PHYSICAL REVIEW D 66, 024020(2002

Finite spin-foam-based theory of three- and four-dimensional quantum gravity
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Starting from Ooguri’s construction f@F theory in thregand fou) dimensions, we show how to construct
a well defined theory with an infinite number of degrees of freedom. The spin network states that are kept
invariant by the evolution operators of the theory are exact solutions of the Hamiltonian constraint of quantum
gravity proposed by Thiemann. The resulting theory is the first example of a well defined, finite, consistent,
spin-foam-based theory in a situation with an infinite number of degrees of freedom. Since it solves the
guantum constraints of general relativity it is also a candidate for a theory of quantum gravity. It is likely,
however, that the solutions constructed correspond to a spurious sector of solutions of the constraints. The
richness of the resulting theory makes it an interesting example to be analyzed by forthcoming techniques that
construct the semiclassical limit of spin network quantum gravity.
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Attempts to construct a well defined and consistent theorynetric, including metrics that do not satisfy the Einstein
of quantum gravity have recently received a significant boosequations. Getting rid of undesired quantum states is tanta-
through the introduction by Ashtekar and Lewandowg{i  mount to “imposing the Einstein equations,” and therefore is
of mathematical tools for performing well defined calcula- expected to be a difficult task in+31 dimensions. It is there-
tions in the context of theories of connections modulo gaugéore not entirely surprising that it was possible to do it in 2
transformations in infinite dimensional situations. The intro-+ 1 dimensions. These concerns are in our view enough to
duction of these mathematical tools has actually had impaahotivate an active program of searching for alternatives to
in two different avenues of quantization of general relativity: Thiemann’s quantization, although as should be evident from
the canonical and the covariafath integral approach. the above discussiomo not implythat there is something

In the canonical approach, Thiema#] was able to con-  definitely “wrong” about the construction up to now. It
struct a finite, well defined, anomaly-free representation ofmight be that in the end Thiemann’s quantizatioeslead
the quantum Hamiltonian constraint. In a separate developto the correct theory of quantum gravity, albeit via an elabo-
ment, similar techniques were used to define an equally corate choice of inner product.
sistent operator on the space of Vassiliev knot invarigdits The aforementioned mathematical techniques have also
Thiemann’s Hamiltonian operates on a space of diffeomorhad an impact in the construction of path integrals for gen-
phism invariant spin networks. The algebra of two Hamilto-eral relativity, an approach that has come to be known as
nians with different lapses is therefore an Abelian one, and itspin foams” (see[5] for a recent review and referenges
is faithfully implemented quantum mechanically. Contro- Initial interest in this approach arose quite independently of
versy however remains about if this is “the right” implemen- gravity, in the study of topological field theories. In the spin
tation of a Hamiltonian constraint. For instance, it was no-foam approach to topological field theories one expands the
ticed that a similar implementation in a space ofpartition function of the theory in terms of the basis of gauge
nondiffeomorphism invariant states also yielded an Abeliarinvariants constructed with spin networks and performs the
algebra[4]. The constraint also appears to contain a ratheintegral over connections of the path integral. To perform
large number of spurious solutions. For instance, applyinghis integral one goes to the dual lattice, and is left with an
the Thiemann construction in21 dimensiong?2], one en-  expression that is a function of the valences associated to the
counters many quantum states in addition to the usual soldaces of the dual lattice. One can understand the resulting
tions of the Witten quantization. In this case one can remov@ath integral as a time evolution. If one slices the “spin
the undesired states by the choice of inner product, and thi®am,” the intersections of the faces of the dual lattice with a
construction works rather naturally int2l dimensions. In  plane produce lines associated with a spin inherited from that
3+1 dimensions, an example of potentially spurious solu-of the face of the dual lattice, that is, one reconstructs a
tion is to consider statesy| with support on spin networks *“spatial” spin network. When one expands the action, one
with regular(nonextraordinaryvertices. Since the action of chooses a discretization of the expression. To recover the
Thiemann’s Hamiltonian on a bra state is to remove an exeontinuum theory one therefore has to either refine the dis-
traordinary line(a line ending in two vertices that are planar cretization indefinitely or perhaps perform a sum over all
and with two of the three incoming lines collingaa state possible discretizations in the hope that the sum will be
(4| that does not contain extraordinary lines is automaticallydominated by the finer discretizations. In general these pro-
annihilated by the constraint. These states are quite problencedures produce difficulties. Refining the lattice is problem-
atic since it is difficult to imagine how a semiclassical theoryatic to implement in practice with irregular latticg8], and
could be built on them that did not approximate an arbitraryfor a nonrenormalizable theory is very likely to lead to di-
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vergences even if one were to use regular lattigdsch in  tors depend on the cutoff but only through a fixed overall
addition may conflict with diffeomorphism invariancéo  factor. In fact surprisingly encouraging recent results have
perform the refinement. The general attitude has thereforbeen reported in regularizing the sulffier a given discreti-
favored the idea of summing over all triangulations as a wayation, even for the case of the Lorentzian path integsake

