg is a pure boost.From the definition of
gssgciatﬁdl with a gra_lpr?, thehconn_ectlon SlhO.UICII gl(\j/e rlseht y» itfollows that the transformation ofe X is given by the

O(. ’ ). olonomies. Thus, the naive ana ysIs leads tot oost leading to¢® from the gaugey=0. Thus we have
realization of the state space by functions on tBe
=S50(3,1) group .manifold. - _ X:éfl_)énglza:gxﬁfl_ (24)

However, this is a very simplified picture. Let us look at X
thg constructed spin ne_tworkzl). The fi(st guestion vv_hich Using this result, we obtain
arises is why can we write a wave function as a functional of
both.the connection and the fiejg? It turns out thgt it is A% (A9)00=( A%, (25)
possible because they commute and the connecfidmas
just three independent components less than the canonicgf,orefore
oneA [8]. The missed components are encoded in the Gauss '

constraint and they are not taken to be “configuration vari- —UNDT 49 01— UMD (490N
ables.” Moreover, there are the second class constraints an() = U5 LA 0] = US L (AP RO]
which fix six components more of the connection. As a re- :R)\[h(b)]b)\(h)R;l[h(a)]. (26)

sult, we end up with two objectgl and y having nine and
three independent components, respectivelyis naturally . — =

associated with the links of graphs. However, taking into>1C€ Ry () ta () = ¢\ (hh) due to Eq.(7), the transforma-
account the number of independent components and regarH(-)n law i
ing Eq.(23), it gives rise more naturally to holonomies of a
three-dimensional groupl which is, of course, expected to

be SU2). What is the role ofy? From the explicit form of _
the diffeomorphism constrairjtl5], when the second class This is just to cancel the compensating rotatfofrom Eg.
constraints are solved, one can see that the figfdnsforms ~ (24).

as a scalar. Due to this, it is natural to associate it with space Given the transformation law@4) and(27), we can for-
points, i.e., with the nodes of graphs. This is exactly the sam&ulate our requirement. Lét-(h,x) be a square integrable
conclusion that can be found from the res@8). Besides, function associated with the graph wherehe[H]" andx
since y is related to boosts only, it can be considered as & [X]™. Then the following representation should exist:
coordinate on the homogeneous spceS0(3,1)/SO(3).
Thus, one can expect that the Hilbert space is realized by

h—h(b)hh~1(a). (27)

m

N1 MmNt Am
functions onH associated with the links an¥ associated fF(h’X):(rHl jdg()\,); )fpi---pmepi--pm(h’x)’
with the nodes. Therefore, given a graphwith n links and ' (29)
m nodes, we choose the corresponding homogeneous space
to be X=[H]"x[X]™. wheredg (\) is a measure on the set of irreducible represen-

However, we are not interested in all functions@nwe  tations ofG, p=(j,a) labels a basis in a given representa-
should introduce the information about the structure of thelion, and the vectors(h,x) are so that for ang e [G]™ we
underlying graph and the symmetry properties. To do thishave
we impose an important requirement, namely that the func- o .
tional space to be considered carries a unitary representation eglj.','p' ’““(h(f)hh(’i)1 ,gxh™1)
of the Lorentz group and the gauge invariant sector is given o
by the functions independent &f This restricts us to a sub-

=(rH1 b Dg;q;gr))e;;:::;;(h,x), (29

SActually, they cannot be functions of the connection because it is
noncommutative. However, we can choose a vacuum and act on it
by the operators constructed from these functions. In this sense, one
can establish a correspondence between the Hilbert space and theAs it is seen from the derivation, the 1a&7) is also valid for the
space of functions of the connection. nonprojected Wilson lined ,[.A%].
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where ng(gr) are matrix elements of, € G in the repre- the theorem given by the harmonic analysis on the homoge-
sentation\ and the Cartan decomposition definingwas  N€OUS spaced2];

used. Equation29) means thath ! arising at each node o
should be canceled by the corresponding transformations of floch ()
h’s associated with the adjacent links. Equatit@8) is Lo
merely the decomposition of a general representation in a

direct integral of irreducible representations. The functions =

of L2() satisfying the described symmetry requirement will

give a generalization of the usual cylindrical functions. SCflr i P "(Dyy . P (31)
Let us investigate the resulting space of all admissible Ay ran by bR T T

