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Hilbert space structure of covariant loop quantum gravity

Sergei Alexandrov*
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We investigate Hilbert space in the Lorentz covariant approach to loop quantum gravity. We restrict our-
selves to the space where all area operators are simultaneously diagonalizable, assuming that it exists. In this
sector, quantum states are realized by a generalization of spin network states based on Lorentz Wilson lines
projected on irreducible representations of an SO~3! subgroup. The problem of infinite dimensionality of the
unitary Lorentz representations is absent due to this projection. Nevertheless, the projection preserves the
Lorentz covariance of the Wilson lines so that the symmetry is not broken. Under certain conditions, the states
can be thought of as functions on a homogeneous space. We define the inner product as an integral over this
space. With respect to this inner product, the spin networks form an orthonormal basis in the investigated
sector. We argue that it is the only relevant part of a larger state space arising in the approach. The problem of
the noncommutativity of the Lorentz connection is solved by restriction to the simple representations. The
resulting structure shows similarities with the spin foam approach.
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I. INTRODUCTION

The loop approach to quantum gravity is a wide progr
of quantization of general relativity~for review, see@1#!. In
recent years, it has achieved a large amount of progres
different directions. However, all this time it was comp
cated by a number of problems which were little dark sta
on the nice picture drawn by loop quantum gravity. Su
problems as the appearance of a nonphysical paramet
the spectra of geometrical operators~Immirzi parameter
problem @2,3#!, the coincidence of the black hole entrop
with the quasiclassical result only up to a numerical fac
@4#, and the absence of an explicit relation with the covari
formalism were considered as temporary difficulties wh
cannot influence the structure of the theory and its basic c
clusions.

But the situation turned out to be more complicated. It h
been shown that, actually, these problems are a manifest
of deep problems with the chosen formulation itself. That
it breaks the classical diffeomorphism invariance at the qu
tum level @5#.1 This happens due to a partial fixation of th
gauge freedom reducing the gauge group from the Lore
one to SU~2!. As is well known, it is not allowed before
quantization. Therefore, there arises a question about the
rectness of the whole program of loop gravity. However,
formulation used so far to carry out the quantization is o
a particular realization of the ideas upon which the loop
proach relies. Thus there may be a better formulation wh
is free of the problems of the standard one.

Recently, such a formulation, the so-called covariant lo
gravity, was proposed@7#. Its main feature is that it possess
an explicit Lorentz invariance and avoids any gauge fixi
In its framework, the first results have already been obtain

*Also at V.A. Fock Department of Theoretical Physics, St. Pete
burg University, Russia. Email address: alexand@spht.saclay.c

1The first sign of this breaking has been given by Samuel@6#.
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In particular, the area spectrum has been derived@8,5# and
the result differs essentially from the one obtained in
approach with the SU~2! gauge group@9,10#. It does not
depend on the Immirzi parameter, strictly positive and L
entz invariant. Also, the path integral has been shown to
independent of the Immirzi parameter@7#. Among other
pleasant features of this approach, we mention the poly
miality of the Hamiltonian constraint.

However, a quantization of the new formulation on t
level of Hilbert space was still lacking. There are seve
reasons for that. The main reason is the noncompactnes
the gauge group and all problems coming with it. To illu
trate them, it is enough to give one example: even Wils
loops of a Lorentz connection in a unitary representation
not well defined since one has to trace over an infin
dimensional space. Another reason is the noncommutati
of the Lorentz connection appearing as a canonical varia
in the covariant approach@7#.

In this paper, we are going to attack these problems a
gether. Since we do not know how the state space of gen
relativity is embedded into the space of Lorentz Wils
loops, our strategy will be, in a sense, the opposite. At fi
we assume that the Hilbert space can be constructed from
states which are eigenstates of all area operators in d
analogy with the SU~2! case. We derive the structure of suc
states from the known result for the area spectrum. Thi
done in Secs. II and III, where we end up with well-defin
Lorentz spin network states. Then in Sec. IV we show tha
is possible to introduce the Hilbert space structure on
resulting space. We argue that it is sufficient to describe
gravitational degrees of freedom. However, we are not a
to give strict proof of this assumption. Also, we obtain som
restrictions on the representations to be used and, sur
ingly, they give a solution of the noncommutativity problem
In addition, we find much correspondence with spin foa
models@11#, which indicates that we are not far from con
struction of a solid bridge between these two approache

-
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SERGEI ALEXANDROV PHYSICAL REVIEW D66, 024028 ~2002!
quantum gravity. This and other issues are discussed in
V. In two Appendixes, one can find some basic results on
covariant canonical formulation and representations of
Lorentz group.

It should be mentioned that the paper does not claim
high level of mathematical rigorousness. For example, we
not always indicate explicitly in what mathematical sen
some equations should be understood, or to what sp
some quantities belong. Rather, our aim is to present
main ideas regarding the appearance of the Hilbert sp
Nevertheless, we try to show that the emerging picture
self-consistent and very interesting in many respects.

We use the following notation for indices. The indic
i , j , . . . from the middle of the alphabet label the space
ordinates. The latin indicesa,b, . . . from the beginning of
the alphabet are theso(3) indices, whereas the capital lette
X,Y, . . . from the end of the alphabet are theso(3,1) indi-
ces.

II. PROJECTED WILSON LINES

In @8,5# it was found that to be an eigenstate of a quant
area operator, the Wilson line

Ua@A#5P expS E
a

b

dxiA i
XTXD ~1!

should be defined by the Lorentz connectionA i
X given by

Eq. ~A5!. The corresponding area spectrum is given by
genvalues of two Casimir operators,

S58p\GAC@so~3!#2C1@so~3,1!#, ~2!

C1@so~3,1!#5gXYTXTY , ~3!

C@so~3!#5I (Q)
XY TXTY . ~4!

In this section, we are going to give a more detailed c
struction of the Wilson lines diagonalizing the area operato
The problem is that the Wilson line~1! is an element of the
Lorentz group, whereas the spectrum~2! contains the Ca-
simir operator of its SO~3! subgroup. This means that to b
an eigenstate of the area, the Wilson line must be in defi
irreducible representations of both SO~3,1! and SO~3!. We
should emphasize that we do not require it to be an elem
of the SO~3! subgroup. This requirement means only that
generators of this subgroup are in the given representa
whereas the Wilson line itself is an operator acting in
space of this representation. Nevertheless, in the follow
we shall use the shortened terminology.

The Lorentz group contains a lot of possible embeddi
of SO~3!. Which subgroup should be considered is defin
by the value of the fieldx ~see Appendix A!. This depen-
dence comes from the projectorI (Q)

XY entering the Casimir
operatorC@so(3)#. Therefore, if we want the Wilson line to
give a definite area for any surface, we must require t
being cut at any point of the curvea, it be in the same
representation of the SO~3! subgroup defined by the value o
x at this point. Thus, we arrive at the picture where t
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subgroup to which representation the Wilson line should
restricted is ‘‘rotated’’ along the line.

