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Gravitons from a loop representation of linearized gravity
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Loop quantum gravity is based on a classical formulation efl3gravity in terms of a reaSU(2)
connection. Linearization of this classical formulation about a flat background yields a description of linearized
gravity in terms of areal U(1)XU(1)XxU(1) connection. A “loop” representation, in which holonomies of
this connection are unitary operators, can be constructed. These holonomies are not well defined operators in
the standard graviton Fock representation. We generalize our recent work on photahglaritblonomies to
show that Fock space gravitons are associated with distributional states (e U(1)XxU(1) loop
representation. Our results may illuminate certain aspects of the much deepeas yet unkownrelation
between gravitons and states in nonperturbative loop quantum gravity. This work leans heavily on earlier
seminal work by Ashtekar, Rovelli and SmoliARS) on the loop representation of linearized gravity using
complexconnections. In the last part of this work we show that the loop representation based realthe
U(1)XU(1)xU(1) connection also provides a useful kinematic arena in which it is possible to express the
ARS complex connection-based results in the mathematically precise language currently used in the field.
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[. INTRODUCTION tain structures in quantum linearized gravity, which conceiv-
ably (but by no means, assuregllgould play a role in the
Loop quantum gravity1-3] is an attempt to apply stan- much deeper issue of the relation between perturbative and
dard Dirac quantization techniques to a classical Hamiltoniamonperturbative states. Our starting point is the linearization
formulation of 3+ 1 gravity in which the basic variables are of the classicaBU(2) formulation[5] on which loop quan-
a spatialSU(2) connection and its conjugate triad field. In tum gravity is based. This linearization is described in Sec. II
addition to the usual diffeomorphism and Hamiltonian con-wherein we also show that the linearized Gauss law con-
straints, the formulation also has &1(2) Gauss law con- straint generateld (1)< U(1)X U(1) transformations on the
straint which ensures that triad rotations are gauge. At th@nearized connection.
SU(2) gauge invariant levefalso referred to as the kine- Using the methods df6—10], U(1)® counterparts of the
matic leve), the representation space is generated by the o). pased structures of loop quantum gravity can be con-
action of(traces of holonomies of the connection on a cyclic structed. In particular, at the(1)° gauge invariant level, a

state. Since holonomies are labeled by one dimensional, A inematic” Hilbert space’H,, exists which is spanned by

bitrarily complicated loops, the basic quantum excitations . : ¢ o . :
. . ; ) ; .~ ,one dimensional polymer-like excitations associated with
may be visualized as one dimensional and “polymerlike.

Physical states, which are in the kernel of all the constraints(triplets[ll] of) loops. Holonomies of the linearized connec-

are expressible as certain kinematically nonnormalizable, lintlO" &r€ represented as unitary operators#y, . We exhibit
ear combinations of these polymerlike excitatipa$ this representation in Sec. Il A. _

A key open question is as follows: how do classical con- AS realized in[11], the operator corresponding to the
figurations of the gravitational field arise? In particular, howmagnetic field of the linearized connection plays a key role
does flat spacetim@nd small perturbations around #rise !N €Xpressing the linearized diffeomorphism and Ham.||ton|an
from non-perturbative quantum states of the gravitationaFonstraints as quantum operators. It turns out that this opera-
field? The latter question is particularly interesting for thetor is not well defined i, . Neverthless it can be repre-
following reason. Small perturbations about flat spacetiméented on a vector spadef;; of appropriately well behaved
correspond to solutions of linearized gravity. Quantum statedistributional combinations of elements H;,. Using this
of linearized gravity lie in the familiar graviton Fock space representation of the magnetic field operator, we identify the
on which the conventional perturbative approaches to quad&ernel,@’;ﬁys, of all the constraints. Sinc@;hLysC OrL | el-
tum gravity are based. Such approaches seem to fail due tments oftI)’lghLyS are also associated with infinite, kinemati-
nonrenormalizability problems. Thus, an understanding otally non-normalizable sums of one dimensional polymer-
the relation between the quantum states of linearized gravitlike excitations. Section Il B is devoted to a discussion of
and states in full nonperturbative loop quantum gravitythe magnetic field operator and an evaluation of the kernel of
would shed light on the reasons behind the failure of perturthe quantum constraints.
bative methods. The standard graviton Fock space representation of linear-