functions related to the given gragh. We decompose a

givenfr(h,x) in irreducible representations to find a basis inywhereg, is a representative ofin G andeq(}}) is a station-

this space. In the first step, by the Peter-Weyl theorem, it cagry vector ofH: D(O"z)(h)eq(f))zep(Z). Notice that only the
be represented as a sum over all unitary irreducible represen- ledsimpl Pa : h incipal seri
tations ofH: so-calledsimplerepresentations o6 of the principal series

with n=0 contribute to the expansion. The coefficient func-
n i Sive] tions f are restricted by the condition28) and (29). The
fr(h,x)= |1;[1 ;b Dbliai(hi)) fall~--;n,bl---bn(x)‘ most generaf satisfying them can be given in terms of the
Sl 30  Clebsch-Gordon coefficients since they are only objects re-
lating indices in different representations. The result is the
In the second step, we expand the coefficient functions usinfpllowing:

m

o] —_ O""r —_
H f dprpr2 E Df) ll]p )(gx )eq (pr)
r=1Jo pr .Gy rr o

m
Ta---| I ~ ~ ip - xr
IS Rl || fdﬂ(xr)D(Omr)(gx)eq(pr)fdQ()\f)ZN 2 Df(gy)
177 ap,by by r=1 Jx Prlr v b =8y T

S L U W (32)

X(ar“rkrark;jr|vbr|>H)?J,31_..pmyji...Jm

In our notationsy, andr, refer to all outgoing and incoming links for theh node, respectively |- - - )i, denotes S(2)
interwiners for the tensor product of any number of representations. Substitution of the exp(@8sianEq. (31) gives

n

fr(h,x>=(H > D{;iaimi))(rﬂl f de(m)% Dg;a;gxr)(arurk,ark;jrl,br,m)N{-,j'_ll‘!” 55 00 A (39

1=1 jj.aj,b PmoJi

The property(29) follows from the facts that the Lorentz group matrix elements of an element of tk® Sdbgroup do not
depend on the representation of the Lorentz group and they are diagonal with respect to thésedeq(B6)]. Due to this,

D3i(Guri =3, D3, (0)D}(0D4(h 9= T D (0)D}o( 0D Y, (34

where in the last expressiap=(j,a), q=(j,a). D.~(h~!) can be brought through the interwiner to act on the adjacent links
and cancel the result of their transformations.

To establish a correspondence between the functi®8sand the spin network&3), we associate to each linfor h;
e H) a simple representation {p;) of the Lorentz group. The restriction to the representations mtld is due to the fact
that each of them contains all representationslpfvhereas any other restricts jtesn. Therefore, we can embed a function
on H without loss of any information only into a simple representation. Besides, we change (Bei®Erwiners by their
Lorentz counterpartg§We omit the corresponding subscrjpthen the function33) becomes

m

fr(hpo= 1 2 oi,)[Dh, ()] f:dpip?)<ﬂ J de(A) % D3 (g)

i=lji,ai,bi r=1 Brvqr

X<)\r !ar|_prk1(jrkaark);Pr|-(jr|1br|)>)f'l“lmj'“n ~ o~ (N, oo APy - - ,pn). (35

Py Pmodisim
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Indeed, it is the same as in E®J). It can be seen due to the this case the functiofB5) does not depend om at all. This

following factorization property16]: means that in the described space the area operator cannot be
o _ _ implemented as a self-adjoint operator. Indeed, the area spec-
(N3, p1.(j1.a1):p2,(j2.82)) trum (19) “feels” the Lorentz representations and, as is

T B EO\T o i i 36 known, eigenstates with different eigenvalues must be or-
=(.alisassiz auF (N Jlp1diieajz). (36 thogonal. But in our case the eigenstates differing onlpby
would not be orthogonal with respect to the inner product

induced by the natural inner product on the spael) (see

the next subsectionTherefore, the representation of quan-

tum states by the functiorfs(h,x) is essentially incomplete.

