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Vacuum polarization in the spacetime of a charged nonlinear black hole
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Building on general formulas obtained from the approximate renormalized effective action, the approximate
stress-energy tensor of the quantized massive scalar field with arbitrary curvature coupling in the spacetime of
a charged black hole that is the solution of the coupled equations of nonlinear electrodynamics and general
relativity is constructed and analyzed. It is shown that, in a few limiting cases, the analytical expressions
relating the obtained tensor to the general renormalized stress-energy tensor evaluated in the geometry of the
Reissner-Nordstrm black hole can be derived. A detailed numerical analysis with special emphasis put on
minimal coupling is presented, and the results are compared with those obtained earlier for a conformally
coupled field. Some novel features of the renormalized stress-energy tensor are discussed.
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[. INTRODUCTION However, direct evaluation of this object is rather compli-
cated.

One of the most intriguing open questions in modern the- It is believed that the physical content of the theory of
oretical physics is the issue of the final stage of black holguantum fields in curved spacetime is contained in the
evaporation. Although a definite answer would be possibldrenormalized effective actionWg, a useful quantity allow-
only with the full machinery of a quantum theory of gravity, ing evaluation of the stress-energy tensor by means of the
some important preliminary results may be obtained in prinStandard formula
ciple within the framework of semiclassical theory. However,
as the semiclassical approach cannot be used to describe the i iW —(Tab) 1)
evolution of the system in the Planck regime, it can, at best, g¥2 8gap " ren
tell us about the tendency rather than the limit itself. Unfor- ) o )
tunately, even this simplified program is hard to execute aynfortunately, the effective action is a nonlocal functional of

the semiclassical Einstein field equations comprise a rathdP'€ Mmetric and its exact form is unknown. In the attempts to
complicated set of nonlinear partial differential equations construct the renormalized stress-energy tensor one is forced,

and, moreover, the source term—the renormalized streséberefore’ to employ numerical methods or to accept some

energy tensor—should be known for a wide class of non_approxmathns. L . Lo
For quantized massive fields in the large mass limit, i.e.,

static metrics. It is natural, therefore, that, in order to make .
the back reaction problem tractable, one should refer to so when the Compton length is much smaller than the charac-

. ) P ’ M&ristic radius of curvature, the nonlocal contribution to the
approximations.

effective action can be neglected, and the series expansion in

It seems that the m_ost promising approach co_nsists ilpn—z of the renormalized effective actioWy may be con-
constructing the approximate stress-energy tensor in the 9&¢,cted with the aid of the DeWitt-Schwinger method

ometry of a static black hole and subsequent computation 9ig_171). Thus the constructed renormalized effective action
the semiclassical corrections to the classical metric. Alhas the form

though evaluated in the static background, such corrections,

as was pointed out in Ref1], are relevant because they give 1 1 “ (n—=3)!

direct information about the influence of the quantum effects Wren:mf d"xg nzs W[an(x,x')], 2
on the temperature of a black hole. Thus far this program,

initiated in Ref.[2], has been carried out for massless fieldsyhere [a,(x,x')] is the coincidence limit of thenth

in Schwarzschild spacetimg8—8] and for massive scalar Hadamard-Minakshisundaram-DeWitt-SeditMDS) coef-
fields with arbitrary curvature coupling in Reissner-ficient. The coefficients are local, geometrical objects con-
Nordstran (RN) geometry[1], where, among other things, structed from the curvature tensor and its covariant deriva-
quantum corrections to the geometry, entropy, and trac@ves of rapidly growing complexity. So far, only the
anomaly were computed. The most important ingredient otpefficients forn<4 are known, but it seems the effective
the approach is therefore the renormalized stress-energy tefetion constructed from higher order terms would be intrac-
sor of the quantized field propagating in the spacetime of @apje in practice, especially in attempts to calculate the
static black hole constructed in a physically interesting statestress-energy tensor.
The first nonvanishing term of the effective action con-
structed for the massive scalar field with arbitrary curvature
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where¢ is the coupling constant and is the mass of the field, from the coincidence limit of the HMDS coefficien, is

