
,

PHYSICAL REVIEW D 66, 024027 ~2002!
A wide family of singularity-free cosmological models
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In this paper a family of nonsingular cylindrical perfect fluid cosmologies is derived. The equation of state
corresponds to a stiff fluid. The family depends on two independent functions under very simple conditions. A
sufficient condition for geodesic completeness is provided.
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I. INTRODUCTION

After the discovery of the first regular perfect fluid co
mological model by Senovilla@1#, one of the major question
that that spacetime posed was to determine how generic
lack of singularities was. For instance, in the Ruiz-Senov
@2# barotropic family with the equation of statep5gm,0
,g,1, the regular models were those corresponding t
radiation fluid,g51/3. These solutions are the separatrix b
tween those models with a singular pressure and energy
sity, g.1/3, and those that just have a singular Weyl cur
ture,g,1/3 @3#. Therefore regular models would be a zer
measure set in this family.

Our aim in this paper is to determine an infinite family
regular cosmological models that need not be so restric
as the Ruiz-Senovilla family and therefore may indicate t
regular models cannot be neglected in the set of solution
Einstein equations.

We focus on stiff perfect fluids, since they are simp
enough to allow almost complete integration of Einste
equations and thereby constitute an excellent arena
checking hypotheses. We shall show that under very sim
restrictions regular solutions appear.

The second section of this paper is devoted to deriv
solutions of the stiff fluid Einstein equations in a convenie
manner for our purposes. In the third section geodesic c
pleteness of the solutions is imposed and the restrictions
rived from this assumption are expressed as a sufficient
dition.

II. STIFF FLUID COSMOLOGIES

We restrict our attention to spacetimes endowed with
Abelian orthogonally transitive group of isometriesG2, act-
ing on timelike surfaces, since this is the framework wh
regular cosmological models have so far appeared. We
ther require that the Killing fields be mutually orthogona
Adapting the coordinates to these fields we write them
$]z ,]f%. Under these assumptions we can write the me
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for the spacetime in a convenient coordinate chart@4#
$t,r ,z,f%,

ds25e2K~2dt21dr2!1e22Udz21r2e2Udf2, ~1!

which has been chosen as isotropic on the nonignorable
ordinatest,r . This isa priori no restriction and may alway
be achieved since every two-metric admits an isotropic
rametrization. The metric is written in terms of three fun
tions K, U, andr that depend only ont and r.

We may interpret the isometry group as cylindrical sy
metry in the spacetime provided we have a regular a
where the norm of the angular Killing field vanishes. W
shall come back to this issue later on. The range of the
ordinates will then be the usual one for cylindrical symm
try:

2`,t, z,`, 0,r ,`, 0,f,2p. ~2!

The matter content of the spacetime is a perfect fluid
energy densitym, pressurep, and four-velocity u. The
energy-momentum tensor is then

Tmn5mumun1p~gmn1umun!,

0<m,n<3, umum521. ~3!

For a stiff fluid,m5p. We write down the Einstein equa
tions Rmn2Rgmn/25Tmn in a comoving system of coordi
nates for the perfect fluid, that is,u5e2K] t . After some
simplifications the equations read

Utt2Urr 1
1

r
~Utr t2Urr r !50, ~4a!

r tt2r rr 50, ~4b!

Ktr r1Krr t5r tr1Utr r1Urr t12rUtUr , ~4c!

Ktr t1Krr r5
r tt1r rr

2
1Utr t1Urr r1r~Ut

21Ur
2!1pre2K,

~4d!
©2002 The American Physical Society27-1
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Krr 2Ktt1
Urr r2Utr t

r
1Ur

22Ut
25pe2K, ~4e!

Kr1
pr

2p
50, ~4f!

Kt1
r t

r
1

pt

2p
50, ~4g!

where the last pair of equations are just the Euler and co
nuity equations for the perfect fluid.

Since every regular cosmological model in the literatu
has ar with spacelike gradient, we shall impose as an ans
that gradr be orthogonal to the velocity of the fluid,u. Un-
der this assumption,r is a function ofr only. But then Eq.
~4b! requires thatr be a linear function ofr. After rescaling
the coordinates we can taker5r and the whole system o
equations becomes rather simple:

Utt2Urr 2
Ur

r
50, ~5a!

Kt5Ut12rU tUr , ~5b!

Kr5Ur1r ~Ut
21Ur

2!1pre2K, ~5c!

Krr 2Ktt1
Ur

r
1Ur

22Ut
25pe2K, ~5d!

Kr1
pr

2p
50, ~5e!

Kt1
pt

2p
50. ~5f!