the result(35) one can recognize an arbitrary linear combi- Actually, we have already seen this in the en_d of Seg. I,
where it was argued that the change of the projected Wilson

nation of the state$23). What does the dependence of jineg 1y SU2) elements is valid until quantum commutators
mean? In fact, the stat¢®1) possess a larger invariance than become involved in calculations

we required from our functions. They are explicitly invariant

. . . We suggest a simple way to improve the situation. We
under simultaneous Lorentz transformations of the Wilson o o . . . )
. . . : argue that it is sufficient to associate with the links an addi-
lines and interwiners. In our terms, this means

tional variable, sayp;, to make the resulting picture self-
h—g(b)hg *(a), x—xg L (37 consistent. The modification can be interpreted as taking into
account quantum effects lost after the change of the Wilson
The problem is that it takes away the arguments from theitines by the elements d¢d, which has been done in E(L6).
spaces and, therefore, the requirement of the invariance ufhe new variable takes values Rand it distinguishes the
der this transformation cannot be formulated in terms of thestates with differenp;. Indeed, now our state space is the
functions onX only. We do not know how to implement it. space of functiongr(h,¢,x) on the homogeneous spaae
Therefore, we simply postulate that only the functid8$) =[HXR]"X[X]™ subject to the previous condition28)
with f independent of should be considered. Notice that in @1d(29). We can expand its elements in irreducible represen-
the gauge invariant sector this problem does not arise, sind@tions as above. In this way, we arrive at E2f), where the
in this casé takes only one valug=0. coefficientsf are functions ofp. Therefore, we should ex-
Thus, we obtain that linear combinations of the stgg@  Pand them in the ordinary Fourier integral, which gives the
span all functionsfy(h,x) subject to the described condi- additional factor/” .dp;e'#i*i for each link. Besides, the co-
tions. However, from the above it is clear that not all states£fficients become functions gf;. Then we can redefine
(35) differing only by the Lorentz representatiopsassigned them by the functiong from Eq. (36) and take them to be
to the links are described by different functions. Most explic-independent of the indicgsas discussed above. As a result,
itly, it can be seen for the graph consisting of one loop. Inwe arrive at the following representation:

Due to this, onlyF and f depend orp; and we obtain an
expression fof as an integral of with the functionsF over
pi -

If the coefficientsf are independent of the indicgs in

m

fr<h,¢,x>=<|=1; f:dpip?)(r[[l fde(xo; )f{)(x:megm;p). (39)

where

. n : ) m <)\rvqr|_Pr (Jr aar);Prx(jrvbr)>
J C o) = Ji @l € pi Ay k k' Tk | 170
ep()\,P) ('1:[1 a%i Dbiai(hl)e " ) rljl qzr Dprq’(gxr) Ny (A ;{Prk'jrk}a{Prpjn})

(39

and we used shortened notations for indices and arguments. Eq. (38) we actually sum over integgfs only. Therefore,
The normalization factorbl, will be found below. H=SQ(3) rather than S(2). Actually, it is natural sinced

The functions(38) describe our state space and the vec-must be a subgroup of S81). (3) Similarly, only \
tors(39) form a basis in it. The main result of this subsection=(lg,l1), Ioe N appear in the states due to the properties of
is the information regarding the representations to be takethe Clebsch-Gordon coefficients. The only restrictior pis
into account. From Eq(38) we conclude the following(1) that it corresponds to the principal series of representations,
Only the simple representations of typei@), should be i.e. l;=ip.
associated with links(2) Since only representations wigh The fact that it is sufficient to consider the Wilson lines in
e N enter the decomposition of the representationgp(f, the simple representations (@) only has a very important
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consequence. For such representations the effective Immirzi

paramete(18) B;=0. Because of this, two projected Wil- <fr1,9r2>=f )| de

son lines(9) commute with each other despite the noncom- [ R

mutativity of the connection. Indeed, their commutator gives _—

rise to Tx[A[,.A)1Ty. The generators act in different rep- X fx]no. w030 Tr(h, @ X)gr(h, ¢.X).

resentation spaces and so they can be projected. After this, it
is enough to obtain that the commutator s5(3) compo-
nents of the connectiofl ()47 , A"l ()] vanishes. This
can be shown by tedious but direct calculations from the, . . . . .
result(A7). As a result, the problem of the noncommutativity (It is implied that bothfy, and gr, were continued in the
disappears for the constructed states and the spin networkdvial way to the common grapli'=T";UI';.) The inner

(40)

