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Vacuum polarization in the spacetime of a charged nonlinear black hole

Waldemar Berej* and Jerzy Matyjasek†
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Building on general formulas obtained from the approximate renormalized effective action, the approximate
stress-energy tensor of the quantized massive scalar field with arbitrary curvature coupling in the spacetime of
a charged black hole that is the solution of the coupled equations of nonlinear electrodynamics and general
relativity is constructed and analyzed. It is shown that, in a few limiting cases, the analytical expressions
relating the obtained tensor to the general renormalized stress-energy tensor evaluated in the geometry of the
Reissner-Nordstro¨m black hole can be derived. A detailed numerical analysis with special emphasis put on
minimal coupling is presented, and the results are compared with those obtained earlier for a conformally
coupled field. Some novel features of the renormalized stress-energy tensor are discussed.
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I. INTRODUCTION

One of the most intriguing open questions in modern t
oretical physics is the issue of the final stage of black h
evaporation. Although a definite answer would be poss
only with the full machinery of a quantum theory of gravit
some important preliminary results may be obtained in p
ciple within the framework of semiclassical theory. Howev
as the semiclassical approach cannot be used to describ
evolution of the system in the Planck regime, it can, at b
tell us about the tendency rather than the limit itself. Unf
tunately, even this simplified program is hard to execute
the semiclassical Einstein field equations comprise a ra
complicated set of nonlinear partial differential equatio
and, moreover, the source term—the renormalized str
energy tensor—should be known for a wide class of n
static metrics. It is natural, therefore, that, in order to ma
the back reaction problem tractable, one should refer to s
approximations.

It seems that the most promising approach consists
constructing the approximate stress-energy tensor in the
ometry of a static black hole and subsequent computatio
the semiclassical corrections to the classical metric.
though evaluated in the static background, such correcti
as was pointed out in Ref.@1#, are relevant because they giv
direct information about the influence of the quantum effe
on the temperature of a black hole. Thus far this progra
initiated in Ref.@2#, has been carried out for massless fie
in Schwarzschild spacetime@3–8# and for massive scala
fields with arbitrary curvature coupling in Reissne
Nordström ~RN! geometry@1#, where, among other things
quantum corrections to the geometry, entropy, and tr
anomaly were computed. The most important ingredien
the approach is therefore the renormalized stress-energy
sor of the quantized field propagating in the spacetime o
static black hole constructed in a physically interesting st
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However, direct evaluation of this object is rather comp
cated.

It is believed that the physical content of the theory
quantum fields in curved spacetime is contained in
~renormalized! effective actionWR , a useful quantity allow-
ing evaluation of the stress-energy tensor by means of
standard formula

2

g1/2

d

dgab
Wren5^Tab& ren . ~1!

Unfortunately, the effective action is a nonlocal functional
the metric and its exact form is unknown. In the attempts
construct the renormalized stress-energy tensor one is for
therefore, to employ numerical methods or to accept so
approximations.

For quantized massive fields in the large mass limit, i
when the Compton length is much smaller than the cha
teristic radius of curvature, the nonlocal contribution to t
effective action can be neglected, and the series expansio
m22 of the renormalized effective actionWR may be con-
structed with the aid of the DeWitt-Schwinger metho
@9–11#. Thus the constructed renormalized effective act
has the form

Wren5
1

32p2m2E d4xg1/2(
n53

`
~n23!!

~m2!n22
@an~x,x8!#, ~2!

where @an(x,x8)# is the coincidence limit of thenth
Hadamard-Minakshisundaram-DeWitt-Seely~HMDS! coef-
ficient. The coefficients are local, geometrical objects c
structed from the curvature tensor and its covariant der
tives of rapidly growing complexity. So far, only th
coefficients forn<4 are known, but it seems the effectiv
action constructed from higher order terms would be intr
table in practice, especially in attempts to calculate
stress-energy tensor.

The first nonvanishing term of the effective action co
structed for the massive scalar field with arbitrary curvat
coupling satisfying

~2h1jR1m2!f50, ~3!
©2002 The American Physical Society22-1
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wherej is the coupling constant andm is the mass of the field, from the coincidence limit of the HMDS coefficient@a3#, is
given by @12–14#

