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We discuss observational constraints coming from CMB and type la supernovae for the model of an
accelerated universe produced by gravitational leakage into extra dimensions. Our fits indicate that the model
is currently in agreement with the data. We also give the equations governing the evolution of cosmological
perturbations. Future observations will be able to severely constrain the model.
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[. INTRODUCTION confront the model with the supernovae observations of the
Supernova Cosmology Proje¢8CP [2] (Sec. IIl A) and
Supernovae observations have recently provided evidend@MB data(Sec. IlI B).
that the expansion of the Universe is undergoing a late time Our fits indicate that the model is currently in agreement
acceleratio1-3]. This acceleration can be explained in the with supernova type |&SNIa and small scale CMB data.
framework of standard cosmology by a nonvanishing cosmo©ne can hope to discriminate the model from standard cos-
logical constant. Although in agreement with current obsermology using future precision cosmological parameters mea-
vations, such an explanation exacerbates the usual cosmeurements, but also maybe modifications in the growth of
logical constant problem because it requires an explanatioprge scale structures.
for its very small, but nonzero, value.
One may wish to find alternative explanations for the ac-

celeration, and there are §evera| proposals in the literature. Il. MODEL DEFINITION AND BACKGROUND
Here we explore a scenario proposed4nb], based on the DYNAMICS
model of Dvali-Gabadadze-Porrati of brane-induced gravity
[6]. This proposal explains the observed late time accelera- . . . .
tion of the expansion of the Universe through a large scale " the following subsections we summarize the main fea-
modification of gravity coming from “leakage” of gravity at f[ures of the model under co_nS|derat|on and study the dynam-
large scale into an extra dimension, and without requiring 4¢S Of the background metric.
nonvanishing cosmological constant. The interesting point
about this model from a phenomenological perspective is
that it is a testable alternative to a cosmological constant

model with the same number of parameters. This is in con- . _ .
trast with models of “quintessence” where the equation of The brane-induced gravity models are a particular class of

state of the new component becomes a free function thdirane-world models, which can be defined as models where
needs to be constrained. our four dimensional4D) universe is considered to be a

In [5] it has been shown that the model was in qualitativeSurface(called brang embedded into a higher dimensional
agreement with all known cosmological observations. Theédulk space-time.
purpose of this work is to go one step further and quantita- Brane world models are inspired by superstring-M theory,
tively confront the model with observations of supernovaeand can be regarded as some low energy effective models of
and the cosmic microwave backgrou(@VB). more fundamental underlying theories, but have also interest

The paper is organized as follows. In Sec. Il we discus®n their own in providing new phenomenological ideas. We
the dynamics of the background metric of the universe in thevill only consider here the case where the bulk is five di-
model. We first introduce in a few words the brane-inducedmensional(5D). The brane embedding into the bulk is de-
gravity model of Dvali-Gabadadze-Porrdt6] (see also fined by the coordinateX”(x*) of the brane world volume
[7-9]) which provides the frameworkSec. Il A). We then  (parametrized by coordinateg") into the 5D space-time.

discuss the cosmological dynamics for the accelerated solurne dynamics of gravity is governed by the usual 5D
tion considered in this papéBec. Il B). In the following, we  Ejnstein-Hilbert action

A. Brane-induced gravity models in a few words

. _ . M3
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metric (®)g,g induces through the embeddiX§'(x#) a met-  the Hubble radiusd ~* is smaller tharr, and enters into a

ric g,,, on the branécalled induced metricdefined by nonconventional regime for larger Hubble radii.
In the following section we will discuss in greater detail
U= ®'gppd X 9, XB. (2)  this cosmological evolution. At this point let us first say that

