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Gravitating magnetic monopole in the global monopole spacetime
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In this paper we study the regular self-gravitating 't Hooft—Polyakov magnetic monopole in a global
monopole spacetime. We show that, for the large distance, the structure of the manifold corresponds to the
Reissner-Nordstra spacetime with a solid angle deficit factor. Although we analyze static and spherically
symmetric solutions, it is not possible to solve analytically the system of coupled differential equations and
only numerical evaluations can provide detailed information about the behavior of this system at the neigh-
borhood of the defect’s core. So, for this reason we solve numerically the set of differential equations for the
metric tensor and for the matter fields for different values of the Higgs field vacuum expectatiorpyvahae
the self-coupling constar.
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[. INTRODUCTION vestigate the possibility of this system to present a regular
solution and we also analyze its behavior near and far away
The self-gravitating 't Hooft—Polyakov magnetic mono- from the defect’s core. So the basic idea of this model is to

pole[1] in a curved spacetime was studied a few years agdescribe a regular topological defect which presents a mag-
considering it as a magnetic point chaf®3]. The exact netic fleld_ and also presents a solid angle qeflcﬁc. _
solution obtained for the metric tensor has the Reissner- ASSuming the existence of such an object in a typical
Nordstran form corresponding to a poiriinagneti¢ charge galaxy, the total energy cpntamed 'qs'de It wou!d be strongly
g=1/e. A regular solution for this system has been presente®°Vided by the global Higgs field]. Astrophysics bounds

by van Nieuwenhuizen, Wilkinson, and Perp§]. There on the flux of a magnetic monopole and evidence that the

" i . alactic magnetic field is mainly azimuthi@] indicate that
they have constructed a positive-definite functional energyl o aycess number density of such objects, if they really

function of the matter fl_elds only. They_cla|med that this is exist, is very small. Moreover, upper bounds on the number
enough to prove the existence of nonsingular monopole SQjensity of a global monopole is at most one in the local

lutions. More recently Leeet al. [5] and Ortiz [6] have group of galaxies as pointed out by Hiscddi].
shown that nonsingular monopole solutions exist only if the Differently from a pure global monopole, this compost
Higgs vacuum expectation valug is smaller or equal t0 a gpological defect exerts a gravitational interaction on sur-
critical .Va.|l.,le77m, which is of the order of the Planck Mass. rounding matter, apart from the electromagnetic one on
In the limiting case the monopole becomes a black hole, withiharged particles. So, such an object shares with both the
the region outside the horizon described by the Reissnegiohal and magnetic monopoles some of its relevant proper-
Nordstr_cm solut|o_n. . ) ties. Numerical simulations related to the upper bound of the
Barriola and Vilenkin[7] have analyzed the effect in the n,mper density of these compost topological defects in the
geometry of the spacetime produced by a system composgghiyerse may be developed in a similar manner as was de-

of a Higgs field only, which undergoes a spontaneous breakje|oped for the global monopole in the paper by Bennett and
down of globalO(3) gauge symmetry. They noticed that the gpie [11].
solution for the metric tensor is similar to the Schwarzchild e complete information about this system requires the
spacetime with an additional solid angle deficit and a nonynowledge of the behaviors of the matter and gravitational
zero scalar curvature. They pointed out that, for a large Va|Uﬁe|dS, i.e., we have to know how these fields change along
of the geometric mass, the model describes a black hole cagistance and how they are connected; besides we also want
rying a global monopole. _ to know how the fields’ behaviors are affected when the en-
Ong of .the main dlffer(_ances between the large dlstancgrgy scale of breakdown of gauge symmetry and the Higgs
behaviors in the geometries of the spacetime produced byeit.coupling are varying. Because it is impossible to solve
both topological defects, the local and the global monopolesynaytically the complete set of coupled differential equa-
is due to their energy dgnsﬂes, which for the global mono+jons associated with this system, only numerical analysis
pole case decreases as“1/This behavior is responsible for mayes it possible to obtain this information. A numerical

the solid angle deficit presented by this geometry. ~  analysis of a self-gravitating magnetic monopole has been
In this paper we continue the discussion related with this

topic and consider both types of topological defects in the———

same model. We analyze the effects produced_ by local _andlln fact, the energy density outside the global monopoldlis

global monopoles on the geometry of the manifold. We in-_ _ 22Ir? consequently, the total Newtonian mass inside a space
region of radial extenR is E(R)~47G#%’R. ConsideringR the
typical radius of a galaxiR=15 Kpc and for the symmetry break-

