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Calculable corrections to brane black hole decay: The scalar case
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In the context of brane-world theories, the production cross section for black holes may be greatly enhanced.
Such black holes can in principle lead to detectable signals via their Hawking evaporation to brane-localized
modes. We calculate, in the semiclassical approximation, the leading corrections to the energy speetrum
greybody factorsfor decay into scalar fields, as a function of the number of toroidally compactified extra
dimensions, and partial wave number.
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. INTRODUCTION holes produced by a collision on our brane, egp— BH
+ X at a hadron collider, will decay mostly to particles on
It is a remarkable fact that in brane-world theories the trueour brang 12], and thus will be indirectly observable via this

scaleM, of quantum gravity may be substantially lower characteristic Hawking radiation. This radiation is usually
than the traditional Planck scal,, possibly approaching described as “thermal” in character with a temperature
the TeV scale, and this radical departure from the standard
picture is not excludefll] (for earlier works on brane theo- (1+n) 1
ries, seg2]). This observation has naturally excited a large Ten= A a )
amount of activity investigating both the structure of these
theories and their experimental signf®. One of the most  (in Gy=kg=c=%A=1 unity. However, because of the non-
striking consequences of lowering the Planck scale to therivial metric in the region exterior to the horizon, there ex-
TeV region is that the properties of small black holes areists an effective potential barrier in this exterior region. This
substantially altered4]. A black hole of given mas#l is  potential barrier backscatters a part of the outgoing radiation
now much lighter, larger, and colder than a usual black holé&ack into the black hole, the amount depending on the en-
of the same mass, provided only that the Schwarschild radiusrgy of the radiation. Thus the original blackbody radiation is
ry of the black holgBH) is smaller than the size of the extra modified by a frequency-dependent filtering functiottc),
dimensionsry<R. In this limit, the black hole is well de- caused by the gravitational potential of the black hole. The
scribed as a (4 n)-dimensional black hole centered on the function, o(w), is known as the “greybody factor.” The black
brane, but extending out into the extra dimensions. The hole differential decay rate into particles of energys then

horizon radius y of such a black hole i§4,5] given by the Hawking formul&13]
1 [ M \Y0+D/8T[(n+3)/2] | Yn+D dE(w) ® d"%k
ry= [(—nil}z (1) => oy p(®) = s, (4
M, | M, (n+2) 7"t dt 13 explw/Tgy) +1 (2)

[Note that, following common practice, we work in the ap- wherel labels the angular momentum quantum numiber,
proximation that the brane tension itself does not stronglyabels any other quantum numbers of the emitted particle, as
perturb the (4 n)-dimensional black hole solutiors. well as the particle type, and in the phase-space int¢gfal
In particular, it is likely (though not proventhat black = for a massless particfe.

holes are much easier to produce, with production cross sec- Greybody factors are important theoretically because they
tion at parton-parton center-of-ma&m) energiesy/s close ~ encode information on the near-horizon structure of black
to the geometrical cross section of a black hole of mdss holes. Indeed one of the most exciting features of BH pro-
= /s [6,7] (for supporting evidence see, e.[8]; for claims duction at the LHC would be the opportunity to investigate

to the contrary, sef9]): Hawking emission in detail for clues as to how the infamous
apparent violation of the laws of quantum mechanics by
n+3 2/(n+1) black hole evaporatiofthe “information paradox” of black
M T) holes[14]) is resolved—if it is, that is.
Tpro do)=mri=—5| —| ——— . Greybody fac_tors can be important expgrlmentally be-
ML \ M, n+2 cause they modify the spectrum in the region where most

If this is the case, then fovl, ~O (TeV) there are striking

consequences for the high-energy interactions of cosmic raysian alternate form for the decay rate that is sometimes useful in

[10], and, moreover, the CERN Large Hadron Colliderihe massless particle case involves the absorption probability