an obvious criteria that the model should reach in order to
In the above equation, we have put an upper ind&x,on  comply with the known behavior of gravity at large distance,
quantities(e.g., the 5D Ricci scalaf’R or the 5D metric  as well as with the observed cosmology, is thashould be
®)gap) to distinguish them from their 4D counterparts, de-made large enough. The more stringent limit comes indeed
pending only on the induced metrie.g.,Rorg,,). from cosmology requiring . to be of the order of, or larger
In the brane-induced gravity moddlé—10, the gravita- than, today’s Hubble radiulslgl. Whenrc~H51, one thus
tional action contains another tei®gy,, in addition to the 5D expects that cosmology is very close to standard cosmology
Einstein-Hilbert term(1), given by up to very late time, and in particular all successes of stan-
dard cosmology such as big bang nucleosynth@fN) are
= . left unchanged by this choice of parameters. However, the
Sehn="5" Jbraned x VIg[ R. (3 very recent evolution of the universe is different. Indeed, as
will be noted in more detail in the next section, a particular
class of solutions shows a late time accelerated expansion
without the need for a nonzero cosmological constant. For
A/%Iues ofr, of orderH, !, as needed to fit the Supernovae
0

2

This term is the usual 4D Einstein-Hilbert term computed
here on the brane and with the induced metric, with, a
mass parameter. The latter can be interpreted as the usual . .
reduced Planck mass, from the calculatisae belowof the servations(see Sec. Il A, one finds from Eq(4) that
force between two static massive sources on a flat brane arM(5)~_10_100 MeV. S_UCh a l_OW value Of_ the 5D P!anck
bulk background.The origin ofS,}, in brane world models is mass 1S pgrfectly consistent with observatmns_and high en-
discussed in more detail 6—8]. It arises generically from 'Y experiments as shown [i8,9]. Induced-gravity models
guantum correction coming from the coupling between bulkhave_been shown to provide a frgmework for reahzmg ”?Od'
space-time and brane localized matter fields when the corF—I.S with a very I.OW quantum gravity scale without conflicting
formal invariance of the brane theory is brokésee, e.g., ith any experimental fact].
[14]). In the model at hand the dynamics of gravity is then _ _
governed by the sum of the two kinetic ter@s, and S,,. B. Background cosmological dynamics

As a consequence of the presence of the brane-induced In the model considered here, the geometry of our 4D
term (3), one can shoW6] that the gravitational force expe- universe is at all time described by an ordinary Friedmann-
rienced by two static pointlike sources located on the bran¢emaitre-Robertson-WalkgfFLRW) space-time with a line
is the usual 4D gravitational 17 force for distances smaller element of the form
than the crossover scatg defined by

ds’=g,,,dx*dx” (5)
rczzl\'clzzl _ (4) = —dt?+a?(t)dxdx y; (6)
© = —dt?+a?(t)[dr?+ Si(r)dy?], (7)

For distances larger than., on the other hand, the force
turns to a 5D regime where it follows the 5Dr3/behavior.
On scales smaller thak (’5§ one also expects modifications

where ¢ are angular coordinate&=—1,0,1 parametrizes
the brane world spatial curvature, aBgis given by

in the gravity law; however, for the parameter choice rel- sinr (k=1)

evant to this work, the modifications occur on scales much : B

smaller than those accessible by gravity experimgdits S(r)= sinhr - (k=-1) 8
This perturbative behavior has an exact parallel in cos- r (k=0).

mology, where one can shof#] that, for aZ, symmetric
brane world(see[15,17,1§ for discussions of cases where ith h . inatedh
theZ, symmetry is relaxed the expansion of the Universe is to be at rest with respect to the comoving coordinateshe

governed by the usual 4D Friedmann's equations whenevdnly difference with standard cosmology is in the dynamics
of the metric which is encoded into Friedmann-like equa-

tions different from the ordinary 4D ones. For a given con-

The cosmological standard observers are assumed, as usual,

YIn the following, we use upper case latin letteksB, ... to tent of the unlvers_e, Wlth. total ene;rgy den_sbtyzf;md pressure
denote 5D indices, greek lettessv, . . . todenote indices parallel p), the standard first Friedmann’s equation is now replaced
to the brane world volume, 5 an index transverse to the brane, anlay [4]
latin lettersi,j, ... to denote space-like indices parallel to the 2
brane world volume. H24 h _ p +i+ 1 9)

2We will not address here the issue of the van Dam—Veltman— a2 3M$>| 4r§ 2re )’

Zakharov (vDVZ) discontinuity, seg11] and[12,13 for discus-
sions of this issue. where
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1da

is the Hubble parameter of our universélhe energy-
momentum conservation equation, on the other hand, takes

the usual form

p+3H(p+p)=0. (11)

