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Gravitons from a loop representation of linearized gravity
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Loop quantum gravity is based on a classical formulation of 311 gravity in terms of a realSU(2)
connection. Linearization of this classical formulation about a flat background yields a description of linearized
gravity in terms of areal U(1)3U(1)3U(1) connection. A ‘‘loop’’ representation, in which holonomies of
this connection are unitary operators, can be constructed. These holonomies are not well defined operators in
the standard graviton Fock representation. We generalize our recent work on photons andU(1) holonomies to
show that Fock space gravitons are associated with distributional states in theU(1)3U(1)3U(1) loop
representation. Our results may illuminate certain aspects of the much deeper~and as yet unkown! relation
between gravitons and states in nonperturbative loop quantum gravity. This work leans heavily on earlier
seminal work by Ashtekar, Rovelli and Smolin~ARS! on the loop representation of linearized gravity using
complexconnections. In the last part of this work we show that the loop representation based on thereal
U(1)3U(1)3U(1) connection also provides a useful kinematic arena in which it is possible to express the
ARS complex connection-based results in the mathematically precise language currently used in the field.

DOI: 10.1103/PhysRevD.66.024017 PACS number~s!: 04.60.Ds
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I. INTRODUCTION

Loop quantum gravity@1–3# is an attempt to apply stan
dard Dirac quantization techniques to a classical Hamilton
formulation of 311 gravity in which the basic variables ar
a spatialSU(2) connection and its conjugate triad field.
addition to the usual diffeomorphism and Hamiltonian co
straints, the formulation also has anSU(2) Gauss law con-
straint which ensures that triad rotations are gauge. At
SU(2) gauge invariant level~also referred to as the kine
matic level!, the representation space is generated by
action of~traces of! holonomies of the connection on a cycl
state. Since holonomies are labeled by one dimensional
bitrarily complicated loops, the basic quantum excitatio
may be visualized as one dimensional and ‘‘polymerlike
Physical states, which are in the kernel of all the constrai
are expressible as certain kinematically nonnormalizable,
ear combinations of these polymerlike excitations@4#.

A key open question is as follows: how do classical co
figurations of the gravitational field arise? In particular, ho
does flat spacetime~and small perturbations around it! arise
from non-perturbative quantum states of the gravitatio
field? The latter question is particularly interesting for t
following reason. Small perturbations about flat spaceti
correspond to solutions of linearized gravity. Quantum sta
of linearized gravity lie in the familiar graviton Fock spac
on which the conventional perturbative approaches to qu
tum gravity are based. Such approaches seem to fail du
nonrenormalizability problems. Thus, an understanding
the relation between the quantum states of linearized gra
and states in full nonperturbative loop quantum grav
would shed light on the reasons behind the failure of per
bative methods.

In this work we focus exclusively on understanding c
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tain structures in quantum linearized gravity, which conce
ably ~but by no means, assuredly! could play a role in the
much deeper issue of the relation between perturbative
nonperturbative states. Our starting point is the linearizat
of the classicalSU(2) formulation@5# on which loop quan-
tum gravity is based. This linearization is described in Sec
wherein we also show that the linearized Gauss law c
straint generatesU(1)3U(1)3U(1) transformations on the
linearized connection.

Using the methods of@6–10#, U(1)3 counterparts of the
SU(2)-based structures of loop quantum gravity can be c
structed. In particular, at theU(1)3 gauge invariant level, a
‘‘kinematic’’ Hilbert spaceHkin exists which is spanned b
one dimensional polymer-like excitations associated w
~triplets @11# of! loops. Holonomies of the linearized conne
tion are represented as unitary operators onHkin . We exhibit
this representation in Sec. III A.

As realized in @11#, the operator corresponding to th
magnetic field of the linearized connection plays a key r
in expressing the linearized diffeomorphism and Hamilton
constraints as quantum operators. It turns out that this op
tor is not well defined inHkin . Neverthless it can be repre
sented on a vector spaceFkin* L of appropriately well behaved
distributional combinations of elements inHkin . Using this
representation of the magnetic field operator, we identify
kernel,Fphys* L , of all the constraints. SinceFphys* L ,Fkin* L , el-
ements ofFphys* L are also associated with infinite, kinema
cally non-normalizable sums of one dimensional polym
like excitations. Section III B is devoted to a discussion
the magnetic field operator and an evaluation of the kerne
the quantum constraints.

The standard graviton Fock space representation of lin
ized gravity is very different from the above ‘‘loop’’ repre
sentation. The basic excitations in Fock space are 3D
wavelike in contrast to the polymer-like nature of excitatio
in the loop representation. Moreover, in the Fock represe
©2002 The American Physical Society17-1
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tion the connection is an operator-valued distribution wh
needs to be smeared in three dimensions to obtain a
defined operator. Since holonomies involve only one dim
sional smearings along loops, they are not well defined
erators on Fock space.