to handle this issue. In the case of topological field theoried,8] and references thergin

since they only have a finite number of degrees of freedom, It is worthwhile noticing that if one were able to complete
the resulting expression for the discretized action happens ta spin foam quantization of general relativity, one could also
be invariant under choice of discretization. This immediatelyuse this to answer some of the issues arising from the Hamil-
simplifies things, since one does not need to sum over triartonian approach. The spin foam approach allows to construct
gulations, and accounts in part for the success achieved Igvolution operators and therefore to construct functions of
this approach in topological field theories. One immediatelyspin networks that should be annihilated by the Hamiltonian
is left with a discretized partition function that correctly em- constraint. The evolution operators also embody in a finite
bodies the dynamics of the theory in a consistent way. Thisvay the infinitesimal symmetries implied by the constraints
“miracle” is unlikely to repeat itself for theories with an of the canonical theory, so they naturally lead to insights
infinite number of degrees of freedom like general relativity.about the nature of the constraints.

Although the theory is invariant under diffeomorphisms, itis  In this paper we would like to present the construction of
by no means expected that the partition function should ba theory inspired by spin foams which is associated with a
invariant under changes of triangulations not related by difHamiltonian constraint that can be explicitly solved. The
feomorphisms. Worse, if one attempts to simply “sum overtheory we present is quite remarkable in the light of the
all triangulations” one is clearly summin@nfinitely) many  discussion above: it is well defined in spite of the fact that it
times the same triangulation shifted by four-dimensional dif-has an infinite number of degrees of freedom. Moreover, we
feomorphisms. The result will be divergent. It is akin to thewill see that analyzing the connection of the evolution op-
observation by Mazur and Motto[Z] in the context of tra- erators of the theory with the Hamiltonian picture one dis-
ditional path integrals for gravity that the resulting partition covers that the theory produces solutions to the Hamiltonian
function is divergent if one does not properly gauge fix theconstraint proposed by Thiemann. This makes the theory a
theory. Unfortunately, it appears difficult that one will be candidate for quantum theory of gravity.

able to properly gauge fix in terms of spin networks, or al- The theory we will propose is derived from the “spin
ternatively, it appears as difficult as handling the Hamil-foam” formulation of BF theory. The latter is a topological
tonian and diffeomorphism constraints. The situation appearfield theory (in either three or four space-time dimensibns
particularly complex, since space-time diffeomorphisms arevhose solution space corresponds to flat connections. Ooguri
implemented in a nontrivial way. For instance, one can conhas proposed a partition function for these theof@s in
sider a pair of initial and final spin network statss) and  terms of which one can construct evolution operatsisce

|s;) and many spin foams that interpolate between them.these are totally constrained theories, these operators are also
Several of thestpologically differen{not related by diffeo-  projectors, in the sense that acting on an arbitrary “initial”
morphism$ spin foams may correspond to the same spacestate they produce a solution of the quantum Hamiltonian
time interpolating between the initial and final states. So it isconstraint of the theojy Since the evolution operators are
not just a matter of simply considering “floating lattices” to projectors, evolved states are left invariant by further evolu-
get rid of the redundancy in the sum implied by diffeomor-tion. Such quantum states Bf theory are functions of spin
phism invariance. An extreme example of this point is givennetworks that also happen to solve the Hamiltonian con-
by BF theories, wherall spin foams interpolating between straint of quantum gravity. This is not hard to believe, since
[si) and |s;) yield the same result, no matter if they are flat connections solve the constraints of quantum gravity and
related by diffeomorphisms or not. Furthermore, the sunthese states are associated with flat connections.

