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Gravitating magnetic monopole in the global monopole spacetime

J. Spinelly,* U. de Freitas,† and E. R. Bezerra de Mello‡
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In this paper we study the regular self-gravitating ’t Hooft–Polyakov magnetic monopole in a global
monopole spacetime. We show that, for the large distance, the structure of the manifold corresponds to the
Reissner-Nordstro¨m spacetime with a solid angle deficit factor. Although we analyze static and spherically
symmetric solutions, it is not possible to solve analytically the system of coupled differential equations and
only numerical evaluations can provide detailed information about the behavior of this system at the neigh-
borhood of the defect’s core. So, for this reason we solve numerically the set of differential equations for the
metric tensor and for the matter fields for different values of the Higgs field vacuum expectation valueh and
the self-coupling constantl.
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I. INTRODUCTION

The self-gravitating ’t Hooft–Polyakov magnetic mon
pole @1# in a curved spacetime was studied a few years
considering it as a magnetic point charge@2,3#. The exact
solution obtained for the metric tensor has the Reissn
Nordström form corresponding to a point~magnetic! charge
g51/e. A regular solution for this system has been presen
by van Nieuwenhuizen, Wilkinson, and Perry@4#. There,
they have constructed a positive-definite functional ene
function of the matter fields only. They claimed that this
enough to prove the existence of nonsingular monopole
lutions. More recently Leeet al. @5# and Ortiz @6# have
shown that nonsingular monopole solutions exist only if
Higgs vacuum expectation valueh is smaller or equal to a
critical valuehcr , which is of the order of the Planck mas
In the limiting case the monopole becomes a black hole, w
the region outside the horizon described by the Reiss
Nordström solution.

Barriola and Vilenkin@7# have analyzed the effect in th
geometry of the spacetime produced by a system comp
of a Higgs field only, which undergoes a spontaneous bre
down of globalO(3) gauge symmetry. They noticed that th
solution for the metric tensor is similar to the Schwarzch
spacetime with an additional solid angle deficit and a n
zero scalar curvature. They pointed out that, for a large va
of the geometric mass, the model describes a black hole
rying a global monopole.

One of the main differences between the large dista
behaviors in the geometries of the spacetime produced
both topological defects, the local and the global monopo
is due to their energy densities, which for the global mon
pole case decreases as 1/r 2. This behavior is responsible fo
the solid angle deficit presented by this geometry.

In this paper we continue the discussion related with t
topic and consider both types of topological defects in
same model. We analyze the effects produced by local
global monopoles on the geometry of the manifold. We
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vestigate the possibility of this system to present a regu
solution and we also analyze its behavior near and far a
from the defect’s core. So the basic idea of this model is
describe a regular topological defect which presents a m
netic field and also presents a solid angle deficit.

Assuming the existence of such an object in a typi
galaxy, the total energy contained inside it would be stron
provided by the global Higgs field@8#.1 Astrophysics bounds
on the flux of a magnetic monopole and evidence that
galactic magnetic field is mainly azimuthal@9# indicate that
the excess number density of such objects, if they re
exist, is very small. Moreover, upper bounds on the num
density of a global monopole is at most one in the lo
group of galaxies as pointed out by Hiscock@10#.

Differently from a pure global monopole, this compo
topological defect exerts a gravitational interaction on s
rounding matter, apart from the electromagnetic one
charged particles. So, such an object shares with both
global and magnetic monopoles some of its relevant prop
ties. Numerical simulations related to the upper bound of
number density of these compost topological defects in
Universe may be developed in a similar manner as was
veloped for the global monopole in the paper by Bennett a
Rhie @11#.