In view of the above remarks, it is a non-trivial task
relate Fock space gravitons to elements inFphys* L . In Sec. IV,
we generalize the considerations of@10# to relate the loop
representation of linearized gravity to its standard Fock r
resentation. As in@10# we use the Poincare invariance of th
Fock vacuum to identify graviton states inFphys* L .1

Recall that the starting point of this work is the lineariz
tion of a real SU(2) formulation@5,12# of classical gravity.
The basic variable is a realSU(2) connection and the asso
ciated Barbero-Immirzi parameter@5,13# is real. In contrast,
Ashtekar, Rovelli and Smolin use the complex self-du
Ashtekar-Sen connection@14# in their pioneering work@11#
on a loop representation of linearized gravity. This cor
sponds to the choice of an imaginary Barbero-Immirzi p
rameter. In Sec. V we show how to extend the considerat
of Secs. II–IV to the case of an arbitrary complex Barbe
Immirzi parameter. Section VI is devoted to a discussion
our results.

As mentioned above, our real interest is in the dee
issue of the relation between states in linearized gravity
in full quantum gravity rather than just in structures in li
earized gravity. One possible way to approach the dee
issue is to divide it into two parts. First, since both lo
quantum gravity and theU(1)3 representation are structu
ally similar, we may try to relate the two. This is the rea
hard part. The second~and much easier! part is to relate the
U(1)3 representation to the standard graviton Fock repres
tation. It is only the second part that we accomplish in t
paper.

This work is heavily based on the Ashtekar-Rove
Smolin paper@11# and on@10#. For this reason, we shall b
very brief in our presentation and sketch only the import
points. The reader may consult@11,10# for more details. In-
deed, this work may be read as a mathematically pre
formulation of the earlier Ashtekar-Rovelli-Smolin~ARS!
@11# work in the context of the subsequent developments
the field as reflected in, for example, Refs.@4,6,7,10,12,15–
20#. We use units in which Newton’s constant, Planck’s co
stant and the speed of light are unity.

II. CLASSICAL LINEARIZED GRAVITY AS THEORY
OF U„1…ÃU„1…ÃU„1… CONNECTIONS

Our starting point is the Hamiltonian formulation of
11 gravity discussed in@5#. The spacetime manifold ha
topology S3R where S is a three-dimensional orientab
manifold. The phase space variables are a spatialSU(2) con-
nectionAa

i (xW ) and a densitized triad fieldEj
b(yW ). Herea,b

denote spatial components,i , j denote internalSU(2) Lie

1In this paragraph~but not in Sec. IV! we gloss over the very
important difference between the standard Fock representation
the r-Fock representation@10# for reasons of brevity and pedagog
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algebra components andxW ,yW denote~in general, local! coor-
dinates onS. The only non-vanishing Poisson bracket is

$Aa
i ~xW !,Ej

b~yW !%5
g0

2
da

bd j
i d~xW ,yW !. ~1!

Here, g0 is the Barbero-Immirzi parameter@5,13#. The
spin connection associated with the triad field is denoted
Ga

i , the curvature ofAa
i by Fab

i and the gauge covarian
derivative associated withAa

i by Da . The constraints of the
theory are the Gauss law constraintGi , the vector or diffeo-
morphism constraintVa and the Hamiltonian constraintC.
They are given by

Gi5D aEi
a , ~2!

Va5Ei
aFab

i , ~3!

C5e i jkEi
aEj

bFabk22
g0

211

g0
2 E[ i

a Ej ]
b

3~Aa
i 2Ga

i !~Aa
j 2Ga

j !. ~4!

The SU(2) variables are related to the Arnowitt-Dese
Misner ~ADM ! variables as follows. The densitized triad an
the 3-metric,qab , are related through

qqab5EaiEi
b ~5!

whereq is the determinant ofqab . WhenGi50 the extrinsic
curvature,Kab , can be extracted from theSU(2) variables
through

g0KabEi
b5Aq~Aa

i 2Ga
i !. ~6!

To define the linearized theory about a flat background
chooseS5R3 and fix, once and for all, a Cartesian coord
nate system$xW% as well as an orthonormal basis in the L
algebra ofSU(2). Henceforth all components refer to th
Cartesian coordinate system and to this internal basis.
linearize theSU(2) formulation about the phase space po
(Aa

i 50,Ei
a5d i

a). As in @11#, we denote the fluctuation in th
triad field byei

a so that

Ei
a5d i

a1ei
a . ~7!

Since the background connection vanishes, there is no n
to introduce a new symbol for the fluctuation in the conne
tion. The Poisson brackets between the linearized varia
are induced from Eq.~1!. The only nonvanishing Poisso
brackets are

$Aa
i ~xW !,ej

b~yW !%L5
g0

2
da

bd j
i d~xW ,yW !. ~8!

Here the subscript ‘‘L ’’ denotes the fact that the Poisso
brackets are for linearized theory.

Note that the flat spatial metric corresponding to the ba
ground triad is just the Kronecker delta,dab . In what follows
spatial indices are lowered and raised with this flat me
nd
7-2
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GRAVITONS FROM A LOOP REPRESENTATION OF . . . PHYSICAL REVIEW D 66, 024017 ~2002!
and its inverse. Internal indices are, of course, lowered
raised by theSU(2) Cartan-Killing metric. We also use th
background triad to freely interchange internal and spa
indices. The flat derivative operator which annihilates
background triad is denoted by]a .