given by[12-14
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where =£&—1/6 and «; are numerical coefficients that considered in Ref{18] yielded identical results. Moreover,
stand in front of the geometric termsWK_). . Differentiating ~ detailed numerical analyses carried out in Rf7] and
W) functionally with respect to the metric tensor, one briefly reported in[1] show that formM=2 (M being the
obtains black hole masgsthe accuracy of the Schwinger-DeWitt ap-
proximation in the Reissner-Nordsimogeometry is quite
good (1% or bettey.
Wiy The geometry of the Reissner-Nordstrdblack hole is
singular ag —0 and there is a natural desire to construct its
regular generalizations. It is expected that a good candidate
=T(0aby p(M)aby p27(2)aby ,,3T()ab (5 for the source term of the Einstein equations is(itiassical
stress-energy tensor of nonlinear electrodynamics. Moreover,
where eachT®ab is a rather complicated expression the renewal of interest in nonlinear electrodynamics that has

constructed from the curvature tensor, its covariant derivabeen seen recently is motivated by the observation that such

tives, and contractions. Such calculations were undertake‘ili‘e_or'eS arose as limiting cases of certain formulations _Of
in Refs.[15,16, where generic expressions for the first non-Stfing theory. Unfortunately, the no go theorem proved in
vanishing order of the renormalized stress-energy tensdref- [19] clearly shows that for Lagrangians(F) (F
were obtained. They generalize earlier results of Frolov and® FabF2"), with the Maxwell weak-field limit there are no
Zel'nikov for vacuum type-D geometriefll]. One can spherically symmetric static black hole solutions with a regu-
easily extend this result to the case of spinor and vector fieldkar center.
as the analogous expressions differ only by numerical Recently, employing the Schwinger-DeWitt approxima-
coefficientsq; . tion we constructed the renormalized stress-energy tensor of
It should be emphasized, however, that the above assumfiie quantized conformally coupled massive scalar field in the
tions place severe limitations on the domain of validity of thespacetime of the electrically charged regular black hole that
approximation obtained. In particular, it would be meaning-is an exact solution of the equations of nonlinear electrody-
less, at least in this formulation, to consider the masslessamics and the Einstein field equations. Such a solution was
limit of the approach. Therefore, the result, which consists oproposed by Ayn-Beato and Garai(ABG) in Ref.[20]. It
approximately 100 local geometrical terms, may be used ishould be noted, however, that the ABG line element is not a
any spacetime provided the temporal changes of the baclsolution of the standard nonlinear electrodynamics and the
ground geometry are slow and the mass of the field is suffieffective geometryi.e., the geometry affecting the photons
ciently large. Because of the complexity of the tensor thuof the nonlinear theopyis singular. Fortunately, the ABG
obtained, it will not be presented here, and for its full form solution may be reinterpreted as describing a magnetically
and technical details the reader is referred16). charged regular solution of the coupled equations of standard
For quantized massive scalar fields with arbitrarynonlinear electrodynamics and gravitation with much more
curvature coupling in static and spherically symmetricregular behavior of the effective geomef1]. Moreover, it
geometries there exists a different method invented byas been shown recently that it is possible to combine elec-
Anderson, Hiscock, and Samugl7]. Their calculations tric and magnetic line elements to obtain a regular electric
were based on the WKB approximation of the solutionssolution with a magnetic cor2].
of the radial equation and summation of the mode functions For small and intermediate charges as well as at large
thus obtained. Both methods are equivalent: to obtairdistances, the geometry of the ABG black hole resembles
the term proportional tan~? one has to use sixth order that of RN; noticeable differences appear near the extremal-
WKB, and explicit calculations carried out for the Reissner-ity limits. It is interesting therefore to analyze how the simi-
Nordstran spacetime as well as in wormhole geometriedarities in the metric structure of the ABG and RN black
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holes are reflected in the structure of the stress-energy ten=0 the Reissner-Nordstno solution has an irremovable
sors. As for the conformally coupled massive scalar field theurvature singularity, which, although hidden from an exter-
linear, quadratic, and cubic terms i in the stress-energy nal observer folQ?/M?<1, remains a somewhat unwanted
tensor(5) are absent, it is anticipated that such similarities dofeature of the solution. The solution f@?>M? is clearly
occur. Explicit calculations carried out ja6] confirmed this  unphysical.
hypothesis and showed that for small values|dfie appro- At least for purely electrical solutions the nonlinear elec-
priate tensors are essentially indistinguishable, and, as exrodynamics does not remedy the situation. Indeed, consider
pected, important differences appear near and at the extrera-realization of the nonlinear electrodynamics with the action
ality limit. functional of the form