The complete information about this system requires
knowledge of the behaviors of the matter and gravitatio
fields, i.e., we have to know how these fields change al
distance and how they are connected; besides we also
to know how the fields’ behaviors are affected when the
ergy scale of breakdown of gauge symmetry and the Hi
self-coupling are varying. Because it is impossible to so
analytically the complete set of coupled differential equ
tions associated with this system, only numerical analy
makes it possible to obtain this information. A numeric
analysis of a self-gravitating magnetic monopole has b

1In fact, the energy density outside the global monopole isTt
t

'2h2/r 2; consequently, the total Newtonian mass inside a sp
region of radial extentR is E(R)'4pGh2R. ConsideringR the
typical radius of a galaxyR'15 Kpc and for the symmetry break
ing scaleh'1016 GeV, which is the value for grand unified theo
ries, this total energy due to the global monopole is approxima
ten times the mass of the galaxy.
©2002 The American Physical Society18-1
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developed by several authors; see, for example, Refs.@5# and
@12#. For the global monopole case Harari and Lousto´ @13#
have shown numerically the behavior of the Higgs field a
how it is affected by the variation of the parameterh. More
recently Maison and Liebling@14# and Liebling @15# have
analyzed the stability condition for the global monopole s
lution. They found that forh bigger than a critical value, the
global monopoles fail to be static.

This paper is organized as follows. In Sec. II we brie
review some of the relevant characteristics of the local
global monopoles in a curved spacetime. We also introd
the model used to describe the system which presents
topological defect formed by both monopoles and derive
equations of motion which governs the behavior of this o
ject. Because it is impossible to solve analytically this se
differential equations we leave its numerical analysis for S
III. From our results it is possible to exhibit the behaviors f
matter and gravitational fields, their dependence with the
tance from the point to the monopole’s core, and how th
are connected, among other pertinent information. In Sec
we present our conclusions and some important rem
about this paper.

II. FIELD EQUATION FOR THE COMPOST
TOPOLOGICAL DEFECT

In this section we introduce the model which, by a spo
taneous breakdown of gauge symmetry, gives rise to n
Abelian magnetic and global monopoles in a curved spa
time. This defect presents both properties of its constituen
magnetic field and a solid angle deficit. Below we sh
briefly review both topological defects separately.

The global monopole is a defect obtained by a syst
composed of a self-coupling Higgs isotriplet field which u
dergoes to a spontaneous breakdown of globalO(3) gauge
symmetry toU(1). Coupling this matter field with the Ein
stein equation, a spherically symmetric metric tensor giv
by the line element

ds252B~r !dt21A~r !dr21r 2~du21sinu2df2! ~1!

presents regular solutions for the radial functionsB(r ) and
A(r ), that for points far from the monopole’s core are giv
by @7#

B~r !5A~r !215128pGh222GM/r , ~2!

h being the scale energy where the symmetry is broken.
parameterM is approximately the mass of the monopo
Neglecting the mass term and rescaling the time variable
can rewrite the monopole metric tensor as

ds252dt21
dr2

a2
1r 2~du21sinu2df2!, ~3!

where the parametera25128pGh2 is smaller than unity.
The above geometry presents no Newtonian potential,
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not flat,2 and the solid angle of a sphere of unity radius
4pa2, so smaller than 4p.

The energy-momentum tensor associated with the ma
field, outside the monopole’s core, can be approximat
written by

Tt
t'Tr

r'2
h2

r 2
, Tu

u'Tf
f'0. ~4!

Consequently the energy is linearly divergent at a large
tance:E(r )'4pGh2r .

The magnetic monopole is also a topological defect
scribed by a system composed of a self-coupling Higgs is
riplet field which interacts with a Yang-Mills gauge field
This system presents a localSO(3) gauge symmetry which
is spontaneously broken down toU(1). In a flatspacetime
this theory gives rise to a ’t Hooft–Polyakov monopole wi
magnetic charge and finite energy@1#. This system was first
analyzed in a curved spacetime in Refs.@2,3#. In these papers
the authors have shown that this system presents as an
solution a metric tensor identical with the Reissne
Nordström one

B~r !5
1

A~r !
512

2GM

r
1

4pG

e2r 2
, ~5!

whereM is a constant of integration, identified as the mass
the monopole, and 1/e is its magnetic charge.

