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Calculable corrections to brane black hole decay: The scalar case

Panagiota Kanti and John March-Russell
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

~Received 12 April 2002; published 18 July 2002!

In the context of brane-world theories, the production cross section for black holes may be greatly enhanced.
Such black holes can in principle lead to detectable signals via their Hawking evaporation to brane-localized
modes. We calculate, in the semiclassical approximation, the leading corrections to the energy spectrum~the
greybody factors! for decay into scalar fields, as a function of the number of toroidally compactified extra
dimensions, and partial wave number.
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I. INTRODUCTION

It is a remarkable fact that in brane-world theories the t
scale M* of quantum gravity may be substantially low
than the traditional Planck scaleMpl , possibly approaching
the TeV scale, and this radical departure from the stand
picture is not excluded@1# ~for earlier works on brane theo
ries, see@2#!. This observation has naturally excited a lar
amount of activity investigating both the structure of the
theories and their experimental signals@3#. One of the most
striking consequences of lowering the Planck scale to
TeV region is that the properties of small black holes
substantially altered@4#. A black hole of given massM is
now much lighter, larger, and colder than a usual black h
of the same mass, provided only that the Schwarschild ra
r H of the black hole~BH! is smaller than the size of the extr
dimensionsr H,R. In this limit, the black hole is well de-
scribed as a (41n)-dimensional black hole centered on th
brane, but extending out into then extra dimensions. The
horizon radiusr H of such a black hole is@4,5#

r H5
1

M*
S M

M*
D 1/~n11!S 8G@~n13!/2#

~n12!p~n11!/2D 1/~n11!

. ~1!

@Note that, following common practice, we work in the a
proximation that the brane tension itself does not stron
perturb the (41n)-dimensional black hole solutions.#

In particular, it is likely ~though not proven! that black
holes are much easier to produce, with production cross
tion at parton-parton center-of-mass~c.m.! energiesAs close
to the geometrical cross section of a black hole of massM
5As @6,7# ~for supporting evidence see, e.g.,@8#; for claims
to the contrary, see@9#!:

sprod~s!.pr H
2 5

1

M
*
2
S M

M*

H 8GS n13

2 D
n12

J D 2/~n11!

. ~2!

If this is the case, then forM* ;O ~TeV! there are striking
consequences for the high-energy interactions of cosmic
@10#, and, moreover, the CERN Large Hadron Collid
~LHC! will become a ‘‘black hole factory’’@6,7,11#.

After such black holes are produced, they decay by
emission of Hawking radiation. It is expected that bla
0556-2821/2002/66~2!/024023~9!/$20.00 66 0240
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holes produced by a collision on our brane, e.g.,pp̄→BH
1X at a hadron collider, will decay mostly to particles o
our brane@12#, and thus will be indirectly observable via th
characteristic Hawking radiation. This radiation is usua
described as ‘‘thermal’’ in character with a temperature

TBH5
~11n!

4p

1

r H
~3!

~in GN5kB5c5\51 units!. However, because of the non
trivial metric in the region exterior to the horizon, there e
ists an effective potential barrier in this exterior region. Th
potential barrier backscatters a part of the outgoing radia
back into the black hole, the amount depending on the
ergy of the radiation. Thus the original blackbody radiation
modified by a frequency-dependent filtering function,s~v!,
caused by the gravitational potential of the black hole. T
function,s~v!, is known as the ‘‘greybody factor.’’ The blac
hole differential decay rate into particles of energyv is then
given by the Hawking formula@13#

dE~v!

dt
5(

l ,b
s l ,b~v!

v

exp~v/TBH!71

dn13k

~2p!n13 , ~4!

where l labels the angular momentum quantum numberb
labels any other quantum numbers of the emitted particle
well as the particle type, and in the phase-space integrauku
5v for a massless particle.1

Greybody factors are important theoretically because t
encode information on the near-horizon structure of bla
holes. Indeed one of the most exciting features of BH p
duction at the LHC would be the opportunity to investiga
Hawking emission in detail for clues as to how the infamo
apparent violation of the laws of quantum mechanics
black hole evaporation~the ‘‘information paradox’’ of black
holes@14#! is resolved—if it is, that is.