In this work we focus exclusively on understanding cer-ized gravity is very different from the above “loop” repre-

sentation. The basic excitations in Fock space are 3D and
wavelike in contrast to the polymer-like nature of excitations
*Email address: madhavan@rri.res.in in the loop representation. Moreover, in the Fock representa-
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tion the connection is an Operator-valued distribution WhiCha|gebra components an_ij)_; denote(in genera]l |0Ca| Ccoor-

needs to be smeared in three dimensions to obtain a Weginates ors. The only non-vanishing Poisson bracket is
defined operator. Since holonomies involve only one dimen-
sional smearings along loops, they are not well defined op-
erators on Fock space.
In view of the above remarks, it is a non-trivial task to
relate Fock space gravitons to element@l‘gﬁys. In Sec. IV, Here, v, is the Barbero-Immirzi paramet¢b,13]. The
we generalize the considerations [d0] to relate the loop spin connection associated with the triad field is denoted by
representation of linearized gravity to its standard Fock repf’,, the curvature ofA} by F., and the gauge covariant
resentation. As ifi10] we use the Poincare invariance of the derivative associated witA, by D,. The constraints of the
Fock vacuum to identify graviton states @;#ys.l theory are the Gauss law constra@t, the vector or diffeo-
Recall that the starting point of this work is the lineariza- morphism constrain¥/, and the Hamiltonian constrair@.
tion of areal SU(2) formulation[5,12] of classical gravity. They are given by
The basic variable is a re&lU(2) connection and the asso-

AL EX) =5 855, 8(%,Y). M

ciated Barbero-lmmirzi parametg$,13] is real. In contrast, Gi=D,E}, )
Ashtekar, Rovelli and Smolin use the complex self-dual A
Ashtekar-Sen connectidri4] in their pioneering work11] Va=E{Fgp, ()

on a loop representation of linearized gravity. This corre-
sponds to the choice of an imaginary Barbero-Immirzi pa-
rameter. In Sec. V we show how to extend the considerations
of Secs. II-1V to the case of an arbitrary complex Barbero- ) ) _ )
Immirzi parameter. Section VI is devoted to a discussion of X(AL=TL(AL-TY). (4)

our results. _ _

issue of the relation between states in linearized gravity aniylisner (ADM) variables as follows. The densitized triad and
in full quantum gravity rather than just in structures in lin- the 3-metricq.,, are related through

earized gravity. One possible way to approach the deeper ab_ gaigh ®)
issue is to divide it into two parts. First, since both loop a9 '

. 3 .
guantum gravity and th& (1)® representation are structur- whereq is the determinant af,,. WhenG; =0 the extrinsic

ally similar, we may try to relate the two. This is the really curvature K, can be extracted from th8U(2) variables
hard part. The secon@nd much easigipart is to relate the through &

U(1)® representation to the standard graviton Fock represen-

2

- vot1
C= e EFEPF ap— 2= ERE]

tation. It is only the second part that we accomplish in this YoKabEin \/E(Aia_ria)_ (6)
paper.
This work is heavily based on the Ashtekar-Rovelli- To define the linearized theory about a flat background we

Smolin papef11] and on[10]. For this reason, we shall be chooseS =R? and fix, once and for all, a Cartesian coordi-
very brief in our presentation and sketch only the @mportantnate systen{x} as well as an orthonormal basis in the Lie
points. The reader may consit1,1q for more details. In-  51gebra 0fSU(2). Henceforth all components refer to this
deed, this work may be read as a mathematically precisgaytesian coordinate system and to this internal basis. We
formulation of the earlier Ashtekar-Rovelli-SmolifARS) _linearize theSU(2) formulation about the phase space point

[11] work in the context of the subsequent developments INAI = 0E2= 5%). As in[11], we denote the fluctuation in the
. . a 1= 17" ’
the field as reflected in, for example, R€i4,6,7,10,12,15— triad field bye? so that

20]. We use units in which Newton’s constant, Planck’s con-

stant and the speed of light are unity. _
P g y Ef=of+ef. @
Il. CLASSICAL LINEARIZED GRAVITY AS THEORY Since the background connection vanishes, there is no need
OF U(1)XU(1)XU(1) CONNECTIONS to introduce a new symbol for the fluctuation in the connec-

tion. The Poisson brackets between the linearized variables

Our starting point is the Hamiltonian formulation of 3 4.a induced from Eq(1). The only nonvanishing Poisson
+1 gravity discussed in5]. The spacetime manifold has pockets are

topology > X R where Y, is a three-dimensional orientable
manifold. The phase space variables are a spatiiR) con-
nectionAL(x) and a densitized triad fiele)(y). Herea,b
denote spatial components,j denote internalSU(2) Lie