Wren
(1) 5

1

192p2m2E d4xg1/2F1

2 S h22
h

15
2

1

315DRhR1
1

140
RpqhRpq2h3R31

1

30
hRRpqR

pq2
1

30
hRRpqabR

pqab

2
8

945
Rq

pRa
qRp

a1
2

315
RpqRabR

a
p

b
q1

1

1260
RpqR cab

p Rqcab1
17

7560
Rab

pqRpq
cdRcd

ab2
1

270
Ra

p
b

qRp
c
q

dRc
a

d
bG

5
1

192p2m2(i 51

10

a iW( i ) , ~4!
t

e

n
iva
k
n
s

an

eld
ica

m
he
g

le
o

ac
ffi
u
m

ry
ric
b

n
on
a
r
er
ie

,

-

its
ate

ver,
has
uch
of
in

u-

a-
r of
the
hat
dy-
was

t a
the
s

ally
ard
re

lec-
tric

rge
les
al-
i-
k

where h5j21/6 and a i are numerical coefficients tha
stand in front of the geometric terms inWren

(1) . Differentiating
Wren

(1) functionally with respect to the metric tensor, on
obtains

^Tab&5(
i 51

10

a i T̃
( i )ab5

1

96p2m2g1/2(i 51

10

a i

dW( i )

dgab

5T(0)ab1hT(1)ab1h2T(2)ab1h3T(3)ab, ~5!

where each T̃( i )ab is a rather complicated expressio
constructed from the curvature tensor, its covariant der
tives, and contractions. Such calculations were underta
in Refs.@15,16#, where generic expressions for the first no
vanishing order of the renormalized stress-energy ten
were obtained. They generalize earlier results of Frolov
Zel’nikov for vacuum type-D geometries@11#. One can
easily extend this result to the case of spinor and vector fi
as the analogous expressions differ only by numer
coefficientsa i .

It should be emphasized, however, that the above assu
tions place severe limitations on the domain of validity of t
approximation obtained. In particular, it would be meanin
less, at least in this formulation, to consider the mass
limit of the approach. Therefore, the result, which consists
approximately 100 local geometrical terms, may be used
any spacetime provided the temporal changes of the b
ground geometry are slow and the mass of the field is su
ciently large. Because of the complexity of the tensor th
obtained, it will not be presented here, and for its full for
and technical details the reader is referred to@16#.

For quantized massive scalar fields with arbitra
curvature coupling in static and spherically symmet
geometries there exists a different method invented
Anderson, Hiscock, and Samuel@17#. Their calculations
were based on the WKB approximation of the solutio
of the radial equation and summation of the mode functi
thus obtained. Both methods are equivalent: to obt
the term proportional tom22 one has to use sixth orde
WKB, and explicit calculations carried out for the Reissn
Nordström spacetime as well as in wormhole geometr
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considered in Ref.@18# yielded identical results. Moreover
detailed numerical analyses carried out in Ref.@17# and
briefly reported in@1# show that formM*2 (M being the
black hole mass! the accuracy of the Schwinger-DeWitt ap
proximation in the Reissner-Nordstro¨m geometry is quite
good ~1% or better!.

The geometry of the Reissner-Nordstro¨m black hole is
singular asr→0 and there is a natural desire to construct
regular generalizations. It is expected that a good candid
for the source term of the Einstein equations is the~classical!
stress-energy tensor of nonlinear electrodynamics. Moreo
the renewal of interest in nonlinear electrodynamics that
been seen recently is motivated by the observation that s
theories arose as limiting cases of certain formulations
string theory. Unfortunately, the no go theorem proved
Ref. @19# clearly shows that for LagrangiansL(F) (F
5FabF

ab), with the Maxwell weak-field limit there are no
spherically symmetric static black hole solutions with a reg
lar center.

Recently, employing the Schwinger-DeWitt approxim
tion we constructed the renormalized stress-energy tenso
the quantized conformally coupled massive scalar field in
spacetime of the electrically charged regular black hole t
is an exact solution of the equations of nonlinear electro
namics and the Einstein field equations. Such a solution
proposed by Ayo´n-Beato and Garcı´a ~ABG! in Ref. @20#. It
should be noted, however, that the ABG line element is no
solution of the standard nonlinear electrodynamics and
effective geometry~i.e., the geometry affecting the photon
of the nonlinear theory! is singular. Fortunately, the ABG
solution may be reinterpreted as describing a magnetic
charged regular solution of the coupled equations of stand
nonlinear electrodynamics and gravitation with much mo
regular behavior of the effective geometry@21#. Moreover, it
has been shown recently that it is possible to combine e
tric and magnetic line elements to obtain a regular elec
solution with a magnetic core@22#.