*Email address: spinelly@fisica.ufpb.br ing scalen~10'® GeV, which is the value for grand unified theo-
"Email address: umbelino@ccen.ufpb.br ries, this total energy due to the global monopole is approximately
*Email address: emello@fisica.ufpb.br ten times the mass of the galaxy.
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developed by several authors; see, for example, R&fand  not flat? and the solid angle of a sphere of unity radius is
[12]. For the global monopole case Harari and LoUst8] 4ma?, so smaller than 4.
have shown numerically the behavior of the Higgs field and The energy-momentum tensor associated with the matter
how it is affected by the variation of the parametgrMore  field, outside the monopole’'s core, can be approximately
recently Maison and Liebling14] and Liebling[15] have  written by
analyzed the stability condition for the global monopole so-
lution. They found that fom bigger than a critical value, the ¢ 7? 0o
global monopoles fail to be static. Ti=Ti~— L Ty=~Tg~0. 4

This paper is organized as follows. In Sec. Il we briefly

review some of thg relevant charactgristics of the I_ocaI an‘tonsequently the energy is linearly divergent at a large dis-
global monopoles in a curved spacetime. We also 'ntrOd“C‘?ance:E(r)~47rG 7.

the model used to describe the system which presents the 11,4 magnetic monopole is also a topological defect de-

topological defect formed by both monopoles and derive thg.jpeq by a system composed of a self-coupling Higgs isot-
equations of motion which governs the behavior of this ob- iplet field which interacts with a Yang-Mills gauge field.

ject. Because it is impossible to solve analytically this set o his system presents a loc8(3) gauge symmetry which
differential equatlons_ we Ieaye its nume_nc;al analysis .for Secig spontaneously broken down t(1). In a flatspacetime
[1l. From our results it is possible to exhibit the behaviors for

d ational fields. their d d it the di this theory gives rise to a 't Hooft—Polyakov monopole with
matter and gravitational fields, their dependence with the disg, 4 etic "charge and finite enerf]. This system was first

tance from the point to the monopole’s core, and how theyanalyzed in a curved spacetime in Ré%3). in these papers

are connected, amongl other pertlgent |nfor_mat|on. In Sec. Yhe authors have shown that this system presents as an exact
we present our conclusions and some important remarksy|ytion a metric tensor identical with the Reissner-
about this paper.

Nordstron one

Il. FIELD EQUATION FOR THE COMPOST 1 2GM  47G

TOPOLOGICAL DEFECT B(r)= NG 22 )

In this section we introduce the model which, by a spon- . ) o B
taneous breakdown of gauge symmetry, gives rise to nonvhereM is a constant pf '|ntegrat|on', identified as the mass of
Abelian magnetic and global monopoles in a curved spacdh€ monopole, and &/is its magnetic charge.
time. This defect presents both properties of its constituent: a 1h€ energy-momentum tensor associated with the matter
magnetic field and a solid angle deficit. Below we shallfields compatible with this singular solution is
briefly review both topological defects separately.
The global monopole is a defect obtained by a system T Tl _Té— _ 1 ®)
composed of a self-coupling Higgs isotriplet field which un- tr 0 ¢ 2e2r4”
dergoes to a spontaneous breakdown of gldbgd) gauge
symmetry toU(1). Coupling this matter field with the Ein-  |n their remarkable paper van Nieuwenhuizen, Wilkinson,
stein equation, a spherically symmetric metric tensor giverand Perry[4] have proved the existence of a nonsingular
by the line element self-gravitating magnetic monopole. In order to do that, they
have constructed a positive-definite functional energy whose

ds?=—B(r)dt®+A(r)dr2+r4(d6?+sin6?d¢?) (1)  minimum value was claimed to be attained by a stable non-
singular solution. They also have presented the boundary
conditions obeyed by regular solutions at the monopole’s
core and show that the asymptotic form of the metric tensor
is a Reissner-Nordstno geometry. More recently Leet al.
[5] and Ortiz[6] have analyzed again the self-gravitating
magnetic monopole system and observed that for a very
heavy monopole there is no nonsingular solutions. They
pointed out that whefs 7 becomes largl~(r) presents a
7 being the scale energy where the symmetry is broken. Theycal minimum which approaches to zero; so for some criti-
parameterM is approximately the mass of the monopole. cal value there appears a horizon and the monopole becomes
Neglecting the mass term and rescaling the time variable, wg plack-hole with the region outside to the horizon described

presents regular solutions for the radial functidd(s) and
A(r), that for points far from the monopole’s core are given

by [7]