The energy-momentum tensor associated with the ma
fields compatible with this singular solution is

Tt
t5Tr

r52Tu
u52Tf

f52
1

2e2r 4
. ~6!

In their remarkable paper van Nieuwenhuizen, Wilkinso
and Perry@4# have proved the existence of a nonsingu
self-gravitating magnetic monopole. In order to do that, th
have constructed a positive-definite functional energy wh
minimum value was claimed to be attained by a stable n
singular solution. They also have presented the bound
conditions obeyed by regular solutions at the monopo
core and show that the asymptotic form of the metric ten
is a Reissner-Nordstro¨m geometry. More recently Leeet al.
@5# and Ortiz @6# have analyzed again the self-gravitatin
magnetic monopole system and observed that for a v
heavy monopole there is no nonsingular solutions. Th
pointed out that whenGh2 becomes largeA21(r ) presents a
local minimum which approaches to zero; so for some cr
cal value there appears a horizon and the monopole beco
a black-hole with the region outside to the horizon describ
by the Reissner-Nordstro¨m metric spacetime. They prese
numerical solutions for the matter and gravitational fields
different values of the parameterh2, where the horizon
shows up explicitly.

2The scalar curvature associated with this spacetime isR52(1
2a2)/r 2.
8-2
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After this brief review let us introduce the model pr
posed by us. The basic idea of this model is to describe b
topological defects at the same time. In order to do that
endow this model with a gauge group product of two diffe
ent gauge groups symmetry. Because we want to obta
magnetic monopole configuration we have to gauge one
them. Also we introduce two Higgs fields in (3,1) and (1,3)
representations of theGªSOL(3)^ OG(3) groups, where
the subindices refer to local~L! and global~G! gauge sym-
metries. The Higgs fields are responsible for the spontane
break of gauge symmetriesSOL(3)^ OG(3) to UL(1)
^ UG(1). Moreover, in order to simplify our analysis w
shall consider two situations: The first case is obtained
taking the same Higgs self-coupling constants and vacu
expectation values in both sectors and not allowing a di
coupling between them. The second case is a particular
ation of the first one taking the self-coupling associated w
the local sector vanishing. In the latter, the system also
sents a localized self-gravitating magnetic monopole. T
Lagrangian density which governs the more general c
i.e., the first one, is

LM52
1

4
~Fmn

a !22
1

2
gmn~Dmfa!~Dnfa!

2
1

2
gmn~]mxa!~]nxa!2V~fa,xa!, ~7!

with the Latin indices referring to the internal gauge grou
a,b51,2,3. We also have

Dmfa5]mfa2eeabcAm
b fc, ~8!

Fmn
a 5]mAn

a2]nAn
a2eeabcAm

b An
c , ~9!

and

V~fa,xa!5
l

4
~fafa2h2!21

l

4
~xaxa2h2!2. ~10!

In the following analysis we shall consider only sta
spherically symmetric solutions, for this reason the me
tensor is written in the form presented by Eq.~1!.

The ansatz adopted to describe both topological defec
the usual one in flat spacetime written in terms of ‘‘Car
sian’’ coordinates as

xa~x!5h f ~r !x̂a, ~11!

fa~x!5hh~r !x̂a, ~12!

Ai
a~x!5e ia j x̂

j
12u~r !

er
, ~13!

and

A0
a~x!50. ~14!
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Because we are seeking static solutions all propertie
the system may be described by the Lagrangian which is
sum of the Einstein one,LE , and the covariant matter La
grangian,LM :

LE5
1

16pGE d3xA2gR ~15!

and

LM5E d3xA2gLM . ~16!

Substituting the configurations~11!–~14! into Eq. ~7!, to-
gether with the spherically symmetric metric tensor~1!, we
obtain for the matter field the following Lagrangian:

LM524pE
0

`

dr r 2AAB

3FK~ f ,h,u!