The energy-momentum conservation equations can be
tegrated,

p5ae22K, ~6!

with a5const.0, and Eq.~5d! is a consequence of the oth
ers. We are left then with a two-dimensional reduced wa
equation in polar coordinates without source term@Eq. ~5a!#
and a quadrature forK,

Kt5Ut12rU tUr , ~7a!

Kr5Ur1r ~Ut
21Ur

2!1ar , ~7b!

which can be integrated after providing a solution to t
wave equation; namely, the integrability condition for t
quadrature~7! is the wave equation, so the whole proble
reduces to solving it.

Following @5#, for instance, the solution to the Cauch
problem for the wave equation in the plane can be c
structed from the 3D solution by ignoring the third variab
02402
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U~x,y,t !

5
1

2pE0

2p

dfE
0

t

dRR
g~x1R cosf,y1R sinf!

At22R2

1
1

2p

]

]tE0

2p

dfE
0

t

dRR
f ~x1R cosf,y1R sinf!

At22R2
,

~8!

for initial data U(x,y,0)5 f (x,y),Ut(x,y,0)5g(x,y). Note
that the 2D wave equation does not satisfy Huygens’ p
ciple and therefore the domain of dependence is a circle,
just a circumference.

Our problem is even easier since we do not have dep
dence on the polar angle. Therefore we just have to imp
circular symmetry on the initial dataU(r ,0)5 f (r ),Ut(r ,0)
5g(r ). The time coordinate may be removed from the in
gration limits by an appropriate scaling,R5tt,

U~r ,t !5
1

2pE0

2p

dfE
0

1

dt
t

A12t2

3H tg~v !1 f ~v !1t f 8~v !
tt21r t cosf

v J , ~9!

wherev5Ar 21t2t212rt t cosf, choosing the origin of the
polar angle at the angle for (x,y). This expression is valid for
all values oft.

For instance, the nonsingular spacetime in@6# is generated
by

f ~x!5
b

2
x2, g~x!50, b.0.

It is clear now that we are just integrating the functio
f ,g on a finite interval ofr and that the integrals are we
defined providedg, f , f 8 are continuous. The singularity a
t51 is harmless under such conditions.

The solution does not share the class of differentiability
the initial data because of the derivative term. We need
least f PC3(@0,̀ )), gPC2(@0,̀ )) in order to haveU,K
PC2(@0,̀ )) and a well-defined Riemann tensor.

Surprisingly there is no need to impose cylindrical sy
metry on the solution, since we have a regular axis atr 50
provided that f ,g are regular there, and we have alrea
required it. According to@4#, the axis is regular if

lim
r→0

^grad D,grad D&
4D

5e2(U2K)ur 5051,

D5^]f ,]f&5r 2e2U; ~10!

therefore we need thatK(0,t)5U(0,t) for every value oft.
But at the axis Eqs.~7a!,~7b! which determineK are rather
simple,

Kr5Ur , Kt5Ut , ~11!
7-2
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and thereforeK(0,t)5U(0,t)1const and the condition o
regularity at the axis is fulfilled by either taking the consta
of integration equal to zero or conveniently rescaling
angular coordinate.

Note that this requirement of regularity excludes a tim
like gradient ofr in the vicinity of the axis.

III. GEODESIC COMPLETENESS

The metric that is obtained after integrating the syst
~7a!,~7b! has regular components in the whole spacetime,
this does not suffice in order to have a nonsingular spa
time. We shall consider that a spacetime is regular@7# if it is
causally geodesically complete, that is, if every causal g
desic may be extended to all values of its affine parame
zation.

This means analyzing the geodesic equations for diag
cylindrically symmetric spacetimes. This was done in@8#.
Those results can be summarized as follows.

Theorem. A cylindrically symmetric diagonal metric in
the form ~1! with C2 metric functionsf ,g,r is future caus-
ally geodesically complete provided that along causal geo
sics the following conditions apply.

~1! For large values oft and increasingr:
~a! Kr1Kt>0, and eitherKr>0 or uKr u&Kr1Kt .
~b! (K1U) r1(K1U) t>0, and either (K1U) r>0 or

u(K1U) r u&(K1U) r1(K1U) t .
~c! (K2U2 ln r)r1(K2U2ln r)t>0, and either (K2U

2 ln r)r>0 or u(K2U2 ln r)ru&(K2U2ln r)r1(K2U
2ln r)t .

~2! For large values oft, constantb exist such that

K~ t,r !2U~ t,r !

2K~ t,r !

K~ t,r !1U~ t,r !1 ln r~ t,r !
J >2 lnutu1b.

A similar result can be stated for past-pointing geodes
by just reversing the sign of the time derivatives in con
tion 1.