For small and intermediate charges as well as at la
distances, the geometry of the ABG black hole resemb
that of RN; noticeable differences appear near the extrem
ity limits. It is interesting therefore to analyze how the sim
larities in the metric structure of the ABG and RN blac
2-2
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VACUUM POLARIZATION IN THE SPACETIME OF A . . . PHYSICAL REVIEW D66, 024022 ~2002!
holes are reflected in the structure of the stress-energy
sors. As for the conformally coupled massive scalar field
linear, quadratic, and cubic terms inh in the stress-energy
tensor~5! are absent, it is anticipated that such similarities
occur. Explicit calculations carried out in@16# confirmed this
hypothesis and showed that for small values ofq the appro-
priate tensors are essentially indistinguishable, and, as
pected, important differences appear near and at the ext
ality limit.

In this paper we shall extend the results of Ref.@16# and
investigate a much more complicated case of arbitraryh
with special emphasis put on the minimal coupling. Althou
the complexity of the approximate stress-energy tensor c
structed for the ABG line element prevents its direct exa
nation in practice, it is possible to extract interesting inf
mation by expandinĝTa

b& into a power series and retaining
few leading terms. We shall show that such analyses ca
carried out for small charges, large distances, and in the
cinity of the event horizon of the extremal ABG black hol
Moreover, on general grounds one may easily estimate
role played byT̃(1)ab and T̃(3)ab. To gain a deeper under
standing of the problem, however, we employ numerical c
culations.

The paper is organized as follows. In Sec. II the essen
of the ABG black hole geometry that are necessary in furt
development are briefly described. In Sec. III certain featu
of the approximate stress-energy tensor of the massive s
field in the ABG geometry are discussed and compared w
the appropriate tensors constructed in the RN geometry.
results of our numerical analyses are presented in Sec. I
which we discuss the behavior of the components of^Ta

b& in
some detail and present it graphically.

II. GEOMETRY

The general Reissner-Nordstro¨m solution of the Einstein-
Maxwell equations describing a static and spherically sy
metric black hole of massM, electric chargee, and magnetic
monopole chargeem has a remarkably simple form:

ds252A~r !dt21A21~r !dr21r 2~du21sin2udf2!,
~6!

with

A~r !512
2M

r
1

e21em
2

r 2
. ~7!

Since the charges enter Eq.~7! as a sum of squares, th
metric structure remains unchanged under changes
charges leavingQ25e21em

2 constant. ForQ2/M2,1, the
equationA(r )50 has two positive roots:

r 65M6AM22Q2, ~8!

and the larger one,r 1 , determines the location of the eve
horizon, whereas the smaller,r 2 , gives the position of the
inner horizon. In the limitQ25M2 the horizons merge atr
5M and the black hole degenerates to the extremal one
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At

r 50 the Reissner-Nordstro¨m solution has an irremovabl
curvature singularity, which, although hidden from an ext
nal observer forQ2/M2<1, remains a somewhat unwante
feature of the solution. The solution forQ2.M2 is clearly
unphysical.

At least for purely electrical solutions the nonlinear ele
trodynamics does not remedy the situation. Indeed, cons
a realization of the nonlinear electrodynamics with the act
functional of the form

S5
1

16pE d4xA2g@R2L~F !#, ~9!

whereR is a curvature scalar,F5FabF
ab, andL(F) is an

arbitrary function with Maxwell asymptotic in the weak-fiel
limit, i.e., L(F)→F and (d/dF)L(F)→1 asF→0. Accord-
ing to a well known theorem@19,21#, there are no regular
static, and spherically symmetric solutions of general rela
ity coupled to nonlinear electrodynamics describing a bla
hole with nonzero electric charge. However, as was explic
demonstrated recently by Bronnikov, the adopted hypothe
leave room for appropriate regular solutions with a nonz
magneticcharge. In this regard it is interesting to note th
within a different formulation of the nonlinear electrodynam
ics proposed in@23# ~aP framework according to the nomen
clature of Refs.@21,24#! obtained from the standard one~the
F formulation! ~9! by means of a Legendre transformatio
Ayón-Beato and Garcı´a constructed a regular black hole s
lution with a nonzero electric charge and mass@20#. Their
solution has the simple form~6!, where

A~r !512
2M

r S 12tanh
e2

2Mr D . ~10!

Bronnikov also demonstrated that any spherically symme
solution constructed within theF framework has its counter
part with the same metric tensor constructed within theP
framework, and therefore the electric solution~6! has a mag-
netic companion withe replaced by the magnetic chargeem .
Moreover, Burinskii and Hildebrandt proposed recently
regular hybrid model in which electrically and magnetica
charged solutions were combined in such a way that the e
tric field does not extend to the center of the black hole@22#.