(LHC) will become a “black hole factory(6,7,11. | A(w)|? whose relation tar(w) is given in Eq.(13): dE(w)/dt
After such black holes are produced, they decay by the-=, | A(w)|?0dw/{27[exp/Tgy) F1]}. Here m is the azi-

emission of Hawking radiation. It is expected that blackmuthal quantum number.
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particles are produced, thus altering the characteristic speased. To orient the reader through our analysis, Sec. Il pre-

trum by which we hope to identify a “BH event.” In particu- sents the calculation of bulk scalar emission in-(@) di-

lar, the functional dependence of,(w) on the energyw  mensions, in the simple case $fvave emission. Section IV

depends on the spin of the emitted particle, and on whether fterforms the calculation of the greybody factor for bulk sca-

is brane-localized or free to propagate in the bulk of the extrdar emission for arbitrary partial wave. The primary result of

dimensions. this section, the general formula for the greybody factor, is
One can compute the greybody factor by first computinggiven in Eg. (37). Section V contains the calculation of

the absorption cross section for the appropriate type of pabrane-localized scalar emission, where the brane is embed-

ticle incident on the background metric that describes thaled in a (4+n)-dimensional bulk. The primary results of

brane black hole. This is because the greybody factor in théhis section are given in Eq§47) and (48). We conclude in

Hawking formula for the emission rate of a given type of Sec. VI. For ease of use, the results of our calculations for

outgoing particlep, at energyw equals the absorption cross the greybody factors, for the most importaht=0,1,2) an-

sectionay, 4 ) for a particle of typeb incoming at energy  gular momentum modes, and for the=2,4,6 extra dimen-

w. In fact, it is this property which implies the greybody sions are collected in Tables | and II.

factors do not invalidate the thermal nature of the black hole.

Since the outgoing transmission and incoming absorption COq|. BLACK-HOLE METRICS AND GREYBODY FACTORS

efficients are equal to one another, equilibrium still occurs if
the black hole is placed in a heat bath. Let V=(27R)" be the volume of th& extra dimensions,

The semiclassical calculation of Hawking emission iswhich are here taken to be of common radtu§’hen Gauss’
only reliable when the energy of the emitted particle is smalllaw relates the four-dimension@D) Planck mas$/ , to the
compared to the black hole mass<M, since only in this new fundamental scale of gravity b%=V,M2*". Ablack
case is it correct to neglect the backreaction of the metritiole of massM <My (My/M, )@V~ 10157320 Gev s,
during the emission process. This in turn requires that théor distances r<R, well approximated [4] by the
Hawking temperaturd zu<M, which is equivalent to de- (4+n)-dimensional Schwarzschild black hole with a line
manding that the black hole mab&>M, , as can be seen element
from Egs.(3) and(1). Inevitably this condition breaks down
during the final stages of the decay process, but for those ds?=—h(r)dt?+h(r) " dr2+r2dQ;3_ (5
black holes of initial mass larger th&h, most of the evapo-
ration process is well described by the semiclassical calculavhere
tion.

In this paper, we calculate the greybody factor for the h(ry=1- r_H)n+l ©6)
simplest case of scalar particles, both free to propagate in the r '
bulk and localized on the brarie.g., the Higgs bosgnSec-
tion Il contains a discussion of the metric used in calculatingwith the horizon radius;y, given in Eqg.(1). In Eq. (5), the
the greybody factors and the quality of the approximationsangular part is

dQ3, ,=de?, +sir 0, {d6>+sir? 6,[- - +sir? 6,(d63+sir? 6;de?)- -1}, 7)

with 0<¢<27 and 0<6;< for i=1,..n+1. However, schild black hole background. The scalar wave equation
because of the compactification of the extra dimensions, thg”¢,,;J=O in this background is separable if we make the
metric for this black hole at distances-R goes over to that ansatz

of the usual four-dimensional Schwarzschild solution

. B(L1,6;,0)=e""“'R, (N Y(Q), 9
dr2+r2dQs3.
®) whereY,(Q) is the (3+n)-spatial-dimensional generaliza-
tion of the usual spherical harmonic functions depending on

the angular coordinatdd 5]. Upon substituting this ansatz,

~Th¢ m?tchmg O.f the two expressions Eqﬁ' and (8) at . the scalar wave equation implies a second-order differential
r=R is of course just an approximation to the exact metr'cequation for the radial wave functidR,,(r):