B(r)=A(r) '=1-87G#n?*-2GM/r, 2)

can rewrite the monopole metric tensor as by the Reissner-Nordstmo metric spacetime. They present
numerical solutions for the matter and gravitational fields for
dr2 different values of the parametey?, where the horizon
ds’= —dt*+ — +r?(d6?+sin6°d¢?), (3)  shows up explicitly.
o

where the parameter?=1—87G7? is smaller than unity.  2The scalar curvature associated with this spacetim@=< (1
The above geometry presents no Newtonian potential, it is-a?)/r2.
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After this brief review let us introduce the model pro- Because we are seeking static solutions all properties of
posed by us. The basic idea of this model is to describe botthe system may be described by the Lagrangian which is the
topological defects at the same time. In order to do that wasum of the Einstein ond,g, and the covariant matter La-
endow this model with a gauge group product of two differ-grangian,L, :
ent gauge groups symmetry. Because we want to obtain a
magnetic monopole configuration we have to gauge one of
them. Also we introduce two Higgs fields i8,0) and (1,3)
representations of th&:=SO_(3)®Og(3) groups, where
the subindices refer to locdl) and global(G) gauge sym- and
metries. The Higgs fields are responsible for the spontaneous
break of gauge symmetrie§Q(3)®QG(3) to UL(l) LM:f d3x\/—_g£,\,| ) (16)
®Ug(1). Moreover, in order to simplify our analysis we
shall consider two situations: The first case is obtained by Substituting the configuratiord1)—(14) into Eq. (7), to-
taking the same Higgs self-coupling constants and vacuum . . . )
expectation values in both sectors and not allowing a dwecge'mer with the spherically symmetric metric tenéby, we

obtain for the matter field the following Lagrangian:
coupling between them. The second case is a particular situ-
ation of the first one taking the self-coupling associated with

Le= f d3xy/—gR (15)

167G

the local sector vanishing. In the latter, the system also pre- Ly= —477f drr?JAB
sents a localized self-gravitating magnetic monopole. The 0
Lagrangian density which governs the more general case, K(f,h,u)
i.e., the first one, is [—A +Z/{(f,h,u)}, (17)
1 . 2 1 uv a a where
Ly=—7(F},)*~ 59"(D,$%)(D,¢%
1 1 ( /)2
1 f,h,u)= )24+ = 9%(h")%+ , (18
=590 -V, (D) KL= 5 (I D™ s
. L . . and
with the Latin indices referring to the internal gauge groups
a,b=1,2,3. We also have (W2—1)2 uth? 222 A gt ,
) Ll(f,h,u)= 5 > 4 > + 2 +T( —1)
D,.¢"= 9, ¢~ e€ar A, ¢". ® er ' '
4
a a a_ +)\—7](f2—1)2 (19
F/LV:&MAV_aVA eeabCA/,L v (9) 4 !
and where the primes denote differentiation with respeat.to
The Einstein Lagrangian for the metric tengty reads
A N
V(% x?) =+ (%= 122+ (x*x*— 7% (10 1 1 r2B' A’
4 4 L f dr ——(r2 B') +
_ _ _ BaaTe JA 2AVAB
In the following analysis we shall consider only static
spherically symmetric solutions, for this reason the metric r3(B")2 2rA’ \/E 2 JAB| 1 1) (20
i i i + +— -1
tensor is written in the form presented by Ej). >BJVAB A

The ansatz adopted to describe both topological defects is
the Ejlsual one in flat spacetime written in terms of “Carte- Following the procedure adopted [#] it is possible to
sian” coordinates as work with the Lagrangian below, -, which differs from the
previous one by a total derivative:

X200 =nf(r)x, (1D
A !
R Lt drryAB|——1 21
B(x)= h(D5, 12 =2, o ) (=
1— u(r) The total Lagrangian for this system can be given as the
AZ(X) = €jajX X (13)  sum of Eq.(17) with Eqg. (21). As we can see Eq21) can be
er written in terms of two new radial fieldX=AB andY
and =+/B/A. The Euler-Lagrange equations for the gravitational
degrees of freedom can be obtained by
3(x)=0. (14 (rY)'=X(1-8wGr2u) (22)
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and

!