How can this be realized? First of all, to pick out a part
the Wilson line that is in a definite representation of t
SO~3! subgroup, one can act by the corresponding projec
on this representation from both ends of the line.2 The pro-
jector is given by the so-calledprojective operator@12#,

I (x)
( j ) 5djE

SO(3)x
dm~h!x j~h!R~h!, ~5!

wherex j (h)5(aDaa
j (h) is the character of the represent

tion j , dj52 j 11 is its dimension,R(h) is a unitary repre-
sentation of the elementh, and the integral is over the SO~3!
subgroup defined byx with the Haar measure. It is easy t
obtain the following properties of this projector:

I (x)
( j 1)I (x)

( j 2)
5d j 1 j 2

I (x)
( j 1) , ~6!

R~h!I (x)
( j ) 5I (x)

( j ) R~h!. ~7!

Besides, the crucial fact for our construction is that it tran
forms in the covariant way under the Lorentz transform
tions. Indeed, we have3

I (xg)
( j )

5djE
g SO(3)xg21

dm~h!x j~h!R~h!

5djE
SO(3)x

dm~h!x j~h!R~ghg21!

5R~g!I (x)
( j ) R21~g!. ~8!

To introduce the picture of the ‘‘rotated’’ subgroup, th
projector should be inserted in each point on the line.
rigorous definition of such a Wilson line can be given by t
use of a partition of the line into small pieces,a
5øn51

N an . In this case, it is defined as a limit of infinitel
many insertions of the projector~5!. Let the Wilson line~1!
be in an irreducible representationl5( l 0 ,l 1) of the Lorentz
group ~see Appendix B!. Then we define the so-calledpro-
jected Wilson line:

Ua
(l, j )@A,x#5 lim

N→`

PH )
n51

N

I (x)
( j ) ~an11!Uan

@A#I (x)
( j ) ~an!J .

~9!

The projected Wilson lines are operators acting in fini
dimensional spaces of irreducible representations of
SO~3! group, despite the fact that they are defined by
Lorentz connectionA i

X . ~It is worth noting that this finite-
ness allows the Wilson loops to be well defined in the se
that they produce finite numbers. Otherwise, we would h
to trace an infinite-dimensional matrix and, at least in t

2This approach has been suggested by Carlo Rovelli.
3Throughout this paper, superscripts such asg or h mean the cor-

responding~local! group transformations.
8-2
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HILBERT SPACE STRUCTURE OF COVARIANT LOOP . . . PHYSICAL REVIEW D 66, 024028 ~2002!
case of a vanishing connection, the answer would be d
nitely divergent.! Nevertheless, they arise from Loren
group elements and it is important that they transform in
standard covariant way under the local Lorentz transform
tions:

Ua
(l, j )@A,x#→Rl@g~b!#Ua

(l, j )@A,x#Rl
21@g~a!#, ~10!

whereRl(g) is a Lorentz group element in the represen
tion l carried by the line. That this is indeed true can
easily seen from the property~8!. This means that the Lor
entz invariance is not broken by the projection.

As we pointed out, in a general case the projected Wil
line does not belong to either SO~3! or SO~3,1!. This fact
makes the construction quite complicated since, for exam
the usual definition of the cylindrical functions and constru
tion of the inner product@13# generalized to the case of th
Lorentz group would not work—the projected Wilson lin
are not maps to any group. However, there is a way to av
at least some of these problems. Let us consider the Lor
generators in an irreducible representation, and then pro
them on the subspaceHj5$j j ,m%m52 l

l of an irreducible rep-
resentation of the SO~3! subgroup which is chosen to be th
canonically embedded one. To make this projection, it
enough to restrict ourselves to such matrix elements
^j j ,muTXuj j ,m8&. From the explicit expressions~B6! and~B7!
for the matrix elements, we find the following property:

I (0)
( j ) FaI (0)

( j ) 5b ( j )I (0)
( j ) HaI (0)

( j ) . ~11!
re

a
e

n-
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In fact, it is a consequence of the Wigner-Eckart theor
sinceFa can be considered as a vector operator for the SO~3!
group. By this theorem, its matrix element is a product of
so-called reduced matrix element and a Clebsch-Gordon
efficient. In our case, the former coincides withb ( j ) and the
latter can be rewritten as a matrix element ofHa , thus giving
Eq. ~11!.

Of course, it is not exactly what we want. We are inte
ested in the group elements which are given by the Wils
lines rather than in generators.A priori the projected boosts
do not form the SU~2! group or any other group. Beside
there is a problem in that generally we should project
representation spaces of different SO~3! subgroups at differ-
ent ends of a line. Whether the resulting objects will form
group is questionable.

Nevertheless, we can overcome these obstacles in the
lowing way. First of all, let us fix a gauge takingx50. This
can always be done due to the transformation law~10! at the
expense of Lorentz group elements at the ends of the lin

Ua
(l, j )@A,x#5Rl

21@ ĝx~b!#Ua
(l, j )@A ĝx,0#Rl@ ĝx~a!#,

~12!

whereĝx is the local Lorentz transformation sendingx to 0.
Then all projectors become constant along all Wilson lin
and this is the canonically embedded SO~3! on which the
Lorentz Wilson lines are projected.

Let us proceed with the definition~9!. For a sufficiently
fine partition, we can write
Ua
(l, j )@A,x#5PH)

n
I (x)

( j ) ~an11!S 11E
an

dxiA i
XTXD I (x)

( j ) ~an!J ~13!

5PH)
n

I (x)
( j ) ~an11!S 11E

an

dxi I (x)
( j ) ~x!A i

XTXI (x)
( j ) ~x! D I (x)

( j ) ~an!J ~14!

5PH)
n

I (x)
( j ) ~an11!Uan

@ I (x)
( j ) AI (x)

( j ) #I (x)
( j ) ~an!J . ~15!
tion
e
-
ith
Due to the property~11! in the time gauge, we obtain

Ua
(l, j )@A,0#5il~Ua@A( j )# !, ~16!

where il denotes the embedding of an operator in a rep
sentation of SU~2! into the representationl of SO~3,1! and
A( j ) is thesu(2) connection given by

A i
( j )a5 1

2 «a
bcv i

bc2b ( j )v i
0a1O~GX!. ~17!

As a result, the projected Wilson line turns out to be
element of the SU~2! group in the representation with th
spin j. It is given by the ordinary SU~2! Wilson line with the
connection coinciding~on the surface of the Gauss co
straint! with the Ashtekar-Barbero connection@14# in which
-

n

the Immirzi parameter is defined by the Lorentz and SU~2!
representations of the initial Wilson line

b ( j )5
nr

j ~ j 11!
~principal series!. ~18!

However, one should be careful using the representa
~16!. It gives the right value of the projected Wilson lin
itself, but it cannot be used in calculations involving com
mutators. For example, it contradicts the area spectrum w
which we started. Indeed, instead of

S;\Aj ~ j 11!2n21r211, ~19!

the Wilson line~16! gives
8-3
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SERGEI ALEXANDROV PHYSICAL REVIEW D66, 024028 ~2002!
S;\ub ( j )uAj ~ j 11!5
\nuru

Aj ~ j 11!
. ~20!

The reason for the discrepancy is that the projectors
SO~3! representations should be inserted only between
erators in different points, as the expression~9! tells us. On
the other hand, in the calculation of the area spectrum
quadratic expression in generators in the same point app
In the Wilson line~16!, they are already SU~2! generators,
whereas the correct way is to project only their quadra
combination. As a result, we have to conclude that the ini
representation~9!, but not the simplified one~16!, should be
used in this case.