for such a black hole. An exact expression is not necessary to
derive the form of the greybody factor to a very good ap-

ds?=— dt?+

1 2M 1 2M
M M

proximation for the energies of interest. h(r) d ni2dR . h(r) _
To understand this, consider the case in which a scalar r"*2 dr h(r)r e re I(I+n+1)|R=0.
field propagates in the full (#n)-dimensional Schwarz- (10
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The greybody factor for BH decay into scalars will be foundflux from past infinity (with the boundary condition that

from the solutions to this equation. there is no outgoing flux at the horizprand then using the
We can transform this equation to a more convenient forngeneralized (4 n)-dimensional optical theorem relation
by defining a new(“tortoise”) radial coordinatey by [16]
Inh(r) dy 1 2" VRC[(n+1)/2] (21+n+1)(1+n)!
Y= T e D) ar - (2 (11) o(w)= LS. T ||
(13

in terms of which the radial equation becomes ) )
between the absorption cross sectigw) and the absorp-

d? nia tion probability | 4|2 for the Ith partial wave. This formula
WZH R(y)=0. (12 includes a summation over the multiplicity of individual
“azimuthal” components for each given partial wav§i.e.,

Since the coordinate positian, of the horizon is defined by 2l+1 in three spatial dimensions|+1)* in four spatial

the (larges} solution toh(r) =0, the horizon in terms of ~ dimensions, etd. A simple summation is appropriate be-

is aty— — o, as can been seen from H@1). Equation(12) cause we qleal with a nonrotating l_)lack hple.

is analogous to the Schitmger equation for a particle in an ~ The radial equation, however, is not in general exactly

effective potential. soluble, therefore we will employ an approximation method
Nontrivial backscattering occurs in this metric when thebased on spliting the radial domain into “near-horizon”

second of the two terms in the square brackets in(Eg.is ~ (NH) and “far-field” (FF) regions. The solutionésatisfying

comparable to or larger than the first. For black holes at th@PPropriate boundary conditions these two regions will

LHC, the typical energies of emitted radiation we are inter-0€ computed and then matched in a transition region to find

ested in range  from e Tay=(1+n)/4mr, the complete solut|o.n. ThIS. procedurg leads to an expression

~ (few) 100 GeV to a minimum of-(few) GeV (this mini- o |Ai()|? correct in leading order in an expansion in the

mum might be set by the energy threshold of the detectors—dimensionless quantityry, .

the precise value will not matterFor the range of param-

etersn and M, of interest, this gives a range @ from [ll. BULK SCALAR EMISSION: S-WAVE EXAMPLE

Omax=1/2ry 10 0min=1/200 . Thus, inspecting the poten-

tial terms of Eq.(12), we see that the potential is only large

enough to lead to backscattering over the range of dlstanc§§)' the dominant scalar decay mode is that into Sheave,

rfrom O(1)ry; to O(100)ry,. I =0. We will first solve the problem in this case, which will

A similar analysis can be performed for the 4D also serve as an illuminating example for the full case stud-
asymptotic metric of Eq(8). In this case, one finds that . 9 P

significant backscattering of the quanta of interest WOU|ded in Sec. 1V and V.

only occur when distances were of ordet M/M2 <r We will first compute the solution in the “near-horizon”
. . PI=TH region. The radial equation for ttfgwave, in terms of th
<R. But at such distances, the 4D asymptotic form of the 9 g v

metric is not applicable, being replaced by the coordinate defined in Eq11), becomes

(4+n)-dimensional metric used above. Instead, what hap- d2

pens is that the changeover from the+(#)-dimensional to (Ferzrz(”*z)

the 4D regime, at distances of order R, only significantly y

backscatters quanta o_f energy £0eV or less. In other By expanding close to the horizan=r+ or (8r<ry), we

v_vords, the backscattgnng (_jue to the effect of the compactigpiain Sr=ry exp[(n+1)rﬂ+ly] asy— —. Thus the radial

fication of t_he extra dlme_nsmns onl_y affects very low energyequation Eq(14) becomes in the near-horizon limit

guanta which are experimentally irrelevant. Even more so

this applies to the change in backscattering at distances d?

