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Finite spin-foam-based theory of three- and four-dimensional quantum gravity
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Starting from Ooguri’s construction forBF theory in three~and four! dimensions, we show how to construct
a well defined theory with an infinite number of degrees of freedom. The spin network states that are kept
invariant by the evolution operators of the theory are exact solutions of the Hamiltonian constraint of quantum
gravity proposed by Thiemann. The resulting theory is the first example of a well defined, finite, consistent,
spin-foam-based theory in a situation with an infinite number of degrees of freedom. Since it solves the
quantum constraints of general relativity it is also a candidate for a theory of quantum gravity. It is likely,
however, that the solutions constructed correspond to a spurious sector of solutions of the constraints. The
richness of the resulting theory makes it an interesting example to be analyzed by forthcoming techniques that
construct the semiclassical limit of spin network quantum gravity.
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Attempts to construct a well defined and consistent the
of quantum gravity have recently received a significant bo
through the introduction by Ashtekar and Lewandowski@1#
of mathematical tools for performing well defined calcu
tions in the context of theories of connections modulo ga
transformations in infinite dimensional situations. The int
duction of these mathematical tools has actually had imp
in two different avenues of quantization of general relativi
the canonical and the covariant~path integral! approach.

In the canonical approach, Thiemann@2# was able to con-
struct a finite, well defined, anomaly-free representation
the quantum Hamiltonian constraint. In a separate deve
ment, similar techniques were used to define an equally c
sistent operator on the space of Vassiliev knot invariants@3#.
Thiemann’s Hamiltonian operates on a space of diffeom
phism invariant spin networks. The algebra of two Hamil
nians with different lapses is therefore an Abelian one, an
is faithfully implemented quantum mechanically. Contr
versy however remains about if this is ‘‘the right’’ impleme
tation of a Hamiltonian constraint. For instance, it was n
ticed that a similar implementation in a space
nondiffeomorphism invariant states also yielded an Abel
algebra@4#. The constraint also appears to contain a rat
large number of spurious solutions. For instance, apply
the Thiemann construction in 211 dimensions@2#, one en-
counters many quantum states in addition to the usual s
tions of the Witten quantization. In this case one can rem
the undesired states by the choice of inner product, and
construction works rather naturally in 211 dimensions. In
311 dimensions, an example of potentially spurious so
tion is to consider stateŝcu with support on spin networks
with regular~nonextraordinary! vertices. Since the action o
Thiemann’s Hamiltonian on a bra state is to remove an
traordinary line~a line ending in two vertices that are plan
and with two of the three incoming lines collinear!, a state
^cu that does not contain extraordinary lines is automatica
annihilated by the constraint. These states are quite prob
atic since it is difficult to imagine how a semiclassical theo
could be built on them that did not approximate an arbitr
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metric, including metrics that do not satisfy the Einste
equations. Getting rid of undesired quantum states is ta
mount to ‘‘imposing the Einstein equations,’’ and therefore
expected to be a difficult task in 311 dimensions. It is there-
fore not entirely surprising that it was possible to do it in
11 dimensions. These concerns are in our view enoug
motivate an active program of searching for alternatives
Thiemann’s quantization, although as should be evident fr
the above discussion,do not implythat there is something
definitely ‘‘wrong’’ about the construction up to now. I
might be that in the end Thiemann’s quantizationdoeslead
to the correct theory of quantum gravity, albeit via an elab
rate choice of inner product.