(21) are defined unambiguously. product(40) is explicitly Lorentz invariant, since the effect
of a Lorentz transformation of the states can be absorbed into
B. The inner product the integration measure ov&r

. . Let us calculate the inner produ@tO) for the state$38).
On the state space described above, one can define a nagl; B . ! produ@t0) 138

ral inner product. Since our states are realized by functiong for; per;ormlﬂglthe mtegra_tlpr(])_ns, webex(tjend th.e mter?ral
on HXR and X=S0(3,1)/SO(3) associated with the links ver. to the W o€ group(i fhis can be done since the
and nodes of a graph, respectively, the simplest idea is tgdditional matrix element®g,(h) can be translated to act
take an integral over these manifolds. Then the integral ove®n D},(h) and absorbed into the integration ovérdue to

H X R encodes the functional integration over the connectiorihe left-right invariance of the Haar measure. The remaining
A and the integral oveX corresponds to the integration over integral gives the volume dfl which is normalized to 1. As
the field y. This leads to the following expression for the a result, we can perform all integrations due to the orthogo-
inner product: nality of the matrix elements. The result reads

E E |<)\r -qr| _Prkv(jrk1ark);Pr|a(jr,-br|)>|2

n © m ar &by ~ ~
(fr,.or >=< > f dp-p-z) I1 fde(h )——— _ _ ST H )G (Np).

. 2 =1 jj e r=1 ' er()\r;{prerrk}!{PrlrJr|}) Pr P P
(41

Therefore, if we take
Nr()\r ;{prkvjrk}!{pr|vjr|})= qz azb |<)\r vqr| _prkv(jrkrark);pr|a(jrlvbr|)>|2v (42)
r I’k’ I’|
|

the vectorg(39) will form an orthonormal basigOf course, \Ifs<—>ejp (\;p), (43

it is implied that the right-hand side of E¢42) does not

vanish, which simply restricts the range of summations and

integrations} whereV g is a Lorentz spin network21). With respect to this
Notice that without the variable and the integration over structure, the Lorentz spin networks form an orthonormal

it, we would be left with two integrals oves; coming from  basis in the Hilbert space of quantum gravity.

fr andgr, correspondingly. It means that states with differ- ~ We finish this subsection with some comments. As was

ent assignments of the Lorentz representations to the linkdiscussed at the end of Sec. Il, there are definite limitations

would not be orthogonal to each other. Besides, it is intereston the use of the identificatio@3). However, these limita-

ing to note that we cannot add the supplementary series tilons do not restrict the physical information which can be

the representations associated with the links. In this case, tHeund by use of our construction. Indeed, consider the calcu-

states would also not be orthogonal despite the integratiotation of a matrix element of a quantum operator between

over ¢ sincee'¢? becomes real. two states. Let the states be given in terms of functions on
The resulting Hilbert space is obtained by completion ofthe homogeneous space. Then to find the matrix element we

the space of the generalized cylindrical functid@8) with should correspond the quantum states expressed in terms of

respect to the measure induced by Ef). This structure is  the Lorentz spin network&@1) via Eq.(43), use the operator,

translated to the space of quantum states in the “connectiomake the inverse identification, and calculate the inner prod-

representation” provided we establish the following corre-uct(40) of two resulting states. Following this procedure, we

spondence: do not arrive at any contradictions with the results obtained
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in other ways. In particular, the area spectrum is given by Edfunctionals on a dense subsetldf{(X). We can choose it to
(19. be the space of infinitely differentiable functions of compact
support C5(X). There exists an extension of the Fourier
C. Gauge invariant subspace analysis on group manifolds to the case of such generalized
functions[17]. Therefore, we can apply it to our problem.
Elowever, in this paper we only outline its main steps and do
not discuss the mathematical subtleties and details.
The first distinction from the previous case happens in Eq.