~R due to the difference between the approximate form of (d—yﬁwzrﬁ("”)

the black hole metric, Eq$5) and(8), and the exact black

hole solution. _ _ up to exponentially small corrections yn The general near-
Overall, the lesson is that up to corrections that only apply,grizon solution is therefore

for very low energy, the greybody factors for brane black

holes may be calculated using purely the  Ry,(y)=A, expir} 2wy)+A_exp —irly 2wy).

(4+n)-dimensional regime of the black hole metric. In the (16)

remainder of this paper we will follow this procedure. Thus

our task is now to return to the radial equation EtQ) or  In order to calculate the greybody factor, we must impose the

Eq. (12) and compute the greybody factor. boundary condition that near the horizon the solution is
In particular, via the equivalence ofw) to the absorption purely ingoing. Therefore, we need to get=0.

cross section, the greybody factor can be computed by first We now turn to the far-field region which is defined by

evaluating the absorption probabilifyd(w)|?, from the ra- r>ry. In this limit, h(r)=1 and, by settingR(r)

tio of the in-going flux at the future horizon to the incoming =f(r)/r("* 1’2 Eq. (10) can be rewritten as

2 [(I+n+21)h(r)

W'
;

Because the radius and temperature of the
4+ n)-dimensional black hole are always comparable, Eq.

R(y)=0. (14)

R(y)=0, (15
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d?f 1 df ) (n+1)2 and which, in turn, leads to the following expression for the
T2t ot 0 ———|f=0, (17 reflection coefficient:
dre  r dr ar
which has the form of a Bessel differential equatidr]. _outgoing amplitude B, —iB._ 03
The general solution for the radial functi®{r) is therefore ~ incoming amplitude B, +iB_’ (23

given by

. B up to a purely imaginary phase that will drop out when the
Ree(N) = mromdn+ ve(@N + —mron Yt ne(er), magnitude ofR will be computed. The absorption probabil-
r r ity is then defined as

(18)
where Jin ¢ 1)(@r) and Y, 1) (wr) are the Bessel func- 5 ) m(wry)"t?
tions of the first and second kind, respectively. |AI*=(1-|R[%)= n+3\2’ (24)
As we will soon see, the two coefficierss. andB_, and 2T -

more specifically their ratio, will help us define the greybody
factor. To compute this ratio, we need to match the far-field ) ) ) )
solution, Eq.(18), onto the near-horizon solution, E¢L6), where, in the final expression, we have expanded to leading

in the intermediate region. To this end, we expand the neal@rder in (@ry). This is the final result for th&wave grey-
horizon solution, in the regimer<1 andr>r,, leading body factor for scalars in a (4n)-dimensional Schwarz-

to? schild black hole background. We may easily check that, for
n=1, we correctly reproduce the result
NH rN=A_expl——| — 3
+1 ™ 0]
e AI2=2 o= Ay, (25
wr [ry\"t? 2 am

where Ay =273 is the area of the horizon, presented in
We also expand the far-field solution, E48), in the same Ref.[18].

regimewr <1, which gives

IV. BULK SCALAR EMISSION FOR =0

n+1
B, w\(M+D2 g o (n+p2l’ T We will now generalize the above analysis in the case in
RFF(r)Zn—Jr3 5) —rn—ﬂ(z) e which the scalar modes are not spherically symmetric,
- #0. For readers more interested in our final results, rather
2 than the techniques used to solve the problem, we suggest

(20 jumping to Eq.(37) and the following discussion.
We will start with the derivation of the solution in the