Greybody factors can be important experimentally b
cause they modify the spectrum in the region where m

1An alternate form for the decay rate that is sometimes usefu
the massless particle case involves the absorption probab
uA(v)u2 whose relation tos~v! is given in Eq.~13!: dE(v)/dt
5( l ,m,buA(v)u2vdv/$2p@exp(v/TBH)71#%. Here m is the azi-
muthal quantum number.
©2002 The American Physical Society23-1
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particles are produced, thus altering the characteristic s
trum by which we hope to identify a ‘‘BH event.’’ In particu
lar, the functional dependence ofsb(v) on the energyv
depends on the spin of the emitted particle, and on wheth
is brane-localized or free to propagate in the bulk of the ex
dimensions.

One can compute the greybody factor by first comput
the absorption cross section for the appropriate type of
ticle incident on the background metric that describes
brane black hole. This is because the greybody factor in
Hawking formula for the emission rate of a given type
outgoing particle,b, at energyv equals the absorption cros
sectionsb,abs(v) for a particle of typeb incoming at energy
v. In fact, it is this property which implies the greybod
factors do not invalidate the thermal nature of the black ho
Since the outgoing transmission and incoming absorption
efficients are equal to one another, equilibrium still occur
the black hole is placed in a heat bath.

The semiclassical calculation of Hawking emission
only reliable when the energy of the emitted particle is sm
compared to the black hole massv!M , since only in this
case is it correct to neglect the backreaction of the me
during the emission process. This in turn requires that
Hawking temperatureTBH!M , which is equivalent to de-
manding that the black hole massM@M* , as can be seen
from Eqs.~3! and~1!. Inevitably this condition breaks dow
during the final stages of the decay process, but for th
black holes of initial mass larger thanM* most of the evapo-
ration process is well described by the semiclassical calc
tion.

In this paper, we calculate the greybody factor for t
simplest case of scalar particles, both free to propagate in
bulk and localized on the brane~e.g., the Higgs boson!. Sec-
tion II contains a discussion of the metric used in calculat
the greybody factors and the quality of the approximatio
th

tri
ry
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used. To orient the reader through our analysis, Sec. III p
sents the calculation of bulk scalar emission in (41n) di-
mensions, in the simple case ofS-wave emission. Section IV
performs the calculation of the greybody factor for bulk sc
lar emission for arbitrary partial wave. The primary result
this section, the general formula for the greybody factor
given in Eq. ~37!. Section V contains the calculation o
brane-localized scalar emission, where the brane is em
ded in a (41n)-dimensional bulk. The primary results o
this section are given in Eqs.~47! and ~48!. We conclude in
Sec. VI. For ease of use, the results of our calculations
the greybody factors, for the most important (l 50,1,2) an-
gular momentum modes, and for then52,4,6 extra dimen-
sions are collected in Tables I and II.

II. BLACK-HOLE METRICS AND GREYBODY FACTORS

Let V5(2pR)n be the volume of then extra dimensions,
which are here taken to be of common radiusR. Then Gauss’
law relates the four-dimensional~4D! Planck massMpl to the
new fundamental scale of gravity byMpl

2 5VnM
*
21n . A black

hole of massM!Mpl(Mpl /M* )(21n)/n;1015132/n GeV is,
for distances r !R, well approximated @4# by the
(41n)-dimensional Schwarzschild black hole with a lin
element

ds252h~r !dt21h~r !21dr21r 2dV21n
2 , ~5!

where

h~r !512S r H

r D n11

, ~6!

with the horizon radius,r H , given in Eq.~1!. In Eq. ~5!, the
angular part is
dV21n
2 5dun11

2 1sin2 un11$dun
21sin2 un@¯1sin2 u2~du1

21sin2 u1dw2!¯#%, ~7!
ion
he

-
on
,
tial
with 0,w,2p and 0,u i,p for i 51,...,n11. However,
because of the compactification of the extra dimensions,
metric for this black hole at distancesr @R goes over to that
of the usual four-dimensional Schwarzschild solution

ds252S 12
2M

MPl
2 r Ddt21S 12

2M

MPl
2 r D 21

dr21r 2dV2
2.

~8!

The matching of the two expressions Eqs.~5! and ~8! at
r .R is of course just an approximation to the exact me
for such a black hole. An exact expression is not necessa
derive the form of the greybody factor to a very good a
proximation for the energies of interest.