{ALR), €0 () h =358, A5, ®)

Here the subscript L'” denotes the fact that the Poisson
brackets are for linearized theory.
Yn this paragrapHbut not in Sec. I\) we gloss over the very Note that the flat spatial metric corresponding to the back-
important difference between the standard Fock representation arfground triad is just the Kronecker deli@,,. In what follows
ther-Fock representatiofiL0] for reasons of brevity and pedagogy. spatial indices are lowered and raised with this flat metric
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and its inverse. Internal indices are, of course, lowered and
raised by theSU(2) Cartan-Killing metric. We also use the
background triad to freely interchange internal and spatial
indices. The flat derivative operator which annihilates theho

background triad is denoted Iy, .
The linearized constraints are obtained from Es. (3)

and (4) by keeping terms at most linear in the fluctuations

and are denoted b@",V., andC" with

Gi =60+ € 12A;, 9)
Vi=1ap, (10)
Cl=€%f . (11)

Here fL,= d,A, — Ay is the linearized curvature.
The transformations generated IB-(A):=[d®xA'GF
are

SAa={Aq,GH(A)} =~ aa( 702A ) (12
and
sei=(er st =754 as

From Eq.(12), A; for each ‘" transforms as aJ(1) con-
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Ill. THE LOOP REPRESENTATION OF QUANTUM
LINEARIZED GRAVITY

We construct a loop representation based onUlfé)?
lonomies of Sec Il. The representation at the kinematic
(GiL invariany level is just the tensor product of 3 copies of
theU(1) representation worked out in detail[ib0]. We use
the notation of, and assume familiarity with, that work.

After presenting the kinematic Hilbert space in Sec. Il A,
we turn our attention to the linearized vector and scalar con-
straints in Sec. Il B. Since the constraints are algebraic state-
ments about the magnetic field, we express the classical
magnetic field via a limit of the holonomy of a shrinking
loop in the usual way. The corresponding quantum operator
is not defined on the kinematic Hilbert space because the
diffeomorphism invariance of the Hilbert space measure pre-
cludes the existence of the required limit. We show how to
define the magnetic field operator based on the dual action of
the holonomy operator on a suitable space of distributions.
We use this defintion to find the kernel of the linearized
vector and scalar constraints.

A. The kinematic Hilbert space representation

The kinematic Hilbert spacéi,;,, inherits its measure
from the Haar measure d(1) [it is just the triple product
of the Ashtekar-Lewandowski measure fd¢1) connections
[7]]. A spanning orthonormal basis is given by the triple
tensor product of théJ (1) flux network basis of10].? Each
basis state is labeled by a triplet of closed, oriented, piece-

nection. Thus, the configuration space of linearized gravity inyise analytic graphs as well as 3 sets of intedétese are

this formulation is coordinatized by a triplet &f(1) con-
nectionsAl A2 A3,

representation labels fdd(1)], one for each graph of the
triplet. Each set of integers labels the edges of its corre-

In order to construct the loop representation in the nexsponding graph in such a way that at every vertex the sum of

section, we define the following set @}- invariant func-

tions on phase space:

hab=gab4 gb3, (14)
HX = expi ﬁA';d X2, (15)

Herea is a piecewise analytic, oriented loopRi andH‘; is
the U(1) holonomy ong around the loopx.

It is also useful to define the magnetic field of the con-

nection by

1
Bﬁ‘:EeabCfbck. (16)

labels of outgoing edges equals the sum of labels of incom-
ing edges.

We denote the flux network labeled by the graphsnd
the sets of integerg;, i=1,...,3 as

la{a}) =]a{a:})|@o{a2})| asids}). (19

As shown in[10], the U(1) holonomy of any piecewise
analytic loopg is equally well associated with &d(1) flux
network labela,{q} such that

X3 (g (X) = X3(x). (20)

Here

X5 § dsi(Bs) 0B @

In terms of the magnetic field the vector and scalar con-

straints are
V5= €canB® (17)

Ct=B¢. (18

and

N
Xa@0)=2 a f ds’(e(s).xe’, (22

Thus the vanishing of the vector and scalar constraints imply 2in [10] this was called the charge network basis; we use the term

that the magnetic field is symmetric and tracefree.

flux network to agree with the more recent wdet].
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whereg, is thelth edge ofe and is labeled by the integgqy .