Matching the above expression with E3Q.9), we find the X : )
g P Ha9 near-horizon zone. Starting from E¢LO), and making a

result
change of variable, we may write the scalar field equation in
n+3\2 the form (we adopt the method of Ref19], see also Ref.
r 2n+2 [20])
B, ;12 (21)
— =i )
B- " wory)"™ d’rR dR
The reflection coefficienR for scattering in the gravita- h(l_h)WJr(l_h) dh
tional potential of the black hole Ed5) is defined as the )
ratio of the outgoing and incoming amplitude at infinity. To i (wr) _ I(I+1+n) _
compute this, we expand the far-field solution E48), in (n+1)?h(1—h) (n+1)%(1—h)
the limit wr — o, which yields (26)
(Bi—iB) o . .
Rep(r) = ———=ellor- ("7 Near the horizonr=r, and the quantity ¢r)? can be set
2mwr equal to @ry)% Then, by using the redefinitiolR(h)
. (B, +iB_) o (s 2y ) rTh“(l—h)ﬁlt:(h), thet'above equation takes the form of the
——e ¢ sk ypergeometric equation

d’F dF
h(1—h) == +[c—(1l+a+b)h]w-—abF=0, (27)
2This expansion allowsw=<1/r,, the typical emitted energy, dh dh
whenM> My« , as is required for the reliability of the semiclassical
approach. with a=b=a+ B andc=1+2«, where
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iory The derivation of the far-field-zone solution closely fol-
1 lows the analysis performed in the case where0. The
same redefinition of the radial function leads again to a

R

h
Il

I+

|
=)
[ERN

1 1 \/ n+1)2 (28) Bessel equation whose general solution is now given by
= — — [ —_ 2
B Zin+1 |+ 5 ) (wry)”. B, B
. . . . RFF(r):I,(Tl)/Z‘JI+(n+1)/2(‘Ur)+ I.(Tl)/ZYI+(n+l)/2(wr)-
Equation(27) has as a solution the hypergeometric function
F(a,b,c;h). The criterion for the convergence of the hyper- (32)
geometric function demands that Re(a—b)>0, which Both solutions, near-horizon and far-field, need to be
forces us to choos@=p_ . Then, the general solution of «syretched” and matched in the intermediate region. Expand-
Eq. (26) may be written a$17] ing first Eq.(31), in the limit wr <1, gives
Ryp(h)=A_h%=(1-h)#F(a,b,c;h)+ A h~*=(1—h)# B.r o\ T(+2
XF(a—c+1b—c+1,2—c;h). (29) Ree(r)= r<| n+3) E)
Expanding the above solution in the limiit>ry, or h—0, 2
and choosingr=«_ , we obtain the result n+1
D B /(2 l+nen2l | 1+ T)
Rnn= T) [A_exp—ior}"?y) IR (32)
+A, expliort?y)], (30) The near-horizon solution needs to be “shifted” first and
expressed in terms of-1h, before being expanded in the
which again imposes the conditibA, =0. limit r>r . By using a standard formuld.7], we write
|
Rus()=A_he| (1—nyp LA 2ZOTA=28) L b=t 1:1-h
NH( )_ - ( - ) F(1+C¥_ﬁ)2 (a! ,a+tb—c+1;1- )
ra+2a)r'2g-1)
—h)i-8 —ac—bc—a— -
+(1-h) F(at5)? F(c—a,c—b,c—a—b+1;1-h)]|. (33
We can now expand the above expression in the limitl and take
r\'T(1+2a)'(1-2B) ru\'" "I (14 2a)T (28— 1)
Ru(h)=A_| — — - —H) > (34)
My ra+a—p) r I'(at+pB)
Matching the two solutions Eq$32) and(34), we obtain the ratio
n+1\?( n+1 )
B, | 2 (2mal| 5| |1+ 5 |TA-28)T(a+p)
B_ (a)_r,.,) T (1+a—B)T(28-1) (35