—=87Grk.

M (23

Integrating Eq.(23), assuming that at infinityX()=1,
we obtain

1 r
A(r)=%ex{16wGLdr r'K(f,hyu) |, (29
Now going back to Eq(22) we obtain
r ’—1 87G o L0, U(f,h 25
A ~1-87Gr|— —+uf.hu)l. (29

Integrating the above equation, assuming the regularity

condition onr/A(r) at origin, we have

1 2GM(r)
N Sty

A(r) r (26

being a?=1-87G7? andM(r) given by the integral

2
U , ,
ﬁ[(f )2+ (h")?]

r
M(r)=47-rJ dr'r’?
0

. (u/)Z . 772U2h2+ 2(f2_1)+(U2_1)2
Aezr/z r/Z Y r12 2e2r/4

A 2432 A 2_ a2
+T(h -1) +T(f —-1)°]. (27

We can also rewritd/(r) in a different way, substituting
Eq. (26) into the right-hand side of Eq.25). After some
steps we get

M(r)zexp{ - J'Ordr'p(r’)}

Xfodr’q(r’)exp{ fo dr”p(r”)}, (28)

with
p(r)=8wGr/(f,h,u) (29
and
q(ry=4m{r[«?K(f,h,u)+uU(f,h,u)]— 7. (30
With this procedure we have removed the factok(t) in

the integral definition oM (r) given in Eq.(27). From the
above equations we can obtain the total mass written as

PHYSICAL REVIEW B6, 024018 (2002
M=M(=)
=477j dr {r?[1(f,h,u)+ «?K(f,h,u)]— n*}e P,
0

(31)

where

P(r)ZBWGImdr’r’K(f,h,u), (32

which is a positive-definite quantity.
The gravitational field equatior®2) and(23) can be re-

written in a different way in terms of the radial function
M(r) as follows:

(AB)’
———=167GrK(f,h,u)

AB (33

and

M'(r)+8a7GrkKM(r)=4mr?(U+ a’K)—4mn?. (34)

1

JAB

" oefr?au u(u®-1)
N 2 (?U_ rz

For the matter fields we have
+ n%e?h?u,

NEX
KU
(35

1 2\F,’_lau_zhu2 S
mr Kh _?é’_h_ (2 +A\7y h(h —1),

(36)

and

1 2\/61” a2t
rz\/ﬁr A —?H—F‘f‘)\n (fc=1).
(37

From this set of differential equations it is possible to
observe that there is no direct interaction between the global
Higgs field expressed in terms é{r) with the magnetic
sector represented by(r) andu(r). However, the gravita-
tional field interacts with both sectors. Moreover, these equa-
tions are invariant under the discrete symmetfies—f, h
——h, and u——u. The first two transformations corre-
spond to a specific choice of monopole configurations and
the last one corresponds to a gauge transformation.

In order to analyze this set of differential equations let us
first discuss the boundary conditions obeyed by the fields.

The boundary condition on the matter fields at infinity
follows the requirement that the topological defect be local-
ized,

f—=*1, and u—0. (39

h—=*1,

Owing to the presence of the global Higgs sector, the
metric components do not asymptote to unity. So according
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to the results exhibited for the purely global monopole spacesponsible for a solid angle deficit, and the magnetic mono-
time we can write the following boundary conditions at in- poles, responsible for a nonvanishing radial magnetic field
finity:
B,=B3p?=x;/er?. (44)
AB—1 and M/r—0. (39
. i Although the above expressions represent exact solutions
The last two conditions above follow from the previous ¢ this system, unfortunately they cannot be accepted as a

one obeyed by the matter fields, as can be easily observed l&'] : : ; t
; i . ysical solution. The nonintegrable factor“Lbf T} pro-
expression¢18) and(19). The double sign which appears for vides an infinity energy inside a finite space region around

the behaV|c_)r oh andf at |nf|n|ty qorresponQS to the mono- fhe defect. Finally we want to say that the scalar curvature
pole or antimonopole configurations. In this paper we shal