Note that we have omitted the condition for nonrad
geodesics with decreasingr in @8#, since according to Eq
~97! in that reference, nonradial causal geodesics wo
reach r 50 for finite t, that is, beforet becomes singular
contradicting the fact that geodesics should be singular th
Therefore the axis cannot be reached by geodesics with
zero angular momentum.

All we have to do now in order to have a geodesica
complete model is to check whether conditions 1 and 2
satisfied.

We first show that the conditions on the derivatives
always satisfied for a stiff fluid model.

~1! According to Eqs.~7a!,~7b! we have

Kt1Kr5Ut1Ur1r ~Ut1Ur !
21ar .

Several possibilities are open: WhenUt1Ur is positive,Kt
1Kr is positive. IfUt1Ur is negative anduUt1Ur u>1, the
quadratic term is larger andKt1Kr is again positive for
02402
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large values ofr. Finally, if Ut1Ur is negative anduUt
1Ur u<1, it is the pressure termar which overcomes the
negative term for larger.

The same sort of reasoning is valid to conclude that
radial derivative

Kr5Ur1r ~Ut
21Ur

2!1ar

is positive for large values ofr.
~b! We can apply the same argument toK1U,

~K1U ! t1~K1U !r52~Ut1Ur !1r ~Ut1Ur !
21ar ,

in order to show that these derivatives and (K1U) r are posi-
tive for large values of the radial coordinate.

~c! Finally, the third condition is always satisfied,

~K2U2 ln r! t1~K2U2 ln r!r

5r ~Ut1Ur !
22

1

r
1ar>0,

~K2U2 ln r!r5r ~Ut
21Ur

2!2
1

r
1ar>0,

for increasingr.
Past-pointing geodesics are treated analogously with

any additional problem, since reversing the sign of time
rivatives does not alter the positivity of the quadratic term
Consequently only condition 2 yields a restriction.

~2! As we shall see, this condition amounts to studyingU
at the axis for large values of the time coordinate.

~a! This condition is trivial since (K2U)ur 5050,

~K2U !~ t,r !5E
0

r

dr8~K2U !r~ t,r 8!

5E
0

r

dr8$r 8„Ut
2~ t,r 8!1Ur

2~ t,r 8!…1ar %

.0.

~b! The previous reasoning for ruling out singularities f
decreasing radius leaves us with two possibilities: increas
radius and constant radius,r 50. Since, according to Eq
~11!,

K~r ,t !5U~0,t !1E
0

r

dr8Kr~r 8,t !,

and we have already checked thatKr is positive for larget
and increasingr, we just have to study the termUur 50, that
is, we have reduced the problem to analyzing the behavio
K at the axis for large values oft.

~c! Similarly,

~K1U !~r ,t !1 ln r 52U~0,t !1 ln r

1E
0

r

dr8~K1U !~r 8,t !,
7-3
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and we have already checked the positivity ofKr1Ur as in
the previous condition. The logarithmic term does not me
a problem for increasing radius. Again we are left with co
trolling the behavior of theU term.

Summarizing our results so far, in order to have a caus
geodesically complete spacetime we just have to require
Uur 50 does not decrease faster than a negative logarithm
large values of the absolute value of the time coordinate.
condition on the solution of the Cauchy problem for t
wave equation at the axis becomes a bit simpler,

K~0,t !5U~0,t !

5E
0

1

dt
t

A12t2
$tg~ utut!1 f ~ utut!1utut f 8~ utut!%

>2
1

2
lnutu1b, ~12!

since the dependence on the polar angle is lost.
This bound can be attained, for example, by the ini

data,

f ~r !5
uau21

2
ln r , g~r !5

a

p

ln r

r
,

since for this choice of functions the solution to the Cauc
problem for the wave equation is

U~0,t !5
1

2
~ uau1a sgnt21!lnutu1

1

2
~ uau2a sgnt21!ln 2

55
1

2
~2uau21!lnutu2 ln 2, sgnat.0,

1

2
~2uau21!ln 22

1

2
lnutu, sgnat,0.

The behavior of the terms in Eq.~12! is rather different.
The termU f , dependent onf, the initial value ofU, is even
in the time coordinate, as is to be expected when the in
time derivative ofU is zero. On the contrary, the termUg ,
dependent ong, is odd int.

This means that ifU f satisfies Eq.~12! for positive time,
it is automatically satisfied for negative time. On the co
trary, if Ug satisfies Eq.~12! for positive time, it is only
satisfied for negative time if it is also satisfied byU2g for
positive time. Therefore three different possibilities are op
depending on the value of

lim
r→`

f ~r !1r f 8~r !

rg~r !
. ~13!