Although the magnetic and electric ABG solutions a
precisely of the type~6! with ~10!, the geometries affecting
photons of the nonlinear theory are different. This is beca
photons of the nonlinear theory move along null geodesic
the effective metric, and the latter is singular for the elect
solution@25–27#. It should be noted, however, that otherwi
the physical geometry is regular and well behaved.

Since geometries outside the event horizon are descr
by the same line element and since we are going to cons
neutral scalar field only, our results will hold for any partic
lar realization of the ABG black hole as the only conce
here is the metric structure of the spacetime. Therefore
what follows we denote both the electric and magne
charge bye.

Inspection of the metric potentials reveals interesting f
tures of the ABG solution: its curvature invariants are fin
2-3
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asr →0 and at larger it approaches the Reissner-Nordstro¨m
solution. Moreover, for small and intermediate values of
ratio e2/M2, the radial coordinate of the event horizon,r 1 ,
is close to the event horizon of the RN black hole; signific
differences occur near the extremality limit.

It was shown in@16# that the location of the horizons o
the ABG black hole may be expressed in terms of the La
bert functionW @28#. Indeed, making use of the substitutio
r 5Mx, e25q2M2, it can be demonstrated that the locati
of the horizons is given by the real branches of the Lamb
functions:

x652
4q2

4W~«,2q2/4 exp„q2/4!…2q2
, ~11!

where« is 0 for the event horizonx1 , and21 for the inner
one x2 . The functionsW(0,s) and W(21,s) are the only
real branches of the Lambert function with the branch po
at s52e21, where e is the base of natural logarithms an

W~0,2e21!5W~21,2e21!521. ~12!

Consequently, for

q52Aw ~13!

the horizons merge at

xextr5
4w

11w
, ~14!

where w5W(0,e21)50.2785. Numerically, one hasxextr
50.871 forueu/M51.055.

For small values ofq, the ABG line element resemble
that of RN. Indeed, expanding the functionA(x) one has

A~x!512
2

x
1

q2

x2
1O~q4!. ~15!

In spite of the similarities between the ABG and RN geo
etries forq!1, there are substantial differences in the ext
mality limit: the extremal RN line element is described
Eq. ~6! with

A~x!5S 12
1

xD 2

, ~16!

whereas near the event horizon of the extremal ABG bl
hole the functionA(x) has the following expansion:

A~x!5
~11w!3

32w2
~x2xextr!

21O~x2xextr!
3. ~17!

The form of the above expansion indicates that the pro
02402
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length between the event horizon and any point located
r .r extr is infinite.

III. THE RENORMALIZED STRESS-ENERGY TENSOR

The structure of terms in the effective potential~4! and in
Eq. ~5! indicates that for the conformally coupled massi
scalar field, i.e., forh50, there are substantial simplifica
tions of the renormalized stress-energy tensor, as in this v
case the third, fourth, and fifth terms in Eq.~4! do not con-
tribute to the final result. Moreover, from Eq.~4! it is evident
that inR50 geometries and for arbitrary curvature coupli
the functional derivative of the first and the third terms in E
~4! with respect to the metric tensor vanishes and, theref
the approximate renormalized stress-energy tensor of
massive field in RN spacetime has the general form

Ta
b5Ca

b1hDa
b . ~18!

On the other hand, however, for the ABG metric one has

R5
q4

M2x5
tanhS q2

2xD F12tanh2S q2

2xD G , ~19!

which for smallq is O(q6). Detailed calculations carried ou
for q!1 show that for the ABG solution neitherT̃a

(1)b nor

T̃a
(3)b contributes importantly to the result.

Because of the similarities of the metric structures of
RN and ABG solutions, the overall behavior of the renorm
ized stress tensors for conformal coupling should be qua
tively similar and comparable in magnitude at least for sm
and intermediate values ofq. However, the differences be
tween the line element~16! and the expansion~17! give
strong evidence for differences in the appropriate com
nents of the approximate stress-energy tensors. For the
formally coupled massive scalar field this statement has b
confirmed by the extensive numerical calculations repor
in Ref. @16#. Now we shall analyze the case of an arbitra
coupling with curvature. First, observe that the contributi
of h2T̃(1)ab andh3T̃(3)ab to the stress-energy tensor can
made arbitrarily great by a suitable choice of the conform
coupling. It should be noted, however, that such great val
of h are clearly unphysical and should be rejected. The
fore, as the particular case of the conformal coupling w
considered earlier, here we shall confine ourselves mostl
the important and physically interesting case of minimal co
pling h521/6.