PHYSICAL REVIEW D 66, 024019 (2002

The normalization condition for th@s,

2
NORRVEIRS S S

differs from the usual relatiof, += ,Q,=1.
Equation(9) implies that whenevep/M%, is large com-
pared to 172 (or in other words, whenevét ~* is small with

O+ (16)

Equations(9) and(11) are all what is needed to characterize respect tor.), the cosmological evolution follows that of

the cosmology we are interested in here. They lead to

Hz(z)=H§{Qk(1+z)2

+

2
NOTE: \/Qchrz Qa(1+z)3(”‘”a)) ]
(12)

wherez is the redshift and we have assumed thas given
by the sum of the energy densitips of different compo-

standard cosmology. In this case Ef). reduces to the stan-
dard Friedmann’s equation

a2 3M2’

ep Ko P (17

When (and if) p is driven to smaller values by the cosmic
expansion, the expansion of the Universe enters into a non-
conventional phase and asymptotes to a de Sitter solution
whenp becomes negligible with respect k#2/r2. One has

nents(labeled bya) with constant equation of state param- a transition to an accelerated expansion happening approxi-
etersw, . The()s for matter and curvature are defined in themately when the Hubble radiud ~! crosses the threshold

usual way by

0
Pa

“ 3MpPHZS

(13

HEag'

whereasﬂrc is given by

1
¢ 4r2H3

Q (15

r.. We would like to stress that this last accelerated phase is
not triggered by a cosmological constétitat can be consis-
tently set to zerbbut is due to the presence of two kinetic
terms for the graviton in the action. Namely, bulk gravity
sees the induced kinetic term on the brdBgas a source
term, and for an empty universe, there is a self-inflationary
solutiorf to Einstein’s equations to which a universe with
decreasing energy will asymptote. This solution acts as a late
time attractor to early standard cosmology.

In the following we will then only consider a universe
with a zero cosmological constant, and udkrk, baryonic,
...) matter content. One can further notice that the above
described cosmology is also exactly reproduced by standard
cosmology with a dark energy component witk-dependent
equation of state parametwﬁ”(z). For a universe contain-

ing only nonrelativistic mattews$''(z) is given by(see[5])

w!(2)=

—1. (19

40,

Ty
\/QM(1+2)3

Q, Q,

C 4

Qu(1+2)°

+1
Qu(l+2)°

3There is another set of solutions foZa symmetrical brane. Those were derived 4 and are not considered here.
“This solution is in a way the late time analog of Starobinsky’s first model of inflation where terms quadratic in the Ricci tensor are

sourcing similarly a self-inflationary solutidri6].
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At large redshiftw$'" tends toward— 1/2 reflecting the fact 0. 10
that the dominant term in Eq12), after matter and curvature 0.6
terms, redshift as (+2)%? at largez At low z, however, 4
we'" decreases toward arf)(,(),,)-dependent asymptotic 0.2
value. For a flat universe, the latter is simply giverr by 5 o
-1/(1+Qy). -0.2
In the following sections we give the results of fitting =0 ol
SNla and CMB observables with different cosmological pa- ‘0‘2 T

rameters in the framework of the cosmology defined by Egs.

(9) and(11). We will denote@ a set of cosmological param-

eters such a€), or () characterizing a given cosmology. FIG. 1. Magnitude vs redshift diagram for the SNla data of Ref.
[2] used in this paper. All magnitude are plotted, respectively, to an
empty universe Q=0 andQ , =0). Over-plotted are three differ-

1. CONFRONTATION WITH OBSERVATIONS ent flat cosmological models: the best fit flat model in standard
cosmology(with Q,=0.28 and(2 , =0.72, solid ling, in the gravi-
tational leakage cosmologyvith Q,,=0.18, dotted lingand a flat

We have fitted the supernovae data set from the BEP model in the gravitational leakage cosmology wifhy,=0.3
with the luminosity distance calculated using Efj2). Be-  (dashed ling We also show two approximate confidence level in-
cause the geometry of the Universe is given by usual FLRWervals for thez=1.7 supernova of Ref.3]; the outer light-gray
(5) one can use the standard formula for the luminosity dissurface represents the 95% confidence intervals and the inner dark