The definition of the reflection coefficie® is still given by  Due to the fact that the argument of thefunctions appear-
Eq.(293). In turn, the absorption probability can be written, in ing in the expression R are nontrivial complex numbers,

terms ofB=B, /B_, as we cannot write the absorption coefficient in a simple way in
the general case. However, the above expression can be fur-
) 5 2i(B*—B) ther simplified in the limitwry<1, in which caseBB*
|AI*=(1-|R[)= gg= (B B+ 1’ (30 >i(B*—B)>1, and, thereford, 4|2 may be written as
| 2
2 2l+n+2 U1+ —
3Note that the choicer=«, would have led again to Eq30) |A|2:L(w_r'*) 2n+1 5.
with A_—A. , and therefore to the choie®_=0. As both values 24+ 2 1 | n+3
of « appear in the general solution E@9), it is only a matter of I 2 + n+1 il 2
choice which one of the two terms will be associated with the
incoming mode. (37)
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TABLE I. Absorption probabilities for a (4n) bulk scalar the brane. The induced metric follows from the

field. (4+d)-dimensional one by fixing the values of the extra
A= : angular coordinates),,= /2 for n=2, and it may be written
n=2 |=0 .A ~_(er) +- as
2/3
=1 |.A]2= 2% Tis’ m(wry)6+-- 2= 2 “14r2+ r2(d 62+ sir? 2
(152 T(5/6)2 H ds = —h(r)dt“+h(r) ~dre+r<(do-+sirr 6de*),
2 23 1 (5/3)2 (39

=2 |Al]2= —z—z'n'(wr )8+
(105° T'(7/6) H whereh(r) is still given by Eq.(6). The scalar field equation

may be separated in the same way,

n=4 =0 |A|?= 1; (wry)8+-- _
¢(t1r!0!¢)Zeilthwl(r)Yl(Q)1 (40)
=1 = 2% T(6/5) (or)ot-
(10572 (77102 ™ “'H whereY,(Q) are now the usual three-dimensional spherical
=2 - 225 T (7/5)? harmonic functions. The above ansatz allows us to write the
a M= (105237 T(9/102 m(wr ) Ot equation for the radial part as
4 h(r) d ,dR h(r
n=6 =0 |A|2:W(er)8+--- :2) ar h(r)r? arlt wz—r(—z)l(l-l-l) R=0. (41
=1 | A2~ 22%7 T8I 10
(105237 W”(“’m) e The presence of the metric functitrfr) makes once again
2617 I'(9/7)2 the derivation of the general solution extremely difficult. We
=2 |A]?= s (ory) 2+ will follow the same method as in the previous section and

1155234 T'(11/14 - . . ;
(1155737 (1119 compute the solution in the two radial domains, near-horizon

and far-field, which will then be “stretched” and matched in
the intermediate region.

This is our major result for the case of bulk scalar fields. Having become familiar with the analysis, we will pro-
Equation(37) nicely displays the leading functional depen- ceed to derive directly the solution in the general chse
dence of the greybody factor oary, for varying partial  =0. We start with the solution in the “near-horizon” region.
wave, |, and number of extra dimensions, For the case of |n terms ofh, the radial differential equation now takes the

=0, this may be further evaluated to give form
wry|\""? 4w d?R (2n+1) ]dR
Al =( ) : 38 Bl ek
| |I 0 2 F[(n+3)/2]2 ( ) (1 h) dh2 +|1 (n+1)
in complete agreement with the result, E24), of our earlier (wry)? I(1+1)

analysis in the cade=0. In fact, for ans-wave massless bulk + (n+1)2h(1—h)_ (n+ 1)2(1—h)}R_0' (42)
scalar, the absorption probabilityl| has the exact form that

allows the greybody factar(w) to reduce to the horizon area By using the same redefinitioR(h) =h*(1—h)#F(h), the

of the black hole in agreement with previous wggk]. The  above equation assumes the standard form of a hypergeomet-

numerical values of the results for the cases), 1, 2 for  ric equation with indicesi=a+ 8+[n/(n+1)], b=a+p,

n=2, 4, and 6 are shown in Table I. andc=1+2«, where
If we fix the number of extra dimensions and vary only

the angular momentum number, the absorption probability iory

decreases dsincreases. This decrease is caused by the fact a.=% P

that the power of the expansion parameter ()2 ""*?2, in

the leading term, increases with Since @ry)<<1, this (43
means that .A|? becomes more gnd more suppressed as B.= [1= (21 +1)%=4(wry)?].