In this paper we shall extend the results of R&6] and
investigate a much more complicated case of arbitrary
with spgecial emphasis put on the minimal coupling. Although S= 167 d*x\=g[R—L(F)], ©)
the complexity of the approximate stress-energy tensor con-
structed for the ABG line element prevents its direct examiwhereR is a curvature scalaf =F,,F2°, and £(F) is an
nation in practice, it is possible to extract interesting infor-arbitrary function with Maxwell asymptotic in the weak-field
mation by expandlngTa> into a power series and retaining a limit, i.e., £L(F)—F and d/dF)£(F)—1 asF—0. Accord-
few leading terms. We shall show that such analyses can bag to a well known theoreni19,21], there are no regular,
carried out for small charges, large distances, and in the vistatic, and spherically symmetric solutions of general relativ-
cinity of the event horizon of the extremal ABG black hole. ity coupled to nonlinear electrodynamics describing a black
Moreover, on general grounds one may easily estimate thieole with nonzero electric charge. However, as was explicitly
role played byT(M2P and T(32b, To gain a deeper under- demonstrated recently by Bronnikov, the adopted hypotheses
standing of the problem, however, we employ numerical calleave room for appropriate regular solutions with a nonzero
culations. magneticcharge. In this regard it is interesting to note that,

The paper is organized as follows. In Sec. Il the essential#ithin a different formulation of the nonlinear electrodynam-
of the ABG black hole geometry that are necessary in furtheics proposed in23] (a’P framework according to the nomen-
development are briefly described. In Sec. lll certain feature§lature of Refs[21,24) obtained from the standard ofthe
of the approximate stress-energy tensor of the massive scaldr formulation (9) by means of a Legendre transformation,
field in the ABG geometry are discussed and compared witdyon-Beato and Garal constructed a regular black hole so-
the appropriate tensors constructed in the RN geometry. Theltion with a nonzero electric charge and m26]. Their
results of our numerical analyses are presented in Sec. IV, igolution has the simple forit6), where
which we discuss the behavior of the component§Tg) in 5
some detail and present it graphically. A(r)=1— ﬂ( _tanh e ) (10)

2Mr
Il. GEOMETRY . . .
Bronnikov also demonstrated that any spherically symmetric
The general Reissner-Nordstnosolution of the Einstein-  solution constructed within th& framework has its counter-
Maxwell equations describing a static and spherically sympart with the same metric tensor constructed within the
metric black hole of mashl, electric charge, and magnetic  framework, and therefore the electric soluti@ has a mag-

monopole charge,, has a remarkably simple form: netic companion witle replaced by the magnetic chargg.
b 1 o oo 5 Moreover, Burinskii and Hildebrandt proposed recently a
ds’=—A(r)dt*+ A"} (r)dr?+r?(d6?+ sif 6d ¢?), regular hybrid model in which electrically and magnetically

charged solutions were combined in such a way that the elec-
tric field does not extend to the center of the black Ha@.
Although the magnetic and electric ABG solutions are
precisely of the typg6) with (10), the geometries affecting
_ (7) photons of the nonlinear theory are different. This is because
r? photons of the nonlinear theory move along null geodesics of
the effective metric, and the latter is singular for the electric
Since the charges enter E(f) as a sum of squares, the solution[25—27. It should be noted, however, that otherwise
metric structure remains unchanged under changes ahe physical geometry is regular and well behaved.

with

charges leavingQ?=e?+ erzn constant. ForQ?/M?<1, the Since geometries outside the event horizon are described
equationA(r)=0 has two positive roots: by the same line element and since we are going to consider
neutral scalar field only, our results will hold for any particu-
r.=M={M?-Q? (8) lar realization of the ABG black hole as the only concern

here is the metric structure of the spacetime. Therefore in
and the larger one,. , determines the location of the event what follows we denote both the electric and magnetic
horizon, whereas the smaller, , gives the position of the charge bye.
inner horizon. In the limitQ?=M? the horizons merge at Inspection of the metric potentials reveals interesting fea-
=M and the black hole degenerates to the extremal one. Atres of the ABG solution: its curvature invariants are finite
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asr —0 and at large it approaches the Reissner-Nordstro length between the event horizon and any point located at
solution. Moreover, for small and intermediate values of ther >r ., is infinite.
ratio €2/M?, the radial coordinate of the event horizan,,
is close to the event horizon of the RN black hole; significant
differences occur near the extremality limit. Il. THE RENORMALIZED STRESS-ENERGY TENSOR