PHYSICAL REVIEW D 66, 024017 (2002

ready taken care of and we need to analyze only the remain-

The gauge invariant operatori andh@® are represented iNg (quantum vector and scalar constraints.
on the kinematic Hilbert space as follows. We first describe

the action ofH®. This operator acts only on the first ket on

the right-hand side of Eq19) exactly as in the case &f(1)
theory [10]. Recall from[10] that there theJ(1) operator

B. The magnetic field operator and physical states

The magnetic field is extracted from the holonomies of
small loops through

H ipt Maps|a,{q}) to a new flux network state based on the

graph «U » consisting of the union of the sets of edges

belonging toe and 7.2 The edges ofrU 7 are oriented and

BK(x) = lim
5—0

S D) 29

labeled with integers as follows. Edges which are not shared
by 7 and « retain their orientations and labels. Any sharedwhere * denotes complex conjugation amgj(s is a circular

edge labeled by the integgiin « retains its orientation from
a and has the labaj+ p if it has the same orientation in
and the labelg—p if it has opposite orientation imy. The

loop of radiuss centered ak traversing anticlockwise about
and with its plane normal to thec” axis. ('yg 5)*l denotes

new state is denote@ith a minor change of notation with the same loop running clockwise. The corresponding opera-

respect td 10]) by |«,{q}U »,{p}). This implies that in the
U(1)® case we have

Hiy,{pﬂ a{a})=|a,{q:}Un.{p})|az.{q2})| a3.{q3}).
(23

tor

BeK(x) = lim
6—0

i
Ze2AGe D (29

is not well defined on the finite span of flux network states.

Similarly H2,AH3 act by the union operation on the labels The reason is that, due to the diffeomorphism invariance of

a,{q,} and a3{qs}. Using the notation of11], we write

F":,,{p}|a:{q}>:|ﬂ%{q}Uk7l,{p}>- (24)

As in [10] we shall use the labelling of holonomies by their

associated flux network labelse. H';{q}) interchangeably
with their labelling by loopsdli.e. HZ). Thus if there is no
integer label in the subscript tid, the label is to be under-
stood as a loop or as an associated flux network label.

Also, note that if8 is a loop with a single edge, then the

associated flux network label is comprised of the grdph

with its single edge labeled by the integer 1. For this speci

case we write

HE=H ). (25)
hav is represented as
h22(x) | e, {q}) = yoX Eh (X) (26)
where we have defined
3
Xt (0= 2, X3, q)(X¥)0)- (27)

It can be verified that Eq$24) and (26) provide a “x”
representatiorion the kinematic Hilbert spat®f the Pois-
son bracket algebra of th&} invariant functionsH¥ and

h.u(X). Therefore the linearized Gauss law constraint is al-

%It is assumed that edges @f« overlap only if they are identical
and that intersections of,« occur only at vertices ofy,«a. This

entails no loss of generality, since we can always find graphs which

are holonomically equivalent tg,a and for which the assumption
holds.

the U(1)® Ashtekar-Lewandowski measure, flux network
states associated with the triplet of grapas) k(VE,,s)_l
(here we use the notation p11]) for different values ofs
are orthogonal.

Instead we attempt to define the operdsF by its dual
action on the space of algebraic duals to the finite span of
flux network states. Recall that the dyahti-)representation

of an operatoA is given by[10]

AD(|y)) =D (AT|y))

lyhere d is an element of the algebraic dual ahg) is a
finite linear combination of flux network states. Every ele-
ment of the algebraic dual can be formally written as an
infinite sum over all flux network states, i.e.

(30

‘I’E%} Caqi{ @ {q}] (31
with ¢, ;qy=P(Ja.{q})). It follows that
(File = D)
BKx)P=1im 2, Chiqa{q -
PENACH (afed /| i 82
Cc ¢ —C
~ Cafgus 11 Cafa)
=2, im = CACHE
(32)
We shall say thaB®*(x) is well defined if and only if
sc, Cafauir? {1}~ Cafa}
9 jim e (33

5vKX) o0 75

is well defined.
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a

We further require that,, () is a functional ofX;, (., space[11,20. It was noticed in[10,20 that for theU(1)
—1,...,3.This requirement combined with the reclluilrementcase’ the algebra of smeared holonomies is isomorphic to the
holonomy algebra. This isomorphism was used to construct a