In order to constructCa
b andDa

b one has either to calculat
the curvature tensor and its covariant derivatives to requ
order for the line element~6! with ~7! and employ the gen-
eral formulas presented in@15# or to make use of the metho
proposed by Anderson, Hiscock, and Samuel@17#. Both ap-
proaches yield the same result, which reads
2-4
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Ct
t5

810x4q22855x42202x2q411878x321152x3q222307x2q213084xq421248q6

30240M6p2m2x12
, ~20!

Dt
t5

21008x3q21819q612604x2q21728x2q422712xq41360x42792x3

720M6p2m2x12
, ~21!

Ct
t5

842x2q41444q61162x4q22462x321488x3q221932xq41315x412127x2q2

30240M6p2m2x12
, ~22!

Dr
r5

504xq42208x2q42588x2q21336x3q22117q61216x32144x4

720M6p2m2x12
, ~23!

Cu
u5

2202x32486x4q22945x423044x2q414884x3q229909x2q2110356xq423066q6

30240M6p2m2x12
, ~24!

and

Du
u5

21176x3q211053q613276x2q21832x2q423408xq41432x421008x3

720M6p2m2x12
. ~25!
pl
t
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t
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The analogous tensor in the ABG geometry is more com
cated, and besides the linear terms it contains also terms
are quadratic and cubic inh. Each component of the stres
energy tensor consists of more than 300 terms and has
general form

1

96p2m2M6S 12tanh
q2

2xD (
i , j ,k

a i jk

q2i

xj
tanhk

q2

2x
, ~26!

where a i jk for a given h are numerical coefficients (0< i
<6, 8< j <15, 0<k<8), and for obvious reasons will no
be presented here.

Since the form of Eq.~26! differs considerably from the
stress-energy tensor given by Eq.~18! with Eqs.~20!–~25!, it
could be expected that the runs of both tensors have not
in common. On the other hand, similarities in the met
structure of the RN and ABG black holes discussed ear
strongly suggest the opposite. Unfortunately, the comple
of the renormalized stress-energy tensor of the massive
lar field in the ABG geometry invalidates direct analytic
treatment in practice. One can, however, obtain interes
and important information analyzing certain limiting case
Indeed, expanding the stress-energy tensor forq!1 one has

^Ta
b&ABG5Ta

b1Da
(1)b1O~q8!, ~27!

whereTa
b is given by Eqs.~18!–~25! and
02402
i-
hat

he

ng

r
y
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g
.

96p2m2D t
(1)t52

q6~12049211416x12660x2!

420M6x12

1
2q6~6172596x1140x2!h

5M6x12

2
12q6~4592366x170x2!h2

M6x12
, ~28!

96p2m2D r
(1)r52

q6~155521064x1140x2!

420M6x12

2
2q6~1212140x140x2!h

5M6x12

1
12q6~81284x120x2!h2

M6x12
, ~29!

96p2m2Du
(1)u5

q6~524923528x1560x2!

420M6x12

1
2q6~7792720x1160x2!h

5M6x12

2
12q6~5402423x180x2!h2

M6x12
. ~30!

Inspection of expansions~28!–~30!, which are valid for any
h andx, shows that in this order the termT̃(3)

ab is absent in the
2-5
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final result. This is becauseT̃a
(3)b;O(q12). The second term

T̃a
(1)b , which vanishes in the RN geometry, is nowO(q6).

A similar expansion valid for large values of the rad
coordinate has the following form:

^Ta
b&ABG5Ta

b1Da
(1)b1Da

(2)b1O~x213!, ~31!

whereTa
b is given by Eqs.~18!–~25!, Da

(1)b by Eqs. ~28!–
~30!, and

96p2m2D t
(2)t5

q8~2257411015q2!

210M6x12

2
14q8~239120q2!h

5M6x12

1
105q8~22718q2!h2

M6x12
, ~32!

96p2m2D r
(2)r5

q8~2738135q2!

378M6x12

1
4q8~251128q2!h

9M6x12

2
5q8~23331112q2!h2

3M6x12
, ~33!

96p2m2Du
(2)u5

q8~124562875q2!

1890M6x12

2
112q8~21215q2!h

9M6x12

1
5q8~219891560q2!h2

3M6x12
. ~34!

Note that in Eqs.~32!–~34! there is no contribution from the
term T̃a

(3)b and, consequently, the result, which is valid f
02402
any combination of couplings and charges, is independen
h3.

In the vicinity of the event horizon of the extremal blac
hole the renormalized stress-energy tensor has the follow
expansion:

96p2m2^Ta
b&ABG5ta

(1)b1ta
(2)b~x2xextr!1O~x2xextr!