To understand this, consider the case in which a sc
field propagates in the full (41n)-dimensional Schwarz
e

c
to
-

ar

schild black hole background. The scalar wave equat
gIJf ,I ;J50 in this background is separable if we make t
ansatz

f~ t,r ,u i ,w!5e2 ivtRv l~r !Ỹl~V!, ~9!

where Ỹl(V) is the (31n)-spatial-dimensional generaliza
tion of the usual spherical harmonic functions depending
the angular coordinates@15#. Upon substituting this ansatz
the scalar wave equation implies a second-order differen
equation for the radial wave functionRv l(r ):

h~r !

r n12

d

dr Fh~r !r n12
dR

dr G1Fv22
h~r !

r 2 l ~ l 1n11!GR50.

~10!
3-2
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The greybody factor for BH decay into scalars will be fou
from the solutions to this equation.

We can transform this equation to a more convenient fo
by defining a new~‘‘tortoise’’ ! radial coordinatey by

y5
ln h~r !

r H
n11~n11!

⇒ dy

dr
5

1

h~r !r n12 ~11!

in terms of which the radial equation becomes

S d2

dy2 1r 2n14Fv22
l ~ l 1n11!h~r !

r 2 G DR~y!50. ~12!

Since the coordinate positionr H of the horizon is defined by
the ~largest! solution toh(r H)50, the horizon in terms ofy
is aty→2`, as can been seen from Eq.~11!. Equation~12!
is analogous to the Schro¨dinger equation for a particle in a
effective potential.

Nontrivial backscattering occurs in this metric when t
second of the two terms in the square brackets in Eq.~12! is
comparable to or larger than the first. For black holes at
LHC, the typical energies of emitted radiation we are int
ested in range from vmax;TBH5(11n)/4pr H
;(few)100 GeV to a minimum of;~few! GeV ~this mini-
mum might be set by the energy threshold of the detector
the precise value will not matter!. For the range of param
etersn and M* of interest, this gives a range ofv from
vmax&1/2r H to vmin*1/200r H . Thus, inspecting the poten
tial terms of Eq.~12!, we see that the potential is only larg
enough to lead to backscattering over the range of dista
r from O(1)r H to O(100)r H .

A similar analysis can be performed for the 4
asymptotic metric of Eq.~8!. In this case, one finds tha
significant backscattering of the quanta of interest wo
only occur when distances were of orderr;M /MPl

2 !r H

!R. But at such distances, the 4D asymptotic form of
metric is not applicable, being replaced by t
(41n)-dimensional metric used above. Instead, what h
pens is that the changeover from the (41n)-dimensional to
the 4D regime, at distances of orderr;R, only significantly
backscatters quanta of energy 1023 eV or less. In other
words, the backscattering due to the effect of the compa
fication of the extra dimensions only affects very low ener
quanta which are experimentally irrelevant. Even more
this applies to the change in backscattering at distancer
;R due to the difference between the approximate form
the black hole metric, Eqs.~5! and ~8!, and the exact black
hole solution.

Overall, the lesson is that up to corrections that only ap
for very low energy, the greybody factors for brane bla
holes may be calculated using purely t
(41n)-dimensional regime of the black hole metric. In th
remainder of this paper we will follow this procedure. Th
our task is now to return to the radial equation Eq.~10! or
Eq. ~12! and compute the greybody factor.

In particular, via the equivalence ofs~v! to the absorption
cross section, the greybody factor can be computed by
evaluating the absorption probability,uA(v)u2, from the ra-
tio of the in-going flux at the future horizon to the incomin
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flux from past infinity ~with the boundary condition tha
there is no outgoing flux at the horizon!, and then using the
generalized (41n)-dimensional optical theorem relatio
@16#

s l~v!5
2np~n11!/2G@~n11!/2#

n!vn12

~2l 1n11!~ l 1n!!

l !
uAu2

~13!

between the absorption cross sections l(v) and the absorp-
tion probability uAu2 for the l th partial wave. This formula
includes a summation over the multiplicity of individua
‘‘azimuthal’’ components for each given partial wavel @i.e.,
2l 11 in three spatial dimensions, (l 11)2 in four spatial
dimensions, etc.#. A simple summation is appropriate be
cause we deal with a nonrotating black hole.

The radial equation, however, is not in general exac
soluble, therefore we will employ an approximation meth
based on splitting the radial domain into ‘‘near-horizon
~NH! and ‘‘far-field’’ ~FF! regions. The solutions~satisfying
appropriate boundary conditions! in these two regions will
be computed and then matched in a transition region to
the complete solution. This procedure leads to an expres
for uAl(v)u2 correct in leading order in an expansion in th
dimensionless quantityvr H .