The linearized constraints are obtained from Eqs.~2!, ~3!
and ~4! by keeping terms at most linear in the fluctuatio
and are denoted byGi

L ,Va
L , andCL with

Gi
L5]aei

a1e i
jaAa j , ~9!

Va
L5 f ab

a , ~10!

CL5eabcf abc . ~11!

Here f ab
i 5]aAb

i 2]bAa
i is the linearized curvature.

The transformations generated byGL(L):5*d3xL iGi
L

are

dAa
i 5$Aa

i ,GL~L!%52]aS g0L i

2 D ~12!

and

dei
a5$ei

a ,GL~L!%52e i
akS g0Lk

2 D . ~13!

From Eq.~12!, Aa
i for each ‘‘i ’’ transforms as aU(1) con-

nection. Thus, the configuration space of linearized gravity
this formulation is coordinatized by a triplet ofU(1) con-
nectionsAa

1 ,Aa
2 ,Aa

3 .
In order to construct the loop representation in the n

section, we define the following set ofGi
L- invariant func-

tions on phase space:

hab5eab1eba, ~14!

Ha
k 5expi R

a
Aa

kdxa. ~15!

Herea is a piecewise analytic, oriented loop inR3 andHa
k is

the U(1) holonomy ofAa
k around the loopa.

It is also useful to define the magnetic field of the co
nection by

Bk
a5

1

2
eabcf bck . ~16!

In terms of the magnetic field the vector and scalar c
straints are

Va
L5ecabB

ca ~17!

CL5Bc
c . ~18!

Thus the vanishing of the vector and scalar constraints im
that the magnetic field is symmetric and tracefree.
02401
d

l
e

n

t

-

-

ly

III. THE LOOP REPRESENTATION OF QUANTUM
LINEARIZED GRAVITY

We construct a loop representation based on theU(1)3

holonomies of Sec II. The representation at the kinema
(Gi

L invariant! level is just the tensor product of 3 copies
theU(1) representation worked out in detail in@10#. We use
the notation of, and assume familiarity with, that work.

After presenting the kinematic Hilbert space in Sec. III
we turn our attention to the linearized vector and scalar c
straints in Sec. III B. Since the constraints are algebraic st
ments about the magnetic field, we express the class
magnetic field via a limit of the holonomy of a shrinkin
loop in the usual way. The corresponding quantum opera
is not defined on the kinematic Hilbert space because
diffeomorphism invariance of the Hilbert space measure p
cludes the existence of the required limit. We show how
define the magnetic field operator based on the dual actio
the holonomy operator on a suitable space of distributio
We use this defintion to find the kernel of the lineariz
vector and scalar constraints.

A. The kinematic Hilbert space representation

The kinematic Hilbert space,Hkin , inherits its measure
from the Haar measure onU(1) @it is just the triple product
of the Ashtekar-Lewandowski measure forU(1) connections
@7##. A spanning orthonormal basis is given by the trip
tensor product of theU(1) flux network basis of@10#.2 Each
basis state is labeled by a triplet of closed, oriented, pie
wise analytic graphs as well as 3 sets of integers@these are
representation labels forU(1)#, one for each graph of the
triplet. Each set of integers labels the edges of its co
sponding graph in such a way that at every vertex the sum
labels of outgoing edges equals the sum of labels of inco
ing edges.

We denote the flux network labeled by the graphsa i and
the sets of integersqi , i 51, . . . ,3 as

ua,$q%&5ua1$q1%&ua2$q2%&ua3$q3%&. ~19!

As shown in@10#, the U(1) holonomy of any piecewise
analytic loopb is equally well associated with aU(1) flux
network labela,$q% such that

Xa,$q%
a ~xW !5Xb

a~xW !. ~20!

Here

Xb
a~xW !ª R

b
dsd3~bW ~s!,xW !ḃa, ~21!

and

Xa,$q%
a ~xW !ª(

I 51

N

qIE
eI

dsId
3~eW I~sI !,xW !eİ

a, ~22!

2In @10# this was called the charge network basis; we use the t
flux network to agree with the more recent work@21#.
7-3
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MADHAVAN VARADARAJAN PHYSICAL REVIEW D 66, 024017 ~2002!
whereeI is theI th edge ofa and is labeled by the integerqI .
The gauge invariant operatorsĤ i and ĥab are represented

on the kinematic Hilbert space as follows. We first descr
the action ofĤ1. This operator acts only on the first ket o
the right-hand side of Eq.~19! exactly as in the case ofU(1)
theory @10#. Recall from @10# that there theU(1) operator
Ĥh,$p% mapsua,$q%& to a new flux network state based on t
graph aøh consisting of the union of the sets of edg
belonging toa andh.3 The edges ofaøh are oriented and
labeled with integers as follows. Edges which are not sha
by h anda retain their orientations and labels. Any shar
edge labeled by the integerq in a retains its orientation from
a and has the labelq1p if it has the same orientation inh
and the labelq2p if it has opposite orientation inh. The
new state is denoted~with a minor change of notation with
respect to@10#! by ua,$q%øh,$p%&. This implies that in the
U(1)3 case we have

Ĥh,$p%
1 ua,$q%&5ua1 ,$q1%øh,$p%&ua2 ,$q2%&ua3 ,$q3%&.

