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A wide family of singularity-free cosmological models
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In this paper a family of nonsingular cylindrical perfect fluid cosmologies is derived. The equation of state
corresponds to a stiff fluid. The family depends on two independent functions under very simple conditions. A
sufficient condition for geodesic completeness is provided.

DOI: 10.1103/PhysRevD.66.024027 PACS nunifer04.20.Dw, 04.20.Ex, 04.20.Jb
I. INTRODUCTION for the spacetime in a convenient coordinate cHart
{tr,z, ¢},

After the discovery of the first regular perfect fluid cos-
mological model by SenovillgL], one of the major questions ds?=e?X(—dt?+dr?)+e 2VdZ2+p%e?Vd¢?, (1)
that that spacetime posed was to determine how generic this
lack of singularities was. For instance, in the Ruiz-Senovillawhich has been chosen as isotropic on the nonignorable co-
[2] barotropic family with the equation of stafe=yu,0  ordinatest,r. This isa priori no restriction and may always
<y<1, the regular models were those corresponding to &e achieved since every two-metric admits an isotropic pa-
radiation fluid,y=1/3. These solutions are the separatrix be-fametrization. The metric is written in terms of three func-
tween those models with a singular pressure and energy defions K, U, andp that depend only ohandr.
sity, y>1/3, and those that just have a singular Weyl curva- We may interpret the isometry group as cylindrical sym-

ture, y<1/3[3]. Therefore regular models would be a zero-metry in the spacetime provided we have a regular axis
measure set in this family. where the norm of the angular Killing field vanishes. We

Our aim in this paper is to determine an infinite family of shall come back to this issue later on. The range of the co-
regular cosmological models that need not be so restrictiverdinates will then be the usual one for cylindrical symme-
as the Ruiz-Senovilla family and therefore may indicate thatry:
regular models cannot be neglected in the set of solutions of
Einstein equations. —o<t, z<®, 0<r<e, 0<¢p<2m. 2

We focus on stiff perfect fluids, since they are simple
enough to allow almost complete integration of Einstein The matter content of the spacetime is a perfect fluid of
equations and thereby constitute an excellent arena fagenergy densityu, pressurep, and four-velocityu. The
checking hypotheses. We shall show that under very simplénergy-momentum tensor is then
restrictions regular solutions appeatr.

The second section of this paper is devoted to deriving THY= puku”+p(g"”+uru”),
solutions of the stiff fluid Einstein equations in a convenient
manner for our purposes. In the third section geodesic com- Ospu,r<3, uvfu,=-1 ©)]

pleteness of the solutions is imposed and the restrictions de-
rived from this assumption are expressed as a sufficient con- For a stiff fluid, = p. We write down the Einstein equa-

dition. tionsR,,—Rg,,/2=T,, in a comoving system of coordi-
nates for the perfect fluid, that is;=e K¢,. After some
Il STIEE FLUID COSMOLOGIES simplifications the equations read
We restrict our attention to spacetimes endowed with an 1
Abelian orthogonally transitive group of isometri€s, act- Up—Up + ;(UtPt_UrPr)zov (43)
ing on timelike surfaces, since this is the framework where
regular cosmological models have so far appeared. We fur- _
pi— P =0, (4b)

ther require that the Killing fields be mutually orthogonal.
Adapting the coordinates to these fields we write them as B
{d,,04}. Under these assumptions we can write the metric Kipr +Kepe=py+Uipr +Urpe+2pUUr, - (40
Pt Prr
*Email address: I[fernandez@etsin.upm.es 2
TEmail address: mgromero@fis.ucm.es (4d)

Kipit K pr= +Upp+Uppe+ p(UZ+U7) + ppe?,
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Upr—

u
K, — Kyt T‘p%uf— UZ=peX, (49

K,+ E=0, (4f)
Pt Pt
K+ ;+ 2 0, (49
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where the last pair of equations are just the Euler and contifor initial data U(x,y,0)=f(x,y),U(x,y,0)=g(x,y). Note

nuity equations for the perfect fluid.

that the 2D wave equation does not satisfy Huygens’ prin-

Since every regular cosmological model in the literatureciple and therefore the domain of dependence is a circle, not
has ap with spacelike gradient, we shall impose as an ansatjt/st a circumference.