III. BULK SCALAR EMISSION: S-WAVE EXAMPLE

Because the radius and temperature of
(41n)-dimensional black hole are always comparable, E
~3!, the dominant scalar decay mode is that into theS wave,
l 50. We will first solve the problem in this case, which w
also serve as an illuminating example for the full case st
ied in Sec. IV and V.

We will first compute the solution in the ‘‘near-horizon
region. The radial equation for theS wave, in terms of they
coordinate defined in Eq.~11!, becomes

S d2

dy2 1v2r 2~n12!DR~y!50. ~14!

By expanding close to the horizonr 5r H1dr (dr !r H), we
obtain dr .r H exp@(n11)rH

n11y# as y→2`. Thus the radial
equation Eq.~14! becomes in the near-horizon limit

S d2

dy2 1v2r H
2~n12!DR~y!50, ~15!

up to exponentially small corrections iny. The general near-
horizon solution is therefore

RNH~y!5A1 exp~ ir H
n12vy!1A2 exp~2 ir H

n12vy!.
~16!

In order to calculate the greybody factor, we must impose
boundary condition that near the horizon the solution
purely ingoing. Therefore, we need to setA150.

We now turn to the far-field region which is defined b
r @r H . In this limit, h(r ).1 and, by setting R(r )
5 f (r )/r (n11)/2, Eq. ~10! can be rewritten as
3-3
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d2f

dr2 1
1

r

d f

dr
1Fv22

~n11!2

4r 2 G f 50, ~17!

which has the form of a Bessel differential equation@17#.
The general solution for the radial functionR(r ) is therefore
given by

RFF~r !5
B1

r ~n11!/2 J~n11!/2~vr !1
B2

r ~n11!/2 Y~n11!/2~vr !,

~18!

where J(n11)/2(vr ) and Y(n11)/2(vr ) are the Bessel func
tions of the first and second kind, respectively.

As we will soon see, the two coefficientsB1 andB2 , and
more specifically their ratio, will help us define the greybo
factor. To compute this ratio, we need to match the far-fi
solution, Eq.~18!, onto the near-horizon solution, Eq.~16!,
in the intermediate region. To this end, we expand the n
horizon solution, in the regimevr !1 and r @r H , leading
to2

RNH~r !.A2 expH i
vr

n11 S r H

r D n12J
.A2H 11 i

vr

n11 S r H

r D n12J . ~19!

We also expand the far-field solution, Eq.~18!, in the same
regimevr !1, which gives

RFF~r !.
B1

GS n13

2 D S v

2 D ~n11!/2

2
B2

r n11 S 2

v D ~n11!/2 GS n11

2 D
p

.

~20!

Matching the above expression with Eq.~19!, we find the
result

B1

B2
5 i

GS n13

2 D 2

2n12

p~vr H!n12 . ~21!

The reflection coefficientR for scattering in the gravita
tional potential of the black hole Eq.~5! is defined as the
ratio of the outgoing and incoming amplitude at infinity. T
compute this, we expand the far-field solution Eq.~18!, in
the limit vr→`, which yields

RFF~r !.
~B12 iB2!

A2pvr n12
ei @vr 2~n12!p/4#

1
~B11 iB2!

A2pvr n12
e2 i @vr 2~n12!p/4#, ~22!

2This expansion allowsv&1/r H , the typical emitted energy
whenM@M* , as is required for the reliability of the semiclassic
approach.
02402
d

r-

and which, in turn, leads to the following expression for t
reflection coefficient:

R5
outgoing amplitude

incoming amplitude
5

B12 iB2

B11 iB2
, ~23!

up to a purely imaginary phase that will drop out when t
magnitude ofR will be computed. The absorption probabi
ity is then defined as

uAu25~12uRu2!.
p~vr H!n12

2nGS n13

2 D 2 , ~24!

where, in the final expression, we have expanded to lead
order in (vr H). This is the final result for theS-wave grey-
body factor for scalars in a (41n)-dimensional Schwarz-
schild black hole background. We may easily check that,
n51, we correctly reproduce the result

uAu25
p

2
v2r H

3 5
v3

4p
AH , ~25!

whereAH52p2r H
3 is the area of the horizon, presented

Ref. @18#.

IV. BULK SCALAR EMISSION FOR lÐ0

We will now generalize the above analysis in the case
which the scalar modes are not spherically symmetricl
Þ0. For readers more interested in our final results, rat
than the techniques used to solve the problem, we sug
jumping to Eq.~37! and the following discussion.