~23!

Similarly Ĥ2,Ĥ3 act by the union operation on the labe
a2$q2% anda3$q3%. Using the notation of@11#, we write

Ĥh,$p%
k ua,$q%&5ua,$q%økh,$p%&. ~24!

As in @10# we shall use the labelling of holonomies by the
associated flux network labels~i.e. Ha$q%

k ) interchangeably
with their labelling by loops~i.e. Hb

k ). Thus if there is no
integer label in the subscript toH, the label is to be under
stood as a loop or as an associated flux network label.

Also, note that ifb is a loop with a single edge, then th
associated flux network label is comprised of the graphb
with its single edge labeled by the integer 1. For this spe
case we write

Hb
k 5Hb,$1%

k . ~25!

ĥab is represented as

ĥab~xW !ua,$q%&5g0Xa,$q%
(ab) ~xW ! ~26!

where we have defined

Xa,$q%
ab ~xW !5(

i 51

3

Xa i ,$qi %
a ~xW !d i

b . ~27!

It can be verified that Eqs.~24! and ~26! provide a ‘‘* ’’
representation~on the kinematic Hilbert space! of the Pois-
son bracket algebra of theGi

L invariant functionsHa
k and

hab(xW ). Therefore the linearized Gauss law constraint is

3It is assumed that edges ofh,a overlap only if they are identica
and that intersections ofh,a occur only at vertices ofh,a. This
entails no loss of generality, since we can always find graphs w
are holonomically equivalent toh,a and for which the assumption
holds.
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ready taken care of and we need to analyze only the rem
ing ~quantum! vector and scalar constraints.

B. The magnetic field operator and physical states

The magnetic field is extracted from the holonomies
small loops through

Bck~xW !5 lim
d→0

i

pd2~H
(g

xW ,d

c
)21

k
21! ~28!

where * denotes complex conjugation andgxW ,d
c is a circular

loop of radiusd centered atxW traversing anticlockwise abou
and with its plane normal to the ‘‘c’’ axis. (gxW ,d

c )21 denotes
the same loop running clockwise. The corresponding ope
tor

B̂ck~xW !5 lim
d→0

i

pd2~Ĥ
(g

xW ,d

c
)21

k
21! ~29!

is not well defined on the finite span of flux network state
The reason is that, due to the diffeomorphism invariance
the U(1)3 Ashtekar-Lewandowski measure, flux netwo
states associated with the triplet of graphsaøk(gxW ,d

c )21

~here we use the notation of@11#! for different values ofd
are orthogonal.

Instead we attempt to define the operatorB̂ck by its dual
action on the space of algebraic duals to the finite span
flux network states. Recall that the dual~anti-!representation
of an operatorÂ is given by@10#

ÂF~ uc&)5F~Â†uc&) ~30!

where F is an element of the algebraic dual anduc& is a
finite linear combination of flux network states. Every el
ment of the algebraic dual can be formally written as
infinite sum over all flux network states, i.e.

Fª (
a,$q%

ca,$q%^a,$q%u ~31!

with ca,$q%5F(ua,$q%&). It follows that

B̂ck~xW!F5 lim
d→0

(
a,$q%

ca,$q%^a,$q%u
~Ĥ

(g
xW ,d

c
)21

†
21!

ipd2

5 (
a,$q%

lim
d→0

ca,$q%økg
xW ,d

c
,$1%2ca,$q%

ipd2 ^a,$q%u.

~32!

We shall say thatB̂ck(xW ) is well defined if and only if

dca,$q%

dgck~xW !
ª lim

d→0

ca,$q%økg
xW ,d

c
,$1%2ca,$q%

pd2 ~33!

is well defined.

h

7-4
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GRAVITONS FROM A LOOP REPRESENTATION OF . . . PHYSICAL REVIEW D 66, 024017 ~2002!
We further require thatca,$q% is a functional ofXa i ,$qi %
a ,i

51, . . . ,3.This requirement combined with the requireme
that B̂ck be well defined singles out a vector space,Fkin* L , of
‘‘well behaved’’ distributions. To summarize: the magne
field operator is defineable, via the dual action of holono
operators, on the spaceFkin* L .

The Fourier transform ofXa i ,$qi %
b (xW ) is

Xa i ,$qi %
b ~pW !5

1

~2p!3/2E d3xXa i ,$qi %
b ~xW !e2 ipW •xW. ~34!

Define

dXa j ,$qj %
b ~pW !

dgci~xW !
ªd i j lim

d→0

X
a j ,$qj %øg

xW ,d

c
,$1%

b
2Xa j ,$qj %

b

pd2 . ~35!

From Eq.~22! it follows that

dXa j ,$qj %
b ~pW !

dgci~xW !
5

2 i

~2p!3/2
d i j pmecmbe2 ipW •xW. ~36!