that gradp be orthogonal to the velocity of the fluid, Un-
der this assumptiorp is a function ofr only. But then Eq.
(4b) requires thap be a linear function of. After rescaling

Our problem is even easier since we do not have depen-
dence on the polar angle. Therefore we just have to impose
circular symmetry on the initial datdl(r,0)=f(r),U(r,0)

the coordinates we can tale=r and the whole system of =9d(r). The time coordinate may be removed from the inte-

equations becomes rather simple:

gration limits by an appropriate scalinB=tr,

Up—Uy— =0 5 Ut—lfzwdfld .
tt rr T_ 1 (a) (r’)_27T 0 ¢ 0 T\/EZ
_ t72+r7cos
Ki=Ue+2ru Uy, (50) X tg(u)+f(v)+tf’(u)% E)
K,=U,+r(UZ+U?+pre?, (5¢) . o
wherev = \r?+1t27%+ 2rt 7 cos¢, choosing the origin of the
polar angle at the angle fok(y). This expression is valid for
Ky — Kyt —+UZ—U2=peX, (5d)  all values oft.
For instance, the nonsingular spacetimgghis generated
by
Pr
K.+ 25 0, (5¢) B
b f(x)=5%, 9(x)=0, B>0.
Pt
Kit 5—0 (5f) It is clear now that we are just integrating the functions

f,g on a finite interval ofr and that the integrals are well

The energy-momentum conservation equations can be irflefined providedy,f,f" are continuous. The singularity at

tegrated,

p=ae_2K,

(6)

7=1 is harmless under such conditions.
The solution does not share the class of differentiability of

the initial data because of the derivative term. We need at

least f e C3([0,%)), ge C?([0»)) in order to haveU,K

with a=const>0, and Eq/(5d) is a consequence of the oth- € C*([02)) and a well-defined Riemann tensor.
ers. We are left then with a two-dimensional reduced wave Surprisingly there is no need to impose cylindrical sym-
equation in polar coordinates without source t¢Enx. (53)]

and a quadrature fdf,

metry on the solution, since we have a regular axis=a0
provided thatf,g are regular there, and we have already
required it. According td4], the axis is regular if

Kt=Ut+2rUtUr, (73)
(grad A,grad A)
=€ W K)|r=O:11
K,=U,+r(UZ+Ud)+ar, (7b) r0 4A
which can be integrated after providing a solution to the A=<a¢,&¢>=r2ezu; (10

wave equation; namely, the integrability condition for the

quadrature(7) is the wave equation, so the whole problemtherefore we need tha€(0,t) =U(0t) for every value oft.

reduces to solving it.

But at the axis Eqgs(7a),(7b) which determineK are rather

Following [5], for instance, the solution to the Cauchy simple,
problem for the wave equation in the plane can be con-

structed from the 3D solution by ignoring the third variable,

Kr:Ur, Kt:Ut’ (11)
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and thereforeK (0t)=U(0,t) +const and the condition of large values ofr. Finally, if U+ U, is negative andU,

regularity at the axis is fulfilled by either taking the constant+U,|<1, it is the pressure termr which overcomes the

of integration equal to zero or conveniently rescaling thenegative term for large.

angular coordinate. The same sort of reasoning is valid to conclude that the
Note that this requirement of regularity excludes a time-radial derivative

like gradient ofp in the vicinity of the axis.
K,=U,+r(UZ+U%)+ar

Ill. GEODESIC COMPLETENESS is positive for large values af

The metric that is obtained after integrating the system (b) We can apply the same argumentite- U,

(7a),(7b) has regular components in the whole spacetime, but _ 2
this does not suffice in order to have a nonsingular space- (K+U)et (KHU) =2(Ui U +r (Ut Ut ar,

time. We shall consider that a spacetime is reglfif itis iy order to show that these derivatives aid(U), are posi-
cau;ally geodesically complete, that is, [f every causal 9€0ye for large values of the radial coordinate.
desic may be extended to all values of its affine parametri- (c) Finally, the third condition is always satisfied

zation.

This means analyzing the geodesic equations for diagonal (K=U=Inp)+(K=U=Inp),
cylindrically symmetric spacetimes. This was done[&].
Those results can be summarized as follows.