Redshift

A. Confrontation with supernovae observations

tanced, as a function of the redshif, gray surface represents approximately the 68% confidence interval.
This last supernova was not included in the fit. The values of
. S VIQde(2)] (related to the stretch factoand M (intrinsic magnitudg have
d.=Hg (1+Z)?' (19 peen fitted independently for all the models. The data are plotted
| here witha=0.6.

with de(2) defined by Assuming a spatially flat space-time, one is only left with

one free parametefafter integration overM and «), e.g.

de(2)= JZHo%, 200 Qwm. Q;_is then given by the normalization conditi¢h6)
0 y
2
and H(z) given by Eq.(12). We then use this luminosity QO :(1_QM) 0, <1 and Qu<1. (22
distance to fit the data. The fit is done using 4 free param- fe 2 ’ fe M=

eters: the cosmological parametés () ’ch)' the intrin-

sic magnitude of the supernovi(, and a parametes re- The results of they? minimization gives for a flat uni-
lated to the intrinsic luminosity-decline rate relatistretch  verse(one sigma levels

factors). x? is given by

Qy=0.18"g%; or Q, =0.17"3¢3, (23
X2(0,a, M)
1.0 T '

_é {M+a(1-s)+5logd (6,z)]-m}? I
A 2 ' i i
i=1 T;j 0.8 7]

(22 I
0.6 i 7]

The data set consisting of 54 supernova® nearby ones
and 36 at high redshjfis shown in Fig. 1. Since we assume ©
no prior knowledge of the parameters and as we are no O0-4[
interested bye and M, we have to marginalize over them.
We do this in a Bayesian framework assuming flat priors and ,
Gaussian errors. These integrations can be carried out an:
lytically, as shown irf19]. We quote the results in Appendix
A. We have then computed confidence contours for the mod-
els 0=(Qpy ,Qrc) model with no prior on the cosmology.

These contours are plotted in Fig. 2.

0.0 0.5 1.0 1.5

FIG. 2. 68.3%, 90% and 99% confidence regions mg,,(,Qrc)
in the gravitational leakage scenario, assuming no prior knowledge
°E.g., forQy,=0.3 andk=0, w¢'" at low z tends toward-0.77.  of a« and M.
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with xy?=57.96 for 52(54 SNe, 2 parametersiegrees of

freedom® This best fit model is shown in Fig. 1. Equation _ :_
(23) leads to an estimate fog, in terms of the Hubble radius g’,‘ »
Hy* given by N
0 F

re=1.2155H,*. (24)
B. Confrontation with CMB observations 20

(“a)

Another set of cosmological observables which has re-& ;,f
cently been measured with great precision is the CMB tem-
perature power spectrum. In this section we would like to
compare the predictions of the model considered in this pa-
per to the results of these observations.

For this purpose, we used a modifiedhBFAST [22] re-
placing the first Friedmann’s equation by Ef). The equa- 5 ¢
tions for the growth of cosmological perturbations were kept& sf
the same as in usual cosmolo@xcept for the background
evolution. As is discussed qualitatively in Appendix B, this %4
is justified for the small scale perturbations and for processe:
happening early enough in the history of the Universe. On
the other hand, one can expect deviations from the standard FIG. 3. Marginal distribution for each of the 6 parameters used.
picture at large scaléand late tim¢ where (and when the
effect of the extra dimension began to be felt. This concernsonsidering only samples in our chain with negligible curva-
scales of order of today’s Hubble radius and processes hajure. The probability distribution fof),, under this assump-
pening in the late history of the Universe. A more refinedtion is shown in Fig. 5.
discussion of this, which involves the integration of bulk  Figure 5 shows that a model witQ,,=0.3 provides a
equations of motions for perturbations, is left for future work good fit to both SN and CMB data. It should be noted, how-
[23]. ever, that the CMB prefers a slightly larger value(h§;, than

We explored the six-dimensional parameter spa@e, the SN, although both ranges overlap at.1n turn, the
=(Q4,Q, ,0q4,0p,n,A), where wg=Q.h? 0p=0ph?®  CMB can constrain the physical densities in matter quite
and A andn are the amplitude and slope of the primordial accurately, wy+ wp=~0.12. This constraint translateQ
spectrum of perturbations. We used a Markov chain method- 0.3 to a Hubble constarit~0.63 in good agreement with
to explore the likelihood in this parameter space. When it has
converged the method produces a chain of models that ar o3 — T
sampled from the probability distribution & The details of
our procedure are given in Appendix C.