If Eq. ~13! is infinite, we needU f(t).2 1
2 lnutu1b for

large values oft in order to have geodesic completeness. T
means thatf (r )1r f 8(r ).2 1

2 ln r1k for large r.
If Eq. ~13! is zero, we needuUg(t)u, 1

2 lnutu1b for large
values of t in order to have geodesic completeness. T
means thatug(r )u,(1pr )ln r1k for large r.
02402
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If Eq. ~13! is finite, thenU f andUg are of the same orde
for large values oft or of 2t and geodesic completeness w
depend on the value of the limit.

Note that values of the integrand close tot50 do not
influence the result for large values oft, since we may split
the integral into two terms,

U~0,t !5E
0

xc /t

1E
xc /t

1

,

and the first one is bounded and negligible for larget. There-
fore the main contribution toU comes from the second term
which must satisfy the required asymptotic behavior.

IV. EXAMPLES

A simple and wide family of functions that satisfy Eq
~12! can be written in terms of polynomials. Consider

f ~r !5(
i 50

n

air
i , g~r !5(

i 50

m

bir
i . ~14!

If n,m are even numbers,U can be analytically integrated in
terms of polynomials. For our purposes we just requireU at
the axis, which can be integrated for a larger set of functio
SinceU is linear in f andg, we may analyze the monomial
independently. Forf (r )5r n, g(r )5r m we obtain

U f~ t !5
n!!

~n21!!! S p

2 D (11(21)n11)/2

utun,

Ug~ t !5
m!!

~m11!!! S p

2 D „11(21)m11
…/2

utumt. ~15!

These expressions are valid even forn,m521 taking
(21)!!ª1, although they may not be very practical.

According to Eq.~12! we have two different possibilities
for obtaining a singularity-free model.

If f ,g are polynomials inr respectively of degreen,m and
n.m11, we have a nonsingular model ifan is positive.

If f ,g are polynomials inr respectively of degreen,n
21, U f andUg at the axis are polynomials of degreen and
we have a nonsingular model ifU f dominates overUg . This
happens if the leading term ofU f is greater than the one o
Ug , that is,

S n!!

~n21!!! D
2S 2

p D (21)n an

ubn21u
.1. ~16!

Using Stirling’s formula for approximation of factorials, a
easy and safe bound would be

S n1
1

2Dan.ubn21u. ~17!

This family of nonsingular cosmological models is large i
deed, as can be seen by restricting the range to a finite
mensional space of polynomial functions: if we consider
space of functionsU for which Uur 50 is a polynomial of
7-4



r
ia

s-
of
t

e-
m-
e-
eck
as
ular
gh
ted

ter-
gy
t of
lar
ses
ave

d-
om-
nd

ors

A WIDE FAMILY OF SINGULARITY-FREE . . . PHYSICAL REVIEW D 66, 024027 ~2002!
degree equal to or lower thann, the subset of singularity-free
models comprises an open set, according to Eq.~17!.

This result can be generalized, since

E
0

1

dt
tp11

A12t2
5

Ap

2

G„~p12!/2…

G„~p13!/2…
~18!

allows integration for every real value of the exponentp.
Therefore, forf (r )5r p,g(r )5r q, we obtain

U f~ t !5Ap
G„~p12!/2…

G„~p11!/2…
utup,

Ug~ t !5
Ap

2

G„~q12!/2…

G„~q13!/2…
utuqt, ~19!

which allow generalization of the geodesic completeness
quirements that were previously derived for polynom
functions to linear combinations of powers ofr. Additionally,
one has just to care about the class of differentiability ofU,
which demands thatp>2, q.2.

V. CONCLUSIONS

We have analyzed a wide family of stiff perfect fluid co
mological models with cylindrical symmetry. The issue
causal geodesic completeness has been reduced to jus
-
e

02402
e-
l
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behavior at the axis of the initial value problem for a sourc
less 2D wave equation, which is the only one left after si
plifying Einstein equations. A sufficient condition for geod
sic completeness is provided, which is very easy to ch
and to implement. The case of polynomial initial data h
been discussed and allows a fairly large set of nonsing
cosmological models. We think that this set is wide enou
to preclude considering nonsingular models as isola
points in a space of cosmological models.

The role of pressure in these models is obviously de
minant, since stiff perfect fluids are a limit case for ener
conditions, corresponding to a sound velocity equal to tha
light. On the contrary, dust perfect fluids are always singu
according to the Raychaudhuri equation. Intermediate ca
remain open for discussion, even though partial results h
been obtained@3#.

It is interesting to notice that nonseparability of the mo
els in these coordinates is fundamental for geodesic c
pleteness. In@9# separable cosmologies were studied a
noneof them was found to be regular.
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