(31). Now the integral ovelp is replaced by the integral
along a contour in the complex plane of the paraméter

If we work directly in the gauge invariant subspace, the
situation simplifies drastically. In this case, our state space i
realized by functionsfr(h,¢) on Xy=[HXR]" invariant
under the transformatio(®7). The basis is given by

el(p)= |];[l aEb Dﬂiai(hi)ei ¢ipi The position of the contour is defined by the concrete behav-
o _ ior of the functionf(x). In the particular case of the constant
™ {prpUrpar e (i, o)) function, it consists of two circles arourig=+1 [17]. In a

. (49 similar way, the integralfde(\) in Eq. (33) and, conse-
quently, in Eq.(38) should be properly generalized.
But now we encounter another problem. As was men-
tioned, the decomposition of the tensor product of two rep-
N, ({psiryidpenich) resentations of the principal series contains only representa-
e tions of this serieg18]. Therefore, we have to generalize
also the notion of an interwiner to get a nonvanishing result
\/ 2 Koroirgar )l (i be )P (45 in Eq. (39). A general expression for the interwiners can be

><r=l Nr({Prkvjrk};{Pr|vjr|})

where

anebr, given in terms of the integral of group matrix elemefitg]:
It is orthonormal with respect to the inner product defined as (ar; .. adals .. al)
an integral overXy: ’
-1
=N f du(9)I1 Dy, (9)
(fr,.0r)pn= f[H]no. i Jm(h) By BBy Prdy
[
)\I
>< D S -1 , 4
%[ deTneahe). @9 Lo Sy

k
This is the exact result in the sense that there is no problem A
o . . .p By BB B = JdM(Q)H Dy'q (9)
with j dependence which we encountered considering non- N G r=1
gauge-invariant statgsee the discussion in Sec. IVA | , )1/2

However, it is possible also to describe this subspace as a x H Ds (g1
part of the space of all hon-gauge-invariant states. But the = K
description becomes essentially more complicated. In Sec.

IV A we considered the space of square integrable functionyhere ~ we  denoted a=(\,p), B=(\,q), and

on X. Therefore, the harmonic analysis was reIatwerN/s1 By.B)---p 18 @ normalization coefficien{There is no
simple. In particular, the measure on the set of unitary irresymmation oveq, andq..) In fact, the normalization is not
ducible representations of the Lorentz group was g|ven b¥sssential since it is canceled in the combination entering Eq.
the standard Plancherel measyigo(\)==_,/ .dp(n? (39).

+p?). It vanishes on the supplementary series of representa- Consider the simplest example of coupling two simple
tions so that only the principal series contributes to the derepresentations and define its interwiner with the trivial rep-
composition of a square integrable functid®]. resentation. Using Eq47), we obtain

However, it is clear that the gauge invariant states are not
described by square integrable functions sidéés a non-  {p1,P1lp2.P2)=(0|— p1,P1;p2.P2)
compact manifold. This is reflected in the fact that the trivial

(48)

representation of the Lorentz group corresponds (0, =N(’lq)( q)fdM(g)D(Ovipl)(g)D(0|P2)(g 1
+1) and does not enter the principal series of representa- PrAPz: P19
tions. Therefore, it does not appear in the decomposition of a = N(_pi‘q)(pl‘q)pfzﬂpl—pz) 5p1p2. (49

general stat¢38).

Thus, one has to extend the space of functions under corFhus, the interwiners also become distributional. This is not
sideration. But in this case it is impossible to introduce aa problem if we integrate over representations as is done in
Hilbert space structure on the extended space which includdsg. (38). However, this may result that the spin networks are
the gauge invariant functions oA’ Besides, the Fourier not well defined when they are considered in their own right.
analysis developed for the spacé does not work anymore. For example, this happens for a loop with one two-valent
A way to overcome these obstacles is to realize our states a®de. And, in general, such two-valent nodes give rise to
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unphysical infinities due to thé function in Eqg.(49). This  area spectrum calculated on such spgx&0] is wrong. A
indicates that either such states should be regarded only &srrect quantization should take into account effects of this
distributions or the interwinef49) should be redefined. In noncommutativity. Addinge to the degrees of freedom re-
fact, we obtain another infinity due 19, in the denominator |ated to links is the simplest way to do it. But still, it allows
of Eq. (39) which is defined by Eq(42). From the formal ys to achieve consistency on the level of inner product, but
pOint of VieW, two infinities exaCtIy cancel each other. There'we do know how to imp|ement quantum Operators in the
fore, it is tempting to redefine the interwingt9) replacing  resulting Hilbert space of functions on the homogeneous

: 7
the & function by the Kronecker symbol space. Therefore, in our construction it is an auxiliary space
_ and, considering quantum operators, we have to do as it was
(0[=p1.P1:p2:P2)= 8, 5, 0p,p, (50)  described at the end of Sec. IVB.