over all spins involved in the discretization of the action has The condition for the states to be kept invariant under
also proved to be divergent in several cases, although thigvolution is encoded in the following elementary “moves”
divergence can be seen as an “infrared” problem and can b terms of which all evolutions from one spin network to
handled by the introduction of a cutoff. The evolution opera-another can be achieved:
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whereA is a cutoff that is needed for the Ooguri action to bediscussion of the previous paragrafis,wave functions still
finite. The moves allow to untangle any spin network into asolve the Hamiltonian constraint of quantum gravity as pro-
trivial one, generating 6 symbols and other coefficients in posed by ThiemaniThis is the main result of this paper. We
the process. These moves are well known, they are calleldave just constructed, simply by removing the last move, a
recoupling identities and just state that a spin network state itheory that is finite, well defined and whose states are in the
based on a flat connection. For that reason all networks cakernel of Thiemann’s Hamiltonian constraint. The theory is
be reduced to a trivial onéhe trivial network depends on well defined in the sense that the evolution operators that
the topology of the manifold, for instance on a sphere it is aarise from the above moves are finite and well defined op-
point, on a torus it is a “Theta-ne}” erators and they satisfy the condition of being projectors,
The first move is interesting, since its action appears a&¢ P(s,s")P(s’,s")=P(s,s"), that as we discussed above
the “inverse” of the action of Thiemann’s Hamiltonian con- was required of evolution operators of a totally constrained
straint for general relativity. In Thiemann’s construction thetheory. The sum over the intermediate spin netwakss
action of a Hamiltonian constraint is to add a line at a triva-appropriately restricte(btherwise there is potential for a di-
lent intersection. The first move allows to remove such avergence In BF theory, as Oogurf9] first discussed, the
line. But in fact, the result is stronger. It was shown that ifsum is only over colorations of a given triangulation. Choos-
one uses the first move to “undo” the action of Thiemann’sing different triangulations just correspond to different rep-
Hamiltonian constraint, the end result vanish&g]. That is, resentations of the same Hilbert space. In the case of our
a quantum state whose definition incorporates the first moveheory one needs a more subtle structure. The sum is over all
automatically satisfies the Hamiltonian constraint of quan-colorations and over all inequivalent “skeletons” of spin net-
tum gravity (in fact it also solves the generalization of the works. A skeleton is defined as the minimal spin network one
constraint proposed iflL1] as wel). We will use this fact to  obtains when all triangles are removed. Since the projectors
construct the theory. are nonvanishing only if the initial and final spin network
The theory we propose is defined in the following way: its share the same skeletonizati@he moves keep the skeleton
wave functions are defined by diffeomorphism invariant spininvariany, then the left hand side is indeed finite even if one
network states that satisfiyne first two move®f the three sums over all skeletons. Different spin networks with the
listed above. These moves are inverse of each other so tlsame skeleton correspond, as in Ooguri's case, to different
theory is consistent. It is well defined. But the lack of therepresentations of the Hilbert space.
third move prevents us from “undoing” a nontrivial spin The construction works in three and four dimensions and
network into the trivial one. The theory therefore has infi-is not confined to trivalent intersections. If one wishes to
nitely many inequivalent states, which hints to the fact that inconsider intersections of higher valen@ehich is especially
its connection representation version the wave functions aref interest in four dimensionsone needs to consider addi-
not concentrated on flat connections anymore and the theotjonal recoupling moves. For four valent intersections the
has an infinite number of degrees of freedom. Yet, due to thenove to consider i§13]
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and its inverse. These moves contain the ones listed before We need to elaborate a bit on the precise nature of the
as particular cases by setting valences to zero. One woukbace of states that we are proposing. In spite of similarities
need two additional moves in order to have complete rewith gravity, BF theory has an evolution operator that acts
coupling corresponding to a flat connection if one has fouron a space ofombinatorial spin networks. The evolution
valent intersections. operator “propagates in space” in the sense that its action
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creates new vertices. These aspects seems to imply that theheee dimensions it is of little physical interest, since there
should be little connection between these evolution operatorgravity is finite dimensional and therefore the theory we con-
and Thiemann’s Hamiltonian constraint. The latter operatestructed is clearly unphysical. The four dimensional theory
on regular (not combinatorigl diffeomorphism invariant, We constructed, since its states manage to solve Thiemann’s
spin networks. Its action is only concentrated at vertices andlamiltonian constraint, is in principle a candidate for a
only produces new “extraordinary” vertices that are notduantum theory ofEuclidean gravity in four dimensions. It
“seen” if one further operates with the constraint. Yet, it is Should be evident from the way we constructed the théiory
remarkable that a state that is left invariant by our evolution¥as not derived from an action, itis only formulated in terms
operator(acting on the space of diffeomorphism invariant °f Moves by removing one of the movesif theory) that it
spin networksmanages to be annihilated by the Hamiltonian'S unlikely that it will be connected with the correct physics