Figure 3 shows the probability distribution for each of the
six parameters obtained. As expected the CMB data prefer:
spatially flat models. Figure 4 shows the results of our analy-
sis in theQ,\,,-QrC plane. The shaded region was drawn to 2
contain approximately 95% of the models in our chain, the
line marks the location of spatially flat models. The con-
straint onQrc is coming mainly from the position of the
acoustic peaks so there is a natural degeneracy in thi
QM—Q,C plane which is apparent in the plot. 04

The probability distribution fo€), shown in Fig. 3 peaks

aroundQ,=0, a spatially flat universe. Thus it is natural to
further restrict ourselves to flat universes which we can do by

0

10 F

5These numerical results are in agreement with the fit done in  °[
[20]. We, however, disagree with the conclusions of that work as

will be discussed late(see also Refl21] for a discussion of this 0% 0, ! 1
papej. Note in particular that, contrary to the claims mad¢aa],

the z=1.7 supernova of Ref(3] is fitted as well by the model FIG. 4. Allowed region in thély-Q, plane(shaded The line
considered in this paper or by standard cosmology with a cosmashows the location of spatially flat models. The shaded region was
logical constanfsee Fig. L drawn to contain approximately 95% of the models in our chain.
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¢ It (135 data poings For reference we also show the power
\ spectra for a standard cosmology model with =0.7, a
' model that has all other parameters the same but where the
1 - 1 acceleration is produced by a cosmological constant. Both
| models provide an acceptable fit to the current data, but be-
\ cause their angular diameter distance to the last scattering
\ . surface differs by approximately 4% they should be easily
! distinguishable by future generation of CMB experiments.
The difference at low multipoles should be regarded with
care because on this very large scale the physical effects we
ignored could be relevarisee Appendix B

A
A

!
1
1

P(Q,)

IV. CONCLUSIONS

The fits done in this work show that the model of an
accelerated universe through gravitational leakage into an
extra dimension of Ref44,5] is in current agreement with
SNla and CMB data. The degeneracies in parameter estima-
tions using one data sét.g. CMB can be partially lifted
7 L — | - using the other(e.g. SNIa as in standard cosmology. The
0 0.2 0.4 0.6 0.8 1 supernovae data prefer a slightly lower value(df, (Qy

% =0.18"559 than the CMB for a flat universe; however, a

FIG. 5. Marginal distributions fof),, under the assumption that concordance — model — with  (&,Q; ,0q,  ©p,n,A)

the universe is spatially flat. The solid line shows the results from=(0,0.1225,0.1,0.02,0.96,0.57) which h&k,=0.3 [and

CMB and the dashed line from the SN. x2~140 for the full data set135 data pointg provide a
good fit to both sets, all the more as we have not included

direct measurements, e.f=0.72+0.08 from the HST key Systematic errors in our parameter estimations. For this
project[40]. model the crossover distance between 4D and 5D gravity is

In Fig. 6 we show what we could call our “concordance” given byrc~1.4 Hq ™. . _
model, 0=(Q,,Q, ,04,0,,n,A)=(0,0.1225,0.1,0.02,0.96, We have also given the equation of evolution for cosmo-