For higher valent nodes, this problem is absent since the
integral of three matrix elements of the principal series al- V. CONCLUSION
ways converges and for all representations in the $tiip
<1 matrix elements are bounded functions on the group. In this paper, we continued the construction of covariant
Therefore, in a general case, except for the two-valent ond9op quantum gravity begun ifv,8,5. We investigated the
we define interwiners by the expressi@). Hilbert space under the assumption that all area operators are
Finally, we note that the states which are not described bgimultaneously diagonalizable. Our results are the following.
functions of L?(X) remain non-normalizable. But this does (1) There is a basis realized by Lorentz covariant spin net-
not mean that they are not physical states. The fact that th@orks which are eigenstates of the area operators related to
inner product diverges on the gauge invariant states is jusiny spacelike surface$2) Only the simple representations
because we integrate over gauge orbits which have an infof the Lorentz group of type (ip) are associated with Wil-
nite volume for the Lorentz group. The physical inner prod-son lines.(3) Under the conditions described in the text, the
uct should be given by a gauge fixed integral. Sincs 2 elements of the Hilbert space can be identified with functions
pure gauge variable, it is enough to take it to be fixed. Sincgy, [SO(3)XR]"X[SO(3,1)/SO(3)]™. The correspondence
the integ.ratio_n ovel is encoded in the'integration oyﬁr “with spin network state€1) is given by Eq(43). The gauge
the physical inner product can be obtained by dropping thig,ariant sector is described by functions independent of the
integral. Thus, it is given by Eq46). last argument(4) The inner product is defined as an integral
over the homogeneous spad®) The noncommutativity
D. Relation with SU(2) state space problem is solved by the restriction to the simple represen-

It is interesting to see how the $2) state space, which tations only.
the standard loop quantization is based on, emerges in our One can note a remarkable similarity between these re-
approach. It is obtained by neglecting the dependence of theults and the predictions of Lorentzian spin foam models
functions f-(h,¢,x) on the two last argumentg and x.  [11]. (For a general review of the spin foam approach, see
Droppingx can be interpreted as imposing the Lorentz par{19].) The most striking similarity is the appearance of the
of the Gauss constraint. On the other hand, we saw that nsimple representations as the only admissible Lorentz repre-
glecting ¢ is equivalent to working directly in the limi9). sentations associated with linker faces of a spin foajm
Then our projected Wilson lines are the ordinary(3UNil- However, the reasons for this restriction are different. In the
son lines(16) with the Ashtekar-Barbero connectiqi?). spin foam models, it is a consequence of the so-caled
The effective Immirzi parametg8,;, is defined by represen- plicity condition [20,21] or of the harmonic analysis on
tations(18). We stress that it has nothing in common with the SO(3,1)/SO(3). In ourapproach, the simple representations
Immirzi parametelB appearing in the action. Moreover, due appear as the only Lorentz representations into which one
to the restriction to the simple representationy;)=0, can embed any function on $8). Another point where two
which is an unphysical value fg8. Also, we emphasize that approaches converge is the use of the homogeneous space
nothing in our construction and results dependsBort has  SO(3,1)/SQ(3). This allows us to hope that it is possible to
a physical meaning in neither the quantum theory nor thelerive a consistent spin foam model from the covariant loop
classical one. quantum gravity presented here.

However, whereas the dependencexafoes disappear in We see that the restriction to the simple representations is
the gauge invariant subspace, the dependengeisfessen- essential for both approaches. Therefore, it is worthwhile to
tial for consistency. In other words, we cannot neglect ithote an interesting observation. The eigenvalues of the area
since the limit(9) does not commute with the action of quan- operator corresponding to the representationipjOgxhaust
tum operators. Therefore, the quantization based only on thiée entire spectrum, so that the addition of representations
SU(2) state space is unavoidably incorrect. In particular, thewith n#0 would lead only to an additional infinite degen-