constraint of Thiemann. It can be seen as if the conditiorﬁf fogr 'dlmensl,lor;)elll quanturln 'gra%/lty.. NevErtggless, Wefbe-
implied by our theory is “stronger” on the states than the '€V€ I 1S @ valuable example in that it embodies many fea-

one implied by the vanishing of Thiemann’s Hamiltonian. TolUres considered desirable in a theory of quantum gravity. It

give an analogy(it has only a partial meaning as we will is consistent in the sense that the evolution operators are

soon discuss consider the Hamiltonian constraint of classi- proleptors. There are expl|_C|t solutions to the Wheeler-
cal general relativity(indices omittesl EEF=0. One can DeWitt equation. The evolution operators do not suffer the

consider a theory whose constraintis-0 and therefore all flocallltyt_ [121/\/55“65 thf‘ttﬁpfarimly ?”?re] In Thlemann_s
its solutions will also be annihilated lyEF=0. The anal- ormufation.- We  expec at-wnhen further progress s

achieved in the analysis of a semiclassical limit for spin-
ogy here would be8F theory. It has been known for some .
time [10] that the solutions oBF theory (chromatic evalua- network based theoriefd4], our theory could be analyzed

tiong are trivially annihilated by Thiemann's Hamiltonian. and ruled out as not containing the correct classical physics

The theory we are proposing today would be roughly of theof general relativity. Both the theory in three and the one in

same kind as the one defined by a “Hamiltonian constraint"foudr s_pﬁce-tlmeldwrtlerg)smns \INI" Zowiyer: be gune n do?r:rlvfllalt
EF=0. All its solutions would still be included in Thi- &n¢ Mch examples o be analyzed, which go beyond the flat-

emann’s theory, but it has a richer solution space than that cﬁﬁzz O_T_EE ;2;0 %a"’;nﬁgi\gggelse;\s/eartﬁ;'rﬂtaema}ﬂgn\i’;i”Cdoer;_
the theory defined by =0. In reality this analogy is too :

naive. The realization of the Hamiltonian constraint of ourztrggg,, (S)Le?jiafr:ﬁ[hmergliraxlt%na?hde 'ﬂ;ﬁﬁteonigﬁ)p?gaggg d 'g
theory in terms of classical variables is unknown, but give P 9 prop y

e way e consructe 1, s very et we menoned |70 AT Sver ol bk e heoy consucid,
before to be highly nonlocalit is “simple in knot space,” phy

which suggests a very complex nature in connection s)pacetOday'

We have therefore constructed a well defined theory, with  We wish to thank Abhay Ashtekar for discussions. This
an infinite number of degrees of freedom, which manages taork was supported in part by grants NSF-PHY0090091,
solve in the sense discussed above, the Hamiltonian colNSF-PHY-9800973, NSF-INT-9811610, by funds of the
straint of (Euclidean quantum gravity as proposed by Thie- Horace C. Hearne, Jr. Institute for Theoretical Physics, and
mann. The theory exists in either three or four dimensions. Ithe Uruguay Fulbright commission.
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