The aforementioned mathematical techniques have
had an impact in the construction of path integrals for g
eral relativity, an approach that has come to be known
‘‘spin foams’’ ~see@5# for a recent review and references!.
Initial interest in this approach arose quite independently
gravity, in the study of topological field theories. In the sp
foam approach to topological field theories one expands
partition function of the theory in terms of the basis of gau
invariants constructed with spin networks and performs
integral over connections of the path integral. To perfo
this integral one goes to the dual lattice, and is left with
expression that is a function of the valences associated to
faces of the dual lattice. One can understand the resul
path integral as a time evolution. If one slices the ‘‘sp
foam,’’ the intersections of the faces of the dual lattice with
plane produce lines associated with a spin inherited from
of the face of the dual lattice, that is, one reconstruct
‘‘spatial’’ spin network. When one expands the action, o
chooses a discretization of the expression. To recover
continuum theory one therefore has to either refine the
cretization indefinitely or perhaps perform a sum over
possible discretizations in the hope that the sum will
dominated by the finer discretizations. In general these p
cedures produce difficulties. Refining the lattice is proble
atic to implement in practice with irregular lattices@6#, and
for a nonrenormalizable theory is very likely to lead to d
©2002 The American Physical Society20-1
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vergences even if one were to use regular lattices~which in
addition may conflict with diffeomorphism invariance! to
perform the refinement. The general attitude has there
favored the idea of summing over all triangulations as a w
to handle this issue. In the case of topological field theor
since they only have a finite number of degrees of freed
the resulting expression for the discretized action happen
be invariant under choice of discretization. This immediat
simplifies things, since one does not need to sum over tr
gulations, and accounts in part for the success achieve
this approach in topological field theories. One immediat
is left with a discretized partition function that correctly em
bodies the dynamics of the theory in a consistent way. T
‘‘miracle’’ is unlikely to repeat itself for theories with an
infinite number of degrees of freedom like general relativ
Although the theory is invariant under diffeomorphisms, it
by no means expected that the partition function should
invariant under changes of triangulations not related by
feomorphisms. Worse, if one attempts to simply ‘‘sum ov
all triangulations’’ one is clearly summing~infinitely! many
times the same triangulation shifted by four-dimensional d
feomorphisms. The result will be divergent. It is akin to t
observation by Mazur and Mottola@7# in the context of tra-
ditional path integrals for gravity that the resulting partitio
function is divergent if one does not properly gauge fix t
theory. Unfortunately, it appears difficult that one will b
able to properly gauge fix in terms of spin networks, or
ternatively, it appears as difficult as handling the Ham
tonian and diffeomorphism constraints. The situation appe
particularly complex, since space-time diffeomorphisms
implemented in a nontrivial way. For instance, one can c
sider a pair of initial and final spin network statesusi& and
usf& and many spin foams that interpolate between the
Several of thesetopologically different~not related by diffeo-
morphisms! spin foams may correspond to the same spa
time interpolating between the initial and final states. So i
not just a matter of simply considering ‘‘floating lattices’’ t
get rid of the redundancy in the sum implied by diffeomo
phism invariance. An extreme example of this point is giv
by BF theories, whereall spin foams interpolating betwee
usi& and usf& yield the same result, no matter if they a
related by diffeomorphisms or not. Furthermore, the s
over all spins involved in the discretization of the action h
also proved to be divergent in several cases, although
divergence can be seen as an ‘‘infrared’’ problem and can
handled by the introduction of a cutoff. The evolution ope
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tors depend on the cutoff but only through a fixed over
factor. In fact surprisingly encouraging recent results ha
been reported in regularizing the sums~for a given discreti-
zation!, even for the case of the Lorentzian path integral~see
@8# and references therein!.

It is worthwhile noticing that if one were able to comple
a spin foam quantization of general relativity, one could a
use this to answer some of the issues arising from the Ha
tonian approach. The spin foam approach allows to const
evolution operators and therefore to construct functions
spin networks that should be annihilated by the Hamilton
constraint. The evolution operators also embody in a fin
way the infinitesimal symmetries implied by the constrain
of the canonical theory, so they naturally lead to insig
about the nature of the constraints.

In this paper we would like to present the construction
a theory inspired by spin foams which is associated wit
Hamiltonian constraint that can be explicitly solved. T
theory we present is quite remarkable in the light of t
discussion above: it is well defined in spite of the fact tha
has an infinite number of degrees of freedom. Moreover,
will see that analyzing the connection of the evolution o
erators of the theory with the Hamiltonian picture one d
covers that the theory produces solutions to the Hamilton
constraint proposed by Thiemann. This makes the theo
candidate for quantum theory of gravity.

The theory we will propose is derived from the ‘‘spi
foam’’ formulation of BF theory. The latter is a topologica
field theory ~in either three or four space-time dimension!
whose solution space corresponds to flat connections. Oo
has proposed a partition function for these theories@9#, in
terms of which one can construct evolution operators~since
these are totally constrained theories, these operators are
projectors, in the sense that acting on an arbitrary ‘‘initia
state they produce a solution of the quantum Hamilton
constraint of the theory!. Since the evolution operators ar
projectors, evolved states are left invariant by further evo
tion. Such quantum states ofBF theory are functions of spin
networks that also happen to solve the Hamiltonian c
straint of quantum gravity. This is not hard to believe, sin
flat connections solve the constraints of quantum gravity
these states are associated with flat connections.

The condition for the states to be kept invariant und
evolution is encoded in the following elementary ‘‘moves
in terms of which all evolutions from one spin network
another can be achieved:
~1!