Actually, this means that the limit in Eq.~9! does not
commute with the action of quantum operators due to th
distributional nature. This can be illustrated as follows.
finite but sufficiently fine partition, the projected Wilson lin
~9! can be represented as the SU~2! Wilson line ~16! plus
corrections of order 1/N and higher, whereN is the degree of
the partition. Since@A(x),P̃(y)#;d(x2y), all corrections
of order less than the number of commutators involved c
tribute to the result and cannot be neglected.

Nevertheless, the important conclusion is that the p
jected Wilson lines in calculations without quantum comm
tators, up to Lorentz transformations at the ends arising
to a nonvanishing fieldx, can be considered as SU~2! group
elements in the representations on which the Wilson lines
projected.

III. SPIN NETWORKS

Let us neglect, for a moment, the noncommutativity of t
connection used. Then one can construct natural spin
work states from the Wilson lines described in the previo
section. To this end, it is enough to associate them with
links of a graphG and contract with interwiners of the Lor
entz group at the nodes,

CS~A,x!5 ^

links g iPG

Ug i

(l i , j i )@A,x#• ^

nodes vPG

Nv . ~21!

The subscriptS denotes the collection of the graph, SO~3,1!
and SO~3! representations assigned to the links, and in
winers at the nodesS5(G,$l i%,$ j i%,$Nv%). The interwiners
Nv should be elements of the tensor product of represe
tion spaces assigned to the links meeting at the node,

Hv5Hl1
^ •••^ Hlk

. ~22!

@To get a Lorentz invariant spin network, one should ta
interwiners to be invariant tensors only, i.e., lying in t
trivial representations entering the decomposition of
product of representations~22!.# Due to the projectors at th
ends of the Wilson lines, each index of the interwiners
projected to the corresponding subspace of an irreduc
representation of SO~3!. Thus, the problem of infinite dimen
sionality of the unitary representations of the Lorentz gro
is avoided, since we trace, actually, over finite-dimensio
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spaces. We emphasize that due to the transformation
~10!, the Lorentz invariance is not broken.

Let us apply the transformation~12! to the constructed
spin network states. The result can be written in the follo
ing way:

CS~A,x!5 ^

links g iPG

Rl i

21@ ĝx~v i
( f )!#Ug i

(l i , j i )@A ĝx,0#

3Rl i
@ ĝx~v i

( i )!#• ^

nodes vPG

Nv

5 ^

links g iPG

il i
~hi

( j i )!• ^

nodes vPG

Nv
ĝx

21(v)
, ~23!

where4 hi
( j i )5Ug i

@A( j )#PSU(2), ĝx(v)PSO(3,1), and

v i
( i ) ,v i

( f ) are the initial and final points of thei th link. In the
second line, we used the property~16!. We see that the effec
of a nonvanishingx reduces to the Lorentz transformation
of the connection and interwiners. In particular, for the gau
invariant spin networks, the latter transformation is abs
due to the Lorentz invariance ofNv . In the next section, we
will argue that these spin networks form a basis of the H
bert space of quantum gravity in the loop approach.

IV. HILBERT SPACE STRUCTURE

As a foundation of the loop approach, we assume that
physical excitations of quantum space are concentrated
one-dimensional structures, which are, in a general c
graphs. Then it is natural to suppose that the Hilbert spac
formed by spin-network-like states. A generalization of t
usual spin networks was presented in the previous sec
However, we should check whether they span the whole s
space, find which representations should be taken into
count, and construct an inner product on the resulting sp

In this section, we address these issues. The idea i
associate with each quantum state a function on a hom
neous space. Then the whole state space is given by
space of such functions subject to conditions to be specifi
One can apply the harmonic analysis on homogene
spaces to find a basis in this space, and the inner produ
given by the integral over the homogeneous space. Once
inner product is defined on the space of functions and
correspondence with quantum states is established, it ind
the Hilbert structure on the quantum state space. We em
size that the functional space plays an auxiliary role in t
construction, and there are certain restrictions on its iden
cation with the quantum state space.

The crucial point is the choice of homogeneous space
first, we analyze the kinematical space of general relativ
However, as we will see, this analysis is insufficient to fi
the right space since the representation of quantum state
functions on such space fails to be always correct. Never

4We omitted the superscriptĝx for A( j ). Actually, thesu(2) con-
nection is given by Eq.~17! with v i

ab transformed by the loca

Lorentz transformationĝx .
8-4
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less, a little extension of the chosen homogeneous spac
lows us to make the emerging picture consistent with
previous analysis of the quantum area operator, altho
strict proof that it is sufficient is still lacking.

A. The state space

First of all, let us discuss the degrees of freedom wh
give rise to the state space of general relativity with
SO~3,1! gauge group. Now we have an 18-component L
entz connectionA. So we can expect that the quantum sta
can be represented as functions of this connection.5 Being
associated with a graph, the connection should give ris
SO~3,1! holonomies. Thus, the naive analysis leads to
realization of the state space by functions on theG
5SO(3,1) group manifold.

However, this is a very simplified picture. Let us look
the constructed spin networks~21!. The first question which
arises is why can we write a wave function as a functiona
both the connection and the fieldx? It turns out that it is
possible because they commute and the connectionA has
just three independent components less than the cano
oneA @8#. The missed components are encoded in the Ga
constraint and they are not taken to be ‘‘configuration va
ables.’’ Moreover, there are the second class constra
which fix six components more of the connection. As a
sult, we end up with two objectsA and x having nine and
three independent components, respectively.A is naturally
associated with the links of graphs. However, taking in
account the number of independent components and reg
ing Eq. ~23!, it gives rise more naturally to holonomies of
three-dimensional groupH which is, of course, expected t
be SU~2!. What is the role ofx? From the explicit form of
the diffeomorphism constraint@15#, when the second clas
constraints are solved, one can see that the fieldx transforms
as a scalar. Due to this, it is natural to associate it with sp
points, i.e., with the nodes of graphs. This is exactly the sa
conclusion that can be found from the result~23!. Besides,
sincex is related to boosts only, it can be considered a
coordinate on the homogeneous spaceX5SO(3,1)/SO(3).
Thus, one can expect that the Hilbert space is realized
functions onH associated with the links andX associated
with the nodes. Therefore, given a graphG with n links and
m nodes, we choose the corresponding homogeneous s
to be X̃5@H#n3@X#m.

However, we are not interested in all functions onX̃. We
should introduce the information about the structure of
underlying graph and the symmetry properties. To do t
we impose an important requirement, namely that the fu
tional space to be considered carries a unitary represent
of the Lorentz group and the gauge invariant sector is gi
by the functions independent ofX. This restricts us to a sub

5Actually, they cannot be functions of the connection because
noncommutative. However, we can choose a vacuum and act
by the operators constructed from these functions. In this sense
can establish a correspondence between the Hilbert space an
space of functions of the connection.
02402
al-
e
h

h
e
-
s

to
e

f

cal
ss
-
ts
-

rd-

ce
e

a

y

ace

e
,

c-
ion
n

space of the full spaceL2(X̃). To use this requirement, on
should decide how the elements ofH andX transform under
the action ofG. The transformations can be found from th
representation~23!, which relates the elements toA and x,
whose transformation laws under the local Lorentz groupG
are known. In particular, we identify an elementxPX of the
homogeneous space withĝx

21 and choose it to be a pur
boost. Sincex50 is a stationary point under the action ofH,
this identification is an isomorphism.