Note that

dca,$q%

dgck~xW !
5E d3p

dca,$q%

dXa j ,$qj %
b ~pW !

dXa j ,$qj %
b ~pW !

dgci~xW !
. ~37!

Using Eqs.~36! and ~37! in Eq. ~32! and taking the Fourier
transform ofB̂ck(xW ), we obtain

B̂ck~pW !5 (
a,$q%

dca,$q%

dXa j ,$qj %
b ~2pW !

^a,$q%u. ~38!

It is straightforward to show that the constraints in t
form ~17! and ~18! imply that ca,$q% depends only on the
symmetric, transverse, traceless~STT! part ofXa,$q%

bc @the lat-
ter is defined in Eq.~27!#. In the standard helicity basis o
transverse vectorsma ,m̄a @11# the STT part ofXa,$q%

bc can be
written as

Xa,$q%
ab(STT)~kW !5Xa,$q%

1 ~kW !mamb1Xa,$q%
2 ~kW !m̄am̄b. ~39!

We denote the space of physical states byFphys* L . Then we
have shown thatFPFphys* L if and only if the coefficients

ca,$q% in Eq. ~31! are functionals only ofXa,$q%
1 (kW ) and

Xa,$q%
2 (kW ).

IV. THE RELATION BETWEEN GRAVITONS
AND STATES IN Fphys* L

The Abelian Poisson bracket algebra of holonomies pl
a crucial role in the construction ofHkin @10,20#. As men-
tioned in Sec. I, holonomy operators are not well defined
the standard graviton Fock space. However, suitably defi
‘‘smeared holonomies’’are well defined operators on Foc
02401
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space@11,20#. It was noticed in@10,20# that for theU(1)
case, the algebra of smeared holonomies is isomorphic to
holonomy algebra. This isomorphism was used to constru
representation, indistinguishable4 from the Fock representa
tion, in which holonomies are well defined operators. Sin
holonomy operators are defined in theU(1) loop represen-
tation ~called the ‘‘qef’’ representation in@10#! as well as the
new ‘‘r -Fock’’ representation in@10# ~herer is a length scale
used to define the smearing!, it was possible to relate the
r-Fock representation to the loop representation in@10#. The
considerations of@10# can be extended to the case of linea
ized gravity in an obvious and straightforward manner a
we shall only present the main results of such an extensio
this section.

In Sec. IV A, we briefly review the standard gravito
Fock space representation based on linearized ADM v
ables. In Sec. IV B, we use the Poincare invariance condi
@10# to identify the element ofFphys* L which corresponds to
the r-Fock vacuum. We expect that this identification c
then be used to relate a suitable subspace ofFphys* L to ~a
dense subspace of! the r-Fock space, modulo a couple o
open technical issues which we discuss in Sec. IV C.

A. Review of the standard Fock space representation
of linearized gravity

The standard Fock representation is obtained by quan
ing the true degrees of freedom in the ADM description.
the ADM description the phase space variables are the
earized metricaab and the linearized ADM momentumPab

with

$aab~xW !,Pcd~yW !%5da
(cdb

d)d~xW ,yW !. ~40!

The true degrees of freedom are parametrized by the tr
verse, traceless part ofaab andPcd and are denoted byaab

TT

andPcdTT. The true Hamiltonian is

HL5E d3xS ]macd
TT

2

]macdTT

2
1PcdTTPcd

TTD ~41!

so that

ȧcd
TT52Pcd

TT , Ṗcd
TT5

]m]macd
TT

2
. ~42!

These evolution equations together imply that

hacd
TT50 ~43!

which in turn implies thatacd
TT has the following plane wave

expansion:

4Whether@in theU(1) case# indistinguishable even in principle o
only practically indistinguishable at scales large compared to
smearing scale is discussed in@10#.
7-5
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acd
TT~xW ,t !5

1

~2p!3/2E d3k

Ak
@a(1)~kW !ei (kW•xW2kt)mcmd

1a~1 !
* ~kW !e2 i (kW•xW2kt)m̄cm̄d

1a(2)~kW !ei (kW•xW2kt)m̄cm̄d1a~2 !
* ~kW !

3e2 i (kW•xW2kt)mcmd#. ~44!

Here k5ukW u and t is the background Minkowskian time
From Eqs.~40! and ~42! the only non-vanishing Poisso
brackets between the mode coefficients are

$a(6)~kW !,a~6 !
* ~ lW !%52 id~kW , lW !. ~45!

In quantum theory,â(1)(kW ) and â(2)(kW ) are represented a
annihilation operators for positive and negative helic
gravitons of wave numberkW andâ(1)

† (kW ) andâ(2)
† (kW ) are the

corresponding creation operators.

B. r-Fock states as elements ofFphys* L

It is straightforward to show that the reduced phase sp
in the connection-based description of Sec. II is natura
coordinatized by the symmetric, transverse, traceless pa
Aab and the transverse, tracelss part ofhab ~recall thathab is
symmetric!. From Eqs.~5!, ~6! and ~7! it follows that

habTT52aabTT ~46!

and that

Aa f
STT5e f

cd
]caad

TT

2
1g0Pa f

TT . ~47!