It was shown in[16] that the location of the horizons of _ ) i
the ABG black hole may be expressed in terms of the Lam-_ 1he structure of terms in the effective potentidl and in
bert functionW [28]. Indeed, making use of the substitution Ed- (5) indicates that for the conformally coupled massive
r=Mx, e2=q?M?2, it can be demonstrated that the location s_calar field, i.e., forp=0, there are substantial simplifica-

of the horizons is given by the real branches of the Lambertions of the_renormalized str_ess-energ_y tensor, as in this very
functions: case the third, fourth, and fifth terms in E@) do not con-

tribute to the final result. Moreover, from E@) it is evident
) that inR=0 geometries and for arbitrary curvature coupling
_ 49 (11) the functional derivative of the first and the third terms in Eq.
4W(e,—q%l4 exp(qz/4))_q2’ (4) with respect to the metric tensor vanishes and, therefore,
the approximate renormalized stress-energy tensor of the
massive field in RN spacetime has the general form

Xs=

wheree is 0 for the event horizor, , and— 1 for the inner
one x_. The functionsW(0,s) and W(—1,s) are the only
real branches of the Lambert function with the branch point b ~b b
ats=—e !, where e is the base of natural logarithms and Ta=Cat 7D;. (18)

ey W1 —e—1y= —
W(0—e ) =W(-1-¢e") L (12 On the other hand, however, for the ABG metric one has
Consequently, for
4

q 9?
q=2@ (13 R—Wtan)‘(z)[l—tanh’-

q2
ﬂ” (19
the horizons merge at

which for smallg is ©(q®). Detailed calculations carried out
(14)  for q<<1 show that for the ABG solution neithdr{"® nor
T3P contributes importantly to the result.
. . Because of the similarities of the metric structures of the
where w=W(0,e ") =0.2785. Numerically, one haSexr RN and ABG solutions, the overall behavior of the renormal-

=0.871 for|e|/M = 1.055. , ized stress tensors for conformal coupling should be qualita-
For small values ofj, the ABG line element resembles ey similar and comparable in magnitude at least for small

4w
Xextr™ 1+w'

that of RN. Indeed, expanding the functiéifx) one has and intermediate values of However, the differences be-
tween the line elemenfl6) and the expansioiil?) give
2 g strong evidence for differences in the appropriate compo-
AX)=1-+ ;+0(q4)- (19  nents of the approximate stress-energy tensors. For the con-

formally coupled massive scalar field this statement has been

) o confirmed by the extensive numerical calculations reported
In spite of the similarities between the ABG and RN geom-in Ref. [16]. Now we shall analyze the case of an arbitrary
etries forq<1, there are substantial differences in the extre-coypling with curvature. First, observe that the contribution
mality limit: the extremal RN line element is described by of 72T(1ab and ,3T32b 1o the stress-energy tensor can be

Eq. (6) with made arbitrarily great by a suitable choice of the conformal
) coupling. It should be noted, however, that such great values
4 E of » are clearly unphysical and should be rejected. There-
Ax)=|1 , (16 . :
X fore, as the particular case of the conformal coupling was
considered earlier, here we shall confine ourselves mostly to

whereas near the event horizon of the extremal ABG blacihe important and physically interesting case of minimal cou-

hole the functiorA(x) has the following expansion: pling »=—1/6.
In order to construcE® andD® one has either to calculate
(1+w)3 the curvature tensor and its covariant derivatives to required
AX) = (X Xext)*+ O(X—Xex)®. (17)  order for the line elemen(®) with (7) and employ the gen-
32w eral formulas presented Ji5] or to make use of the method