~2!
0-2
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whereL is a cutoff that is needed for the Ooguri action to
finite. The moves allow to untangle any spin network into
trivial one, generating 6j symbols and other coefficients i
the process. These moves are well known, they are ca
recoupling identities and just state that a spin network sta
based on a flat connection. For that reason all networks
be reduced to a trivial one~the trivial network depends on
the topology of the manifold, for instance on a sphere it i
point, on a torus it is a ‘‘Theta-net’’!.

The first move is interesting, since its action appears
the ‘‘inverse’’ of the action of Thiemann’s Hamiltonian con
straint for general relativity. In Thiemann’s construction t
action of a Hamiltonian constraint is to add a line at a triv
lent intersection. The first move allows to remove such
line. But in fact, the result is stronger. It was shown tha
one uses the first move to ‘‘undo’’ the action of Thiemann
Hamiltonian constraint, the end result vanishes@10#. That is,
a quantum state whose definition incorporates the first m
automatically satisfies the Hamiltonian constraint of qu
tum gravity ~in fact it also solves the generalization of th
constraint proposed in@11# as well!. We will use this fact to
construct the theory.

The theory we propose is defined in the following way:
wave functions are defined by diffeomorphism invariant s
network states that satisfythe first two movesof the three
listed above. These moves are inverse of each other so
theory is consistent. It is well defined. But the lack of t
third move prevents us from ‘‘undoing’’ a nontrivial spi
network into the trivial one. The theory therefore has in
nitely many inequivalent states, which hints to the fact tha
its connection representation version the wave functions
not concentrated on flat connections anymore and the th
has an infinite number of degrees of freedom. Yet, due to
fo
ou
re

ou
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discussion of the previous paragraph,its wave functions still
solve the Hamiltonian constraint of quantum gravity as pr
posed by Thiemann. This is the main result of this paper. W
have just constructed, simply by removing the last move
theory that is finite, well defined and whose states are in
kernel of Thiemann’s Hamiltonian constraint. The theory
well defined in the sense that the evolution operators
arise from the above moves are finite and well defined
erators and they satisfy the condition of being projecto
(s8P(s,s8)P(s8,s9)5P(s,s9), that as we discussed abov
was required of evolution operators of a totally constrain
theory. The sum over the intermediate spin networkss8 is
appropriately restricted~otherwise there is potential for a d
vergence!. In BF theory, as Ooguri@9# first discussed, the
sum is only over colorations of a given triangulation. Choo
ing different triangulations just correspond to different re
resentations of the same Hilbert space. In the case of
theory one needs a more subtle structure. The sum is ove
colorations and over all inequivalent ‘‘skeletons’’ of spin ne
works. A skeleton is defined as the minimal spin network o
obtains when all triangles are removed. Since the projec
are nonvanishing only if the initial and final spin netwo
share the same skeletonization~the moves keep the skeleto
invariant!, then the left hand side is indeed finite even if o
sums over all skeletons. Different spin networks with t
same skeleton correspond, as in Ooguri’s case, to diffe
representations of the Hilbert space.

The construction works in three and four dimensions a
is not confined to trivalent intersections. If one wishes
consider intersections of higher valence~which is especially
of interest in four dimensions! one needs to consider add
tional recoupling moves. For four valent intersections t
move to consider is@13#
~4!
the
ties
ts

tion
and its inverse. These moves contain the ones listed be
as particular cases by setting valences to zero. One w
need two additional moves in order to have complete
coupling corresponding to a flat connection if one has f
valent intersections.
re
ld
-
r

We need to elaborate a bit on the precise nature of
space of states that we are proposing. In spite of similari
with gravity, BF theory has an evolution operator that ac
on a space ofcombinatorial spin networks. The evolution
operator ‘‘propagates in space’’ in the sense that its ac
0-3
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creates new vertices. These aspects seems to imply that
should be little connection between these evolution opera
and Thiemann’s Hamiltonian constraint. The latter opera
on regular ~not combinatorial!, diffeomorphism invariant,
spin networks. Its action is only concentrated at vertices
only produces new ‘‘extraordinary’’ vertices that are n
‘‘seen’’ if one further operates with the constraint. Yet, it
remarkable that a state that is left invariant by our evolut
operator~acting on the space of diffeomorphism invaria
spin networks! manages to be annihilated by the Hamiltoni
constraint of Thiemann. It can be seen as if the condit
implied by our theory is ‘‘stronger’’ on the states than t
one implied by the vanishing of Thiemann’s Hamiltonian.
give an analogy~it has only a partial meaning as we wi
soon discuss!, consider the Hamiltonian constraint of class
cal general relativity~indices omitted! EEF50. One can
consider a theory whose constraint isF50 and therefore all
its solutions will also be annihilated byEEF50. The anal-
ogy here would beBF theory. It has been known for som
time @10# that the solutions ofBF theory ~chromatic evalua-
tions! are trivially annihilated by Thiemann’s Hamiltonian
The theory we are proposing today would be roughly of
same kind as the one defined by a ‘‘Hamiltonian constrai
EF50. All its solutions would still be included in Thi-
emann’s theory, but it has a richer solution space than tha
the theory defined byF50. In reality this analogy is too
naive. The realization of the Hamiltonian constraint of o
theory in terms of classical variables is unknown, but giv
the way we constructed it, is very likely~as we mentioned
before! to be highly nonlocal~it is ‘‘simple in knot space,’’
which suggests a very complex nature in connection spa!.