increases. The numerical coefficient in front of the leading 2(n+1)

term also decreases witlisee Table)l The same behavior is

observed if we fix insteatland varyn. The criterion for the convergence of the hypergeometric

function, Re€—a—b)>0, demands againB=p8_. The
general solution of Eq42) has again the form of Eq29).
Expanding near the horizon and imposing the condition that

We now turn to the case in which the scalar field is con-only incoming waves exist near=r, we find thatA, =0
fined on a four-dimensional brane embedded in dor a=a_. At this point, we can also “shift” the solution
(4+d)-dimensional Schwarzschild spacetime. The scalaand write it in terms of +h, in the same way as in the
field propagates in a four-dimensional background whos@revious section. If we finally expand foer,,, or equiva-
metric tensor is given by the induced metric at the location olently h— 1, we obtain the solution

V. BRANE-LOCALIZED SCALAR EMISSION FOR =0
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F(1+2a)F(1 2B~ —

|
RNH(m:A_(rL)
Sy

)

l+a—B———=|I'(1+a—p)

n+1

1 D(1+2a)T

n
28+ ——1)

+A_
I'a+pB)

(a+ﬁ+
(44)

PHYSICAL REVIEW D 66, 024023 (2002

The far-field-zone solution can be easily found to be given
in terms of the Bessel functionk, 15(wr) and Y|, 1(wr).
Expanding the general solution in the limitr<1 finally
gives

r| w|+1/2 B /2 |+1/2F(|+%)
o=rinlyl ol

ra+3)12 e g

(45)

Matching the two asymptotic solutions, we obtain the ratio

B, 2 2,+1I“(I+§)2(I+%)1“(1—2 F(a-i—ﬂ)F at B+ —— 1
B_:_(wr ) n n ’ (46)
- H

7ml'(l+a—B)'| 1+ta—B— ——F N+l 2,8+m—1)

which can be used to determine the absorption coefficientaluesn=2, 4, and 6 of the number of extra dimensions, and
according to Eq(36). We may, however, obtain a simplified =0, 1, 2 of the angular momentum number, are shown in

expression, in the limitor ;<<1, which reads

[+1)\2? I \?

. 167 [ery|2*2' |51 F(“m
A= (n+1)? ) . 21+1\2
FG+DT| 1+

(47)

The expressions of the absorption coeffici¢di? for the

TABLE Il. Absorption probabilities for a(4D) brane scalar
field.
n=2 =0 |AP=4(wr )2+
=1 2
|A|: 243 (er)4+.
=2 4
|A|2: (15)2(er)6+
n=4 I=0 |A]?=4(wr )2+
=1 , 4 I(2/5°T(6/5)?° .
|| =25 T@h wly) "+
=2 , AT(3/5°T(7/5)° .
|A|*= =T 152 ry) 4
n=6 =0 |A|2=4(wry)?+-
=1 4 r(2/7)2r(8/7)2
S S 44...
M= 2 Taomz (et
=2 4 T(3/7)2T(917)?
2. 6y...
|A| _(21)2 F(12/7)2 (er) +

Table II.
Finally, employing the relation between the absorption
probability and the greybody factor, E(L3), leads to

r [+1 21“ L | \2
47%21+1) |\l ThrL) ferg\?
e o | 21+1\2 2 | "W
I‘(§+|)F 1+T1

(48)

In this equation, we have sat=0 in Eq.(13) as the partial
waves are purely confined to the three-spatial-dimensional
brane, the only dependence orbeing in|.A|?.

Keepingn fixed and varyind, we see that the absorption
probability decreases once again ascreasessee Table I
the dominant term becomes more and more suppressed by
extra powers of ¢ry) and its numerical coefficient also de-
creasesthe introduction of the multiplicity of states with the
same angular momentum numbefoes not change this be-
havion. If we fix insteadl and varyn, a radically different
behavior from the one observed in the case with a bulk scalar
field emerges, namely the leading term, in the expansion of
|A]? in powers of ry), remains the same, since it is
n-independent, while its coefficient increasesnaacreases.
In other words, for a given partial wave, the absorption prob-
ability, and therefore the greybody factor, increases as the
number of extra dimensions being projected on the 3-brane
also increases.