proposed by Anderson, Hiscock, and Saniuél]. Both ap-
The form of the above expansion indicates that the propeproaches yield the same result, which reads
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810x*g%— 855*— 202%q*+ 18783 — 11523q%— 2307%>q°+ 3084 q* — 12481°
Ci= (20
v 3024M 6 772m?2x 12 ’
o~ 1008¢3q?%+ 819°+ 2604¢%q%+ 728q* — 271 q*+ 360x* — 792¢3 21
‘ 720M 8 r2m?x 12 ’
. 842¢q*+4449°+ 162x"q° — 462¢°— 1488 — 193X q* + 315¢* + 21277 22
‘ 3024M 8 7r2m?x12 ’
504xq*— 208x%q* — 588x%q% + 336302 — 11705+ 216¢3 — 144x*
= : (23
720M 8 7r?m?x 12
coo 22023 — 486x*q2— 945¢* — 3044%q* + 48843q? — 990%K2q>+ 10356 * — 306G)° 2
’ 3024(M®7r2m?x 12 ’
and
, —1176¢3q+10531°+ 3276¢%* + 832*q* — 3408 q* + 432 — 1008(3
D,= (25
720M 67T2 2 12
|
The analogous. tensor in the ABG ggometry is more compli- . 9°(12049- 11416+ 2660¢2)
cated, and besides the linear terms it contains also terms that ~ 96m“m“A{™" = — 12
are quadratic and cubic in. Each component of the stress- 420M>x
energy tensor consists of more than 300 terms and has the 208(617— 596+ 140¢2)
general form +
5M6 12
o q 120°%(459- 366¢+ 70x?) 72 28
96172m2M6( —tanho— )E aljk tanH( ., (26) M 6x12
6 2
90672m? AL _ _ g°(1555- 1064+ 140x~)
where o for a given 5 are numerical coefficients €9i ' 420M6x12
<6, 8<j=<15, 0<k=<8), and for obvious reasons will not 6 )
be presented here. _20°(121- 140+ 40¢%)
Since the form of Eq(26) differs considerably from the 5M 6x12
stress-energy tensor given by Ef8) with Egs.(20)—(25), it
could be expected that the runs of both tensors have nothing 12q6(81 84x+20x%) 7 29
in common. On the other hand, similarities in the metric M 6x12 ' (29)
structure of the RN and ABG black holes discussed earlier
strongly sugges_t the opposite. Unfortunately, the com_plexity . 9°(5249- 3528+ 560x2)
of the renormalized stress-energy tensor of the massive sca- 96772m2A(0 )0 .
lar field in the ABG geometry invalidates direct analytical 420M°x
treatment in practice. One can, however, obtain interesting 6 2
and important information analyzing certain limiting cases. 2q (779~ 720« +160<%) 7
Indeed, expanding the stress-energy tensogffi one has 5M 6x12
129°%(540— 423+ 80x?) 5* 30
(TOAPC=T2+ AP+ 0(g%), 27 M 6x12 '

Inspection of expansion@8)—(30), which are valid for any

whereT? is given by Eqs(18)—(25) and
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final result. This is becaus’-‘édii)bwo(qm). The second term ar;y combination of couplings and charges, is independent of

Tgl)b, which vanishes in the RN geometry, is n@¥q®). K
A similar expansion valid for large values of the radial |
coordinate has the following form:

In the vicinity of the event horizon of the extremal black
le the renormalized stress-energy tensor has the following

expansion:
byABG_ b A (1)b_ A(2)b ~13
(T2 To+AMP+ AP+ O(x19), (32) 96m2m(TRYABC= (P {@P(x—x )+ O(X— Xey)?,
whereT? is given by Eqgs.(18)-(25), A{M° by Egs. (28)— (39
(30), and
1 (1+w)é2+w)(w—1)2%°
8/ _ 2 (Dt _4(L)r— _
96772m2A§2)t= q°(—2574+1015°) t; t; 2096 IV
210M8x12
. , 1 (L+w)8(4+w+wi+2w?) g
_ 1497(=39+209%) % 245760 WO
5M6X12
1 (1+w)8w3+3w?+3w+5)
| 1054%(—27+8¢°) 7° 32 " 1935360 WoM© (39
M6X12
7 2__ 3
2o ) q8(—738+35q2) t(z)t:t(z)r: 3 (1+W) (W+3)(W 2W+1)77
967°m Ar ZW t r 16384 w/M8
+w)(w+ 24+
46%(— 51+ 2802) 7 B 1 (1+w) (W7 36)(W 3)
I 2580480 WM
S (W 2_owa
5q°%(— 333+ 1129%) 2 s AHwWiw 3)7(3? 2w 7)77,
- v .33 983040 Iy
(37)
8 2
g°(12456-875)°)
96m*m?A )=
’ 1890M 6x12 tiHo=1G
11208(— 12+ 50%) 1 (A+w)(wH5)(w—1)%y°
- 9M6X12 8192 WGI\/|6
5q8( — 1989+ 5602) 5? . 1 (1+w)8(—w+13+3w?+wd) gy
* M2 - 39 491520 WoM®
Note that in Eqs(32)—(34) there is no contribution from the 1 (1+w)°(3w+ 17+ 3w +w?) (38)
term T and, consequently, the result, which is valid for 3870720 woMm® '
and
tfqz)ﬁ:t(;)(l’
B 3 (1+w)’(—25w+ 34— 23w2+ 9w+ 5w?) 3 1 (1+w)’(—10w—8+w?+4ws+w?) 52
32768 MO’ 16384 MO
L1 (1+w)(-~185w—190- 111w’ +5w'—15w%) o
1966080 MO : (39