“well behaved” distributions. To summarize: the magnetic representation, |nd|st|ngU|sha6Iﬁom the Fock representa-

field operator is defineable, via the dual action of holonom fion, in which holonomies are well defined operators. Since
P L yholonomy operators are defined in thi€1) loop represen-

operators, on the spaek;, . tation (called the “gef” representation ifil0]) as well as the
The Fourier transform oKy, q1(X) is new “r-Fock” representation in10] (herer is a length scale
used to define the smearingt was possible to relate the
b -1 3 b ST r-Fock representation to the loop representatiofilisj. The
Xa; 1q)(P)= Z—S’J d°xX,, (qy(¥)€7P*. (34 considerations of10] can be extended to the case of linear-
(2m) ized gravity in an obvious and straightforward manner and
we shall only present the main results of such an extension in

that B° be well defined singles out a vector spadg.: , of

Define - .
this section.
b - xP° . —xb In Sec. IVA, we briefly review the standard graviton
OXa; fa}(P)  Tapdaur; Ay T e Fock space representation based on linearized ADM vari-
57ci(;) ’=5iié"j‘o 72 ' (39 ables. In Sec. IV B, we use the Poincare invariance condition
[10] to identify the element o(D;hLys which corresponds to
From Eq.(22) it follows that the r-Fock vacuum. We expect that this identification can
then be used to relate a suitable subspac@pi‘yS to (a
5XZ_ {q_}(ﬁ) —j o dense subspace )othe r-Fock space, modulo a couple of
= 5 PmeS™Pe P X, (36)  open technical issues which we discuss in Sec. IV C.
5 (2m¥
Note that A. Review of the standard Fock space representation
of linearized gravity
Caiq) . Ca i) ¢‘5XZj '{qj}(ﬁ) The standard Fock representation is obtained by quantiz-
T:f 5 > o 37 ing the true degrees of freedom in the ADM description. In
5y (%) OXaj fqp(P) Y7 (%) the ADM description the phase space variables are the lin-

] ] . ) earized metriar,, and the linearized ADM momentui?®
Using Egs.(36) and(37) in Eq. (32) and taking the Fourier itp
transform ofB°(x), we obtain A ) o
{aap(x),P(y)} =587 8(x.y). (40

o S5c,
BK(p)= 3 bc—’{q%)m{q}i- (39

atq 5Xaj ’{qj}(_p The true degrees of freedom are parametrized by the trans-

verse, traceless part of,, and P°® and are denoted by}
It is straightforward to show that the constraints in the@ndP°?T". The true Hamiltonian is

form (17) and (18) imply that c, g depends only on the

symmetrip, tra_nsverse, traceldSsT T) part ofxﬁf{q} [the Igt- o= [ g ama;] amachT+ ST )

ter is defined in Eq(27)]. In the standard helicity basis of L 2 2 cd

transverse vectom, ,m, [11] the STT part ofx?f{q} can be

written as so that
bSTN 0y —xw+ (i bLy—  (k)rmamP
Xota (K =X (g (K)m?m®+ X, o (kym?m®.  (39) R PLr w
®ed ™ d> d—

We denote the space of physical states@gﬁys. Then we ¢ ¢ ¢ 2
have shown thatbecbghLys if and only if the coefficients _ ) )
Cayq in EQ. (31) are functionals only ofxz'{q}(IZ) and These evolution equations together imply that
Xaga) (K- Cali=0 (43)

IV. THE RELATION BETWEEN GRAVITONS L . . T .
AND STATES IN ®*L which in turn implies thatr.q has the following plane wave

phys expansion:

The Abelian Poisson bracket algebra of holonomies plays
a crucial role in the construction &fy;, [10,20. As men-
tioned in Sec. |, holonomy operators are not well defined on “whetherin theU(1) casé indistinguishable even in principle or
the standard graviton Fock space. However, suitably defineénly practically indistinguishable at scales large compared to the
“smeared holonomies’are well defined operators on Fock smearing scale is discussed[i0].
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(44)]. This choice is equivalent to the requirement that the
f —[ag)( (K)elkX—km m, Fock vacuum be a zero eigenstate of the annhilation opera-
vk tors. This requirement can, in turn, be encoded in terms of
the smeared holonomy operators as

TT, o
aCd(X’t) (27 )3/2
var, (e AR,

+a,(K)e®*km m.+a* (K)
) ¢ - exy{i?J A X304y () (X) Gl )(x))

Xe‘i(‘z"z‘kt)mcmd]. (44)
. [ I
Here k=|k| andt is the background Minkowskian time. Xexy{EJ d3xG;";jq}(’)(x)hab(x))|0>
From Egs.(40) and (42) the only non-vanishing Poisson
brackets between the mode coefficients are HS 0 51
q}(r)| > ( )
{axy(k),af (D= —is(k,D). (45)