. . . . _ 2 2
adopt the positive sign for both Higgs fields. associated with the above spacetim®is2(1— «a”)/r<.
The boundary conditions at origin required by the regu-

larity of our solutions are lIl. NUMERICAL ANALYSIS

u—1, f—0, h—0, AB—1, M— —dmyr. In thi; section we shall exhibit the most relevant aspects
(40) about thl_s compost defect u_nder a n_umerlcal analysis. Our
strategy is to present numerical solutions for the matter and
Being satisfied by these conditions, the behavior of the integravitational fields which obey regularity conditions at ori-
grand for the Lagrangian associated with the matter an@in. See Eq(40). Mainly we are interested in analyzing their
gravitational fields, Eqs(17) and(21), vanish at origin. behaviors as the parameters associated with the energy
As it was pointed out in Ref$2,3], the differential equa- Scale where the symmetry is spontaneously brokennd
tions obeyed by the matter fields associated with the locahe self-coupling constant, both vary. In order to start the
monopole sector only, admit exagtingulay solutionu=0  numerical analysis we shall express the set of differential
andh=1 everywhere. However, as to the global monopoleequations(33)—(37) in terms of two dimensionless param-
sector, the field goes to unity only at infinity. eters,A=87G7” and B=\/e? rescaling the radial coordi-
So, unfortunately the complete set of differential equa-nater asx=ren.
tions does not allow a closed solution, not even a singular The caseA=0, i.e.,, G=0, corresponds to the flat-space
one. So the relevant aspects about this compost defect cgase. The solution for the matter fields is the 't Hooft—
only be observed numerically. We leave this analysis for thd>olyakov magnetic monopole for the local sector with the
next section. Before we end the present section we woul@lobal sector independent. Choosigg=0 the solution for
like to make two comments about this model: the u and h can be given in a closed forfd6]. As to the
(a) The first one refers to the positive-definite functional global sector, vanishings the system does not provide a
energy property enjoyed by this model. In fact, eliminatinglocalized solution: the differential equation férbecomes
the gravitational degrees of freedom from the total Lagranglinear and a regular solution at origin divergesrasc. An
ian, Ly=Ly+Lg, by using Eq.(23), we obtain an energy intermediate situation happens when we assume0 and
functional, E= — L1, expressed in terms of the matter fields the self-coupling constant for the local Higgs sector only

as vanishes. In this case the matter field equation becomes
1 B |' u(u’-1
EZJ d3x V—g(U+K). (41 _( \ﬁu') = ¥+h2u, (45)
VAB\ VA x?
(b) The second point we want to mention is that a point- ) )

like topological defect which takes into account(@oint) 1 2 \/Eh’ _ 2hu (46)

magnetic chargg= 1/e in a solid angle deficit geometry can x2./AB A 2

be obtained by considering a nondynamical energy-

momentum tensor below in the Einstein equation and
1/ 1 1 1 B |’ 2f

T=T'=-= +72|, Ti=T¢= . (42 _( 2\ﬁ ) == 4 2_
t r2<2e2r2 K 07 T He2a X VAB X\ Af v Bi(f°—1), (47)

The gravitational field associated with the above tensor readghere the primes in the above equations denote differentia-
tion with respect to.

As we have said before, in this section we shall analyze,
numerically, both cases: The first one is described by Egs.
(33)—(37), and the second one by Edd5)—(47).
which corresponds to the Reissner-Nordstrepacetime Now let us start first with the complete model. Casting the
with an additional solid angle deficit factor. This metric ten- differential equations in first-order form by auxiliaries fields
sor, as mentioned above, describes the effect produced in thie=u’, Q=h’, D=f’" and defining a new other variabtge
geometry by two distinct objects: the global monopole, re-=1/A, the set of differential equations becomes

1, 2GM 471G
PO T T e

(43
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o
-
-

® ' T x

FIG. 1. These graphs show simultaneously the behavibantl
h for (a) B=1 andA=0.1 and(b) for =80 andA=10"°.

P=u’, Q=h’, D=f', g=1A,
(48
,_ 1 g P? Q° D’
g _i_;_AX U(f,h,U)+g(X2+2+2 '
(49
1[gP P u(u?-1
pr—_ AN ¥+h2u+AxPU(f,h,u) :
g x X x?
(50)
1] 2hu? 9Q Q
[ 2_ _— —
Q=5 5z HANN =1 = 57— AxQU(E.h.u)
(51)
and
o= Y2, g2 qy 9P _D
Tgle AT
+AxDU(f,h,u)], (52
where
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FIG. 2. These graphs show the behavioudbr three different
values ofA for (a) =10 and(b) 8=80.