Theorem A cylindrically symmetric diagonal metric in
the form (1) with C? metric functionsf,g,p is future caus-

1
=r(Ut+Ur)2—F+ar>0,

ally geodesically complete provided that along causal geode- 5 a1
sics the following conditions apply. (K=U=Inp);=r(Ui+Up)— - +ar=0,

(1) For large values of and increasing:

(@ K, +K=0, and eitheK,=0 or |K,|=K,+K,. for increasingr.

(b) (K+U),+(K+U)=0, and either K+U),=0 or Past-pointing geodesics are treated analogously without
[((K+U),|=(K+U),+(K+U),. any additional problem, since reversing the sign of time de-

(©) (K=U=Inp),+(K=U=Inp)=0, and either K—U rivatives does not alter the positivity of the quadratic terms.
—Inp),=0 or |(K=U-=Inp)|=s(K-=U—Inp),+(K-U Consequently only condition 2 yields a restriction.
—In p);. (2) As we shall see, this condition amounts to studylihg
(2) For large values of, constanth exist such that at the axis for large values of the time coordinate.
(@) This condition is trivial since K—U)|,-,=0,
K(t,r)—U(t,r)

2K(t,r) = —In|t| +b. (K—U)<t,r>=fordr%K—U)r(t,r')
K(t,r)+U(t,r)+Inp(t,r)

;
A similar result can be stated for past-pointing geodesics =J dr'{r (Ui(t,r)+UZ(t,r'))+ar}

by just reversing the sign of the time derivatives in condi- 0

tion 1. -0

Note that we have omitted the condition for nonradial

geodesics with decreasingin [8], since according to EQ. () The previous reasoning for ruling out singularities for

(97) in that reference, nonradial causal geodesics Wouljecreasing radius leaves us with two possibilities: increasing

reachr=0 for finite t, that is, beforet becomes singular, -qius and constant radius=0. Since according to Eq.
contradicting the fact that geodesics should be singular thergy 1) ’ '

Therefore the axis cannot be reached by geodesics with non-
zero angular momentum. r
All we have to do now in order to have a geodesically K(r,t):U(O,t)+f dr'K(r’,t),
complete model is to check whether conditions 1 and 2 are 0
satisfied. . .
We first_show that th_e co_nditions on the derivatives arezgg ;,r:irz:;ﬁ;, Ir\,?gdjﬁsihﬁ;&ee ?oﬂgﬁ(lji/ ?r?;lttg/remflc:f:%gt
always sat|sf|_ed for a stiff fluid mogel. is, we have reduced the problem to analyzing the behavior of
(1) According to Egs(7a),(7b) we have K at the axis for large values of
(c) Similarly,
Ki+K,=U;+U,+r(U+U,)%+ar.
(K+U)(r,t)+Inr=2U(0t)+Inr
Several possibilities are open: Wheh+ U, is positive,K;
+K, is positive. IfU,+ U, is negative andU,+ U,|=1, the + err’(K+ u)(r',1)
quadratic term is larger anl,+K, is again positive for 0 Y
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and we have already checked the positivitykgf+ U, as in If Eq. (13) is finite, thenU; andU are of the same order
the previous condition. The logarithmic term does not mearior large values of or of —t and geodesic completeness will
a problem for increasing radius. Again we are left with con-depend on the value of the limit.
trolling the behavior of théJ term. Note that values of the integrand close t&0 do not
Summarizing our results so far, in order to have a causallynfluence the result for large values ©fsince we may split
geodesically complete spacetime we just have to require thahe integral into two terms,
U|,-, does not decrease faster than a negative logarithm for
large values of the absolute value of the time coordinate. The U(01)= JXC“+ Jl
condition on the solution of the Cauchy problem for the ’ 0 x It
wave equation at the axis becomes a bhit simpler,
and the first one is bounded and negligible for largEhere-
K(O)=U(0}) fore the main contribution t&) comes from the second term,
which must satisfy the required asymptotic behavior.