-~ - -~ - whereG2/%()(x) is defined through its Fourier transform,
In quantum theorya (k) anda (k) are represented as

annihilation operators for positive and negative helicity
gravitons of wave nu_mbefc anda(, (k) anda/_,(K) are the G (K) =KX 141y (K) (1 +i yp) mamy,
corresponding creation operators. B . R

— kX (g (K (1=iyo)mgmy.  (52)

B. r-Fock states as elements obphys

Itis straightforward to show that the reduced phase spacgnhe image of this condition in theFock representation is
in the connection-based description of Sec. Il is naturally
coordinatized by the symmetric, transverse, traceless part of
Aqp and the transverse, tracelss parhdf (recall thath®® is Yo [ 5 yab a{a)r)
symmetrig. From Eqgs.(5), (6) and(7) it follows that exp ! d*xX {Q}(U(X)G (x)

habTT: _ aabTT 46
(48 ><exp( fd3 G&IW(x)haP(x) |o>)
and that
dea T;— _HS q}|0r> (53
a
AST =€+ yoPar - (47)

R R where
Using Eq.(44) to express the Fourier transform AﬁfT T(x)

on Fock space in terms of creation and annihilation opera- - 22 ap
tors, we get hi°(k)=e*""2hab(k) (54)

N - My ~ - ]
AR = \[ =58 (K11 7o) and

G Jkmam, .~
tag) (KL +iyli+ ———1a) (K HY 0= exp|f A X304y (¥)ASp 1(X). (55)
X[—1-iyol+al (—K[-1+iyl}. (49

We define the smeared holonomfalso called the
r-holonomy labeled bye,{q} as

Ther-Fock vacuum bra(0,|, can be identified with the ele-
ment®, e <I>*hL s Via the following equation in the dual rep-
resentatior{see Eq.(30)]. Let |) be a finite linear combi-

nation of flux network states. Then

Hola ) = expi f Ak X gy (— KA (k) (49)

where ®,

eXF{ _i?f dxX b{q}(r)(x)(Ga{q}(r)(X))*>
a{q}(r)(E) e ¥ 2lzxabq}(k) (50 i X) 1* haP(x
xexp( - zf X[ G () 1 () *””

Poincare invariance is fed into the construction of the Fock
space representation through the specific choice of complex

structurefi.e. the positive-negative frequency decomposition =Do(H gl (56)

024017-6



GRAVITONS FROM A LOOP REPRESENTATION B. . . PHYSICAL REVIEW D 66, 024017 (2002

HereHL{_q} is defined through tors in D,k defines a corresponding linearly independent
' set of vectors inb% . This remains to be shown but seems
. - - to be quite plausible.
_ 3, yab
Hw,{q}_eXp'f d"%X g, (X) Aap(X) We close with some remarks on the incorporation of the
reality properties of the phase space variables in terms of

8 - adjointness properties of appropriate quantum operators.
:kHl expif A5G, (g (OARX). (57) Modulo the open issues above, note tfiatthe operators
- Ha,{q} and

Note that in Eq.(56) we have effectively replaced3! " in

Eqg. (49 by A;. This is correct because the operdfb,;,{,q} A i 30 ~BAp} (1) 2\ fab, o
is defined onphysical statesSince such states are in the M g {p}(r) =€X 5] d°xGgp ™ () h(ry(X) (61)
kernel of the constraints and sinkk, ;_ is a Dirac observ-

able, the STT condition is automatically enforcedCDQr';ys. . . )
As in Eq. (31) we set provide an(anti-) representation o

ing Poisson bracket algebra.

(2) The action ond of the operatoM a{q)(r) 1S uniquely
determined in terms of that 1, ;¢ from Eq. (56). This, in
conjunction with Eq.(1), implies that the action of the op-
and solve for the coefficientsy,,q The unique(up to an eratorsl:la,{q} and MB,{p}(r) on ‘DfFLock is naturally isomor-

overall multiplicative constantsolution is phic to the action of the corresponding operatorsp,.x
in the (dual) r-Fock representation.