Using Eq.~44! to express the Fourier transform ofÂa f
STT(xW )

on Fock space in terms of creation and annihilation ope
tors, we get

Âab
STT~kW !5Akmamb

2
$â(1)~kW !@12 ig0#

1â(1)
† ~2kW !@11 ig0#%1

Akm̄am̄b

2
$â(2)~kW !

3@212 ig0#1â(2)
† ~2kW !@211 ig0#%. ~48!

We define the smeared holonomy~also called the
r-holonomy! labeled bya,$q% as

Ha,$q%(r )
STT

ªexpi E d3kXa,$q%(r )
ab ~2kW !Aab

STT~kW ! ~49!

where

Xa,$q%(r )
ab ~kW !5e2k2r 2/2Xa,$q%

ab ~kW !. ~50!

Poincare invariance is fed into the construction of the Fo
space representation through the specific choice of com
structure@i.e. the positive-negative frequency decomposit
02401
ce
y
of

-

k
ex

~44!#. This choice is equivalent to the requirement that t
Fock vacuum be a zero eigenstate of the annhilation op
tors. This requirement can, in turn, be encoded in terms
the smeared holonomy operators as

expS i
g0

4 E d3xXa,$q%(r )
ab ~xW !Gab

a,$q%(r )~xW ! D
3expS i

2E d3xGab
a,$q%(r )~xW !ĥab~xW ! D u0&

5Ĥa,$Àq%(r )
STT u0& ~51!

whereGab
a,$q%(r )(xW ) is defined through its Fourier transform

Gab
a,$q%(r )~kW !5kXa,$q%(r )

1 ~kW !~11 ig0!mamb

2kXa,$q%(r )
2 ~kW !~12 ig0!m̄am̄b . ~52!

The image of this condition in ther-Fock representation is

expS i
g0

4 E d3xXa,$q%(r )
ab ~xW !Gab

a,$q%(r )~xW ! D
3expS i

2E d3xGab
a,$q%(r )~xW !ĥr

ab~xW !u0r& D
5Ĥa,$2q%

STT u0r& ~53!

where

hr
ab~kW !5e2k2r 2/2hab~kW ! ~54!

and

Ha,$q%
STT 5expi E d3xXa,$q%(r )

ab ~xW !Aab
STT~xW !. ~55!

The r-Fock vacuum bra,̂0r u, can be identified with the ele
mentF0PFphys* L via the following equation in the dual rep
resentation@see Eq.~30!#. Let uc& be a finite linear combi-
nation of flux network states. Then

F0FexpS 2 i
g0

4 E d3xXa,$q%(r )
ab ~xW !~Gab

a,$q%(r )~xW !!* D
3expS 2

i

2E d3x@Gab
a,$q%(r )~xW !#* ĥr

ab~xW !uc& D G
5F0~Ĥa,$2q%

† uc&). ~56!
7-6
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Here Ĥa,$2q%
† is defined through

Ha,$q%5expi E d3xXa,$q%
ab ~xW !Aab~xW !

5)
k51

3

expi E d3xXak ,$qk%
a ~xW !Aa

k~xW !. ~57!

Note that in Eq.~56! we have effectively replacedAab
STT in

Eq. ~49! by Aa
i . This is correct because the operatorĤa,$2q%

is defined onphysical states. Since such states are in th
kernel of the constraints and sinceHa,$2q% is a Dirac observ-
able, the STT condition is automatically enforced onFphys* L .

As in Eq. ~31! we set

F0ª (
a,$q%

c0a,$q%^a,$q%u ~58!

and solve for the coefficientsc0a,$q% The unique~up to an
overall multiplicative constant! solution is

c0a,$q%5expS 2 i
g0

4 E d3x~Gab
a,$q%~r !~xW !!*

3Xa,$q%(r )
ab ~xW ! D . ~59!

C. Open technical issues

In @20# it was shown that the set of states obtained by
action of the holonomy operators on ther-Fock vacuum is
dense in ther-Fock space. Denote this set byD. A corre-
sponding set of distributions,D* , in the ~dual! loop repre-
sentation was obtained by the dual action of the holono
operators onF0. The inner product between two elements
D* was defined to be equal to ther-Fock inner product be-
tween the two corresponding elements ofD @see Eq.~45! of
@10##. This procedure is consistent provided the set of dis
butions inD* corresponding to any~finite! linearly indepen-
dent set of vectors inD, is linearly independent inD* . A
cursory glance at this provisio indicates that its validity
very plausible but a proof, as yet, does not exist.5

In the case of linearized gravity, it should be straightf
ward to generalize the results of@20# to show that the set o
states obtained by the action of the operatorsĤa,$q%

STT on u0r&
generates a dense subspace,DrFock , of the r-graviton Fock
space. The corresponding set,F rFock* L can be identified by the

dual action ofĤa,$q% on F0 and the inner product onF rFock* L

can be induced from that onDrFock by

~Ĥa,$q%F0 ,Ĥb,$p%F0!5^0r uĤb,$p%
†STTĤa,$q%

STT u0r&. ~60!