1 T
= fO dT\/ﬁ{tg(m 7)+ f(|t| 7)+ |t| 7-f/(|t| T)} IV. EXAMPLES
1 A simple and wide family of functions that satisfy Eq.
>—ZIn|t|+b (12) (12) can be written in terms of polynomials. Consider
2 n m
since the dependence on the polar angle is lost. f(r)=2 ar', g(r)=2 bir'. (14
This bound can be attained, for example, by the initial 1=0 1=0
data, If n,m are even number& can be analytically integrated in
la|]—1 alinr terms of polynomials. For our purposes we just requirat
f(r)= 5 Inr, g(r)=— - the axis, which can be integrated for a larger set of functions.
a

SinceU is linear inf andg, we may analyze the monomials

since for this choice of functions the solution to the Cauchyl"dependently. Fof(r)=r", g(r)=r" we obtain
problem for the wave equation is

nti ) LD
! ! Ufa):(n——lﬂ!(EJ [t",
Ut = §(|a|+asgnt—1)ln|t|+ §(|a|—asgnt—1)ln2
mit | @D
1 = | = m
5(2lal=1)injt|=In2,  sgnat>0, Uglt) Un+1ﬂ!(2) 7. a9

= These expressions are valid even foyom=—1 taking

1 1 (—1)!1:=1, although they may not be very practical

— — —— <0. e . I

2 (2]a|-1)in2 2 Inft], sgnat<0 According to Eq.(12) we have two different possibilities
_ . _ . for obtaining a singularity-free model.

The behavior of the terms in _Eg_12) is rather d_|fferent. If f,g are polynomials ir respectively of degree,m and

The termUs, dependent ofy the initial value ofU, is even  n>m+1, we have a nonsingular modeldf, is positive.
in the time coordinate, as is to be expected when the initial |f f g are polynomials inr respectively of degre@,n
time derivative ofU is zero. On the contrary, the terbh,, —1, U andUy at the axis are polynomials of degreeand
dependent om, is odd int. we have a nonsingular modellf; dominates ovet ;. This

This means that it); satisfies Eq(12) for positive time,  happens if the leading term &f; is greater than the one of
it is automatically satisfied for negative time. On the con-y,, that is,
22
a

trary, if Uy satisfies Eq(12) for positive time, it is only
(="
Using Stirling’s formula for approximation of factorials, an

a

—_—
|bn-1

satisfied for negative time if it is also satisfied by 4 for ( nt
1. (16)

positive time. Therefore three different possibilities are open =
depending on the value of .

f(r)+rf'(r)

im (13 easy and safe bound would be
e Q)
1
If Eq. (13) is infinite, we needU;(t)>— 3In|t|+b for n+s an>[by_4|. 17)

large values of in order to have geodesic completeness. This

means thaf (r)+rf’(r)>—3%Inr+k for larger. This family of nonsingular cosmological models is large in-
If Eq. (13) is zero, we needUy(t)|<zInt|+b for large  deed, as can be seen by restricting the range to a finite di-

values oft in order to have geodesic completeness. Thiamensional space of polynomial functions: if we consider the

means thatg(r)|<(1#r)Inr+k for larger. space of functiondJ for which U|,_, is a polynomial of
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degree equal to or lower tham the subset of singularity-free behavior at the axis of the initial value problem for a source-

models comprises an open set, according to(Ed. less 2D wave equation, which is the only one left after sim-
This result can be generalized, since plifying Einstein equations. A sufficient condition for geode-

sic completeness is provided, which is very easy to check

1 P 7 T(p+2)/2) and to implement. The case of polynomial initial data has

o dT\/EZZT L(p+3)/2) (18) been discussed and allows a fairly large set of nonsingular

cosmological models. We think that this set is wide enough
allows integra’[ion for every real value of the exponent to preclude ConS|der|ng nonsmgular models as isolated

Therefore, forf(r)=rP,g(r)=r¢, we obtain points in a space of cosmological models.
The role of pressure in these models is obviously deter-
I'((p+2)/2) minant, since stiff perfect fluids are a limit case for energy
Ui(t)= \/; mmp' conditions, corresponding to a sound velocity equal to that of
light. On the contrary, dust perfect fluids are always singular
Jr T (q+2)/2) according to the Raychaudhuri equation. Intermediate cases

(19 remain open for discussion, even though partial results have
been obtainedl3].

which allow generalization of the geodesic completeness re- It is interesting to notice that nonseparability of the mod-

quirements that were previously derived for polynomial€!s in these coordinates is fundamental for geodesic com-

functions to linear combinations of powersroAdditionally, ~ Pleteness. In9] separable cosmologies were studied and

one has just to care about the class of differentiabilityof ~Noneof them was found to be regular.

which demands thgt=2, g>2.

77 Tara ™
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