A
1U~ f ,h,u!G , ~17!

where

K~ f ,h,u!5
1

2
h2~ f 8!21

1

2
h2~h8!21

~u8!2

e2r 2
, ~18!

and

U~ f ,h,u!5
~u221!2

2e2r 4
1

h2u2h2

r 2
1

h2f 2

r 2
1

lh4

4
~h221!2

1
lh4

4
~ f 221!2, ~19!

where the primes denote differentiation with respect tor.
The Einstein Lagrangian for the metric tensor~1! reads

LE5
1

4GE
0

`

drF2
1

AAB
~r 2B8!81

r 2B8A8

2AAAB

1
r 2~B8!2

2BAAB
1

2rA8

A
AB

A
12AABS 12

1

AD G . ~20!

Following the procedure adopted in@4# it is possible to
work with the Lagrangian below,LE8 , which differs from the
previous one by a total derivative:

LE85
1

4GE
0

`

drrAABS 1

A
21D S A8

A
1

B8

B D . ~21!

The total Lagrangian for this system can be given as
sum of Eq.~17! with Eq. ~21!. As we can see Eq.~21! can be
written in terms of two new radial fieldsX5AAB and Y
5AB/A. The Euler-Lagrange equations for the gravitation
degrees of freedom can be obtained by

~rY!85X~128pGr2U! ~22!
8-3
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and

X8

X
58pGrK. ~23!

Integrating Eq.~23!, assuming that at infinityX(`)51,
we obtain

A~r !5
1

B~r !
expF16pG È r

dr8r 8K~ f ,h,u!G . ~24!

Now going back to Eq.~22! we obtain

S r

AD 8
5128pGr2FK~ f ,h,u!

A
1U~ f ,h,u!G . ~25!

Integrating the above equation, assuming the regula
condition onr /A(r ) at origin, we have

1

A~r !
5a22

2GM~r !

r
, ~26!

beinga25128pGh2 andM (r ) given by the integral

M ~r !54pE
0

r

dr8r 82F h2

2A
@~ f 8!21~h8!2#

1
~u8!2

Ae2r 82
1

h2u2h2

r 82
1h2

~ f 221!

r 82
1

~u221!2

2e2r 84

1
lh4

4
~h221!21

lh4

4
~ f 221!2G . ~27!

We can also rewriteM (r ) in a different way, substituting
Eq. ~26! into the right-hand side of Eq.~25!. After some
steps we get

M ~r !5expF2E
0

r

dr8p~r 8!G
3E

0

r

dr8q~r 8!expF E
0

r 8
dr9p~r 9!G , ~28!

with

p~r !58pGrK~ f ,h,u! ~29!

and

q~r !54p$r 2@a2K~ f ,h,u!1U~ f ,h,u!#2h2%. ~30!

With this procedure we have removed the factor 1/A(r ) in
the integral definition ofM (r ) given in Eq.~27!. From the
above equations we can obtain the total mass written as
02401
ty

M5M ~`!

54pE
0

`

dr $r 2@U~ f ,h,u!1a2K~ f ,h,u!#2h2%e2P(r ),

~31!

where

P~r !58pGE
r

`

dr8r 8K~ f ,h,u!, ~32!

which is a positive-definite quantity.
The gravitational field equations~22! and ~23! can be re-

written in a different way in terms of the radial functio
M (r ) as follows:

~AB!8

AB
516pGrK~ f ,h,u! ~33!

and

M 8~r !18pGrKM ~r !54pr 2~U1a2K!24ph2. ~34!

For the matter fields we have

1

AAB
FAB

A
u8G85

e2r 2

2

]U
]u

5
u~u221!

r 2
1h2e2h2u,

~35!