Since TP vanishes in the limik— X, there are no terms proportional i in Egs.(36)—(39).
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The components of the stress-energy tensor of the mas- AT,O!
sive scalar field are regular functions of the radial coordinate
and are finite on the event horizon. Moreover, it can be dem-
onstrated that the difference between the radial and time
components of T2)ABC factorizes:

rirs
2

-0.05

1 M 1 h ¢ F
| At RO,

-0.1

(THASS—(TiyAee—

(40) -0.15

where F(r) is a regular function and, consequently, the rig 1. The radial dependence of the rescaled time component
stress-energy tensor is finite in a freely falling frame. T0>\T§1)‘ (\=967*M®m?) (solid thick line@ and AT (solid thin
demonstrate this let us consider a slightly more general linne) contributing to the renormalized stress-energy tensor of the
element: massive scalar field for the extremal ABG geometry. The dashed
lines correspond to the appropriate tensors for the extremal RN
ds?=—f(xH)(dx°)2+g(x})(dxh) 2+ (x1)2dO2. (41)  black hole:\Cy (thin curve and\Dj (thick curve.

For radial motion the vectors of the frame are the four- IV. NUMERICAL RESULTS
velocity ey=u“ and a unit length spacelike vectef=n®.

. . . ) The considerations of the previous section are limited to
Then, using the geodesic equation, one finds

analytically tractable special cases. However, to gain insight
into the overall behavior of the stress-energy tensor for any
combination of couplings and charges one has to refer to
numerical calculations—our complete but rather complicated
analytical formulas are, unfortunately, not of much help in
and this regard. Below we describe the main features of the con-
structed tensors and present them graphically, fixing our at-
tention on the physically interesting case of minimal cou-
efyy=n?= ( — Emloo) ) (43 pling. Related plots showing the radial dependencgbénd
f \/G Tgo)b can be found in Ref[16], where a discussion of the
stress-energy tensor of the massive scalar field with confor-
where vy is the energy per unit mass along the geodesic. Anal coupling with curvature is presented.
simple calculation shows that the componemig o), The case of arbitrary is much more complicated as the
To)) andT(l){l) in a freely falling framefindependent of  tensor( T2, given by Eq.(5), is modified by the presence
the functiong(x~)] are of additional terms. However, numerical analysis performed
for »=— 1/6 reveals that the contribution afT{3® is neg-
yz(Ti—Tg) N ligible for g even as large as 1.0. Moreover, a closer exami-
Toyo= ' (44) nation indicates that, as one approaches the extremality limit,
the magnitude of this very term becomes comparable with
7T and TP only in the closest vicinity of the event
+TL (45) horizon. Our calculations also suggest that, irrespective of

Y

a _ a— _
e(o)—u —<?,

¥ |1
- 1) §’O’O> (42)

_AA(T1-TY)
Tow=—5

WY - H(TI-TY
f .