(U2_1)2 U2f2 f2 B ) )
U(f,h,U)—7+7+ﬁ+Z(h *1)
+§(f271)2. (53

Near the origin, regular solutions must behave as

f=cix+0(x3), h=cx+0(x3),

u=1-c x>+ 0(x%, (54)

and
1 2 2 ’8 2 4
g=1-A|2¢c,+ E(cf+ch)+g x“+0O(x%), (59

where the three constants, c,,, andc, must be chosen in
order to havef, h, andu approaching the correct values as
X—00,

The casec,=c,=0 andc;#0 corresponds to the global
monopole spacetime. In this case there is only one constant
to be adjusted. The set of differential equations presents only
one parameteh. This model has been first numerically ana-
lyzed by Harari and Loustpl3]. There, they show that the
behavior of the Higgs field is quite insensitive to the values
of A in the interval GA<1. More recently, Maison and
Liebling [14] and Liebling[15] returned to the numerical
analysis of this model and found that far=1, 1/A de-
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GRAVITATING MAGNETIC MONOPOLE IN THE GLOBAL . . .
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FIG. 4. These graphs show the behavior of the effective mass
M(x) for () B=1 and(b) B=10 for three different values af.

(b)
FIG. 3. These graphs show the behavior(@ff and (b) h for

A=0.1 and three different values @
creases toward zero indicating the presence of a horizon. Flgu_res 23) ar_1d ab) display the behavior of the fun_ct_|on
A more complicated case is whes=0 with ¢, andc, u(x) Wlth x for different v_alues 0f8_ an_dA. Frg_m them it is
different from zero. This case corresponds to a gravitatingPoss'ble to observe that its .behawor is sensitive to the yalues

magnetic monopole. There are two constants to be adjusté?I the pa'rametem and g, in such way thau reaches its
numerically in order for the system to present a localized®Symptotic value faster for greater values of these two pa-
topological defect. This model has been analyzed by Le&@Meters. o _ _

et al. [5], Ortiz [6], and Breitenlohneet al. [12]. In these Figures 3a) and 3b) exhibit the behavior of the fieldfs
papers the authors observed that the system presents singuid h for a fixed value ofA and different values oB. We
solutions whenA is greater than some critical valua,, . can see that their behaviors are very sensitive to this param-
For these situations A/ has zeroes and the Schwarzchild eter, and that their radii decrease whenncreases. From a
radius becomes greater than the monopole’s size, so theumerical point of view, solutions with largé become more

difficult to be analyzed; this is the reason why they are pre-

monopole must be a black-hole.
Now returning to our system, we present in what followssented in different intervals of the variabté
our numerical results. Defining by the radius of the global The function g(x)=1/A(x), which asymptotes to non-
and magnetic monopoles’ core the value of the dimensionlessnity valuesa?=1—A, develops a local minimum for large
values of the parametes and 8 independently. Moreover,
as A increases the asymptotic value @fdecreases toward

variablex corresponding td (x,)=0.9 andh(xg)=0.9, re-
spectively, we can observe by Figsialand Xb) thatr
zero, and becomes negative far>1, indicating the pres-

<rg. Also we can notice that both radii decreasefabe-
comes larger. Therefore, these results confirm that, for thience of a horizon. So, fak=1 this system presents a hori-
model, the magnetic monopole configuration approaches itson for any nonzero value g8. However, forA<1 there
vacuum value faster than the global monopole. In this sensexists a critical value fop above which this compost defect
the magnetic monopole’s core is firstly formed. Moreover,becomes a black hole. To find a domain of existence of the
other graphs not included in this paper indicate that theegular solution is possible only formally, analyzing the set
shapes of (x) andh(x) are almost insensitive to the values of differential equations at horizon, i.e., substitutipg 0 at

of the parameten
“The stability problem related with numerical solutions for lagje
has been pointed out by Breitenlohmtrl.in Ref.[12] for 8>5 in

3A similar conclusion has been reached by Harari and Los3p
the gravitating magnetic monopole system.