1

r 2AAB
F r 2AB

A
h8G85

1

h2

]U
]h

5
2hu2

r 2
1lh2h~h221!,

~36!

and

1

r 2AAB
F r 2AB

A
f 8G85

1

h2

]U
] f

5
2 f

r 2
1lh2f ~ f 221!.

~37!

From this set of differential equations it is possible
observe that there is no direct interaction between the glo
Higgs field expressed in terms off (r ) with the magnetic
sector represented byh(r ) and u(r ). However, the gravita-
tional field interacts with both sectors. Moreover, these eq
tions are invariant under the discrete symmetriesf→2 f , h
→2h, and u→2u. The first two transformations corre
spond to a specific choice of monopole configurations a
the last one corresponds to a gauge transformation.

In order to analyze this set of differential equations let
first discuss the boundary conditions obeyed by the field

The boundary condition on the matter fields at infin
follows the requirement that the topological defect be loc
ized,

f→61, h→61, and u→0. ~38!

Owing to the presence of the global Higgs sector,
metric components do not asymptote to unity. So accord
8-4
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to the results exhibited for the purely global monopole spa
time we can write the following boundary conditions at i
finity:

AB→1 and M /r→0. ~39!

The last two conditions above follow from the previo
one obeyed by the matter fields, as can be easily observe
expressions~18! and~19!. The double sign which appears fo
the behavior ofh and f at infinity corresponds to the mono
pole or antimonopole configurations. In this paper we sh
adopt the positive sign for both Higgs fields.

The boundary conditions at origin required by the reg
larity of our solutions are

u→1, f→0, h→0, AB→1, M→24ph2r .
~40!

Being satisfied by these conditions, the behavior of the in
grand for the Lagrangian associated with the matter
gravitational fields, Eqs.~17! and ~21!, vanish at origin.

As it was pointed out in Refs.@2,3#, the differential equa-
tions obeyed by the matter fields associated with the lo
monopole sector only, admit exact~singular! solution u50
and h51 everywhere. However, as to the global monop
sector, the fieldf goes to unity only at infinity.

So, unfortunately the complete set of differential equ
tions does not allow a closed solution, not even a singu
one. So the relevant aspects about this compost defect
only be observed numerically. We leave this analysis for
next section. Before we end the present section we wo
like to make two comments about this model:

~a! The first one refers to the positive-definite function
energy property enjoyed by this model. In fact, eliminati
the gravitational degrees of freedom from the total Lagra
ian, LT5LM1LE8 , by using Eq.~23!, we obtain an energy
functional,E52LT , expressed in terms of the matter fiel
as

E5E d3x A2g~U1K!. ~41!

~b! The second point we want to mention is that a poi
like topological defect which takes into account a~point!
magnetic chargeg51/e in a solid angle deficit geometry ca
be obtained by considering a nondynamical ener
momentum tensor below in the Einstein equation

Tt
t5Tr

r52
1

r 2 S 1

2e2r 2
1h2D , Tu

u5Tf
f5

1

2e2r 4
. ~42!

The gravitational field associated with the above tensor re

B~r !5
1

A~r !
5a22

2GM

r
1

4pG

e2r 2
, ~43!

which corresponds to the Reissner-Nordstro¨m spacetime
with an additional solid angle deficit factor. This metric te
sor, as mentioned above, describes the effect produced i
geometry by two distinct objects: the global monopole,
02401
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sponsible for a solid angle deficit, and the magnetic mo
poles, responsible for a nonvanishing radial magnetic fie

Bi5Bi
af̂a5 x̂i /er2. ~44!

Although the above expressions represent exact solut
for this system, unfortunately they cannot be accepted a
physical solution. The nonintegrable factor 1/r 4 of Tt

t pro-
vides an infinity energy inside a finite space region arou
the defect. Finally we want to say that the scalar curvat
associated with the above spacetime isR52(12a2)/r 2.