2,
~35!

t t
(1)t5t r

(1)r52
1

4096

~11w!6~21w!~w21!2h3

w6M6

2
1

245760

~11w!6~41w1w312w2!h

w6M6

1
1

1935360

~11w!6~w313w213w15!

w6M6
, ~36!

t t
(2)t5t r

(2)r5
3

16384

~11w!7~w13!~w222w11!h3

w7M6

2
1

2580480

~11w!7~w13!~w213!

w7M6

1
1

983040

~11w!7~w13!~3w222w17!h

w7M6
,

~37!

tu
(1)u5tf

(1)f

5
1

8192

~11w!6~w15!~w21!2h3

w6M6

1
1

491520

~11w!6~2w11313w21w3!h

w6M6

2
1

3870720

~11w!6~3w11713w21w3!

w6M6
, ~38!
and

tu
(2)u5tf

(2)f

52
3

32768

~11w!7~225w134223w219w315w4!h3

M6w7
2

1

16384

~11w!7~210w281w214w31w4!h2

M6w7

1
1

1966080

~11w!7~2185w21902111w215w4215w3!h

M6w7
. ~39!

SinceT̃a
(1)b vanishes in the limitx→xextr there are no terms proportional toh2 in Eqs.~36!–~38!.
2-6
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The components of the stress-energy tensor of the m
sive scalar field are regular functions of the radial coordin
and are finite on the event horizon. Moreover, it can be de
onstrated that the difference between the radial and t
components of̂Ta

b&ABG factorizes:

^Tt
t&ABG2^Tr

r&ABG5F12
2M

r S 12tanh
e2

2Mr D GF~r !,

~40!

where F(r ) is a regular function and, consequently, t
stress-energy tensor is finite in a freely falling frame.
demonstrate this let us consider a slightly more general
element:

ds252 f ~x1!~dx0!21g~x1!~dx1!21~x1!2dV2. ~41!

For radial motion the vectors of the frame are the fo
velocity e0

a5ua and a unit length spacelike vectore1
a5na.

Then, using the geodesic equation, one finds

e(0)
a 5ua5S g

f
,2AS g2

f
21D 1

g
,0,0D ~42!

and

e(1)
a 5na5S 2

1

f
Ag22 f ,

g

Af g
,0,0D , ~43!

whereg is the energy per unit mass along the geodesic
simple calculation shows that the componentsT(0)(0) ,
T(0)(1) , andT(1)(1) in a freely falling frame@independent of
the functiong(x1)# are

T(0)(0)5
g2~T1

12T0
0!

f
2T1

1 , ~44!

T(1)(1)5
g2~T1

12T0
0!

f
1T1

1 , ~45!

T(0)(1)52
gAg22 f ~T1

12T0
0!

f
. ~46!

One concludes, therefore, that if all components ofTa
b and

~T1
12T0

0!

f
~47!

are finite on the horizon, the stress-energy tensor in a fre
falling frame is finite as well. It is expected that the formul
constructed satisfactorily approximate the exact stre
energy tensor. On the other hand, however, to establish
regularity of the exact̂Ta

b&ABG in a freely falling frame one
has to explicitly demonstrate that Eq.~47! is satisfied.
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IV. NUMERICAL RESULTS

The considerations of the previous section are limited
analytically tractable special cases. However, to gain ins
into the overall behavior of the stress-energy tensor for
combination of couplings and charges one has to refe
numerical calculations—our complete but rather complica
analytical formulas are, unfortunately, not of much help
this regard. Below we describe the main features of the c
structed tensors and present them graphically, fixing our
tention on the physically interesting case of minimal co
pling. Related plots showing the radial dependence ofCa

b and
Ta

(0)b can be found in Ref.@16#, where a discussion of the
stress-energy tensor of the massive scalar field with con
mal coupling with curvature is presented.

The case of arbitraryh is much more complicated as th
tensor̂ Ta

b&ABG, given by Eq.~5!, is modified by the presenc
of additional terms. However, numerical analysis perform
for h521/6 reveals that the contribution ofh3Ta

(3)b is neg-
ligible for q even as large as 1.0. Moreover, a closer exa
nation indicates that, as one approaches the extremality li
the magnitude of this very term becomes comparable w
h2Ta

(2)b andhTa
(1)b only in the closest vicinity of the even

horizon. Our calculations also suggest that, irrespective

FIG. 1. The radial dependence of the rescaled time compo
lTt

(1)t (l596p2M6m2) ~solid thick line! and lTt
(0)t ~solid thin

line! contributing to the renormalized stress-energy tensor of
massive scalar field for the extremal ABG geometry. The das
lines correspond to the appropriate tensors for the extremal
black hole:lCt

t ~thin curve! andlDt
t ~thick curve!.