in their analysis of a pure global monopole system.
024018-7
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FIG. 5. These graphs show simultaneously the behavibaotl 1 ——— R
h for (a) =10 andA =10 ® and (b) for =10 andA=0.1. PO
the pointx=xy in the set. Only numerical calculations allow 087 ,’/ /
the obtainment of related paramete#sand A associated i/
with a specific singular solution. 06! /f
Figures 4a) and 4b) exhibit the behavior oM (x) with X, - ; /
M(x) being a dimensionless function obtained M/(r) !
. . T . . 04 +!
given in Eq.(27). In fact this dimensionless mass function ! / — gl
which depends only the two parametgtsand A is defined ;/’ I ';:;3
by M(r)=4mn/leM(x). The asymptotic behavior d¥l(x) 02 1
provides information about the effective monopole mass.
Figure 4a) shows that for8=1 this function asymptotes a 0 : : : s .
negative value. This very peculiar feature has been detecteq X
for the global monopole defect by Harari and Lousto
FIG. 6. These graphs show the behavio(@fu, (b) h, and(c)

[13].> However, for3=10 the Fig. 4b) shows that the ef-
fective mass of this topological defect becomes positivef for three different values of for A=0.1.

(The same behavior is observed 8+ 80.) So this compost

defect presents repulsive or attractive gravitational interac- 1 B
tions which depends on the magnitude of the self-coupling g=1—-A|2c,+ E(cf+ cﬁ)+ 1 x°+0(x%).  (56)
constanta.

The second case can be numerically analyzed in a similar
way as the previous one; however, some changes must f@nce more three new constants must be chosen in order to

done in order to take into account the vanishing of the selfhave solutions with appropriate behavior at infinity.
coupling constant in the local sector of the system. The first- The most important characteristics observed by us about

order differential equation set for this case can be writterthis model are summarized below.
discarding the term&(h?—1) in Egs.(51) and (35). The (i) Figures %a) and 8b) show the behavior of the fields

behavior for the field$, h, andu at the origin are similar to andh. Considering again the same definition as for the radius
of the defects given before, we can see that for this cgse

Eq. (54); however, forg it is
<r_ . This is in contrast with the result found in the previous
- model. So comparing the results found in these two models it
5In [13] it was observed that the shape of the curves are verys possible to conclude that the sizes of the global and mag-

insensitive toA in the interval GsA<1. netic monopoles’ core depends on the intensity of their re-

024018-8
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spective self-interactions. Moreover, we can infer that forcase when we switch off the self-coupling constant associ-
specific values of these constants, both topological defectsted with the local sector only. In both cases the set of
present equal radius, though we cannot ensure that bottoupled differential equations does not allow us to obtain a
fieldsf andh have the same behavior. closed solutions, even singular. Only asymptotic behavior for

(i) Figures 6a) and @b) exhibit, respectively, an explicit matter and gravitational fields can be provided analytically.
dependence ofl and h with B. Although there is no direct Specifically, for regions very far from the topological de-
interaction between the local sector, represented by thedect's core, the spacetime corresponds to a Reissner-
fields, with the self-coupling constant associated with theNordstran spacetime with a solid angle deficit factor
global sector, our numerical analysis indicates a sensitive
dependence of both fields with

(ii ) Figure Gc) exhibits the behavior of with B. In this B(r)= 1 =P 2GM T 47TG_
case its dependence is more prominent thanhfare., the A(r) r e?r?
radius of the global monopole decreases more rapidly with
the increasing of3 than the magnetic’s one.

As to the effective mass associated with this cdééx),
the same behavior is observed as exhibited in the previo
case. So we decided not to include extra figures in this par

Here we have provided numerical information about the
ehavior of these fields in a nonasymptotic region. This in-
l'Formation concerns the relative sizes of both defects, their
dependence on the two parameters presented in this model,
the self-coupling constant, through, and the gravitational

constant, through, etc.

In this paper we have presented a model which describes The numerical method applied by us in this paper was
two topological defects at the same time: the global andlouble-precision fourth-order Runge-Kutta routine. For all
magnetic monopoles in a curved spacetime. The Lagrangiagglculations the errors found were of order 20r less.
density which governs this system contains two distinct It is our intention to continue investigating the behavior of
bosonic sectors. In order to make our analysis easier we déle fields for a larger value of the parameferAs shown in
cided not to include a direct interaction between them. Twaprevious papers analyzing globgl4,15 and gravitational
different situations were analyzed: the first one considering5,4,13 monopoles, forA bigger than some critical value,
the Higgs self-interactions and vacuum expectation valuethe system presents horizons. For both distinct cases, the
equal for both sectors. The second situation is a particulanorizons appear whea is of order unity.

IV. CONCLUDING REMARKS
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