III. NUMERICAL ANALYSIS

In this section we shall exhibit the most relevant aspe
about this compost defect under a numerical analysis.
strategy is to present numerical solutions for the matter
gravitational fields which obey regularity conditions at o
gin. See Eq.~40!. Mainly we are interested in analyzing the
behaviors as the parametersh, associated with the energ
scale where the symmetry is spontaneously broken andl,
the self-coupling constant, both vary. In order to start
numerical analysis we shall express the set of differen
equations~33!–~37! in terms of two dimensionless param
eters,D58pGh2 andb5l/e2, rescaling the radial coordi
nater asx5reh.

The caseD50, i.e., G50, corresponds to the flat-spac
case. The solution for the matter fields is the ’t Hoof
Polyakov magnetic monopole for the local sector with t
global sector independent. Choosingb50 the solution for
the u and h can be given in a closed form@16#. As to the
global sector, vanishingb the system does not provide
localized solution: the differential equation forf becomes
linear and a regular solution at origin diverges asr→`. An
intermediate situation happens when we assumeD5” 0 and
the self-coupling constant for the local Higgs sector on
vanishes. In this case the matter field equation becomes

1

AAB
SAB

A
u8D 8

5
u~u221!

x2
1h2u, ~45!

1

x2AAB
S x2AB

A
h8D 8

5
2hu2

x2
~46!

and

1

x2AAB
S x2AB

A
f 8D 8

5
2 f

x2
1b f ~ f 221!, ~47!

where the primes in the above equations denote differen
tion with respect tox.

As we have said before, in this section we shall analy
numerically, both cases: The first one is described by E
~33!–~37!, and the second one by Eqs.~45!–~47!.

Now let us start first with the complete model. Casting t
differential equations in first-order form by auxiliaries field
P5u8, Q5h8, D5 f 8 and defining a new other variableg
51/A, the set of differential equations becomes
8-5
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P5u8, Q5h8, D5 f 8, g51/A,
~48!

g85
1

x
2

g

x
2DxFU~ f ,h,u!1gS P2

x2
1

Q2

2
1

D2

2 D G ,

~49!

P85
1

g FgP

x
2

P

x
1

u~u221!

x2
1h2u1DxPU~ f ,h,u!G ,

~50!

Q85
1

g F2hu2

x2
1bh~h221!2

gQ

x
2

Q

x
1DxQU~ f ,h,u!G

~51!

and

D85
1

g F2 f

x2
1b f ~ f 221!2

gD

x
2

D

x

1DxDU~ f ,h,u!G , ~52!

where

FIG. 1. These graphs show simultaneously the behavior off and
h for ~a! b51 andD50.1 and~b! for b580 andD51026.
02401
U~ f ,h,u!5
~u221!2

2x4
1

u2f 2

x2
1

f 2

x2
1

b

4
~h221!2

1
b

4
~ f 221!2. ~53!

Near the origin, regular solutions must behave as

f 5cfx1O~x3!, h5chx1O~x3!,

u512cux21O~x4!, ~54!

and

g512DF2cu1
1

2
~cf

21ch
2!1

b

6Gx21O~x4!, ~55!

where the three constantscf , ch , andcu must be chosen in
order to havef, h, andu approaching the correct values a
x→`.

The casech5cu50 andcf5” 0 corresponds to the globa
monopole spacetime. In this case there is only one cons
to be adjusted. The set of differential equations presents o
one parameterD. This model has been first numerically an
lyzed by Harari and Lousto´ @13#. There, they show that the
behavior of the Higgs field is quite insensitive to the valu
of D in the interval 0<D<1. More recently, Maison and
Liebling @14# and Liebling @15# returned to the numerica
analysis of this model and found that forD>1, 1/A de-