eracy of the eigenvalugsee Eq.(19)]. This picture is con-
sistent with the so-calledrea representatiofi where inde-
"The same expression for the two-valent interwiner should be
used in Eq.(44), where we work directly in the gauge invariant
subspace. 8Such representation has been suggested by Vassilevich.
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pendent states are labeled by areas carried by the links. From contrast to the S(2) result, the spectrurtbl) is continu-
this point of view, there is no reason for the appearance obus. What meaning this fact has for the quantum gravity
the additional degeneracy. should be realized more carefully. Note only that it still gives
Let us discuss some open questions. The first one is ta minimal quanta of area78:G which corresponds tg
explain the appearance of the new variaplassociated with  =p=0. It is interesting that the quanta would not appear if
each link, which seems to be very puzzling. This variable hasve add the supplementary series of representations. Perhaps
no classical analogue and appears when we change the Lats existence can be considered as an indication of a discrete
entz Wilson line(9) by the S@3) one(16). We realize thatits  structure of quantum space.
appearance is related to the noncommutativity of the limiting The related problem is the entropy of a black hole. Cer-
procedure used in the definition of the projected Wilson linetainly, the derivation of the Bekenstein-Hawking formula
(9) with the action of quantum operators as explained at théound in the SW2) case[4] should be generalized to the
end of Sec. Il. But so far its introduction is simply an artifi- present situation. The continuity of the spectrum seems to be
cial way to make orthogonal different eigenstates of the area large obstacle. At the moment, we do not know how to
operators. It would be very interesting to understand its oriovercome it. Perhaps only representations withO should
gin in more detail. be taken into account when counting independent states. This
As was argued, in general we do not obtain the correcissue deserves further investigation.
result if we act by a quantum operator on a function on the To conclude, we would like to stress that the knowledge
homogeneous space in the usual way, instead of considerirgf the structure of the Hilbert space opens many new lines of
the action on the corresponding quantum state before theesearch in the framework of the covariant loop gravity. Be-
limit in Eq. (9) is taken. Therefore, it would be nice to find a sides the already discussed problems of the black hole en-
realization of the operators directly in the space of such functropy and relation with spin foam models, one can mention,
tions to avoid the indirect procedure described after(Bg..  for instance, the spectrum of the volume operator. Also, one
This could be a key to understanding the nature of the variean try to generalize the recent approach to qguantum cosmol-
able . ogy [22]. Perhaps most important would be to construct a
However, there is a large obstacle against the existence gfuantum version of the Hamiltonian constraint which is
such a representation. The problem is that on the constructgmblynomial in this case and, therefore, is expected to be free
Hilbert space, the representation of operators fails to be af the problems arising in the §P) case[23].
homomorphism of the classical operator algebra. For ex-
ample, all matrix elements of the smeared triad operator

Py«(3) [8] vanish[Three components vanish due to the pres-

ence of the projector in the commutation relatiéA$) and  The author would like to thank R. Livine, V. Lyakhovsky,
another three disappear due to the vanishing of the effective. Rovelli, and D. Vassilevich for stimulating and fruitful
Immirzi parameterg;, for the simple representatiofOn  discussions. The work has been supported in part by Euro-

the other hand, its square corresponds to the square of thgan network EUROGRID HPRN-CT-1999-00161.
area operator and does not vanish.

This fact tells us that, actually, we restricted ourselves to a
part of a larger state space. This space is spanned by statesAPPENDIX A: BASICS OF COVARIANT CANONICAL
like Eq. (21) but with Wilson lines projected at the end FORMALISM
points only.(The projection is needed to make the states well
defined. Therefore, it represents a nontrivial result that on
can construct such general well-defined Lorentz covariant
spin network statesOur states with the Wilson ling®) can
be obtained in the limit of an infinite number of the trivial
(two-valen} nodes. It may happen that the whole space of
the more gengral states is impprtant and cannot be neglgcted. 9= Ndt+ y,E2dX, e*=E%dx+ENidt. (Al)
However, their physical sense is unclear since they are eigen-
states of only those area operators which are defined for sur-
faces intersecting the graphs at nodes only. Besides, for sudthe multiplets which play the role of canonical variables are
states we will have trouble with the noncommutativity of the
connection and with the inner product, because, as was em-
phasized, the Wilson lines projected only at the end points do
not belong to any group. Therefore, our hope is that only the
limiting subspace considered in the paper is physically rel-
evant. But the situation must be clarified.

ACKNOWLEDGMENTS

In this appendix, we list the basic definitions concerning

e Lorentz covariant canonical formulation. For a more de-
ailed introduction to it, we refer the reader|[t6,8,5.