Let gPG, and gĝx
215ḡh̄ is the Cartan decompositio

@12#. (h̄PH and ḡ is a pure boost.! From the definition of
ĝx , it follows that the transformation ofxPX is given by the
boost leading toxg from the gaugex50. Thus we have

x5ĝx
21→ĝxg

215ḡ5gxh̄21. ~24!

Using this result, we obtain

A ĝx→~A g! ĝxg5~A ĝx! h̄. ~25!

Therefore,

il~h!5Ug
(l, j )@A ĝx,0#→Ug

(l, j )@~A ĝx! h̄,0#

5Rl@ h̄~b!#il~h!Rl
21@ h̄~a!#. ~26!

SinceRl(h̄)il(h)5il(h̄h) due to Eq.~7!, the transforma-
tion law is6

h→h̄~b!hh̄21~a!. ~27!

This is just to cancel the compensating rotationh̄ from Eq.
~24!.

Given the transformation laws~24! and ~27!, we can for-
mulate our requirement. Letf G(h,x) be a square integrabl
function associated with the graphG, wherehP@H#n andx
P@X#m. Then the following representation should exist:

f G~h,x!5S )
r 51

m E d%~l r !(
pr

D f̌ p1•••pm

l1•••lmep1•••pm

l1•••lm~h,x!,

~28!

whered%(l) is a measure on the set of irreducible repres
tations ofG, p5( j ,a) labels a basis in a given represent
tion, and the vectorse(h,x) are so that for anygP@G#m we
have

ep1•••pm

l1 , . . . ,lm~ h̄( f )hh̄( i )
21 ,gxh̄21!

5S )
r 51

m

(
qr

Dprqr

lr ~gr !D eq1•••qm

l1•••lm~h,x!, ~29!

is
it

ne
the

6As it is seen from the derivation, the law~27! is also valid for the

nonprojected Wilson linesUg@A ĝx#.
8-5
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whereDpq
l (gr) are matrix elements ofgrPG in the repre-

sentationl and the Cartan decomposition definingh̄ was
used. Equation~29! means thath̄21 arising at each node
should be canceled by the corresponding transformation
h’s associated with the adjacent links. Equation~28! is
merely the decomposition of a general representation
direct integral of irreducible representations. The functio
of L2(X̃) satisfying the described symmetry requirement w
give a generalization of the usual cylindrical functions.

Let us investigate the resulting space of all admissi
functions related to the given graphG. We decompose a
given f G(h,x) in irreducible representations to find a basis
this space. In the first step, by the Peter-Weyl theorem, it
be represented as a sum over all unitary irreducible repre
tations ofH:

f G~h,x!5S )
i 51

n

(
j i ,ai ,bi

Dbiai

j i ~hi !D f̆ a1•••an ,b1•••bn

j 1••• j n ~x!.

~30!

In the second step, we expand the coefficient functions u
02402
of

a
s
l

e

n
n-

g

the theorem given by the harmonic analysis on the homo
neous spaces@12#:

f̆ a1•••an ,b1•••bn

j 1••• j n ~x!

5S )
r 51

m E
0

`

dr̃ r r̃ r
2 (

pr ,qr

Dprqr

(0,i r̃r )~gxr
!eqr

~ r̃ r !D
3 f̄ a1•••an ,b1•••bn

j 1••• j n ,p1•••pm~ r̃1 , . . . ,r̃m!, ~31!

wheregx is a representative ofx in G andeq( r̃) is a station-

ary vector ofH: Dpq
(0,i r̃)(h)eq( r̃)5ep( r̃). Notice that only the

so-calledsimplerepresentations ofG of the principal series
with n50 contribute to the expansion. The coefficient fun
tions f̄ are restricted by the conditions~28! and ~29!. The
most generalf̄ satisfying them can be given in terms of th
Clebsch-Gordon coefficients since they are only objects
lating indices in different representations. The result is
following:
inks

n

f̄ a1•••an ,b1•••bn

j 1••• j n ,p1•••pm~ r̃1 , . . . ,r̃m!5S )
r 51

m E
X
dm~xr !Dprqr

(0,i r̃r )~gxr
!eqr

~ r̃ r !E d%~l r !(
p̃r

(
q̃r5( j̃ r ,ãr )

D
p̃r q̃r

lr ~gxr
!

3^q̃r u j r k
,ar k

; j r l
,br l

&HD f̃
p̃1••• p̃m , j̃ i••• j̃ m

j 1••• j n ~l1 , . . . ,lm!. ~32!

In our notations,r k and r l refer to all outgoing and incoming links for ther th node, respectively.̂•u•••&H denotes SU~2!
interwiners for the tensor product of any number of representations. Substitution of the expression~32! in Eq. ~31! gives

f G~h,x!5S )
i 51

n

(
j i ,ai ,bi

Dbiai

j i ~hi !D S )
r 51

m E d%~l r ! (
p̃r ,q̃r

D
p̃r q̃r

lr ~gxr
!^q̃r u j r k

,ar k
; j r l

,br l
&HD f̃

p̃1••• p̃m , j̃ i••• j̃ m

j 1••• j n ~l1 , . . . ,lm!. ~33!

The property~29! follows from the facts that the Lorentz group matrix elements of an element of the SO~3! subgroup do not
depend on the representation of the Lorentz group and they are diagonal with respect to the indexj @see Eq.~B6!#. Due to this,

Dp̃q̃
l

~ggxh̄21!5(
p,q

Dp̃p
l

~g!Dpq
l ~gx!Dqq̃

l
~ h̄21!5(

p
(

a
Dp̃p

l
~g!Dpq

l ~gx!Daã
j̃

~ h̄21!, ~34!

where in the last expressionq5( j̃ ,a), q̃5( j̃ ,ã). Daã
j̃ (h̄21) can be brought through the interwiner to act on the adjacent l

and cancel the result of their transformations.
To establish a correspondence between the functions~33! and the spin networks~23!, we associate to each link~or hi

PH) a simple representation (0,ir i) of the Lorentz group. The restriction to the representations withn50 is due to the fact
that each of them contains all representations ofH, whereas any other restricts toj >n. Therefore, we can embed a functio
on H without loss of any information only into a simple representation. Besides, we change the SU~2! interwiners by their
Lorentz counterparts.~We omit the corresponding subscript.! Then the function~33! becomes

f G~h,x!5S )
i 51

n

(
j i ,ai ,bi

i (0,ir i )
@Dbiai

j i ~hi !#E
2`

`

dr ir i
2D S )

r 51

m E d%~l r ! (
p̃r ,q̃r

D
p̃r q̃r

lr ~gxr
!

3^l r ,q̃r u2r r k
,~ j r k

,ar k
!;r r l

,~ j r l
,br l

!& D f̂
p̃1••• p̃m , j̃ i••• j̃ m

j 1••• j n ~l1 , . . . ,lm ;r1 , . . . ,rn!. ~35!
8-6
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Indeed, it is the same as in Eq.~33!. It can be seen due to th
following factorization property@16#:

^l,~ j̃ ,ã!ur1 ,~ j 1 ,a1!;r2 ,~ j 2 ,a2!&

5^ j̃ ,ãu j 1 ,a1 ; j 2 ,a2&HF~l, j̃ ur1 , j 1 ;r2 , j 2!. ~36!