VI. CONCLUSIONS

In this paper, we have studied the problem of scalar emis-
sion in a spherically symmetri©-dimensional Schwarz-
schild black hole background. The cases of the emission of a

024023-7



PANAGIOTA KANTI AND JOHN MARCH-RUSSELL PHYSICAL REVIEW D66, 024023 (2002

(4+n)-dimensional bulk scalar field and of a four- TABLE lll. Absorption probabilities for a4D) scalar field.

dimensional brane-localized scalar field were studied sepa

rately and the greybody factor was determined in each case. |

This quantity causes the spectrum of Hawking radiation to |

deviate from the blackbody spectrum as it strongly depends | e 1 6.

on the energy of the particle mode emitted. Moreover, it Al @Z(wm)

encodes information about the gravitational background and

thus on the number of extra dimensions that might exist o

[both in the case where the scalar field is free to propagate ift the case of a brane scalar field is always larger than the

the (4+n)-dimensional bulk or when the field “feels” the ©ne for a purely 4D field, a fact which in principle can be

existence of extra dimension only through the induced metri¢iSed to distinguish between the two cases. _

on our 3-brang In a companion papef22], we employ the techniques
The differential equation for the radial part of the scalardeveloped in the current paper to derive the greybody factors

field can be solved by an approximation method valid infor higher-spin fields localized on a brane. This allows us to

leading order in @ry): the solution of this equation was discuss the physics and phenomenology of black hole decay,

found in the “near-horizon” and “far-field” region and was @s might be observed at the LHC.

subsequently “stretched” and matched in an intermediate re-

gime. This matching allows us to determine the absorption APPENDIX

coefficient for scattering in the black hole background, which

then leads to the greybody factar(w), according to Eg. of scalar emission in the case in which the scalar field propa-

(13. . o . . )
We first focused on the case of a bulk scalar field propa-gates in a purely four-dimensional Schwarzschild back

gating in a (4+n)-dimensional Schwarzschild black hole ground without the assumption of the presence of extra di-
background. The general form for the amplitude probabilitymenS'ons' The expression of the absorption coeffidit

was determined and an analytical, simplified version wa can be easily found by first putting=0 (the number of
T . rojected extra dimensions on the four-dimensional plane
also presented that allowed us to display the leading func; :
. . - the result for the ratidd, /B_ . Then, Eq.(46) becomes
tional dependence on the expansion parametary] in
terms of the numben of extra dimension and the angular 2141 1\2/ 4 1 _ 2
momentum numbdr Our results in this case are presented in E: _( 2 ) Fd+2)7(1+2)T (-2 (at B)
Eq. (37) and in Table I. B_ 7l (1+a—B)°T(28-1) ’
The most phenomenologically interesting case is the one (A1)
of a scalar field that is confined on a 3-brane and propagat%here now
in the induced spacetime background of a black laleich
is necessarily higher-dimensionalThe functional form of a=—iwry, B=31-2I+1)2—4(wry)?].
the resulting greybody factor depends only on the angular (A2)
momentum numbet, through @ry)? *2. The dependence
on the number of extra dimensions is entirely containedBy using then Eq(36), we obtain the result fol.4|? which,
within the coefficient of this leading term. Our primary re- in its simplified form, reads
sults are given in Eq48) and in Table II.
It is tempting to compare the results derived in the case of |A]2=16m
a brane-localized scalar fie(@vhich nevertheless is part of a
higher-dimensional manifojdwith those valid in the case
where a purely four-dimensional scalar field propagates in &lote that the same results follow by putting=0 in all the
Schwarzschild black hole background. Both cases lead to thexpressions of Sec. Il A, as expected.
same value of A2 for an's wave and, thus, no distinction We display the results for the absorption coefficient in the
can be made between the two backgrounds. However, fgsure four-dimensional case and for the valle®,1,2 of the
higher partial waves, the value of the absorption probabilityangular momentum number in Table lIlI.

| A2=4(wr )+
A= 5 (o4

Il
N PO

For completeness, we present here some of the calculation

U)rH

21+2 I‘(|+l)4
T[3+172r[21+2]2

a)I’H
2

(A3)
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