0.57) which hag),,=0.3 andy?~ 140 for the full data set logical perFuertlons. Those equations were use(_j to justify
the approximation we made to compute cosmological pertur-

bations, namely we used standard four dimensional evolution
100 == 1 1 equations over a background with a scale factor given by the
| accelerated solution given ib]. This is justified for small
| i ] scale CMB anistotropiegscale smaller than the crossover
80 |- [ o] 4 scaler ;). From those equations, and the known behavior of
gravity in the model at hand, one can also expect modifica-
L - | tions in the growth of large scale structure. This could poten-
L B 1 tially lead to a way to discriminate between standard cosmol-
80 K N ogy and the model considered in this work, and is left for
future investigation.
We want to end by noting that the model under consider-
r 1 ation is very predictive in the sense that future observations
40 - 7] have the potential to rule it out. In contrast to quintessence
i \ | models, this model has the same number of free parameters
: lj 7 \ %" as the usual LCDM model. With the advent of new precision
20| »{» - N cosmological measurements such as new SNla observations,
CMB measurements, ongoing galaxy surveys such as Sloan
and 2dF, weak lensing surveys, etc., it should be possible to
test the model very accurateffor a recent summary of how
bl bbb T—— buumun - bl different observations will constrain the matter content of the

o
2 510 40 100 200 400 600 BOO 1000 1200 1400 universe seg41] and references thergin
Multipole 1

el i Sl

J

[

1y

Temperature fluctuation 6T [uK]

FIG. 6. Model predictions and current CMB data. The solid ACKNOWLEDGMENTS
curve curve is for a model withd=(Qy,Q; w4, ®p,nA)
=(0,0.1225,0.1,0.02,0.96,0.57) while the dashed curve is for stan- We thank Gia Dvali, Andrei Gruzinov, Arthur Lue, and
dard cosmology with a cosmological constdht =0.7 (other pa- Roman Scoccimarro for useful discussions. The work of
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024019-6



SUPERNOVAE, CMB, AND GRAVITATIONAL LEAKAGE . .. PHYSICAL REVIEW D 66, 024019 (2002

by David and Lucile Packard Foundation through Grant Nothe 4D Einstein’s tensoG,,, to a tensorll,, quadratic in
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0116590. the 5D bulk Weyl tensor. The corresponding equation reads
APPENDIX A: MARGINALIZATION FOR SUPERNOVAE G = 1 € (B1)
. ) . Y A
Following [19] the x? defined by Eq.21) can be inte- (5)
grated analytically ove/M and « to yield with T1,,, given by
) % 1, 1. o, 1.. 1. s
Xa_im(o):—Zln . da ex —EXM_im(O,a) HMV:_ZT#aTV_l_ 1—2TT#V+ gTaBT gMV
(A1) 1
- _'-T-ZQ#V ’ (BZ)
B'E 2 24
B2 Y and¢,, is defined by
BT (#2) :
C D—E— €0=Crs,, (B3)
c from the bulk Weyl's tensGrC” gcp. In our caseT,, is
n 5 given by
A=S {5 logid di (6,2)]—mi} (A3) ~ )
=1 a'iz ' T,LLV: T,uV_ M PIG;UH (B4)
whereT ,, is the brane energy momentum tensor &g, is
, " 5logdd. (6,z)]-m, the 4D Einstein’s tensof. ,, is conserved with respect to the
B :241 o2 : (A4) 4D metric on the brane, so that one has
I
D,T4=0, (B5)
w1 -
C'=2 s (AS) D,T#=0, (B6)
whereD , denotes the covariant derivative compatible with
n (1—s))2 the 4D metric on the brane, and the last equality follows
D=Zl > (A6)  from Bianchi identities. Equation®1) and(B5) lead to the
' i background equation of motiofl2), once one knows the
background expression fd,,. In the cosmological case,
T (1-s) &, Is in general given by some version of Birkhoff’s theo-
E= < 2 (A7) rem [25-29. We have assumed for simplicity in E¢L2)

: that it vanishes in the background, in which case the five
dimensional space-time is simply a Minkowski space-time.
We now derive from Eq(B1) the evolution equations for

Fo 21 {5 logyd d ( 0:Zi;] -mi}(1-s)

o . (A8) the cosmological perturbations. We write
I
) . _ GH=BGH+ sGH, (B7)
where x4 .in( 0, @) is defined by
T=CTh+ oy, (B8)
» 1
Xotin 6,0)==21n L@ dMexp( —§x2(0,M,a)> - El=5EH, (B9)

(A9)  where the superscrif@ stands for the background value of
the corresponding tensor component. We define then the sca-

APPENDIX B: DYNAMICS OF SCALAR COSMOLOGICAL
PERTURBATIONS

) ] ) ) "We have chosen here implicitly a Gaussian normal coordinate
We briefly summarize here the equations governing theith respect to the brane.