*

»hys Of the correspond-

‘I’o‘=%} Coafa{ @10} (58)

COa’{q}:ex% —i ?J d3x(G§‘§q}(’)(§))* _ _(3) The r-Fock_ inner product correctly enforces the ad-
jointness properties of these operators in tkHeock repre-
sentation.
xxi%q}(r)(i))_ (59 From (1)—(3) above, it is reasonable to expect that the

inner product60) incorporates the appropriate reality condi-
tions. However, an explicit proof of this is still lacking and is
C. Open technical issues expected to be a bit involved for the following reason. The

In [20] it was shown that the set of states obtained by thdunction GW(x) is complex. As a resultvl , (g is nei-
action of the holonomy operators on thé=ock vacuum is ther unitary nor Hermitian and consequently it is expected
dense in ther-Fock space. Denote this set B A corre-  that the algebra of operators generated NAdy,,{q}(r) and
sponding set of distributions)”, in the (dua) loop repre-  fy . is not closed under the adjoint operation, thus compli-
sentation was obtained by the dual action of the holonomyating the required proof.
operators onb,. The inner product between two elements of
D* was defined to be equal to the=ock inner product be-
tween the two corresponding elementdbfsee Eq(45) of V. THE CASE OF COMPLEX vy,

[10]]. This procedure is consistent provided the set of distri-
butions inD* corresponding to anfinite) linearly indepen-
dent set of vectors iD, is linearly independent irD*. A
cursory glance at this provisio indicates that its validity is
very plausible but a proof, as yet, does not eXist.

In the case of linearized gravity, it should be straightfor-

ward to generalize the results [&0] to show that the set of We adopt the viewpoint that the kinematit(1)-based

states obtained by the action of the Opefaﬁﬁg{g_} on[0)  Hilbert spaceH,,, is simply an auxiliary structure whose
generates a dense SUpSpaDﬁioLck’ of ther-graviton Fock  ony role s to furnish &dua) representation of the algebra
space. The coArrespondlng séf. . can be identified by the (not the “x" algebra) generated byH, (, and hab. This
dual action ofH, 5y on ®( and the inner product o’ .  representation is to be used to find the kernel of the quantum
can be induced from that dD, g,k bY constraints and the physical inner product is to be chosen in
R R R R such a way as to enforce the: " relations on Dirac observ-
(Heaq®o.Hpp®o)=(0,[H S 0HAIGI0:).  (60)  ables as adjointness relations on the corresponding operators.
To this end, the analyses of Secs. Il and Il holds with a
Further, @7, ., can be completed to a Hilbert space naturallycomplex y,. Note that the dual representation is defined by
isomorphic to the-Fock space. Again, the procedure is con- Eq. (30) with the adjoint operation takewith respect to the
sistent provided every finite linearly independent set of veckinematic Hilbert space inner produdtor y, complex, this
“kinematic” adjoint operation doesiot enforce the %" re-
lations obtained from the “reality conditiong”11]. The re-
SWe did not realize the necessity of proving this[ir]. ality conditions on the linearized variables are

Our considerations till now have been based on the real
SU(2) formulation of gravity. Remarkably, much of our
analysis can also be applied to the formulation of Sec. Il with
an arbitrarycomplexBarbero-Immirzi parametety,, includ-

ing the case ofyy=—1i which corresponds to the choice of
self-dual variable$11,14].
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VI. DISCUSSION

“ﬁm*:ha%Awm_Twm)*:(Awm—me

) (62)
Yo

Yo In this work we have shown how theFock representa-
tion for linearized gravity can be constructed, starting from
and are to be incorporated in the quantum theory by thé¢he “loop” representation on the kinematic Hilbert space,
physical inner product, not necessarily the kinematic one. IrH,;,. The role of the representation &ty;, in this construc-
fact, with respect to the kinematic adjoint opera’[iﬁﬁ? is tion is that it provides the structure to define, with math-
not self-adjoint. Instead in contrast to E@6) we have that ematical precision, the dudnti-representation on an ap-
propriate space of distributions. In particular, the role of the
ftab/ g _ xy(ab) o kinematic Hilbert space inner product is to define the kine-
00l endah) =75 Xa (e dah)- 63 matic adjoint operation which is, in turn, used to define the
dual representation through E@O).
One of the features of this work is that it highlights the
importance of the dual representation on the space of distri-

The contents of Sec. IV B up to and including E§5) are
valid even for complexy,. In particular, the Poincare invari-
ance of the vacuum is still encoded in E§1). Equation 1 tions. Physical statdas opposed to kinematic oné in
(53), too, is unchanged but EG56) in the dual representa- his space. The conditiof53) which is satisfied by the
tion must be defined through EO). SinceX{%(x) is real  r-Fock vacuum in the-Fock representation not only makes
and since(with the kinematic adjointh™°=h2® wheny,is  sensdin the form of Eq.(56)], but also admits an essentially
complex, Eq.(56) is replaced by unique solution®, in the dual representation. Modulo the