Due to this, onlyF and f̂ depend onr i and we obtain an
expression forf̃ as an integral off̂ with the functionsF over
r i .

If the coefficientsf̂ are independent of the indicesj̃ , in
the result~35! one can recognize an arbitrary linear com
nation of the states~23!. What does the dependence ofj̃
mean? In fact, the states~21! possess a larger invariance th
we required from our functions. They are explicitly invaria
under simultaneous Lorentz transformations of the Wils
lines and interwiners. In our terms, this means

h→g~b!hg21~a!, x→xg21. ~37!

The problem is that it takes away the arguments from th
spaces and, therefore, the requirement of the invariance
der this transformation cannot be formulated in terms of
functions onX̃ only. We do not know how to implement it
Therefore, we simply postulate that only the functions~35!

with f̂ independent ofj̃ should be considered. Notice that
the gauge invariant sector this problem does not arise, s
in this casej̃ takes only one valuej̃ 50.

Thus, we obtain that linear combinations of the states~23!
span all functionsf G(h,x) subject to the described cond
tions. However, from the above it is clear that not all sta
~35! differing only by the Lorentz representationsr i assigned
to the links are described by different functions. Most expl
itly, it can be seen for the graph consisting of one loop.
en

ec
on
ke

02402
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this case the function~35! does not depend onr at all. This
means that in the described space the area operator cann
implemented as a self-adjoint operator. Indeed, the area s
trum ~19! ‘‘feels’’ the Lorentz representations and, as
known, eigenstates with different eigenvalues must be
thogonal. But in our case the eigenstates differing only byr i

would not be orthogonal with respect to the inner prod

induced by the natural inner product on the spaceL2(X̃) ~see
the next subsection!. Therefore, the representation of qua
tum states by the functionsf G(h,x) is essentially incomplete
Actually, we have already seen this in the end of Sec.
where it was argued that the change of the projected Wil
lines by SU~2! elements is valid until quantum commutato
become involved in calculations.

We suggest a simple way to improve the situation. W
argue that it is sufficient to associate with the links an ad
tional variable, sayw i , to make the resulting picture self
consistent. The modification can be interpreted as taking
account quantum effects lost after the change of the Wil
lines by the elements ofH, which has been done in Eq.~16!.
The new variable takes values inR and it distinguishes the
states with differentr i . Indeed, now our state space is th
space of functionsf G(h,w,x) on the homogeneous spaceX
5@H3R#n3@X#m subject to the previous conditions~28!
and~29!. We can expand its elements in irreducible repres
tations as above. In this way, we arrive at Eq.~33!, where the
coefficients f̃ are functions ofw. Therefore, we should ex
pand them in the ordinary Fourier integral, which gives t
additional factor*2`

` dr ie
iw ir i for each link. Besides, the co

efficients become functions ofr i . Then we can redefine
them by the functionsF from Eq. ~36! and take them to be
independent of the indicesj̃ as discussed above. As a resu
we arrive at the following representation:
f G~h,w,x!5S )
i 51

n

(
j i

E
2`

`

dr ir i
2D S )

r 51

m E d%~l r !(
pr

D f̂ p
j ~l;r!ep

j ~l;r!, ~38!

where

ep
j ~l;r!5S )

i 51

n

(
ai ,bi

Dbiai

j i ~hi !e
iw ir i D )

r 51

m

(
qr

Dprqr

lr ~gxr
!
^l r ,qr u2r r k

,~ j r k
,ar k

!;r r l
,~ j r l

,br l
!&

Nr~l r ;$r r k
, j r k

%,$r r l
, j r l

%!
~39!
of

ns,

in
t

and we used shortened notations for indices and argum
The normalization factorsNr will be found below.

The functions~38! describe our state space and the v
tors ~39! form a basis in it. The main result of this subsecti
is the information regarding the representations to be ta
into account. From Eq.~38! we conclude the following.~1!
Only the simple representations of type (0,ir) should be
associated with links.~2! Since only representations withj
PN enter the decomposition of the representations (0,ir i),
ts.

-

n

in Eq. ~38! we actually sum over integerj ’s only. Therefore,
H5SO(3) rather than SU~2!. Actually, it is natural sinceH
must be a subgroup of SO~3,1!. ~3! Similarly, only l
5( l 0 ,l 1), l 0PN appear in the states due to the properties
the Clebsch-Gordon coefficients. The only restriction onl 1 is
that it corresponds to the principal series of representatio
i.e., l 15 i r̃.

The fact that it is sufficient to consider the Wilson lines
the simple representations (0,ir) only has a very importan
8-7
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consequence. For such representations the effective Imm
parameter~18! b ( j )50. Because of this, two projected Wi
son lines~9! commute with each other despite the nonco
mutativity of the connection. Indeed, their commutator giv
rise toTX@A i

X ,A j
Y#TY . The generators act in different rep

resentation spaces and so they can be projected. After th
is enough to obtain that the commutator ofso(3) compo-
nents of the connection@ I (Q)Z

X A i
Z ,A j

WI (Q)W
Y # vanishes. This

can be shown by tedious but direct calculations from
result~A7!. As a result, the problem of the noncommutativ
disappears for the constructed states and the spin netw
~21! are defined unambiguously.

B. The inner product

On the state space described above, one can define a
ral inner product. Since our states are realized by functi
on H3R andX5SO(3,1)/SO(3) associated with the links
and nodes of a graph, respectively, the simplest idea i
take an integral over these manifolds. Then the integral o
H3R encodes the functional integration over the connect
A and the integral overX corresponds to the integration ov
the field x. This leads to the following expression for th
inner product:
n

r

r-
in
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, t
tio
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re
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^ f G1
,gG2

&5E
[H] no. links

dm~h!E
Rno. links

dw

3E
[X] no. nodes

dm~x! f G~h,w,x!gG~h,w,x!.

~40!

~It is implied that bothf G1
and gG2

were continued in the

trivial way to the common graphG5G1øG2.! The inner
product~40! is explicitly Lorentz invariant, since the effec
of a Lorentz transformation of the states can be absorbed
the integration measure overX.

Let us calculate the inner product~40! for the states~38!.
Before performing the integrations, we extend the integ
over X to the whole groupG. This can be done since th

additional matrix elementsDqp
l (h̄) can be translated to ac

on Dba
j (h) and absorbed into the integration overH due to

the left-right invariance of the Haar measure. The remain
integral gives the volume ofH which is normalized to 1. As
a result, we can perform all integrations due to the ortho
nality of the matrix elements. The result reads
^ f G1
,gG2

&5S )
i 51

n

(
j i

E
2`

`

dr ir i
2D S )

r 51

m E d%~l r !

(
qr

(
ar k

,br l

z^l r ,qr u2r r k
,~ j r k

,ar k
!;r r l

,~ j r l
,br l

!& z2

Nr
2~l r ;$r r k

, j r k
%,$r r l

, j r l
%!

(
pr

D f̂ p
j ~l;r!ĝp

j ~l;r!.

~41!