cosmological perturbations in the model at hand. These®as far as the background is concerned a nonvanisifipgis

equations will be derived and discussed in more details elsénanifesting itself as a radiation component into the Friedmann’s

where, and are only given here for the case of a flat universequations; see Rei4] where the background equations are given in
Our starting point is an equation derived[®¥], relating  full generality.
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lar perturbations in energy densifp, momentumsq, pres-
sure 6P, and anisotropic stres$mr for ordinary matter as

5Ty=—6p, (B10)

sT=V;5q, (B11)
_ . 1

ST;=6P o+ V'Vj—ga*jvz)aw, (B12)

PHYSICAL REVIEW D 66, 024019 (2002

momentumdsq; in general is nof31]. Moreover, one does
not have an evolution equation for the Weyl’'s fluid aniso-
tropic stressém¢. This means that the system of equations
for cosmological perturbations does not close on the brane,
and one needs to solve the equations of motion for gravita-
tional waves in the bulksee[31]). On large scales, however,
the usual adiabatic curvature perturbation on hypersurfaces
of uniform (ordinary or Weyl matter density is conserved
[31], since it is a mere consequence of the conservation of
the energy density perturbatip85]. However, one still can-

where V; is the covariant derivative adapted to the back-not compute the Sachs-Wolf effect because of the lack of
ground spatial metrig;; parallel to the brane. We also define knowledge ofsm [31].

similar quantities for thaVeyl's fluid following [30-33

o 1
8ES=— bpe, (B13)

Mp

. 1
5E0=— —V,5q;, (B14)

M,
i 1 i i 1 i 72
58|=— 7| OPed+| V'V~ 3 8V2 | ome|. (BLY)
PI

Let us make here some simple remarks. In the formalism
used so far, the deviation from usual 4D cosmological per-
turbations equations can be separated into two different
parts. We first note that the direct coupling between ordinary
matter and gravitational perturbations ks dependent, for
example one can rewrite E@B17) as

5G0= ! (5
0 M|23| 1%

ope ) (B21)

2Hr,

with the effective direct gravitational coupling between mat-

The Weyl's fluid is related to the perturbation of the bulk ter and gravity given by

Weyl's tensor(gravitational waves in the bulkhrough Eq.
(B3).

Other useful quantities are the trac¥G, and traceless

traceless part9Gg, of 5G'j defined by

5G| = 5G1d; +

1
V'Vj—§5;V2)5GTF. (B16)

After some algebra, one gets then from EB1) the per-
turbed Einstein’s tensors over the backgrouhd), (12)

L\ A o o
2Hr, __M_gl p_2Hrc' (B17)

568( 1-

5GY 1 1—1V5 1V5 B18
i 2Hrc _Mlzg| i q 2Hrc i qEv ( )

H H
5G| 1-———— | =—| sr—me—— |,
TF( ro(H+2H2)| M2, r(H+2H?)
(B19)
1 H p—dps
‘5GT(1_ 2Hrc)_|\/|_|23l P ohr, Ptz 2Hrc—1)'
(B20)

— m) . (B22)

£ 2 2
Mp=M PI( 1
One can check that this coupling is never negative for the
late time accelerated solution considered in this paper, since
one always hasir.=1. Moreover, in the early time of the

Universe(whenevemHr .>1), one hadVlp~Mp, S0 that one
can consistently ignore this effect at least up to last scattering
(in contrast to what is happening in usual brane cosmglogy
which is all what matters as far as CMB is concerned. At the

epoch of last scattering, for examplé s coincides withM p,
within a part per thousand. Howeveétr . becomes of order
unity at late time/see Eq.(23)], and one can be concerned
that this can have dramatic effects on large scale structure
formation® To be consistent one should also consider in this
regime the effects of the Weyl's fluid source terms in the
left-hand side of the perturbed Einstein’s equatioB47)—
(B20) (as well as possible nonlinear corrections, E&H),

and this can only be done properly solving for the bulk equa-
tions of motions for perturbations. With the formalism used
so far, those source terms are the other manifestation of the