FIG. 2. The radial dependence of the rescaled radial compo
lTr

(1)r (l596p2M6m2) ~solid thick line! and lTr
(0)r ~solid thin

line! contributing to the renormalized stress-energy tensor of
massive scalar field for the extremal ABG geometry. The das
lines correspond to the appropriate tensors for the extremal
black hole:lCr

r ~thin curve! andlDr
r ~thick curve!.
2-7
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the exact value ofq, each component ofTa
(1)b is a monotonic

function of the radial coordinate in a large neighborhood
the event horizon, if not in the whole ranger .r 1 . For the
extremal case such behavior is illustrated in Figs. 1–3, wh
the time, radial, and angular components ofTa

(1)b are dis-
played. For comparison and completeness we also pre
the run ofTa

(0)b , Ca
b , andDa

b , where the latter two tensor
have been calculated for the RN line element with the aid
Eqs.~20!–~25!. It should be noted that even in the extrem
case, when the differences between the two considered
ometries are most prominent, the tensorsTa

(1)b and Da
b be-

have in a similar manner although differing noticeably
magnitude. For small values ofq, the curves constructed fo
both types of black hole are almost indistinguishable, wh
can be easily established from Eq.~27!.

On the other hand, however, the components ofTa
(2)b ex-

hibit quite different but very regular behavior, which will b
described in some detail. Forq!1 it can be, of course, in
ferred from the approximate formulas~27!–~30!; greater val-
ues of q require numerical examination. Specifically, f
small charges each component of the considered tens
negative atr 5r 1 , and, before approaching zero asr→`, it
changes sign once for the radial component and twice

FIG. 3. The radial dependence of the rescaled angular com
nent lTu

(1)u (l596p2M6m2) ~solid thick line! and lTu
(0)u ~solid

thin line! contributing to the renormalized stress-energy tenso
the massive scalar field for the extremal ABG geometry. The das
lines correspond to the appropriate tensors for the extremal
black hole:lCu

u ~thin curve! andlDu
u ~thick curve!.

FIG. 4. The radial dependence of the rescaled time compo
lTt

(2)t (l596p2M6m2) contributing to the renormalized stres
energy tensor of the arbitrarily coupled massive scalar field in
ABG geometry. The thick curve corresponds to the extremal c
and the thin curves are for a series ofq values approaching the
extremality limit,q50.9,1,1.05.
02402
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time and angular components. With increase ofq, all com-
ponents become strongly negative atr 1 , with their zeros
shifted toward larger values of the radial coordinate. Near
extremality limit, the tensorTa

(2)b is very sensitive to change
of q, which is illustrated in Figs. 4–6. If the value of the rat
ueu/M slightly exceeds 1.0, for all components there occur
negative minimum not far away from the event horizon. F
the extremal ABG black holeTa

(2)b vanishes atr 1 , as is
clearly seen from Eqs.~35!–~38!, and exhibits oscillatory-
like behavior with a rapidly decreased amplitude and
creased intervals between zeros. The angular componen
tains a very distinct maximum near the event horiz
whereas for time and radial component there are min
close tor 1 .

The competition of the terms described above results
the overall behavior of the stress-energy tensor of minima
coupled massive fields in the geometry of the ABG bla
hole. Numerical calculations indicate that for small and
termediate values ofq, up to about 0.8,̂ Ta

b&ABG still re-
sembles that evaluated for conformal coupling. For lar
values ofq, however, the change of curvature coupling lea
to a considerable modification of the results as both mag
tudes and radial variations become significantly differe

o-

f
ed
N

nt

e
e

FIG. 5. The radial dependence of the rescaled radial compo
lTr

(2)r (l596p2M6m2) contributing to the renormalized stres
energy tensor of the arbitrarily coupled massive scalar field in
ABG geometry. The thick curve corresponds to the extremal c
and the thin curves are for a series ofq values approaching the
extremality limit,q50.9,1,1.05.