Toywm=— (46)

riry

One concludes, therefore, that if all componentdfand s

-0.1
(T1—To)
— 47)

-0.15

are finite on the horizon, the stress-energy tensor in a freely £ 2. The radial dependence of the rescaled radial component
falling frame is finite as well. Itis expected that the formulas) T (\ =96x2M®m2) (solid thick line and AT (solid thin
constructed  satisfactorily approximate the exact stresSie) contributing to the renormalized stress-energy tensor of the
energy tensor. On the other hand, however, to establish th@assive scalar field for the extremal ABG geometry. The dashed
regularity of the exac(TE}ABG in a freely falling frame one lines correspond to the appropriate tensors for the extremal RN
has to explicitly demonstrate that E@7) is satisfied. black hole:\C; (thin curve and\D; (thick curve.
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AT{® AT, Q"
025

— e ——— r/r+
2
0.2

015 -0.1

0.1 -0.2

0.05
-0.3

rir.
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-0.05 -0.4

FIG. 3. The radial dependence of the rescaled angular compo- FIG. 5. The radial dependence of the rescaled radial component
nentAT(D? (A =96w?M%m?) (solid thick line and AT{? (solid ~ AT®" (A=96w*M®m?) contributing to the renormalized stress-
thin line) contributing to the renormalized stress-energy tensor ofenergy tensor of the arbitrarily coupled massive scalar field in the
the massive scalar field for the extremal ABG geometry. The dashedBG geometry. The thick curve corresponds to the extremal case
lines correspond to the appropriate tensors for the extremal RMnd the thin curves are for a series @ivalues approaching the
black hole:\C} (thin curve and\D} (thick curve. extremality limit,q=0.9,1,1.05.

the exact value of, each component dfgl)b is a monotonic time and angular components. With increaseqo#ll com-
function of the radial coordinate in a large neighborhood ofponents become strongly negativerat, with their zeros
the event horizon, if not in the whole range-r, . For the  shifted toward larger values of the radial coordinate. Near the
extremal case such behavior is illustrated in Figs. 1-3, wherextremality limit, the tensof (*)° is very sensitive to changes
the time, radial, and angular componentsTcéf)b are dis- of g, which is illustrated in Figs. 4—6. If the value of the ratio
played. For comparison and completeness we also presefg/M slightly exceeds 1.0, for all components there occurs a
the run of T? CP andD?®, where the latter two tensors negative minimum not far away from the event horizon. For
have been calculated for the RN line element with the aid othe extremal ABG black hold@{?® vanishes ar , , as is
Egs.(20)—(25). It should be noted that even in the extremalclearly seen from Eq335)—(38), and exhibits oscillatory-
case, when the differences between the two considered géke behavior with a rapidly decreased amplitude and in-
ometries are most prominent, the tensBtS® and DY be-  creased intervals between zeros. The angular component at-
have in a similar manner although differing noticeably intains a very distinct maximum near the event horizon
magnitude. For small values gf the curves constructed for whereas for time and radial component there are minima
both types of black hole are almost indistinguishable, whictclose tor .. .
can be easily established from E&7). The competition of the terms described above results in
On the other hand, however, the component%‘ﬁﬁfb ex- the overall behavior of the stress-energy tensor of minimally
hibit quite different but very regular behavior, which will be coupled massive fields in the geometry of the ABG black
described in some detail. For<1 it can be, of course, in- hole. Numerical calculations indicate that for small and in-
ferred from the approximate formul&7)—(30); greater val- ~termediate values ofl, up to about 0.8(T2)"5C still re-
ues of q require numerical examination. Specifically, for sembles that evaluated for conformal coupling. For larger
small charges each component of the considered tensor ¥&lues ofg, however, the change of curvature coupling leads
negative ar =r ., and, before approaching zeroras =, it ~ t0 a considerable modification of the results as both magni-
changes sign once for the radial component and twice fotudes and radial variations become significantly different.

AT AT®

riry
1.2 1.4 1.6 1.8 2

=01

-0.2

-03

-04

FIG. 4. The radial dependence of the rescaled time component FIG. 6. The radial dependence of the rescaled angular compo-
AT (\=9672M®m?) contributing to the renormalized stress- nent AT{?? (A=96w*M®m?) contributing to the renormalized
energy tensor of the arbitrarily coupled massive scalar field in thestress-energy tensor of the arbitrarily coupled massive scalar field in
ABG geometry. The thick curve corresponds to the extremal caséhe ABG geometry. The thick curve corresponds to the extremal
and the thin curves are for a series gfvalues approaching the case and the thin curves are for a serieq walues approaching the
extremality limit,g=0.9,1,1.05. extremality limit,g=0.9,1,1.05.
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FIG. 7. The radial dependence of the rescaled time component g g The radial dependence of the rescaled angular compo-
MTHAE® (A=967"M°m?) of the renormalized stress-energy ten- nentA(TABS (A =9672M®m?) of the renormalized stress-energy

sor of the minimally coupled massive scalar field in the ABG ge-tensor of the minimally coupled massive scalar field in the ABG
ometry(solid lines as compared to the case of conformal coupling geometry(solid lineg as compared to the case of conformal cou-
in this geometrydashed lings The thin curves are faq=1.02 and pling in this geometry(dashed lines The thin curves are foqg

the thick curves are for the extremal case. =1.02 and the thick curves are for the extremal case.