Therefore, if we take

Nr~l r ;$r r k
, j r k

%,$r r l
, j r l

%!5A(
qr

(
ar k

,br l

z^l r ,qr u2r r k
,~ j r k

,ar k
!;r r l

,~ j r l
,br l

!& z2, ~42!
al

as
ons

be
lcu-
en
on

t we
s of

,
od-
e
ed
the vectors~39! will form an orthonormal basis.@Of course,
it is implied that the right-hand side of Eq.~42! does not
vanish, which simply restricts the range of summations a
integrations.#

Notice that without the variablew and the integration ove
it, we would be left with two integrals overr i coming from
f G andgG , correspondingly. It means that states with diffe
ent assignments of the Lorentz representations to the l
would not be orthogonal to each other. Besides, it is inter
ing to note that we cannot add the supplementary serie
the representations associated with the links. In this case
states would also not be orthogonal despite the integra
over w sinceeiwr becomes real.

The resulting Hilbert space is obtained by completion
the space of the generalized cylindrical functions~38! with
respect to the measure induced by Eq.~40!. This structure is
translated to the space of quantum states in the ‘‘connec
representation’’ provided we establish the following cor
spondence:
d

ks
t-
to
he
n

f

n
-

CS↔ep
j ~l;r!, ~43!

whereCS is a Lorentz spin network~21!. With respect to this
structure, the Lorentz spin networks form an orthonorm
basis in the Hilbert space of quantum gravity.

We finish this subsection with some comments. As w
discussed at the end of Sec. II, there are definite limitati
on the use of the identification~43!. However, these limita-
tions do not restrict the physical information which can
found by use of our construction. Indeed, consider the ca
lation of a matrix element of a quantum operator betwe
two states. Let the states be given in terms of functions
the homogeneous space. Then to find the matrix elemen
should correspond the quantum states expressed in term
the Lorentz spin networks~21! via Eq.~43!, use the operator
make the inverse identification, and calculate the inner pr
uct ~40! of two resulting states. Following this procedure, w
do not arrive at any contradictions with the results obtain
8-8
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in other ways. In particular, the area spectrum is given by
~19!.

C. Gauge invariant subspace

If we work directly in the gauge invariant subspace, t
situation simplifies drastically. In this case, our state spac
realized by functionsf G(h,w) on X05@H3R#n invariant
under the transformation~27!. The basis is given by

ej~r!5S )
i 51

n

(
ai ,bi

Dbiai

j i ~hi !e
iw ir i D

3)
r 51

m ^r r k
,~ j r k

,ar k
!ur r l

,~ j r l
,br l

!&

Nr~$r r k
, j r k

%;$r r l
, j r l

%!
, ~44!

where

Nr~$r r k
, j r k

%;$r r l
, j r l

%!

5A (
ar k

,br l

z^r r k
,~ j r k

,ar k
!ur r l

,~ j r l
,br l

!& z2. ~45!

It is orthonormal with respect to the inner product defined
an integral overX0:

^ f G1
,gG2

&ph5E
[H] no. links

dm~h!

3E
Rno. links

dw f G~h,w!gG~h,w!. ~46!

This is the exact result in the sense that there is no prob
with j̃ dependence which we encountered considering n
gauge-invariant states~see the discussion in Sec. IV A!.

However, it is possible also to describe this subspace
part of the space of all non-gauge-invariant states. But
description becomes essentially more complicated. In S
IV A we considered the space of square integrable functi
on X. Therefore, the harmonic analysis was relative
simple. In particular, the measure on the set of unitary ir
ducible representations of the Lorentz group was given
the standard Plancherel measure*d%(l)5(n50

` *2`
` dr(n2

1r2). It vanishes on the supplementary series of represe
tions so that only the principal series contributes to the
composition of a square integrable function@12#.

However, it is clear that the gauge invariant states are
described by square integrable functions sinceX is a non-
compact manifold. This is reflected in the fact that the triv
representation of the Lorentz group corresponds tol5(0,
61) and does not enter the principal series of represe
tions. Therefore, it does not appear in the decomposition
general state~38!.

Thus, one has to extend the space of functions under
sideration. But in this case it is impossible to introduce
Hilbert space structure on the extended space which inclu
the gauge invariant functions onX. Besides, the Fourie
analysis developed for the spaceL2 does not work anymore
A way to overcome these obstacles is to realize our state
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functionals on a dense subset ofL2(X). We can choose it to
be the space of infinitely differentiable functions of compa
support C0

`(X). There exists an extension of the Fouri
analysis on group manifolds to the case of such general
functions @17#. Therefore, we can apply it to our problem
However, in this paper we only outline its main steps and
not discuss the mathematical subtleties and details.

The first distinction from the previous case happens in
~31!. Now the integral overr̃ is replaced by the integra
along a contour in the complex plane of the parameterl 1.
The position of the contour is defined by the concrete beh
ior of the functionf̆ (x). In the particular case of the consta
function, it consists of two circles aroundl 1561 @17#. In a
similar way, the integral*d%(l) in Eq. ~33! and, conse-
quently, in Eq.~38! should be properly generalized.

But now we encounter another problem. As was me
tioned, the decomposition of the tensor product of two re
resentations of the principal series contains only represe
tions of this series@18#. Therefore, we have to generaliz
also the notion of an interwiner to get a nonvanishing res
in Eq. ~39!. A general expression for the interwiners can
given in terms of the integral of group matrix elements@12#:

^a1 ; . . . ;akua18 ; . . . ;a l8&

5Nb1•••bk ,b
18•••b

l8
21 E

G
dm~g!)

r 51

k

Dprqr

lr ~g!

3)
s51

l

D
p

s8q
s8

ls8 ~g21!, ~47!

Nb1•••bk ,b
18•••b

l8
5S E

G
dm~g!)

r 51

k

Dqrqr

lr ~g!

3)
s51

l

D
q

s8q
s8

ls8 ~g21!D 1/2

, ~48!

where we denoted a5(l,p), b5(l,q), and
Nb1•••bk ,b

18•••b
l8

is a normalization coefficient.~There is no

summation overqr andqs8 .! In fact, the normalization is no
essential since it is canceled in the combination entering
~39!.

Consider the simplest example of coupling two simp
representations and define its interwiner with the trivial re
resentation. Using Eq.~47!, we obtain

^r1,p1ur2,p2&5^0u2r1,p1;r2,p2&

5N(r1,q)(r2,q)
21 Edm~g!Dp1q

(0,ir1)
~g!Dp2q

(0,ir2)
~g21!

5N(r1 ,q)(r1 ,q)
21 r1

22d~r12r2!dp1p2
. ~49!

Thus, the interwiners also become distributional. This is
a problem if we integrate over representations as is don
Eq. ~38!. However, this may result that the spin networks a
not well defined when they are considered in their own rig
For example, this happens for a loop with one two-vale
node. And, in general, such two-valent nodes give rise
8-9
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unphysical infinities due to thed function in Eq.~49!. This
indicates that either such states should be regarded on
distributions or the interwiner~49! should be redefined. In
fact, we obtain another infinity due toNr in the denominator
of Eq. ~39! which is defined by Eq.~42!. From the formal
point of view, two infinities exactly cancel each other. The
fore, it is tempting to redefine the interwiner~49! replacing
the d function by the Kronecker symbol7

^0u2r1 ,p1 ;r2 ,p2&5dr1r2
dp1p2

. ~50!

For higher valent nodes, this problem is absent since
integral of three matrix elements of the principal series
ways converges and for all representations in the stripu l 1u
<1 matrix elements are bounded functions on the gro
Therefore, in a general case, except for the two-valent o
we define interwiners by the expression~47!.