We will start with the derivation of the solution in th
near-horizon zone. Starting from Eq.~10!, and making a
change of variable, we may write the scalar field equation
the form ~we adopt the method of Ref.@19#, see also Ref.
@20#!

h~12h!
d2R

dh2 1~12h!
dR

dh

1F ~vr !2

~n11!2h~12h!
2

l ~ l 111n!

~n11!2~12h!GR50.

~26!

Near the horizon,r .r H and the quantity (vr )2 can be set
equal to (vr H)2. Then, by using the redefinitionR(h)
5ha(12h)bF(h), the above equation takes the form of th
hypergeometric equation

h~12h!
d2F

dh2 1@c2~11a1b!h#
dF

dh
2abF50, ~27!

with a5b5a1b andc5112a, where
3-4
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a656
ivr H

n11
,

~28!

b65
1

2
6

1

n11
AS l 1

n11

2 D 2

2~vr H!2.

Equation~27! has as a solution the hypergeometric functi
F(a,b,c;h). The criterion for the convergence of the hype
geometric function demands that Re(c2a2b).0, which
forces us to chooseb5b2 . Then, the general solution o
Eq. ~26! may be written as@17#

RNH~h!5A2ha6~12h!bF~a,b,c;h!1A1h2a6~12h!b

3F~a2c11,b2c11,22c;h!. ~29!

Expanding the above solution in the limitr→r H , or h→0,
and choosinga5a2 , we obtain the result

RNH.S r H

r D b~n11!

@A2 exp~2 ivr H
n12y!

1A1 exp~ ivr H
n12y!#, ~30!

which again imposes the condition3 A150.
in

the

02402
The derivation of the far-field-zone solution closely fo
lows the analysis performed in the case wherel 50. The
same redefinition of the radial function leads again to
Bessel equation whose general solution is now given by

RFF~r !5
B1

r ~n11!/2 Jl 1~n11!/2~vr !1
B2

r ~n11!/2 Yl 1~n11!/2~vr !.

~31!

Both solutions, near-horizon and far-field, need to
‘‘stretched’’ and matched in the intermediate region. Expan
ing first Eq.~31!, in the limit vr !1, gives

RFF~r !.
B1r l

GS l 1
n13

2 D S v

2 D l 1~n11!/2

2
B2

r l 1n11 S 2

v D l 1~n11!/2 GS l 1
n11

2 D
p

. ~32!

The near-horizon solution needs to be ‘‘shifted’’ first an
expressed in terms of 12h, before being expanded in th
limit r @r H . By using a standard formula@17#, we write
RNH~h!5A2haF ~12h!b
G~112a!G~122b!

G~11a2b!2 F~a,b,a1b2c11;12h!

1~12h!12b
G~112a!G~2b21!

G~a1b!2 F~c2a,c2b,c2a2b11;12h!G . ~33!

We can now expand the above expression in the limith→1 and take

RNH~h!.A2S r

r H
D l G~112a!G~122b!

G~11a2b!2 1A2S r H

r D l 1n11 G~112a!G~2b21!

G~a1b!2 . ~34!

Matching the two solutions Eqs.~32! and ~34!, we obtain the ratio

B1

B2
52S 2

vr H
D 2l 1n11 GS l 1

n11

2 D 2S l 1
n11

2 DG~122b!G~a1b!2

pG~11a2b!2G~2b21!
. ~35!
,
in
fur-
The definition of the reflection coefficientR is still given by
Eq. ~23!. In turn, the absorption probability can be written,
terms ofB5B1 /B2 , as

uAu25~12uRu2!5
2i ~B* 2B!

BB* 1 i ~B* 2B!11
. ~36!