We have therefore constructed a well defined theory, w
an infinite number of degrees of freedom, which manage
solve in the sense discussed above, the Hamiltonian
straint of ~Euclidean! quantum gravity as proposed by Thi
mann. The theory exists in either three or four dimensions
ev
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three dimensions it is of little physical interest, since the
gravity is finite dimensional and therefore the theory we co
structed is clearly unphysical. The four dimensional theo
we constructed, since its states manage to solve Thiema
Hamiltonian constraint, is in principle a candidate for
quantum theory of~Euclidean! gravity in four dimensions. It
should be evident from the way we constructed the theory~it
was not derived from an action, it is only formulated in term
of moves by removing one of the moves ofBF theory! that it
is unlikely that it will be connected with the correct physi
of four dimensional quantum gravity. Nevertheless, we
lieve it is a valuable example in that it embodies many fe
tures considered desirable in a theory of quantum gravity
is consistent in the sense that the evolution operators
projectors. There are explicit solutions to the Wheel
DeWitt equation. The evolution operators do not suffer t
‘‘locality’’ @12# issues that apparently arise in Thiemann
formulation. We expect that when further progress
achieved in the analysis of a semiclassical limit for sp
network based theories@14#, our theory could be analyze
and ruled out as not containing the correct classical phy
of general relativity. Both the theory in three and the one
four space-time dimensions will however be quite nontriv
and rich examples to be analyzed, which go beyond the
ness ofBF theory and nevertheless are finite and well d
fined. The fact that the states solve the Hamiltonian c
straint of quantum gravity and include ‘‘propagation
space’’ sheds further light on the Hamiltonian proposed
Thiemann and may even imply that the theory construc
has more physical relevance than the one we can esta
today.

We wish to thank Abhay Ashtekar for discussions. Th
work was supported in part by grants NSF-PHY00900
NSF-PHY-9800973, NSF-INT-9811610, by funds of th
Horace C. Hearne, Jr. Institute for Theoretical Physics,
the Uruguay Fulbright commission.
ces
@1# A. Ashtekar and J. Lewandowski, J. Geom. Phys.17, 191
~1995!.

@2# T. Thiemann, Class. Quantum Grav.15, 839 ~1998!; 15, 875
~1998!; 15, 1207~1998!; 15, 1249~1998!; 15, 1281~1998!; 15,
1463 ~1998!.

@3# C. Di Bartolo, R. Gambini, J. Griego, and J. Pullin, Phys. R
Lett. 84, 2314~2000!; Class. Quantum Grav.17, 3211~2000!;
17, 3239~2000!.

@4# J. Lewandowski and D. Marolf, Int. J. Mod. Phys. D7, 299
~1998!.

@5# J.C. Baez, inGeometry and Quantum Physics, Lecture Notes
in Physics Vol. 543, edited by G. Gausterer and H. Gro
~Springer-Verlag, New York, 2000!, p. 25.
.

e

@6# M. Varadarajan and J.A. Zapata, Class. Quantum Grav.17,
4085 ~2000!.

@7# P. Mazur and E. Mottola, Nucl. Phys.B341, 187 ~1990!.
@8# L. Crane, A. Pe´rez, and C. Rovelli, Phys. Rev. Lett.87, 181301

~2001!.
@9# H. Ooguri, Nucl. Phys.B382, 276 ~1992!.

@10# R. Gambini, J. Griego, and J. Pullin, Phys. Lett. B413, 260
~1997!.

@11# M. Gaul and C. Rovelli, Class. Quantum Grav.18, 1593
~2001!.

@12# L. Smolin, gr-qc/9609034.
@13# H. Ooguri, Mod. Phys. Lett. A7, 2799~1992!.
@14# See, for instance, T. Thiemann, gr-qc/0110034 and referen

therein.
0-4