FIG. 2. These graphs show the behavior ofu for three different
values ofD for ~a! b510 and~b! b580.
8-6
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GRAVITATING MAGNETIC MONOPOLE IN THE GLOBAL . . . PHYSICAL REVIEW D 66, 024018 ~2002!
creases toward zero indicating the presence of a horizon
A more complicated case is whencf50 with ch and cu

different from zero. This case corresponds to a gravitat
magnetic monopole. There are two constants to be adju
numerically in order for the system to present a localiz
topological defect. This model has been analyzed by
et al. @5#, Ortiz @6#, and Breitenlohneret al. @12#. In these
papers the authors observed that the system presents sin
solutions whenD is greater than some critical value,Dcr .
For these situations 1/A has zeroes and the Schwarzch
radius becomes greater than the monopole’s size, so
monopole must be a black-hole.

Now returning to our system, we present in what follow
our numerical results. Defining by the radius of the glob
and magnetic monopoles’ core the value of the dimension
variablex corresponding tof (xL)50.9 andh(xG)50.9, re-
spectively, we can observe by Figs. 1~a! and 1~b! that r L
,rG . Also we can notice that both radii decrease asb be-
comes larger. Therefore, these results confirm that, for
model, the magnetic monopole configuration approache
vacuum value faster than the global monopole. In this se
the magnetic monopole’s core is firstly formed. Moreov
other graphs not included in this paper indicate that
shapes off (x) andh(x) are almost insensitive to the value
of the parameterD.3

3A similar conclusion has been reached by Harari and Lousto´ @13#
in their analysis of a pure global monopole system.

FIG. 3. These graphs show the behavior of~a! f and ~b! h for
D50.1 and three different values ofb.
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Figures 2~a! and 2~b! display the behavior of the function
u(x) with x for different values ofb andD. From them it is
possible to observe that its behavior is sensitive to the va
of the parametersD and b, in such way thatu reaches its
asymptotic value faster for greater values of these two
rameters.

Figures 3~a! and 3~b! exhibit the behavior of the fieldsf
and h for a fixed value ofD and different values ofb. We
can see that their behaviors are very sensitive to this par
eter, and that their radii decrease whenb increases. From a
numerical point of view, solutions with largeb become more
difficult to be analyzed; this is the reason why they are p
sented in different intervals of the variablex.4

The function g(x)51/A(x), which asymptotes to non
unity valuesa2512D, develops a local minimum for large
values of the parametersD andb independently. Moreover
as D increases the asymptotic value ofg decreases toward
zero, and becomes negative forD.1, indicating the pres-
ence of a horizon. So, forD>1 this system presents a hor
zon for any nonzero value ofb. However, forD,1 there
exists a critical value forb above which this compost defec
becomes a black hole. To find a domain of existence of
regular solution is possible only formally, analyzing the s
of differential equations at horizon, i.e., substitutingg50 at

4The stability problem related with numerical solutions for largeb
has been pointed out by Breitenlohneret al. in Ref. @12# for b.5 in
the gravitating magnetic monopole system.

FIG. 4. These graphs show the behavior of the effective m
M (x) for ~a! b51 and~b! b510 for three different values ofD.
8-7
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the pointx5xH in the set. Only numerical calculations allo
the obtainment of related parametersb and D associated
with a specific singular solution.

Figures 4~a! and 4~b! exhibit the behavior ofM (x) with x,
M (x) being a dimensionless function obtained byM (r )
given in Eq.~27!. In fact this dimensionless mass functio
which depends only the two parametersb andD is defined
by M (r )54ph/eM(x). The asymptotic behavior ofM (x)
provides information about the effective monopole ma
Figure 4~a! shows that forb51 this function asymptotes
negative value. This very peculiar feature has been dete
for the global monopole defect by Harari and Lousto´ in
@13#.5 However, forb510 the Fig. 4~b! shows that the ef-
fective mass of this topological defect becomes positi
~The same behavior is observed forb580.! So this compost
defect presents repulsive or attractive gravitational inter
tions which depends on the magnitude of the self-coup
constantl.