FIG. 6. The radial dependence of the rescaled angular com
nent lTu

(2)u (l596p2M6m2) contributing to the renormalized
stress-energy tensor of the arbitrarily coupled massive scalar fie
the ABG geometry. The thick curve corresponds to the extre
case and the thin curves are for a series ofq values approaching the
extremality limit,q50.9,1,1.05.
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This is illustrated in Figs. 7–9, where values ofq at and near
the extremality limit were chosen. The oscillatory-like b
havior of Ta

(2)b for q close toqextr is reflected by the pres
ence of local extrema visible in the stress-energy tensor,
for the angular component, an inflection point. This is
sharp contrast with the almost monotonic behavior of
stress-energy tensor of conformally coupled massive fie
depicted in Figs. 7–9 by the dashed lines. Moreover
should be noted that forh521/6, when the extremality
limit is approached, there are substantial changes of value
^Ta

b&ABG at the event horizon as well as in the behavior of
stress-energy tensor in a narrow strip nearr extr . There ap-
pear also certain new features for the time and radial c
ponents which are not present in the case of conformal c
pling. Indeed, for 0.987&q&1.032, the energy densityr5
2^Tt

t&ABG is positive at the event horizon whereas for t
same values ofq the horizon value of the radial pressu
pr5^Tr

r&ABG is negative. It should be noted in this rega
that for h50 the radial component of the stress-energy t
sor is always positive there. On the other hand, the ang
pressure is positive on the event horizon forueu/M&0.922
and negative for larger values, which is very similar to t
previously studied case of conformal coupling.

FIG. 7. The radial dependence of the rescaled time compo
l^Tt

t&ABG (l596p2M6m2) of the renormalized stress-energy te
sor of the minimally coupled massive scalar field in the ABG g
ometry~solid lines! as compared to the case of conformal coupli
in this geometry~dashed lines!. The thin curves are forq51.02 and
the thick curves are for the extremal case.

FIG. 8. The radial dependence of the rescaled radial compo
l^Tr

r&ABG (l596p2M6m2) of the renormalized stress-energy te
sor of the minimally coupled massive scalar field in the ABG g
ometry~solid lines! as compared to the case of conformal coupli
in this geometry~dashed lines!. The thin curves are forq51.02 and
the thick curves are for the extremal case.
02402
d,

e
s

it

of
e

-
u-

-
ar

V. CONCLUDING REMARKS

In this work our goal was to construct the renormaliz
stress-energy tensor of the quantized massive field in
spacetime of a nonlinear black hole and to investigate h
the choice of the curvature coupling affects the results
regular electrically charged solution of this type was recen
proposed by Ayo´n-Beato and Garcı´a in theP formulation of
nonlinear electrodynamics and reinterpreted by Bronnikov
a regular magnetically charged solution of the standardF
formulation. For small and intermediate values of the ra
ueu/M the metric structure of the nonlinear solution close
resembles that of Reissner and Nordstro¨m and the similari-
ties in the line elements are reflected in the behavior of
stress-energy tensor of the conformally coupled massive
lar fields; notable differences appear near and at the extr
ality limit.

As the general̂Ta
b&ABG contains terms that are quadrat

and cubic inh, the case of arbitrary coupling is more com
plicated. Again, for small and intermediate values ofq there
is a similarity between thêTa

b& evaluated for the minimally
coupled scalar field in the ABG geometry and its RN cou
terpart. Modifications forq slightly exceeding 0.8, which are
mainly due to the termTa

(2)b , are noticeable although ther
are still some similarities. Comparison of̂Ta

b&ABG for
charges close toqextr indicates that the radial dependenc
for both couplings are completely different. Indeed, the b
havior of the stress-energy tensor for the minimal coupling
far more complicated as compared with its almost monoto
radial dependence forh50. Moreover, the former is even
more sensitive to changes ofq, especially near the extrema
ity limit. In addition, new features occur, such as, for e
ample, positivity of the energy density at the event horiz
for certain values ofq.

It should be emphasized that, being local, the Schwing
DeWitt approximation does not describe particle creati
and, therefore, it must not be applied in strong or rapi
varying gravitational fields. However, it is expected that f
sufficiently massive fields the method will provide a go
approximation of the exact renormalized stress-energy
sor.

nt

-

nt

-

FIG. 9. The radial dependence of the rescaled angular com
nentl^Tu

u&ABG (l596p2M6m2) of the renormalized stress-energ
tensor of the minimally coupled massive scalar field in the AB
geometry~solid lines! as compared to the case of conformal co
pling in this geometry~dashed lines!. The thin curves are forq
51.02 and the thick curves are for the extremal case.
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Finally, we remark that, although complicated, the deriv
stress-energy tensor may be employed as a source term o
semiclassical Einstein field equations. Indeed, prelimin
calculations indicate that it is possible to find an analyti
D

rk,

y,

02402
d
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y
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perturbative solution to the back reaction, and what ma
this issue even more interesting and worth further studie
the regularity of the geometry of the ABG black hole. W
intend to return to this group of problems elsewhere.
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