Further,F rFock* L can be completed to a Hilbert space natura
isomorphic to ther-Fock space. Again, the procedure is co
sistent provided every finite linearly independent set of v

5We did not realize the necessity of proving this in@10#.
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tors in DrFock defines a corresponding linearly independe
set of vectors inF rFock* L . This remains to be shown but seem
to be quite plausible.

We close with some remarks on the incorporation of
reality properties of the phase space variables in terms
adjointness properties of appropriate quantum operators

Modulo the open issues above, note that~1! the operators
Ĥa,$q% and

M̂ b,$p%(r )ªexpS i

2E d3xGab
b,$p%(r )~xW !ĥ(r )

ab~xW ! D ~61!

provide an~anti-! representation onFphys* L of the correspond-
ing Poisson bracket algebra.

~2! The action onF0 of the operatorM̂ a,$q%(r ) is uniquely
determined in terms of that ofĤa,$q% from Eq. ~56!. This, in
conjunction with Eq.~1!, implies that the action of the op
eratorsĤa,$q% and M̂ b,$p%(r ) on F rFock* L is naturally isomor-
phic to the action of the corresponding operators onDrFock
in the ~dual! r-Fock representation.

~3! The r-Fock inner product correctly enforces the a
jointness properties of these operators in ther-Fock repre-
sentation.

From ~1!–~3! above, it is reasonable to expect that t
inner product~60! incorporates the appropriate reality cond
tions. However, an explicit proof of this is still lacking and
expected to be a bit involved for the following reason. T
functionGab

a,$q%(r )(xW ) is complex. As a result,M̂ a,$q%(r ) is nei-
ther unitary nor Hermitian and consequently it is expec
that the algebra of operators generated byM̂ a,$q%(r ) and
Ĥa,$q% is not closed under the adjoint operation, thus comp
cating the required proof.

V. THE CASE OF COMPLEX g0

Our considerations till now have been based on the
SU(2) formulation of gravity. Remarkably, much of ou
analysis can also be applied to the formulation of Sec. II w
an arbitrarycomplexBarbero-Immirzi parameter,g0, includ-
ing the case ofg052 i which corresponds to the choice o
self-dual variables@11,14#.

We adopt the viewpoint that the kinematicU(1)3-based
Hilbert space,Hkin , is simply an auxiliary structure whos
only role is to furnish a~dual! representation of the algebr
~not the ‘‘* ’’ algebra! generated byHa,$q% and hab. This
representation is to be used to find the kernel of the quan
constraints and the physical inner product is to be chose
such a way as to enforce the ‘‘* ’’ relations on Dirac observ-
ables as adjointness relations on the corresponding opera

To this end, the analyses of Secs. II and III holds with
complexg0. Note that the dual representation is defined
Eq. ~30! with the adjoint operation takenwith respect to the
kinematic Hilbert space inner product. For g0 complex, this
‘‘kinematic’’ adjoint operation doesnot enforce the ‘‘* ’’ re-
lations obtained from the ‘‘reality conditions’’@11#. The re-
ality conditions on the linearized variables are
7-7
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~hab!* 5habS A(ab)2G (ab)

g0
D *

5S A(ab)2G (ab)

g0
D ~62!

and are to be incorporated in the quantum theory by
physical inner product, not necessarily the kinematic one
fact, with respect to the kinematic adjoint operation,ĥab is
not self-adjoint. Instead in contrast to Eq.~26! we have that

ĥ†ab~xW !ua,$q%&5g0* Xa,$q%
(ab) ~xW !ua,$q%&. ~63!

The contents of Sec. IV B up to and including Eq.~55! are
valid even for complexg0. In particular, the Poincare invari
ance of the vacuum is still encoded in Eq.~51!. Equation
~53!, too, is unchanged but Eq.~56! in the dual representa
tion must be defined through Eq.~30!. SinceXa,$q%

(ab) (xW ) is real

and since~with the kinematic adjoint! ĥ†abÞĥab wheng0 is
complex, Eq.~56! is replaced by

F0FexpS 2 i
g0*

4 E d3xXa,$q%(r )
ab ~xW !~Gab

a,$q%(r )~xW !!* D
3expS 2

i

2E d3x@Gab
a,$q%(r )~xW !#* ĥr

†ab~xW !uc& D G
5F0~Ĥa,$2q%

† uc&). ~64!

This equation admits the unique~up to an overall multipli-
cative constant! solution

c0a,$q%5expS 2 i
g0*

4 E d3x@Gab
a,$q%(r )~xW !#* Xa,$q%(r )

ab ~xW ! D .

~65!

Wheng0Þ6 i , we again expect the steps of Sec. IV C to
through with the inner product onFFock* L specified through

~Ĥa,$q%F0 ,Ĥb,$p%F0!5^0r uĤb,$p%
†STTĤa,$q%

STT u0r& ~66!

whereĤb,$p%
†STT is the adjoint with respect to ther-Fock inner

product. The latter correctly incorporates the reality con
tions given by Eq.~62!. In particular, sinceg0 is complex,
Ĥb,$p%

STT is not a unitary operator. Note that the comments
Sec. IV C regarding the incorporation of reality conditions
terms of adjointness conditions also apply to the inner pr
uct ~66!.