3Note that the choicea5a1 would have led again to Eq.~30!
with A2↔A1 , and therefore to the choiceA250. As both values
of a appear in the general solution Eq.~29!, it is only a matter of
choice which one of the two terms will be associated with
incoming mode.
Due to the fact that the argument of theG functions appear-
ing in the expression ofR are nontrivial complex numbers
we cannot write the absorption coefficient in a simple way
the general case. However, the above expression can be
ther simplified in the limit vr H!1, in which caseBB*
@ i (B* 2B)@1, and, therefore,uAu2 may be written as

uAu25
4p2

24l /~n11! S vr H

2 D 2l 1n12 GS 11
l

n11D 2

GS 1

2
1

l

n11D 2

GS l 1
n13

2 D 2 .

~37!
3-5



s
n-

t
a

ly
ili
fa

s
in

n

la
os
o

e
ra

cal
the

e
nd
on

in

-
e
.
e

met-

tric

hat

PANAGIOTA KANTI AND JOHN MARCH-RUSSELL PHYSICAL REVIEW D66, 024023 ~2002!
This is our major result for the case of bulk scalar field
Equation~37! nicely displays the leading functional depe
dence of the greybody factor onvr H for varying partial
wave, l, and number of extra dimensions,n. For the case of
l 50, this may be further evaluated to give

uAu l 50
2 5S vr H

2 D n12 4p

G@~n13!/2#2 , ~38!

in complete agreement with the result, Eq.~24!, of our earlier
analysis in the casel 50. In fact, for ans-wave massless bulk
scalar, the absorption probabilityuAu2 has the exact form tha
allows the greybody factors~v! to reduce to the horizon are
of the black hole in agreement with previous work@21#. The
numerical values of the results for the casesl 50, 1, 2 for
n52, 4, and 6 are shown in Table I.

If we fix the number of extra dimensions and vary on
the angular momentum number, the absorption probab
decreases asl increases. This decrease is caused by the
that the power of the expansion parameter (vr H)2l 1n12, in
the leading term, increases withl. Since (vr H)!1, this
means thatuAu2 becomes more and more suppressed al
increases. The numerical coefficient in front of the lead
term also decreases withl ~see Table I!. The same behavior is
observed if we fix insteadl and varyn.

V. BRANE-LOCALIZED SCALAR EMISSION FOR lÐ0

We now turn to the case in which the scalar field is co
fined on a four-dimensional brane embedded in
(41d)-dimensional Schwarzschild spacetime. The sca
field propagates in a four-dimensional background wh
metric tensor is given by the induced metric at the location

TABLE I. Absorption probabilities for a (41n) bulk scalar
field.

n52 l 50 uAu2. 4
9 (vr H)41¯

l 51 uAu2.
22/3

~15!2

G~4/3!2

G~5/6!2 p~vr H!61¯

l 52 uAu2.
222/3

~105!2

G~5/3!2

G~7/6!2 p~vr H!81¯

n54 l 50 uAu2.
4

~15!2 ~vr H!61¯

l 51 uAu2.
26/5

~105!2

G~6/5!2

G~7/10!2 p~vr H!81¯

l 52 uAu2.
22/5

~105!234

G~7/5!2

G~9/10!2 p~vr H!101¯

n56 l 50 uAu2.
4

~105!2 ~vr H!81¯

l 51 uAu2.
2 23/7

~105!234

G~8/7!2

G~9/14!2 p~vr H!101¯

l 52 uAu2.
26/7

~1155!234

G~9/7!2

G~11/14!2 p~vr H!121¯
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the brane. The induced metric follows from th
(41d)-dimensional one by fixing the values of the ext
angular coordinates,un5p/2 for n>2, and it may be written
as

ds252h~r !dt21h~r !21dr21r 2~du21sin2 u dw2!,
~39!

whereh(r ) is still given by Eq.~6!. The scalar field equation
may be separated in the same way,

f~ t,r ,u,w!5e2 ivtRv l~r !Yl~V!, ~40!

whereYl(V) are now the usual three-dimensional spheri
harmonic functions. The above ansatz allows us to write
equation for the radial part as

h~r !

r 2

d

dr Fh~r !r 2
dR

dr G1Fv22
h~r !

r 2 l ~ l 11!GR50. ~41!

The presence of the metric functionh(r ) makes once again
the derivation of the general solution extremely difficult. W
will follow the same method as in the previous section a
compute the solution in the two radial domains, near-horiz
and far-field, which will then be ‘‘stretched’’ and matched
the intermediate region.

Having become familiar with the analysis, we will pro
ceed to derive directly the solution in the general casl
>0. We start with the solution in the ‘‘near-horizon’’ region
In terms ofh, the radial differential equation now takes th
form

h~12h!
d2R

dh2 1F12
~2n11!

~n11!
hG dR

dh

1F ~vr H!2

~n11!2h~12h!
2

l ~ l 11!

~n11!2~12h!GR50. ~42!