This could also have a potentially observable signature through
standard tests of gravity. We, however, expect that when one looks

These equations replace the perturbed Einstein’s equations gf fluctuations over a given background, a local curvature scdle

ordinary cosmologysee, e.g[34] for a review.

should typically replacéd ~* in the above equations so that we do

One can derive from Eq(B5) the usual conservation not expect that thé dependence oMy could have observable
equations for the matter perturbations. As far as the Weyl'sffects on systems where the curvature is much greater than today’s
fluid is concerned, by taking the covariant derivative of Eq.H, (~r_*). This issue is likely to be related to the disappearance of
(B1) and using Eq(B5) one can show that the Weyl's fluid the vDVZ discontinuity(see[11-13) and will be discussed else-
energy densitySps is conserved but that the Weyl's fluid where.
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extra dimension that we would like to discuss now qualita-this approximation the highpower spectra is calculated in a

tively as far as the CMB is concerned. flat model with no dark energy and then shifted appropriately
We note that those source terms are suppressed with réd | using the angular diameter distance to recombination.
spect to their ordinary matter counterparts by a faétog,  The likelihood for each model was calculated using the

in contrast to what happens usually for brane cosmolegg ~ RADPACK' package. We used all currently available CMB
e.g., [33]). This supports the fact that wher.—o the data(for a description of thg compilation we refer the reader
theory looks more and more four dimensional. One can thetP th€RADPACK documentation and #88]).

start with initial conditions for cosmological perturbations,  FOr the present study we did not use a grid based method
say after inflation, which are the ones provided by standardercalculating likelihoods(such as the one described in
4D cosmology, and set initially all the Weyl's perturbationsL57)- Following [39] we instead chose to use the

to zero. The brane perturbations will then feed up nonzer(J)VIE:tmpOliS'HaStingS algorithm to generate a Markov chain

. : . . of models. Because we are not interested in investigating
perturbations in the bUIk',Wh'C.h will then b_ackreact on themultiple priors, our parameter space is rather small so we do
brane through the Weyl's fluid perturbations leading to

a o . . _ 7 "“not need to exploit the CMB degeneracies and we do not
gravitational leakage” into the extra dimension. The time 4. t6 puild a database of models to be used in future stud-
scale for this leakage to occur is, however, of odewhich jeg the Markov-chain technique was very efficient and ex-
is much larger than the age of the universe aliremely easy to implement
recorr_]bm_atloriL._ o _ In the Metropolis-Hastings algorithm a chain of models is
This discussion indicates that one can consistently use thgenerated. Models are added to the chain sequentially. To
usual 4D cosmological perturbation equations for dealingind a new model for the chain values of the parameters are
with the growth of small scale fluctuations observed inchosen at randorfwe choose to select models from a Gauss-
CMB. The effects of gravitational leakage is then only con-ian distribution centered in the last model of the chain with a
tained in the background evolution, which affects the growthcovariance matrix that is estimated from the chain ijself
of the perturbations and also the way they appear on the skihe likelihood of this new model is compared to the likeli-
through a different angular diameter distance. We only exhood of the last model in the chain. The new model is always
pect possible deviations on large scale coming from the efaccepted into the chain if the likelihood is larger than that of
fects mentioned above, and also possible modifications ond@e last model; if this is not the case it will be accepted with
compared with large scale structure data. We let these intef Probability given by the likelihood ratio of the two models.
esting questions be for future investigations, as well as §Vhen the chain has convergéice., it has run for a suffi-

more careful check of the approximations made here. ciently long timg each model can be taken as an indepen-
dent sample from the probability distributioR(é|d), the

probability of some particular value of the parameteé¥ (

given the observed datad). Once we have the chain of
Here we describe the details of the CMB likelihood cal- models using histograms we can construct the distribution

culation. To accelerate the calculation of the model predicfunction of individual parameters.

tions we used thé&-split approximation described {137]. In

APPENDIX C: CMB LIKELIHOOD CALCULATION

rapPACK is a publicly available software package developed by
0This qualitative picture is supported by numerical calculations inLloyd Knox. It can be obtained from http://bubba.ucdavis.edu/

a scalar field toy moddl36]. knox/radpack.html
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