comments in Secs. IV C and V, the rest(afdense subspace

¥ ) ) of) ther-Fock space is then generated frdrg, once again,
O ex;{ —i —f A3 X3 g () ;lb{q}(r)(x))*) via the dual representation of appropriately chosen Dirac ob-
4 servables.
i Another feature of this work is that the inner product on
Xex;{ - —f d3X[GHPO(x)1*hT2P(x)| ,p)” physical states, namely theFock inner product, is very dif-
2 ferent from the kinematic inner product. Indeed, the physical
— (Al ) 64) states are not kinematically normalizable. The results of Sec.
A -l ¥/ V further deemphasize thghysicalsignificance of the kine-
matic inner product and seem to strengthen the old viewpoint
This equation admits the uniquep to an overall multipli-  in the loop quantum gravity approach wherein the physical
cative constantsolution inner product is to be determined by the reality conditions.

Note, however, that the kinematic structures continue to play
v s (1) 214 b R a key mathematicalole in defining the dual representation
Coay{q) = €XP —I Tf d*x[Ga ™™ (X) ]* X 1qrn(X) |- even wheny, is complex. Thus, even though the rigorous
(65) mathematical structures ¢#,6,7,13 are defined only for
compact gauge groups, we were able to use such structures
profitably, even for the self-dual description of linearized
gravity.
We now turn to a brief discussion of the physical indis-
tinguishability of ther-Fock and the Fock representations. In
(Hafq®o.F 0 P0) =(O [H S HS TG0, (66)  the U(1) context we noted ifi10] that there were two pos-
sible viewpoints with regard to this issue. One viewpoint is
that only algebraic properties of functions on phase space
are measurable. This viewpoint applied to linearized gravity
‘would imply that there is no way of asserting whether the

pair (H 14 -h?°STY is being measured in the Fock repre-

is not a unitary operator. Note that the comments inggntation or the pairHS1T h28STh is being measured in
Sec. IVC ding the i tion of reality conditions i afap T ) 15 DETE TEASHL
ec. regarding the incorporation of reality Conditions INthe r_Fock representation. Thus, with this viewpoint, the

terms of adjointness conditions also apply to the inner prOdphysics of ther-Fock representation is exactlgiot approxi-
uct (66). . . mately) identical to that of the Fock representation.

When y,=i or —i, Eq. (48) implies thatA3, (k) lacks The other viewpoint is valid in the case that there is some
either the positive helicity creation operator or the negativeproperty other than purely algebraic properties of the pair
helicity creation operator. Hencel3 g, cannot generate (H3 a4y -h?°ST) by virtue of which the measuring appara-
the positive helicity(respectively, negative helicitygraviton ~ tus measures them rather than the pa'rrﬂg} ,hf‘gST .In
sector from the vacuum. Instead, operators involving the linsuch a case, theFock representation is physically indistin-
earized metric would have to be used to generate the Hilbeguishable from the Fock representation only for finite accu-
space from the vacuum. Although we have not attempted theacy measurements at distance scales much larger rthan
relevant analysis, we do expect that the methodddfcan  [10]. Linearized gravity is a truncation of full general rela-
be recast in the language of this paper to successfully do stivity. In the latter, the primary object which is measured is

Wheny,# *£i , we again expect the steps of Sec. IV C to go

through with the inner product o 5., specified through

whereH %[\ is the adjoint with respect to theFock inner

product. The latter correctly incorporates the reality condi
tions given by Eq(62). In particular, sincey, is complex,
QSTT
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the full metric. The notion of smearing does not extend to arlJ (1)® approach structurally even closer to the loop quantum
arbitrary metric in any natural wagnote that the smearing gravity approach.

we use is heavily dependent on the background flat metric  This work represents the culmination of our efforts, initi-
Thus, for a reason external to the narrow confines of linearated in[20] and continued if10], to understand the older
ized gravity, we expect that the physical apparatus measur@gsults of[11] in the mathematically precise language cur-
the combinations®*+h?" from whichh® can be estimated. rently used in the field. We hope that this work may aid

; b . . .
Hence the objech® rather thanh(y is preferred and the current efforts to construct semiclassical states in loop quan-
second viewpoint mentioned above seems to be the valifim gravity[21,24] and suggest that it may be a profitable

one. We have explored the consequences of this viewpoiRfenture to revisit the older efforts of Iwasaki and Rovelli
for the violation of Poincare invariance at scales smaller thaf2s] in the light of subsequent developments in the field.

r and will report our results elsewhef22].

As mentioned in the Introduction, the deeper question of

how (if at all) the U (1) loop representation arises from loop
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