By using the same redefinitionR(h)5ha(12h)bF(h), the
above equation assumes the standard form of a hypergeo
ric equation with indicesa5a1b1@n/(n11)#, b5a1b,
andc5112a, where

a656
ivr H

n11
,

~43!

b65
1

2~n11!
@16A~2l 11!224~vr H!2#.

The criterion for the convergence of the hypergeome
function, Re(c2a2b).0, demands againb5b2 . The
general solution of Eq.~42! has again the form of Eq.~29!.
Expanding near the horizon and imposing the condition t
only incoming waves exist nearr .r H , we find thatA150
for a5a2 . At this point, we can also ‘‘shift’’ the solution
and write it in terms of 12h, in the same way as in the
previous section. If we finally expand forr @r H , or equiva-
lently h→1, we obtain the solution
3-6
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RNH~h!.A2S r

r H
D l G~112a!GS 122b2

n

n11D
GS 11a2b2

n

n11DG~11a2b!

1A2S r H

r D l 11 G~112a!GS 2b1
n

n11
21D

GS a1b1
n

n11DG~a1b!

.

~44!
ie
d

02402
The far-field-zone solution can be easily found to be giv
in terms of the Bessel functionsJl 11/2(vr ) andYl 11/2(vr ).
Expanding the general solution in the limitvr !1 finally
gives

RFF~r !.
B1r l

G~ l 1 3
2 !

S v

2 D l 11/2

2
B2

r l 11 S 2

v D l 11/2G~ l 1 1
2 !

p
.

~45!

Matching the two asymptotic solutions, we obtain the rat
B1

B2
52S 2

vr H
D 2l 11 G~ l 1 1

2 !2~ l 1 1
2 !GS 122b2

n

n11DG~a1b!GS a1b1
n

n11D
pG~11a2b!GS 11a2b2

n

n11DGS 2b1
n

n11
21D , ~46!
nd
in

on

nal

n

d by
-

e
-

alar
of

is

b-
the

ane

is-

of a
which can be used to determine the absorption coeffic
according to Eq.~36!. We may, however, obtain a simplifie
expression, in the limitvr H!1, which reads

uAu25
16p

~n11!2 S vr H

2 D 2l 12 GS l 11

n11D 2

GS 11
l

n11D 2

G~ 1
2 1 l !2GS 11

2l 11

n11 D 2 .

~47!

The expressions of the absorption coefficientuAu2 for the

TABLE II. Absorption probabilities for a~4D! brane scalar
field.

n52 l 50 uAu2.4(vr H)21¯

l 51
uAu.

16p2

243
~vr H!41¯

l 52
uAu2.

4

~15!2 ~vr H!61¯

n54 l 50 uAu2.4~vr H!21¯

l 51
uAu2.

4

25

G~2/5!2G~6/5!2

G~8/5!
~vr H!41¯

l 52
uAu2.

4G~3/5!2G~7/5!2

~15!2 ~vr H!61¯

n56 l 50 uAu2.4(vr H)21¯

l 51
uAu2.

4

49

G~2/7!2G~8/7!2

G~10/7!2 ~vr H!41¯

l 52
uAu2.

4

~21!2

G~3/7!2G~9/7!2

G~12/7!2 ~vr H!61¯
ntvaluesn52, 4, and 6 of the number of extra dimensions, a
l 50, 1, 2 of the angular momentum number, are shown
Table II.

Finally, employing the relation between the absorpti
probability and the greybody factor, Eq.~13!, leads to

s l~v!5
4p2~2l 11!

~n11!2

GS l 11

n11D 2

GS 11
l

n11D 2

G~ 1
2 1 l !2GS 11

2l 11

n11 D 2 S vr H

2 D 2l

r H
2 .

~48!

In this equation, we have setn50 in Eq. ~13! as the partial
waves are purely confined to the three-spatial-dimensio
brane, the only dependence onn being in uAu2.

Keepingn fixed and varyingl, we see that the absorptio
probability decreases once again asl increases~see Table II!:
the dominant term becomes more and more suppresse
extra powers of (vr H) and its numerical coefficient also de
creases~the introduction of the multiplicity of states with th
same angular momentum numberl does not change this be
havior!. If we fix insteadl and varyn, a radically different
behavior from the one observed in the case with a bulk sc
field emerges, namely the leading term, in the expansion
uAu2 in powers of (vr H), remains the same, since it
n-independent, while its coefficient increases asn increases.
In other words, for a given partial wave, the absorption pro
ability, and therefore the greybody factor, increases as
number of extra dimensions being projected on the 3-br
also increases.