Finally, we note that the states which are not described
functions ofL2(X) remain non-normalizable. But this doe
not mean that they are not physical states. The fact that
inner product diverges on the gauge invariant states is
because we integrate over gauge orbits which have an
nite volume for the Lorentz group. The physical inner pro
uct should be given by a gauge fixed integral. Sincex is a
pure gauge variable, it is enough to take it to be fixed. Si
the integration overx is encoded in the integration overX,
the physical inner product can be obtained by dropping
integral. Thus, it is given by Eq.~46!.

D. Relation with SU„2… state space

It is interesting to see how the SU~2! state space, which
the standard loop quantization is based on, emerges in
approach. It is obtained by neglecting the dependence o
functions f G(h,w,x) on the two last argumentsw and x.
Droppingx can be interpreted as imposing the Lorentz p
of the Gauss constraint. On the other hand, we saw that
glectingw is equivalent to working directly in the limit~9!.
Then our projected Wilson lines are the ordinary SU~2! Wil-
son lines~16! with the Ashtekar-Barbero connection~17!.
The effective Immirzi parameterb ( j ) is defined by represen
tations~18!. We stress that it has nothing in common with t
Immirzi parameterb appearing in the action. Moreover, du
to the restriction to the simple representations,b ( j )50,
which is an unphysical value forb. Also, we emphasize tha
nothing in our construction and results depends onb. It has
a physical meaning in neither the quantum theory nor
classical one.

However, whereas the dependence ofx does disappear in
the gauge invariant subspace, the dependence ofw is essen-
tial for consistency. In other words, we cannot neglec
since the limit~9! does not commute with the action of qua
tum operators. Therefore, the quantization based only on
SU~2! state space is unavoidably incorrect. In particular,

7The same expression for the two-valent interwiner should
used in Eq.~44!, where we work directly in the gauge invarian
subspace.
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area spectrum calculated on such space@9,10# is wrong. A
correct quantization should take into account effects of t
noncommutativity. Addingw to the degrees of freedom re
lated to links is the simplest way to do it. But still, it allow
us to achieve consistency on the level of inner product,
we do know how to implement quantum operators in t
resulting Hilbert space of functions on the homogeneo
space. Therefore, in our construction it is an auxiliary sp
and, considering quantum operators, we have to do as it
described at the end of Sec. IV B.

V. CONCLUSION

In this paper, we continued the construction of covaria
loop quantum gravity begun in@7,8,5#. We investigated the
Hilbert space under the assumption that all area operators
simultaneously diagonalizable. Our results are the followi
~1! There is a basis realized by Lorentz covariant spin n
works which are eigenstates of the area operators relate
any spacelike surfaces.~2! Only the simple representation
of the Lorentz group of type (0,ir) are associated with Wil-
son lines.~3! Under the conditions described in the text, t
elements of the Hilbert space can be identified with functio
on @SO(3)3R#n3@SO(3,1)/SO(3)#m. The correspondence
with spin network states~21! is given by Eq.~43!. The gauge
invariant sector is described by functions independent of
last argument.~4! The inner product is defined as an integr
over the homogeneous space.~5! The noncommutativity
problem is solved by the restriction to the simple repres
tations only.

One can note a remarkable similarity between these
sults and the predictions of Lorentzian spin foam mod
@11#. ~For a general review of the spin foam approach, s
@19#.! The most striking similarity is the appearance of t
simple representations as the only admissible Lorentz re
sentations associated with links~or faces of a spin foam!.
However, the reasons for this restriction are different. In
spin foam models, it is a consequence of the so-calledsim-
plicity condition @20,21# or of the harmonic analysis on
SO(3,1)/SO(3). In ourapproach, the simple representatio
appear as the only Lorentz representations into which
can embed any function on SO~3!. Another point where two
approaches converge is the use of the homogeneous s
SO(3,1)/SO(3). This allows us to hope that it is possible
derive a consistent spin foam model from the covariant lo
quantum gravity presented here.

We see that the restriction to the simple representation
essential for both approaches. Therefore, it is worthwhile
note an interesting observation. The eigenvalues of the
operator corresponding to the representations (0,ir) exhaust
the entire spectrum, so that the addition of representat
with nÞ0 would lead only to an additional infinite degen
eracy of the eigenvalues@see Eq.~19!#. This picture is con-
sistent with the so-calledarea representation,8 where inde-

e

8Such representation has been suggested by Vassilevich.
8-10
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pendent states are labeled by areas carried by the links. F
this point of view, there is no reason for the appearance
the additional degeneracy.

Let us discuss some open questions. The first one i
explain the appearance of the new variablew associated with
each link, which seems to be very puzzling. This variable
no classical analogue and appears when we change the
entz Wilson line~9! by the SO~3! one~16!. We realize that its
appearance is related to the noncommutativity of the limit
procedure used in the definition of the projected Wilson l
~9! with the action of quantum operators as explained at
end of Sec. II. But so far its introduction is simply an arti
cial way to make orthogonal different eigenstates of the a
operators. It would be very interesting to understand its
gin in more detail.

As was argued, in general we do not obtain the corr
result if we act by a quantum operator on a function on
homogeneous space in the usual way, instead of conside
the action on the corresponding quantum state before
limit in Eq. ~9! is taken. Therefore, it would be nice to find
realization of the operators directly in the space of such fu
tions to avoid the indirect procedure described after Eq.~43!.
This could be a key to understanding the nature of the v
ablew.

However, there is a large obstacle against the existenc
such a representation. The problem is that on the constru
Hilbert space, the representation of operators fails to b
homomorphism of the classical operator algebra. For
ample, all matrix elements of the smeared triad opera
P̃X(S) @8# vanish.@Three components vanish due to the pr
ence of the projector in the commutation relations~A6! and
another three disappear due to the vanishing of the effec
Immirzi parameterb ( j ) for the simple representations.# On
the other hand, its square corresponds to the square o
area operator and does not vanish.

This fact tells us that, actually, we restricted ourselves t
part of a larger state space. This space is spanned by s
like Eq. ~21! but with Wilson lines projected at the en
points only.~The projection is needed to make the states w
defined. Therefore, it represents a nontrivial result that
can construct such general well-defined Lorentz covar
spin network states.! Our states with the Wilson lines~9! can
be obtained in the limit of an infinite number of the trivi
~two-valent! nodes. It may happen that the whole space
the more general states is important and cannot be negle
However, their physical sense is unclear since they are ei
states of only those area operators which are defined for
faces intersecting the graphs at nodes only. Besides, for
states we will have trouble with the noncommutativity of t
connection and with the inner product, because, as was
phasized, the Wilson lines projected only at the end points
not belong to any group. Therefore, our hope is that only
limiting subspace considered in the paper is physically
evant. But the situation must be clarified.

Since we restricted ourselves to the representat
(0,ir), the area spectrum is given by

S58p\G(
i

Aj i~ j i11!1r i
211. ~51!
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In contrast to the SU~2! result, the spectrum~51! is continu-
ous. What meaning this fact has for the quantum grav
should be realized more carefully. Note only that it still giv
a minimal quanta of area 8p\G which corresponds toj
5r50. It is interesting that the quanta would not appea
we add the supplementary series of representations. Per
its existence can be considered as an indication of a disc
structure of quantum space.