The 3+ 1 decomposition of spacetime is chosen to be

1
connection multiplet, AX= ( w?a,zsabcwi‘”);

Since we restricted ourselves to the representations first triad multiplet, Py=(EL,e2Epxc);
(0,ip), the area spectrum is given by (A2)
8287%62 VIi(i+ D +pi+1. (52) second triad multiplet, Q= (—&2Elx.,E);
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where the triad multiplets are related by a numerical matrix

Pl =I1YQ. . In the formulas, the following matrices appear: Al=A RSl QRTf 7wkl "Gy, (A5)
2|1+ —
O P ”
1 0¥

wheregy is the Gauss constraint generating the local Lorentz
transformations, the Dirac brackets can be given in the

RXY=gXY— EHXY simple form
B . .
1 {AY PUo=8l)y, (AB)
1 - B whereas the commutator of two connections is horrible,
= . 5. (A3)
-5 "1 [ f d3x f(x) A7), J d3y g(y)A}(y)]
D
Also one can introduce thieverse triad multiplets_ P and 1 wev [ 13 STI TS|
Q! and projectorswhich depend on the fielg only: = ( 1 RSRTJ d°z[(Kjj"'gaf —Kji™'faig)
- - 2| 1+ —
1o =PXP. 1gx=QxQy"- (A4) ?
If we pass to the shifted connection, +fg(Li L)), (A7)
where

K™= 1155 A QEL(QQ);; Q6+ QT QP — Q7 Q1+ 6105Q0
Ly =113 179107 Q1 +(QQ)inQy Q™+ Q1 Q7 QF — Q7 Q7 +(QQ); Q7 Q™
— Q[ Q7 Q7 1Qp3 QY+ 113 2 QIQ +(QQ);nQ ™"~ 9/ QF1Q% 4,QY
+11Z2 £5(QQ)inQ7 Q™= (0Q)inQ Q%7~ (QQ); Q1 Q%41 Q57 QY
+I1S F50Q5 QRQTPa QL+ f5oQF QRQQMTY 1Qy, - (A8)

It is implied that repeated six-dimensional indices are always contracted with the help of the Killingyferm

APPENDIX B: IRREDUCIBLE REPRESENTATIONS [H, ,F.]=[H_,F_]=[H3,F3]=0,
OF THE LORENTZ GROUP
The generatorsTy form the so(3,1) algebra with the [H+ Fsl=—F+, [H-.Fs]=F_,
structure constantsyy : (B4)
[T Tl = Tz (®1) R
Let us introduce the notatiork,= (A,,—B,) and [Fe.Hgl==F., [F- Hs]=F_,
H,=iB,—B,, H_=iB,+B,, H;=iB;, (B2 [Fy Fsl=H., [F_,Fs]=—H_,
F.=iA;—A,, F_=iA;+A,, F3=iA;. [Fy+,F_]=—2H;.
(B3 An irreducible representation of the Lorentz group is
These generators commute in the following way: characterized by two numbersy(l;), wherelye N/2 and
I,eC. In the spaceH, |, of this representation, one can
[Hy Hs]=—H,, [H_,Hs]=H_, introduce an orthonormal basis,
[Hy ,H_]=2H,, {&mpy, m=—I,—1+1,...]—-1],
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[=lg.to+1,... (B5) F_&m=—yoNA+m(+m=1)§_1;m 4
such that the generators introduced above act in the follow- +ﬁ(|)\/(| +m)(I-m+1)& n-1
ing way [24]:
— vV =m+ 1) (I =m+2) &4 11,
H3§I,m:mgl,mv
Hydim= VO +m+1) (I =m)§ meq, where
(B6)
Ho& m= V(I +m)(I—m+1)& g, il ol i [12-12)(12-13
— o= iy Y0TIN T ey - B9
Fa&im=yyVI“—m%& _ 1t BiyMé m
— YN+ D2 =mPE g, _ .
The unitary representations correspond to two cases:
Fiéim=yoyNd—m(I—m=1)& _1pni1
+ BN =m)(I+m+1)& neq (i) principal series: (n,ip), neN/2, peR; (B9)

+ Y0 V(HM+D) (1 +mM+2) &4 1,
(B7) (i) supplementary serig®,p), |p|<1, peR. (B10)
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