VI. CONCLUSIONS

In this paper, we have studied the problem of scalar em
sion in a spherically symmetricD-dimensional Schwarz-
schild black hole background. The cases of the emission
3-7
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PANAGIOTA KANTI AND JOHN MARCH-RUSSELL PHYSICAL REVIEW D66, 024023 ~2002!
(41n)-dimensional bulk scalar field and of a fou
dimensional brane-localized scalar field were studied se
rately and the greybody factor was determined in each c
This quantity causes the spectrum of Hawking radiation
deviate from the blackbody spectrum as it strongly depe
on the energy of the particle mode emitted. Moreover
encodes information about the gravitational background
thus on the number of extra dimensions that might e
@both in the case where the scalar field is free to propaga
the (41n)-dimensional bulk or when the field ‘‘feels’’ the
existence of extra dimension only through the induced me
on our 3-brane#.

The differential equation for the radial part of the sca
field can be solved by an approximation method valid
leading order in (vr H): the solution of this equation wa
found in the ‘‘near-horizon’’ and ‘‘far-field’’ region and was
subsequently ‘‘stretched’’ and matched in an intermediate
gime. This matching allows us to determine the absorpt
coefficient for scattering in the black hole background, wh
then leads to the greybody factor,s~v!, according to Eq.
~13!.

We first focused on the case of a bulk scalar field pro
gating in a (41n)-dimensional Schwarzschild black ho
background. The general form for the amplitude probabi
was determined and an analytical, simplified version w
also presented that allowed us to display the leading fu
tional dependence on the expansion parameter (vr H) in
terms of the numbern of extra dimension and the angula
momentum numberl. Our results in this case are presented
Eq. ~37! and in Table I.

The most phenomenologically interesting case is the
of a scalar field that is confined on a 3-brane and propag
in the induced spacetime background of a black hole~which
is necessarily higher-dimensional!. The functional form of
the resulting greybody factor depends only on the ang
momentum number,l, through (vr H)2l 12. The dependence
on the number of extra dimensions is entirely contain
within the coefficient of this leading term. Our primary r
sults are given in Eq.~48! and in Table II.

It is tempting to compare the results derived in the case
a brane-localized scalar field~which nevertheless is part of
higher-dimensional manifold! with those valid in the case
where a purely four-dimensional scalar field propagates
Schwarzschild black hole background. Both cases lead to
same value ofuAu2 for an s wave and, thus, no distinctio
can be made between the two backgrounds. However,
higher partial waves, the value of the absorption probabi
tt
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in the case of a brane scalar field is always larger than
one for a purely 4D field, a fact which in principle can b
used to distinguish between the two cases.

In a companion paper@22#, we employ the technique
developed in the current paper to derive the greybody fac
for higher-spin fields localized on a brane. This allows us
discuss the physics and phenomenology of black hole de
as might be observed at the LHC.

APPENDIX

For completeness, we present here some of the calcula
of scalar emission in the case in which the scalar field pro
gates in a purely four-dimensional Schwarzschild ba
ground without the assumption of the presence of extra
mensions. The expression of the absorption coefficientuAu2
can be easily found by first puttingn50 ~the number of
projected extra dimensions on the four-dimensional plane! in
the result for the ratioB1 /B2 . Then, Eq.~46! becomes

B1

B2
52S 2

vr H
D 2l 11G~ l 1 1

2 !2~ l 1 1
2 !G~122b!G~a1b!2

pG~11a2b!2G~2b21!
,

~A1!

where now

a52 ivr H , b5 1
2 @12A~2l 11!224~vr H!2#.

~A2!

By using then Eq.~36!, we obtain the result foruAu2 which,
in its simplified form, reads

uAu2516pS vr H

2 D 2l 12 G~ l 11!4

G@ 1
2 1 l #2G@2l 12#2

. ~A3!

Note that the same results follow by puttingn50 in all the
expressions of Sec. II A, as expected.

We display the results for the absorption coefficient in t
pure four-dimensional case and for the valuesl 50,1,2 of the
angular momentum number in Table III.

TABLE III. Absorption probabilities for a~4D! scalar field.

l 50 uAu2.4(vr H)21¯

l 51 uAu2. 1
9 (vr H)41¯

l 52 uAu2.
1

(45)2
(vr H)61¯
,
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