The second case can be numerically analyzed in a sim
way as the previous one; however, some changes mus
done in order to take into account the vanishing of the s
coupling constant in the local sector of the system. The fi
order differential equation set for this case can be writ
discarding the termsh(h221) in Eqs. ~51! and ~35!. The
behavior for the fieldsf, h, andu at the origin are similar to
Eq. ~54!; however, forg it is

5In @13# it was observed that the shape of the curves are v
insensitive toD in the interval 0<D<1.

FIG. 5. These graphs show simultaneously the behavior off and
h for ~a! b510 andD51026 and ~b! for b510 andD50.1.
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g512DF2cu1
1

2
~cf

21ch
2!1

b

12Gx21O~x4!. ~56!

Once more three new constants must be chosen in orde
have solutions with appropriate behavior at infinity.

The most important characteristics observed by us ab
this model are summarized below.

~i! Figures 5~a! and 5~b! show the behavior of the fieldsf
andh. Considering again the same definition as for the rad
of the defects given before, we can see that for this caser G
,r L . This is in contrast with the result found in the previo
model. So comparing the results found in these two mode
is possible to conclude that the sizes of the global and m
netic monopoles’ core depends on the intensity of their

ry

FIG. 6. These graphs show the behavior of~a! u, ~b! h, and~c!
f for three different values ofb for D50.1.
8-8
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GRAVITATING MAGNETIC MONOPOLE IN THE GLOBAL . . . PHYSICAL REVIEW D 66, 024018 ~2002!
spective self-interactions. Moreover, we can infer that
specific values of these constants, both topological def
present equal radius, though we cannot ensure that
fields f andh have the same behavior.

~ii ! Figures 6~a! and 6~b! exhibit, respectively, an explici
dependence ofu and h with b. Although there is no direc
interaction between the local sector, represented by th
fields, with the self-coupling constant associated with
global sector, our numerical analysis indicates a sensi
dependence of both fields withl.

~iii ! Figure 6~c! exhibits the behavior off with b. In this
case its dependence is more prominent than forh, i.e., the
radius of the global monopole decreases more rapidly w
the increasing ofb than the magnetic’s one.

As to the effective mass associated with this case,M (x),
the same behavior is observed as exhibited in the prev
case. So we decided not to include extra figures in this p

IV. CONCLUDING REMARKS

In this paper we have presented a model which descr
two topological defects at the same time: the global a
magnetic monopoles in a curved spacetime. The Lagran
density which governs this system contains two disti
bosonic sectors. In order to make our analysis easier we
cided not to include a direct interaction between them. T
different situations were analyzed: the first one consider
the Higgs self-interactions and vacuum expectation val
equal for both sectors. The second situation is a partic
ys

et

02401
r
ts
th

se
e
e

h

us
rt.

es
d
an
t
e-
o
g
s

ar

case when we switch off the self-coupling constant ass
ated with the local sector only. In both cases the set
coupled differential equations does not allow us to obtai
closed solutions, even singular. Only asymptotic behavior
matter and gravitational fields can be provided analytica
Specifically, for regions very far from the topological d
fect’s core, the spacetime corresponds to a Reiss
Nordström spacetime with a solid angle deficit factor

B~r !5
1

A~r !
5a22

2GM

r
1

4pG

e2r 2
.

Here we have provided numerical information about t
behavior of these fields in a nonasymptotic region. This
formation concerns the relative sizes of both defects, th
dependence on the two parameters presented in this m
the self-coupling constant, throughb, and the gravitational
constant, throughD, etc.

The numerical method applied by us in this paper w
double-precision fourth-order Runge-Kutta routine. For
calculations the errors found were of order 1023 or less.

It is our intention to continue investigating the behavior
the fields for a larger value of the parameterD. As shown in
previous papers analyzing global@14,15# and gravitational
@5,4,12# monopoles, forD bigger than some critical value
the system presents horizons. For both distinct cases,
horizons appear whenD is of order unity.
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