When g05 i or 2 i , Eq. ~48! implies thatÂab
STT(kW ) lacks

either the positive helicity creation operator or the negat
helicity creation operator. HenceĤa,$q%(r )

STT cannot generate
the positive helicity~respectively, negative helicity! graviton
sector from the vacuum. Instead, operators involving the
earized metric would have to be used to generate the Hil
space from the vacuum. Although we have not attempted
relevant analysis, we do expect that the methods of@11# can
be recast in the language of this paper to successfully do
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VI. DISCUSSION

In this work we have shown how ther-Fock representa-
tion for linearized gravity can be constructed, starting fro
the ‘‘loop’’ representation on the kinematic Hilbert spac
Hkin . The role of the representation onHkin in this construc-
tion is that it provides the structure to define, with mat
ematical precision, the dual~anti-!representation on an ap
propriate space of distributions. In particular, the role of t
kinematic Hilbert space inner product is to define the kin
matic adjoint operation which is, in turn, used to define t
dual representation through Eq.~30!.

One of the features of this work is that it highlights th
importance of the dual representation on the space of di
butions. Physical states~as opposed to kinematic ones! lie in
this space. The condition~53! which is satisfied by the
r-Fock vacuum in ther-Fock representation not only make
sense@in the form of Eq.~56!#, but also admits an essentiall
unique solution,F0, in the dual representation. Modulo th
comments in Secs. IV C and V, the rest of~a dense subspac
of! the r-Fock space is then generated fromF0, once again,
via the dual representation of appropriately chosen Dirac
servables.

Another feature of this work is that the inner product
physical states, namely ther-Fock inner product, is very dif-
ferent from the kinematic inner product. Indeed, the physi
states are not kinematically normalizable. The results of S
V further deemphasize thephysicalsignificance of the kine-
matic inner product and seem to strengthen the old viewp
in the loop quantum gravity approach wherein the physi
inner product is to be determined by the reality conditio
Note, however, that the kinematic structures continue to p
a key mathematicalrole in defining the dual representatio
even wheng0 is complex. Thus, even though the rigoro
mathematical structures of@4,6,7,15# are defined only for
compact gauge groups, we were able to use such struc
profitably, even for the self-dual description of linearize
gravity.

We now turn to a brief discussion of the physical ind
tinguishability of ther-Fock and the Fock representations.
the U(1) context we noted in@10# that there were two pos
sible viewpoints with regard to this issue. One viewpoint
that only algebraic properties of functions on phase spa
are measurable. This viewpoint applied to linearized grav
would imply that there is no way of asserting whether t
pair (Ha,$q%(r )

STT ,habSTT) is being measured in the Fock repr
sentation or the pair (Ha,$q%

STT ,h(r )
abSTT) is being measured in

the r-Fock representation. Thus, with this viewpoint, th
physics of ther-Fock representation is exactly~not approxi-
mately! identical to that of the Fock representation.

The other viewpoint is valid in the case that there is so
property other than purely algebraic properties of the p
(Ha,$q%(r )

STT ,habSTT) by virtue of which the measuring appara
tus measures them rather than the pair, (Ha,$q%

STT ,h(r )
abSTT). In

such a case, ther-Fock representation is physically indistin
guishable from the Fock representation only for finite ac
racy measurements at distance scales much larger thr
@10#. Linearized gravity is a truncation of full general rela
tivity. In the latter, the primary object which is measured
7-8
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the full metric. The notion of smearing does not extend to
arbitrary metric in any natural way~note that the smearing
we use is heavily dependent on the background flat met!.
Thus, for a reason external to the narrow confines of line
ized gravity, we expect that the physical apparatus meas
the combinationdab1hab from which hab can be estimated
Hence the objecthab rather thanh(r )

ab is preferred and the
second viewpoint mentioned above seems to be the v
one. We have explored the consequences of this viewp
for the violation of Poincare invariance at scales smaller t
r and will report our results elsewhere@22#.

As mentioned in the Introduction, the deeper question
how ~if at all! theU(1)3 loop representation arises from loo
quantum gravity is as yet unsolved. A small preliminary s
in this direction would be to investigate if the linearize
constraints can be solved via an ‘‘averaging’’ procedure@23#
similar to that used in loop quantum gravity@4#, rather than
by using the magnetic field operator. This would bring t
on

n

,
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U(1)3 approach structurally even closer to the loop quant
gravity approach.

This work represents the culmination of our efforts, ini
ated in @20# and continued in@10#, to understand the olde
results of@11# in the mathematically precise language cu
rently used in the field. We hope that this work may a
current efforts to construct semiclassical states in loop qu
tum gravity @21,24# and suggest that it may be a profitab
venture to revisit the older efforts of Iwasaki and Rove
@25# in the light of subsequent developments in the field.
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