This is illustrated in Figs. 7—9, where valuesgpét and near V. CONCLUDING REMARKS
the extremality limit were chosen. The oscillatory-like be- . ]
havior of ng)b for q close t0Qey, is reflected by the pres- In this work our goal was to construct the renormalized

ence of local extrema visible in the stress-energy tensor, ang{reéss-energy tensor of the quantized massive field in the
for the angular component, an inflection point. This is inspacetlme of a nonlinear black hqle and to investigate how
sharp contrast with the almost monotonic behavior of théhe choice of the curvature coupling affects the results. A
stress-energy tensor of conformally coupled massive fieldgégular electrically charged solution of this type was recently
depicted in Figs. 7-9 by the dashed lines. Moreover, iProposed by Ayn-Beato and Garaiin the” formulation of
should be noted that for;=—1/6, when the extremality nonlinear electrodynamics and reinterpreted by Bronnikov as
limit is approached, there are substantial changes of values af regular magnetically charged solution of the standard
(TRYABC at the event horizon as well as in the behavior of theformulation. For small and intermediate values of the ratio
stress-energy tensor in a narrow strip negg,. There ap- |e|[/M the metric structure of the nonlinear solution closely
pear also certain new features for the time and radial comresembles that of Reissner and Nordstrand the similari-
ponents which are not present in the case of conformal couties in the line elements are reflected in the behavior of the
pling. Indeed, for 0.98%q=1.032, the energy densify= stress-energy tensor of the conformally coupled massive sca-
—(TH"BC is positive at the event horizon whereas for thelar fields; notable differences appear near and at the extrem-
same values of] the horizon value of the radial pressure ality limit.

p,=(T")ABC is negative. It should be noted in this regard  As the genera(T5)*B® contains terms that are quadratic
that for =0 the radial component of the stress-energy tenand cubic in7, the case of arbitrary coupling is more com-
sor is always positive there. On the other hand, the angulaplicated. Again, for small and intermediate valuesydhere
pressure is positive on the event horizon fef/M=<0.922 s a similarity between théT?) evaluated for the minimally
and negative for larger values, which is very similar to thecoupled scalar field in the ABG geometry and its RN coun-

previously studied case of conformal coupling. terpart. Modifications foq slightly exceeding 0.8, which are
mainly due to the ternrT(?)®, are noticeable although there
AT 486 are still some similarities. Comparison dfT2)*B¢ for
g

charges close to,, indicates that the radial dependences
for both couplings are completely different. Indeed, the be-
havior of the stress-energy tensor for the minimal coupling is
far more complicated as compared with its almost monotonic
radial dependence fo=0. Moreover, the former is even
more sensitive to changes gf especially near the extremal-
ity limit. In addition, new features occur, such as, for ex-
ample, positivity of the energy density at the event horizon
Fir, for certain values of.
It should be emphasized that, being local, the Schwinger-

FIG. 8. The radial dependence of the rescaled radial componed®€Witt approximation does not describe particle creation,
A(T')ABG (A =9672M°®m?) of the renormalized stress-energy ten- and, therefore, it must not be applied in strong or rapidly
sor of the minimally coupled massive scalar field in the ABG ge-Vvarying gravitational fields. However, it is expected that for
ometry(solid line9 as compared to the case of conformal coupling sufficiently massive fields the method will provide a good
in this geometrydashed lines The thin curves are fay=1.02 and  approximation of the exact renormalized stress-energy ten-
the thick curves are for the extremal case. sor.
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Finally, we remark that, although complicated, the derivedperturbative solution to the back reaction, and what makes
stress-energy tensor may be employed as a source term of ttiés issue even more interesting and worth further studies is
semiclassical Einstein field equations. Indeed, preliminarythe regularity of the geometry of the ABG black hole. We
calculations indicate that it is possible to find an analyticalintend to return to this group of problems elsewhere.
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