The related problem is the entropy of a black hole. C
tainly, the derivation of the Bekenstein-Hawking formu
found in the SU~2! case@4# should be generalized to th
present situation. The continuity of the spectrum seems to
a large obstacle. At the moment, we do not know how
overcome it. Perhaps only representations withr50 should
be taken into account when counting independent states.
issue deserves further investigation.

To conclude, we would like to stress that the knowled
of the structure of the Hilbert space opens many new line
research in the framework of the covariant loop gravity. B
sides the already discussed problems of the black hole
tropy and relation with spin foam models, one can menti
for instance, the spectrum of the volume operator. Also, o
can try to generalize the recent approach to quantum cos
ogy @22#. Perhaps most important would be to construc
quantum version of the Hamiltonian constraint which
polynomial in this case and, therefore, is expected to be
of the problems arising in the SU~2! case@23#.
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APPENDIX A: BASICS OF COVARIANT CANONICAL
FORMALISM

In this appendix, we list the basic definitions concerni
the Lorentz covariant canonical formulation. For a more d
tailed introduction to it, we refer the reader to@7,8,5#.

The 311 decomposition of spacetime is chosen to be

e05Ndt1xaEi
adxi , ea5Ei

adxi1Ei
aNidt. ~A1!

The multiplets which play the role of canonical variables a

connection multiplet, Ai
X5S v i

0a ,
1

2
«a

bcv i
bcD ;

first triad multiplet, P̃X
i 5~Ẽa

i ,«a
bcẼb

i xc!;
~A2!

second triad multiplet, Q̃X
i 5~2«a

bcẼb
i xc ,Ẽa

i !;
8-11
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where the triad multiplets are related by a numerical ma
P̃X

i 5PX
YQ̃Y

i . In the formulas, the following matrices appea

PXY5S 0 1

1 0D da
b ,

RXY5gXY2
1

b
PXY

5S 1 2
1

b

2
1

b
21

D da
b . ~A3!

Also one can introduce theinverse triad multiplets P> i
X and

Q> i
X andprojectorswhich depend on the fieldx only:

I (P)X
Y 5 P̃X

i P> i
Y , I (Q)X

Y 5Q̃X
i Q> i

Y . ~A4!

If we pass to the shifted connection,
02402
x
A i

X5Ai
X1

1

2S 11
1

b2D RS
XI (Q)

ST RT
Zf ZW

Y P> i
WGY , ~A5!

whereGX is the Gauss constraint generating the local Lore
transformations, the Dirac brackets can be given in
simple form

$A i
X ,P̃Y

j %D5d i
j I (P)Y

X , ~A6!

whereas the commutator of two connections is horrible,

H E d3x f~x!A i
X~x!,E d3y g~y!A j

Y~y!J
D

5
1

2S 11
1

b2D RS
XRT

YE d3z@~Ki j
ST,lg] l f 2K ji

TS,l f ] lg!

1 f g~Li j
ST2L ji

TS!#, ~A7!
where

Ki j
ST,l5PSS8 f S8

PQ$Q̃P
l @~Q> Q> ! i j Q> Q

T 1Q> i
TQ> j

Q2Q> j
TQ> i

Q#1d i
lQ> Q

T Q> j
P%

Li j
ST5PS8

S f Z
PQ@Q> j

S8Q> n
TQ> i

Z1~Q> Q> ! inQ> j
S8Q> TZ1Q> i

TQ> n
S8Q> j

Z2Q> i
TQ> j

S8Q> n
Z1~Q> Q> ! i j Q> n

S8Q> TZ

2Q> j
TQ> n

S8Q> i
Z#Q̃P

l ] l Q̃Q
n 1PS8

S f ZP
Q @Q> n

TQ> j
P1~Q> Q> ! jnQ> TP2Q> j

TQ> n
P#Q> ZS8] i Q̃Q

n

1PZ
Z8 f Z8

PQ
@~Q> Q> ! inQ> j

ZQ> ST2~Q> Q> ! inQ> j
TQ> SZ2~Q> Q> ! i j Q> n

TQ> SZ#Q̃P
l ] l Q̃Q

n

1PS8
S f PQ

Z Q> j
S8Q> i

QQ> TP] l Q̃Z
l 1 f PQ

Z Q> i
PQ> j

QQ> Z
TQ> SWPW

W8] l Q̃W8
l . ~A8!

It is implied that repeated six-dimensional indices are always contracted with the help of the Killing formgXY .
is

n

APPENDIX B: IRREDUCIBLE REPRESENTATIONS
OF THE LORENTZ GROUP

The generatorsTX form the so(3,1) algebra with the
structure constantsf XY

Z :

@TX ,TY#5 f XY
Z TZ . ~B1!

Let us introduce the notationsTX5(Aa ,2Ba) and

H15 iB12B2 , H25 iB11B2 , H35 iB3 , ~B2!

F15 iA12A2 , F25 iA11A2 , F35 iA3 .
~B3!

These generators commute in the following way:

@H1 ,H3#52H1 , @H2 ,H3#5H2 ,

@H1 ,H2#52H3 ,
@H1 ,F1#5@H2 ,F2#5@H3 ,F3#50,

@H1 ,F3#52F1 , @H2 ,F3#5F2 ,
~B4!

@H1 ,F2#52@H2 ,F1#52F3 ,

@F1 ,H3#52F1 , @F2 ,H3#5F2 ,

@F1 ,F3#5H1 , @F2 ,F3#52H2 ,

@F1 ,F2#522H3 .

An irreducible representation of the Lorentz group
characterized by two numbers (l 0 ,l 1), where l 0PN/2 and
l 1PC. In the spaceHl 0 ,l 1

of this representation, one ca
introduce an orthonormal basis,

$j l ,m%, m52 l ,2 l 11, . . . ,l 21,l ,
8-12
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l 5 l 0 ,ł 011, . . . ~B5!

such that the generators introduced above act in the foll
ing way @24#:

H3j l ,m5mj l ,m ,

H1j l ,m5A~ l 1m11!~ l 2m!j l ,m11 ,
~B6!

H2j l ,m5A~ l 1m!~ l 2m11!j l ,m21 ,

F3j l ,m5g ( l )Al 22m2j l 21,m1b ( l )mj l ,m

2g ( l 11)A~ l 11!22m2j l 11,m ,

F1j l ,m5g ( l )A~ l 2m!~ l 2m21!j l 21,m11

1b ( l )A~ l 2m!~ l 1m11!j l ,m11

1g ( l 11)A~ l 1m11!~ l 1m12!j l 11,m11 ,

~B7!
cz
to

ev

at
aw
m

s

02402
-

F2j l ,m52g ( l )A~ l 1m!~ l 1m21!j l 21,m21

1b ( l )A~ l 1m!~ l 2m11!j l ,m21

2g ( l 11)A~ l 2m11!~ l 2m12!j l 11,m21 ,

where

b ( l )52
i l 0l 1

l ~ l 11!
, g ( l )5

i

l
A~ l 22 l 0

2!~ l 22 l 1
2!

4l 221
. ~B8!

The unitary representations correspond to two cases:

~ i! principal series: ~n,ir!, nPN/2, rPR; ~B9!

~ ii ! supplementary series:~0,r!, uru,1, rPR. ~B10!
,

, J.
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